IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 324

15113

ClassyNet: Class-Aware Early-Exit Neural
Networks for Edge Devices

Mohammed Ayyal

Abstraci—Edge-based and IoT devices have seen phenomenal
growth in recent years, driven by the surge in demand for
emerging applications that leverage machine learning models,
such as deep neural networks (DNNs). However, a primary
drawback of DNNs is their substantial storage/memory needs
and high computational overhead, making their adoption in edge
devices challenging. This limitation prompted the development
of early-exit models like BranchyMNet, which enable decisions
to be made at earlier stages by incorporating dedicated exiis
within the architecture’s inner layers. Nonetheless, these existing
early-exit models lack control over the specific class that should
exit and when. The necessity for such class-aware models is
evident in numerous edge applications, where particular high-
priority classes must be detected earlier due to their time-sensitive
nature. In this article, we introduce ClassyNet, the first early-
exit architecture designed to return only selected classes at each
exit. This feature facilitates faster inference times for critical
classes, allowing the initial layers to operate on edge devices. This
strategy conserves considerable computational time and resources
on the edge without compromising accuracy. Through extensive
experiments, we show the effectiveness of ClassyMNel compared
to other models under various scenarios.

Index Terms—Class-aware classification, dynamic deep neural
network (DNN), early-exit models, edge computing, on-device
machine learning,

[. INTRODUCTION

ITH a forecast of 41.6 billion edge and IoT devices

by 2025 [1]. and a rise of 300 million smarl homes
by 2023 [2], many exciting edge-based real-time applications,
such as remote health care [3], augmented reality [4], and
video analytics [5], are expected to increase. Edge-based
devices typically host on-device machine learmning models such
as deep neural network (DNN) models to support these appli-
cations. However, DNN models” main drawbacks lies in high
computational cost and slow processing speed. Consequently,
the performance of these models will be significantly influ-
enced by the limitations of the device's resources, such as

Manuscript received 10 October 2023: revised 15 November 2023; accepled
5 December 2023, Date of publication 19 December 2023, date of current
version 23 April 2024. This work was supported in part by the LS.
Mational Science Foundation wnder Grant OAC-2212424, and in part by
the Commonwealth Cyber Initiative, an invesiment in the advancement of
cyber research and development, innovation, and workforce development.
(Carresponding author: Mohammed Ayvat,)

Mohammed Ayyal and Tamer Madeem are with the Department of
Computer Science, Virginia Commonwealth University, Richmond, VA 23220
USA (e-mail: ayyalma®@ vou.edu; inadeem@ vew.edu).

Bartosz Krawczyk is with the Chester F. Carlson Center for Imaging
Science, Rochester Institute of Technology, Rochester, NY 14623 USA
(e-mail: bartosz krawczyk @rit.edu).

Digital Object Identifier 10.110%JI0T. 2023 3344120

. Member, IEEE, Tamer Nadeem™ , Member, IEEE, and Bartosz Krawczyk™', Member, IEEE

on-device memory size. As a result, developing approaches
to optimally accelerate DNN model inference computations in
order to realize real-time applications on edge devices with
restricted resources is very desirable.

The majority of existing work in DNN acceleration focuses
on model compression, using binary weight representations,
or approximate decision making. All these methods still rely
on the entire deep architecture, requiring each input instance
lo pass through every layer for the decision to be made. In
biclogically inspired neural networks, heuristics are being used
to reduce the processing path, effectively using only a subset
of the neural network,

This led to the development of early-exit models that allow
for the decision to be made on earlier stages by attaching
dedicated exits to the inner layers of the architecture. Models,
such as BranchyNet [6], Shallow-Deep Networks, or Patience-
based early exit, use a simple classification head attached
to given internal layers as a potential exit. These heads are
known as internal classifiers and allow for shortening the
decision-making process. If a given internal classifier displays
high enough confidence, a decision is being made at this
exit. Otherwise, the instance is passed to further subsequent
layers and the next exit to predict the label. This allows
for classifyving instances without passing them through every
single layer, leading to significant improvements in inference
speed.

However, early-exit models do not have any control over
what class should be returned by each exit. Some classes
should be detected earlier than others due (o their temporal
importance. As an example, let us take a self-driving car.
Classes responsible for collisions with other vehicles or objects
should be recognized as soon as possible, while other classes
corresponding to driving conditions can be recognized with
some latency. The need for similar importance ordering can
be observed in a plethora of other domains, such as edge
computing (where some classes could be detected on devices
storing only the first layers of neural networks), medicine
(where life-threatening cases should be recognized as soon
as possible), or intrusion detection systems (where adversarial
and malicious behaviors should be isolated quickly to preserve
the integrity of the system). Therefore, there is a need
to develop a class-based early-exit neural network with a
dedicated training procedure that will allow each potential exit
to specialize in recognizing a selected subset of classes.

In this article, motivated by the above observations, we
design and develop ClassyNet, a first early-exit architecture
capable of returning only selected classes at each exit. This

2327-4662 (@ 2023 IEEE. Personal use is permitted. bul republication/redistribution requires IEEE permission.
See https:/harww,ieee org/publications/rights/findex. html for more information.

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15114

allows for significant speedups in inference time for sensitive
classes while maintaining accuracy of reference early-exit
methods that do not control the ordering of classes. We
summarize the contributions of this article as follows,

1) We motivate and present ClassyNer, a dynamic class-
aware classification model for edge devices with limited
resources that significantly improves the inference
latency time supporting real-time applications. To the
best of our knowledge, this work is the first attempt at
developing a dynamic class-aware DNN model.

2) We design and develop novel loss functions, Bag-of-
Classes (BoC) and Cost-sensitive loss matrix, to enable
class-aware training, leading to effectively controlling
the assignment of specific classes to early exits of the
maodel.

3) We implement and evaluate the effectiveness of
ClassyNet versus other relevant classification models
via exiensive experimental evaluation on real-world
hardware, including edge devices, such as the NVIDIA
Jetson TX2 and a workstation server, using popular
image benchmarks under different scenarios and config-
urations of edge devices.

IT. BACKGROUND
A. Dynamic Neural Networks

Diynamic neural networks (DNNs) represent a burgeoning
arca of research in deep learning, diverging from traditional
static models that maintain constant computational graphs and
parameters during the inference phase. Unlike static models,
DNNs possess the ability to alter their structures or parameters
based on specific inputs. This adaptability confers a host of
advantages, including improved accuracy, computational effi-
ciency, and adaptiveness [7]. For example, one salient feature
of dynamic networks is their ability to allocate computations
on-demand during testing, selectively activating specific com-
ponents, such as layers or subnetworks, depending on the
input. This leads to reduced computations for straightforward
samples or less informative spatial/temporal input locations.
Moreover, dynamic networks boast an enhanced representation
power, thanks to their data-dependent architecture and param-
eters [8], [9].

DNNs can be categorized into three main categories [7]:
1} sample-wise dynamic networks that adaptively infer using
data-dependent models for each individual sample; 2) spatial-
wise dynamic networks that tailor their processing based
on various positions within text, voice, or image data; and
3) temporal-wise dynamic networks designed to adaptively
process sequential data, like videos and texts, along the time
dimension.

In our study, we primarily concentrate on integrating class-
based classification into a particular type of sample-wise
dynamic network, specifically, the early-exit neural networks.

B. Early-Exit Newral Networks

Early-exit neural networks are designed to provide an “exit”
option during inference once a certain level of confidence
or other criteria is reached, avoiding the need to process all

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Fanimnl Mabwork Backhiong

Fig. 1. Owerview of BranchyMet architecture,

layers of the network. This becomes particularly beneficial
for scenarios where the input sample’s complexity is lower,
and the network can confidently predict its classification in its
earlier layers

More formally, we consider a multiclass classification
problem with K classes, where x = R denotes an input
example and y is the corresponding target class, where y € §
and § = ¢y, 3, ..., Ck. Where ¢; represents individual class
labels in a classification problem. Let f : R? — RX be
the neural network classifier outputting support for one of K
classes. A standard early-exit model has multiple exit points
Ey E>, ..., Ey located on intermediate layers of f, where the
last exit Ey corresponds to the traditional exit of f. Each exit
£y of the first M — 1 exits will be attached to the intermediate
layer f,, of the base network f and will produce additional
logits (also known as internal classifier supports). To produce
the final output label y at any given exil, the set of logits is
passed to a function to calculate the degree of confidence in
the classification and compares it to a predefined threshold. If
the confidence (support) value for a given instance is below
that threshold at any given exit, it is assigned a label and the
inference process is terminated.

C. BranchyNet Overview

BranchyNet is an early-exit solution that allows certain input
samples to exit the network early by adding side branches to
the original baseline network branch. This concept is based
on the observation that the earlier layers of the network
can correctly predict a large portion of the data population.
Allowing these data points to perform an early stop and
exit the network early will significantly reduce the network’s
overall computations, resulting in a reduction in average
runtime and power consumption. We are using a variation
of BranchyNet similar to [10] for [oT deployment scenarios.
Fig. | shows the architecture overview of BranchyNet and how
the side branches are added to the network backbone, enabling
early inference.

The training process of BranchyNet is done by solving
a joint optimization problem on the weighted sum of all
the classification loss functions associated with the individual
exit points. The loss function guides the leaming process by
evaluating how well the model performs given the input data.
Each early branch is assigned a weight during training to
control its relative importance. These weights are used to direct
the model toward favoring specific branches.

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

The inference procedure begins by running the input sample
through the partial network (a block or more) associated with
the first exit. If the output of the exit's internal classifier is less
than a given threshold, indicating high confidence, a label is
assigned to the sample and the inference process is terminated.
It the sample fails the exit check, it proceeds to the next exit.
This iterative process is repeated until the sample exits at one
of the subsequent exit points.

IT1. RELATED WORKS

The proliferation of DNNs and their intensive computational
demands have catalyzed extensive research into optimizing
and accelerating these models for edge deployments. Broadly,
these strategies can be classified into static and dynamic
approaches. Static methods primarily focus on shrinking the
trained model’s size to fit resource-limited devices. Examples
encompass techniques like network compression through
quantization and using smaller number of bits to represent
different parameters [11], iterative pruning of nonessential
DNN components such as neurons [12], substituting redundant
neurons [13], and transferring the insights of a pretrained
model to a more streamlined variant [14]. Local computing,
another prevalent tactic, entails adjusting the DNN architecture
to curtail computation without significant accuracy degrada-
tion. This includes the development of lightweight models like
MobileNet [15], [16]. However, while static approaches can
significantly diminish model size, they do not always guar-
antee a proportional boost in performance speed, especially
because they often produce sparse models that cannot be easily
exploited to facilitate faster resulls.

Diynamic inference methods [7] aim to adapt the architecture
of existing neural networks during the inference process to
oplimize execulion time, ofien at the expense of accuracy.
These methods produce more accurate outputs when allowed
extended execution time. Such dynamic approaches offer
fexibility in allering the network’s width, depth, or routing
during runtime, making them adaptable to various use cases.
Early-exiting techniques, like BranchyNet [6] and others [17],
introduce exit branches after intermediate DNN layers, pro-
ducing outputs akin to the final result. Other strategies include
layer skipping [18], [19], where certain layers are omitted, and
channel skipping [2(}], ignoring less significant convolutional
channels.

More specifically, Recent works in early exiting have been
demonstrated in DeeCap [21], which dynamically selects
proper-sized decoding layers for efficient image captioning,
and in the work of Bakhtiarnia et al. [22], which introduced
a vision transformer architecture for early exits that increases
accuracy with less overhead. Moreover, Xin et al. [23]
addressed the fine-tuning strategies for early-exiting models in
BERT, proposing a learning-to-exit module that extends early
exiting to regression tasks. The E2CM technique [24] offers
an early exit based on class means, reducing the need for
extensive training and fine-tuning. Kouris et al. [25] proposed
a framework for multiexit semantic segmentation networks,
optimizing for efficient execution under diverse constraints.
However, these papers only deal with class-agnostic dynamic

15115

models, unlike ClassyNet, which is designed to provide a
class-aware early-exit model capable of dealing with some
unique challenges in edge environments.

Dynamic DNN models, owing (o their unique structure, are
intrinsically suited for model partitioning [26]. Their multiple
exit points enable individual partitions to make autonomous
decisions without the need for full data processing. This
methodology effectively bridges the gap between local com-
puting and total offloading. Here, specific layers of the DNN
run on the end device, sending the intermediate output to an
edge server for further processing by the remaining layers.
When the intermediate representation is more compact than
the initial input, it can drastically curtail transmission delays
relative to full offloading. A salient example is the Zero Time
Waste model [27], which refines premamre exit predictions
by combining them with subsequent ones, ensuring expedient
COTTECLionS.

Current research emphasizes the strategic positioning of
self-organized exit units in early-exit models [28], as well
as customizing their architecture to address specific chal-
lenges [29]. These models have gained prominence in sectors
requiring swift inference, such as natural language process-
ing [30] and video classification [31]. This highlights a
difference from previous approaches by focusing on the
strategic placement and organization of exit points within
the network to address specific computational challenges
and application requirements, rather than a one-size-fits-all
approach. This nuanced method of integrating early exits
suggests a trend toward more specialized and application-
specific DNN optimizations, moving beyond class-agnostic
models to those that are fine-tuned for particular tasks and
challenges in edge computing environments.

MNumerous studies have focused on the partitioning of DNN
models between cloud servers and local edge devices [32].
One prominent approach is the Neurosurgeon framework [33],
which optimizes the partitioning by predicting the performance
of neural networks on both the local device and cloud
server based om estimated processing delays and network
conditions. Another approach is Edgent [34], which uses edge
computing to improve DNN inference through device—edge
collaboration. This framework combines model partitioning
and DNN right-sizing to minimize computing latency and
is adaptable to both static and dynamic network conditions,
optimizing configurations based on the current bandwidth.
Additionally, the multiexit DNN inference acceleration frame-
work (MAMO) [35] focuses on multiexit DNNs to reduce
latency by identifying bottlenecks in edge computing, suggest-
ing a model that synergizes exit selection, model partitioning,
and resource allocation. Experimental evaluations have shown
that MAMO can significantly improve the DNN inference
speed, achieving up to a 13.7x acceleration compared to
contemporary methods.

Furthermore, Li et al. [36] proposed a partitioning method
for the BranchyNet [6] framework. However, different from
our work, they use the Branchynet framework only for
choosing the DNN size. Instead of using a confidence level
threshold in each side branch, their proposal uses a brute
force search to choose the branch and the partition decision

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15116

that achieves a given lalency requirement and maximizes
the inference accuracy. Pacheco and Couto [37] attempt to
optimally partition a BranchyNet to minimize inference time
by modeling the BranchyNet partitioning problem into a
shortest path problem, which can be feasible for increasingly
deeper DNN.

In addition, combining DNN partitioning with early exit
has been explored by Ebrahimi et al. [38], proposing a
performance model to estimate inference latency and accuracy.
Liu et al. [39] studied resource allocation for multiuser
edge inference with batching and early exiting, enhancing
throughput. Samikwa et al. [40] introduced an adaptive
scheme for energy-efficient and low-latency machine learning
over loT networks. In the context of accelerating inference,
Sun et al. [41] proposed an ensemble of internal classifiers for
early exiting, improving accuracy—speed tradeotfs. However,
all these works, while contributing significantly to the field,
focus on accelerating class-agnostic early-exit systems, unlike
ClassyNet, which is designed to provide a class-aware early-
exit model capable of dealing with some unique challenges in
edge environments.

The major recent development in class-aware early-exit
maodels has been proposed by Bonato and Bouganis [42] where
they proposed an augmentation scheme for pretrained models
to optimally add exits to a network in order to maximize
the inference of a targeted class. However, that approach is
limited in two aspects. First, it designates an exil location
for each class and there is no mechanism to shift classes
around the exits. Second, it cannot accommodate multiple
high-priority classes simultaneously. In contrast, our method
offers the flexibility to select and prioritize several classes
differently. Contrastingly, Duggal et al. [43] introduced an
early-exiting framework for long-tailed classification, focusing
on sample classification difficulty, which could complement
the class-aware approach by providing a mechanism to handle
classes with varying difficulty levels. However, that work is
somewhat limited in scope as they mainly focus on long-tailed
classification and unbalanced data sets.

IV. MOTIVATION

In addition to the dynamic execution capabilities of early-
exil-based models like BranchyNet, they tend to synergize
particularly well with the concept of split deployment between
the local edge device and the cloud server, providing a unique
approach for edge deployment. This is due to the model’s
flexibility, which allows it to be designed and trained such
that a portion of the model with one or more exits fits and is
deploved on the edge device’s memory, while the remainder
of the model with the other exits is placed on the cloud server.

The problem with the current state-of-the-art early-exit-
based models, including BranchyMNet, is that they are
class-agnostic, making them incapable of properly handling
edge-specific conditions and contexts. For example, the same
classification service/application may need to handle inputs
from classes with different importance and sensitivity, or it
may need to handle imbalanced inputs where the bulk of
the input population comes from a few specific classes. The

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

relative importance of classes is context dependant based on
the user of the system and use case itself. As the same classes
within the same classification problem can have different
importance because of slightly different context. For example,
an object classification model installed on a security camera
can be trained to detect both humans and vehicles. However,
based on the operation parameters, it may become more
important to handle detecting humans faster or vehicles faster.
This relative importance is runtime-based and is completely
independent from data imbalance problems during training.
Anomaly detection is another example of a classification
application that handles network activity classes with varying
degrees of sensitivity, such as network probing activity and
an ongoing exploil for a serious vulnerability activity that
has the potential for catastrophic harm. Detecting the ongoing
exploit even a few milliseconds early can help the network
deploy countermeasures faster and prevent large-scale network
damage. The same holds true for personal health monitoring,
as recognizing a heart attack is far more crucial than detecting
slightly increased blood pressure. On the other hand, we can
consider object recognition as an example of a classification
service that may handle input from wvarious populations in
various locations. For example, although vehicles provide the
majority of the input population to a parking lot camera, ships
and trucks constitute the bulk of the input when this camera
is deployed at a cargo loading port. Another example is a
malware identification service that must be deployed at various
locations, each of which suffers primarily from a distinct
malware subtype.

This inspired us to develop ClassyNet, a framework for
class-aware dynamic early-exit classification models. Class-
aware models, especially when combined with model splitting,
can provide several advantages, including pushing priority
(important/sensitive) classes to early exits, which helps the
model better achieve its operational goals by minimizing the
inference path and hence the computation time. Moreover,
with limited memory for edge devices, inputs from the priority
classes will be processed using the partial model that is on-
device and hence avoid the overhead of transmission. As our
results demonstrated in Section VI-A, we can design and train
models with exits placed at the very beginning of the network
model that are capable of accurately classifving a substantial
proportion of the targeted samples. As a result, we could
build a neural network model using early-exit techniques by
maintaining only a small fraction of the model on the limited
edge device's memory for early inference while sending the
more challenging samples to the cloud.

V. CLASSYNET ARCHITECTURE
A, Model Overview

The objective of ClassyNet is to develop a neural network
that can cascade or stagger its outputs. Specifically, for any
given exil Eg, the majority of the samples should belong to a
predefined set of classes that is a subset of 5. This represents
a notable departure from traditional early-exit architectures,
where each exit treats all classes uniformly, without any
mechanism o prioritize specific classes at certain exits.

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

TABLE I
DESCRIPTION OF VARIABLES IN ALL EQUATIONS

Notation | Description

T Input sample

i Label of sample x
RE Domain of inpur dataset
BE Domain of possible labels

K MNumber of available classes

b Set of all classes

M Number of exits in the neural network

E An exit point of the neural network consisting

of a portion of the network backbone and the branch

f Owtput of exit /7 mternal classifier
Sm Set of high priority classes at exit m

p Cost Matrix

Formally, we define multiple distinct class sets, namely,
51,52, ..., 8¢, each corresponding to an exit point in the
network. Specifically, set 5, aligns with exit E,. Every set
is a subset of § (5, < &). Notably, Sy is unique as it is
associated with the network’s final exit point and is, therefore,
identical to §. The primary objective of ClassyNet is to ensure
that for any input x with label y falling within the class set
5. the optimal exit is at E,,. Specifically, ClassyNet strives
to minimize the value of f,(x) so that it remains below the
exit threshold designated for Ey,.

In order to achieve this objective, we needed to fundamen-
tally change the training process of early-exit neural network.
For this purpose, we introduce two complementary additions
to the training process and combination of them to enhance
early-exit models.

1) BoC: For this approach, we aim o improve the
model’s ability to accurately identify the boundaries
of high-priority classes at earlier exits, which should,
in turn, lead to accelerated inference times for these
high-priority classes. To accomplish this, we propose
consolidating all nontarget classes into a single category,
which we term the “class bag.” All instances associated
with these nontarget classes are (reated as a single
overarching class, and their early exit from the network
is deliberately inhibited. The underlying rationale is that
by simplifying the classification task at earlier exits
through a reduction in the number of classes, the model
should become more efficient at distinguishing high-
priority classes.

2} Cost-Sensitive Loss Matrix (Cs): For this approach, we
aim to provide an additional incentive mechanism for
high-priority classes to exit earlier from the network
and penalize low-priority classes. To accomplish this, we
propose adjusting the classification loss during training
for each sample based on the priority of its class.
We achieve this by introducing a cost-sensitive loss
matrix C, every pair of true and predicated labels has
a designated cost. That weight is then multiplied by its
raw loss value before it is reduced (averaged) across the
entire batch. This allows us to penalize mistakes within

15117

i Barphe 3

[l =] [=] [=]

T Ve " e]

Fig. 2. ClassyNet model archilecture showeasing an additional Cost matrix
and sample relabeling in the additional branches.

certain classes as being costlier and thus emphasize the
importance of correct classification of a given class at
any layer of the neural network.

3) Combined BoC and Cost-Sensitive Loss Matrix
{BoC+Cs): Here, we combing both the cost-sensitive
approach with the BoC approach. In this combined
approach, the class relabeling happens according to
the BoC approach, and the cost matrix at each exit is
built based on the new set of classes generated at that
particular exit.

Fig. 2 shows an overview of the ClassyNet early-exit archi-
lecture with both additional training components highlighted
in light blue. The Class Bag Labels component refers to the
alternative class label set assigned to each exit which maps
the original class labels of the modified class labels needed
for the BoC approach. The figure also highlights the addition
of the cost matrix component necessary for the loss calculation
al each exit. We go over the implementation details of each
of these components in the following sections.

B. Bags-af-Classes Approach

1) Formal Definition: Formally, let us assume that for a
given exit Ey, there is a set of high-priority classes S,. All
other lower priority classes that do not belong to 8, will be
grouped as one meta-class by,. Specifically, given an input
sample x € R? and v is ils target class label, at exit E,, the
class label of x stays as v if ¥ € 5, otherwise, the class label
of x gets relabeled to by, for this particular exit. The relabeling
process of samples in shown in

)]y iy eSa
JO. Ew) = [.E:rm, otherwise

The relabeling of the samples using BoC should cause the
fm neural network layer with exit £, will focus on learning
the boundaries of the desired target classes in §,, and their
individual boundaries against the combined boundaries of the
classes within by,. Similar to binarization approaches widely
used in multiclass classification [44], this will significantly
simplify the classification problem at f, and lead to increased
accuracy of labeling and correctly exiting input instances that
belong to §,,.

Additionally, we identify two different schemes for con-
structing the subsets of classes.

(1)

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15118

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

[a)

Fig. 3. Base early-exit neural network,

1) Mutual-Exclusive Classes (MC): Here, class subsets at
different exits are nonoverlapping, meaning that the kth
class would be assigned exclusively to one subset, §,,.
Formally ¥i,j,i#jSiNS;=¢,and |J,_; 5w C 5.

2y Incremental Classes (IC): Here, the set of classes of
a subset 5, will contain include all the subsets from
previous exits in addition to a new subset of classes.
Formally ¥ep—1 m—1 Sm C Smy-

Each approach comes with its unique advantages and draw-
backs. The MC method prioritizes a specific class set for each
exit, potentially sharpening the decision boundary. However,
this could increase the overall inference time by restricting
samples from multiple classes from exiting the network.
Conversely, the IC approach often boasts quicker inference
becaunse its intermediate layers are more permissive, allowing
samples from a broader range of classes to exit. However, its
decision boundaries might not be as precise as those in the
MC method.

2) BoC Implementation: In order to realize and build the
ClassyNet with BoC mechanism, we combine and relabel as
a singular meta-class all the samples of all classes that are
not the target at a specific exit. This is realized by assigning
additional soft labels to each training instance in the form of
¥1. ¥m rather than a single label y. This allows us to map the
samples from the original classes into their matching classes
within the class set §,, specific to each exit. During the training
process, the label that matches the exit is the one that is used
during loss calculation rather than the original label.

This is a flexible scheme that allows us to softly relabel
the sample fairly easily while keeping the original label intact.
We also modity the terminating condition so that all the
samples from a given bag cannot exit the network at their
nondesignated exit. The intuition behind this approach is that
since the earlier exits of the network cannol recognize the
differences between any of the classes in the class bag, the
layer of the neural network corresponding to these exits will
focus on learning the boundaries of the target classes, pushing
the classes forming the bag to further, more specialized layers.

Finally, this implementation scheme provides the flexibility
of being able to easily integrate or remove the BoC. As by
simply assigning all classes to the high-priority set S, at all
exits, the training process reverts back to an ordinary class-
agnostic training approach.

3) BoC Example: Figs. 3-5 show an illustrative example
of synthetic data consisting of K = 4 classes and a neural
network containing three exits (K, Bz, £3). These sets of
figures show the decision boundaries across the different exits.

Fig. 4.
shade.

ClassyNet using BoC mechanism with MC scheme. BoC is in gray

(h} (<l

ClassyNet using BoC mechanism with IC scheme. BoC is in gray

The first three subplots [Fig. 3(a)-{c)] show the classi-
fication boundaries of the standard early-exit model. With
Fig. 3ia) showing fairly simplistic decision boundaries across
all classes. However, the decision boundaries become more
sophisticated for later exits as they are deeper within the
neural network. We can see that every exit deals with a rather
complex multiclass decision boundary, which will significantly
influence the accuracy of each early exil. Therefore, we can
see a potential for the BoC approach to simplity the early-exit
classification tasks,

The second three subplots [Fig. 4{a)-{c)| show the clas-
sification boundaries of the three exits in case of using
mutual-exclusive class scheme (BoC-MC). In this scenario,
the set of classes assigned to each exit of the network
is as follows: 8§y = [Plue}, 52 = {green}. and 53 =
|blue, green, orange, yellow). Fig. 4({a) shows a significantly
better decision boundary [as compared to Fig. 3(a)] that
focuses on discriminating only between assigned classes
against all the remaining ones. This allows us to decompose
the initial complex multiclass classification scheme into a
much simpler problem, leading to lower model complexity
and higher accuracy at this stage. Similar observations can
be drawn for Fig. 4(b) representing E>, while Fig. 4{c) is
identical to Fig. 3(c), as it considers all four classes at the end.

The last three subplots [Fig. 5{a)-(c)] show the sce-
nario when the IC scheme is used (BoC-1C) in which
the set of classes assigned to each exit of the network
as follows: 51 = [blue}. 52 = {blue, green}, and S5 =
{blue, green, orange, yellow). The first exit of BoC-IC is iden-
tical to that of BoC-MC, as only a single-target class is
considered. However, Fig. 5(b) shows the major difference
between these two schemes, as the 1C approach progressively
overlaps new classes with the previous ones and builds on
the boundaries of the classes from previous exits addressing
previous incorrect classifications.

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

C. Cost-Sensitive Loss Matrix Approach

1) Formal Definition: Let us consider a random sample x,
let ¥ be a one-hot encoding vector of its true class label, ¥
be the predicted output label, and C be the cost matrix of size
K% Ky, where Ky, is the number of classes at any exit m. The
number of classes at each exit will be different The elements
of the matrix ¢;; represent the cost associated with selecting a
predicted label { when the true label is j. Considering that this
is a multiclass classification problem, we decided to base our
cost-sensitive loss function on the popular cross-entropy loss

L(y‘" j*) =— Z c,-j(;.flagﬁr;). (2)

Ordinarily, loss calculation usually requires the output logits
not the label of the samples. However, to calculate the cost
allocated to the sample at any given exit during the classifi-
cation process, we need both the true label and the predicted
label. OMaining the predicted is fairly trivial, as we simply
pick the class with the highest probability from the output logit
as the predicted label.

This approach is highly inspired by [45] and other literature
on instance-level and class-level costs for the loss function.
Cost-sensitive learning is most commonly used to handle
imbalanced data sets, where cost is seen as a penalization
factor for mistakes made in minority classes. However, cost-
sensitive approaches can be used beyond the imbalanced
framework in order to model importance (or preferences)
among classes. ClassyNet is designed to work with general
multiclass problems, and thus our cost-sensitive component
is wsed to strongly emphasize the need for highly accurate
discrimination among classes expected to be returned at
a given exit. This approach not only allows for an early
interference of desired classes but can also potentially increase
local accuracy in every individual exit. This can be combined
with the BoC approach to turther improve the classification of
target and nontarget classes at each exit.

Another motivation for adopting the cost-sensitive loss
malrix stems from addressing the limitations of the BoC
approach. Namely, the BoC approach prohibits classes from
exiting prior to the exit they have been assigned to. While
this can help betier train the model to push more of the high-
priority class into earlier exits, it can adversely affect the
average inference time across all classes. The cost-sensitive
method offers a balanced alternative, prioritizing specific
classes without entirely restricting others.

2) Cost Matrix Implementation: We implemented
example-dependent cost-sensitive learning, aiming to leverage
the cost information tied to class selection for each sample.
This approach puts a different weight to classification errors
based on the significance of the sample’s class. To enact this,
we introduced a distinct cost matrix at each network exit,
detailing the cost for every combination of actual and predicted
labels. This matrix then factored inte our loss calculations.
Given that classes can vary in importance at different exits,
and considering the potential change in the number of classes
at each exit, we found it essential to designate a unique cost
matrix for every exit.

15119

Additionally, this implementation scheme provides the
flexibility of being able to easily integrate or remove the cost-
sensitive matrix. As by simply assigning the cost matrix to an
all-ones maltrix, the training process reverts back (o an ordinary
class-agnostic training approach.

3) Cost-Sensifive Matrix Example; Let us consider an iden-
tical scenmario as outlined in Section V-B, where we have
a data set of four classes, § = blue, green, orange, vellow.
(For simplicity, assume this is also the order of the classes.)
To properly populate the values of the cost matrix C, we
consider four different cases: 1) correct label for a targeted
class; 2) incorrect label for a targeted class; 3) correct label for
a nontargeted class; and 4) incorrect label for a nontargeted
class. We assign a set of weight costs ¢y, ¢z, €3, and ¢4 for each
case, respectively. Assuming that we want to train one of the
exits to target samples from the first two classes {blue, green},
and become more efficient at classifying samples from these
two classes. A cost matrix with the mutual weights of true and
predicted labels of the four classes of this scenario at this exit
is shown below in (3). The values of the weights are chosen to
highly incentivize the training process to favor the two targeted
classes. For example, the value of ¢y is always going to be
lower than ¢z as we want to incentivize correct classification.
The relationship between c3 and ¢4 is the same. Since we want
to encourage more samples from the first two classes to exit
at this exit, the values of ¢ and 2 should also be lower than
c3 and ¢4 because the former two weights represent targeted
classes while the latter two are for nondesired classes

LA I A S A
£y] 3 €2
C4 C4 C3 C4
Cy €4 C4 3

(3)

D ClassyNet Training

The ClassyNet architecture utilizes a joint training approach
that is based on a single optimization problem utilizing all
intermediate exits. We achieved this by combining losses
from each early-exit classifier, similar to other works in the
literature. Each exit computes its own loss using cross-entropy
loss, and then all the losses of the intermediate exits are
weighted and summed together to compute the overall loss,
which is then used for training the network.

To calculate the loss at each exit, we first need to adjust the
label v of the sample x using the desired classes set 5, at exit
m according to the BoC approach to produce adjusted label
sample vy, that will be used in loss calculation

¥, il y e 8y

by, otherwise.)

Ym =¥, Em) =

Additionally, we need to obtain the output probability of
the sample produced from the exit ¥, (5), which is then
normalized by passing it through the softmax function to
obtain the output logits vector ¥y, (6)

i‘m =_fm{-x- Vi) (3)
_IPm) [?m }v . (6)
Y ccsp 5P (Vime)

Vm = softmax () =

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15120

It is noteworthy that the length of the probability and logits
vectors may vary at each exit, as the number of classes
being classified can differ due to the BoC approach. The final
step before calculating the loss involves obtaining the cost ¢
associated with the sample which requires both the predicted
label and the adjusred true label of the sample v, at the exit.
The predicted label y,, is calculated by choosing the class with
the highest hkchhmd from the logits vectors as seen in

Y = argmax (§im).)
The cost is then retrieved by gelting the cost value corre-

sponding to the true and predicted label from the cost matrix
assigned to exit C,

[‘m Y] (8)

Finally, the classification loss of the sample is calculated
by calculating the cross-entropy loss of the sample and
multiplying it by the value obtained from the cost matrix

Lon(Yons Fm) = —¢ Z{‘L’milﬂgﬁmr‘}- (9)

Given that, the overall loss function for ClassyNet is
obtained by multiplying the loss of each exit by the weight
assigned to that particular exit w

N
LCIBHH}'NGI {}1! _'?:} = Z wﬂL{}"s j‘m'l,. :]' (10

n=I

In these equations, we have to differentiate between two
different sets of weight values: the weight assigned to an
exit w which is applied to the entire loss of the exit and
used to determine the importance of different exits during the
training process. The weight matrix C is used to determine the
relative impact of every individual sample during the training
of the exits. We also implemented instance-level cost-sensitive
training, where the batches of samples are trained in such a
way so that if a sample from the batch were to leave from a
certain exit during the training process, it would not progress
into later exits, as we assign zero weight to its corresponding
value in the weight matrix.

E. ClassyNet Inference

We can summarize the inference process of ClassyNet's,
outlined in Algorithm 1, as follows. ClassyMNet's classification
network starts by passing the sample through the initial Block;
consisting of the internal layers of the network and the
branch of the first exit, producing a vector representing the
classification likelihood of the sample (line 2). The vector is
then normalized using softmax function (line 4). The cross-
entropy value of the normalized probability vector is then
computed at the exit point (line 5). If the entropy value is less
than a predefined threshold assigned to the exit (line 6), then
a label is attached to the sample and the inference process
ends if either the BoC is not used OR the label belongs to
the subset of classes assigned to this exit (lines 7 and 8).
Note that if the model is using BoC approach and a sample
is classified to belong to the BoC al an exit, it does not
exit the network since it still requires additional processing to

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

Algorithm 1: ClassyNet Inference Procedure

Input : x is the input sample
Input : M is the number of exits
Input : T is the threshold vector
Input : &..... 5y are the subsets of classes assigned to the
exits
i for m=1..M do
2 Z = fm(x) f/ outputs of layer i
3 // corresponding to exit i
4 Y = softmax(Z)
5 e=entropw) 1/ entropy()V) = ¥ velogie
3 if & = Ty then
7 it {(— BoC) OR (argmax v € 5y) then
% L | return argmax y

s return argmax v

determine the particular class to which it belongs. Each of the
exils is assigned a threshold using a threshold vector T prior to
the inference process that defines its terminating condition. If
the sample fails the exit check, it is forwarded to the next Block
for further processing and iteratively attempls to exit at each
of the subsequent exit points until the final exit in which it has
to exit (line 9). The thresholds provide a means of controlling
the tradeoff between the runtime and the accuracy, as exiting
at higher entropy thresholds would cause more samples to exit
early but would lower the overall accuracy of the model.

V1. EVALUATION

In this section, we discuss the experiments used to evaluate
the performance of ClassyNet versus other approaches under
different scenarios. We split our evaloation into two main
sets of experiments. The first set focuses on evaluating how
successful our novel class-aware early-exil neural network
(ClassyNer) in assigning different classes to different exits in
comparison to the baseline class-agnostic early-exit network
(BranchyNet) and other class-aware early-exit networks. The
second set of experiments aims at showing the practicality
and strengths of ClassyNet when utilized on edge devices in
comparison to the other approaches, including BranchyNet
and model compression. All the results presented in this
section were obtained from training and evaluating each
scenario, averaged over ten runs,

A. ClassyNet Versus BranchyNet Experiments

1) Experimenis Design: Data Sefs: In this set of exper-
imenis, we used two different data sets: 1) CIFAR-10 and
2) SVHN. The CIFAR-10 data set consists of 60000 32:x32
color images in ten classes, with 6000 images per class. The
ten different classes represent airplanes, birds, cars, cats, deer,
dogs, frogs, horses, ships, and trucks. There are 50 000 training
images and 10000 test images. The data set is divided into five
training sets and one test set, each with 10000 images. The test
set contains exactly 1000 randomly selected images from each
class. The Street View House Numbers data set, or SVHN is
a digit classification benchmark data set that contains 600 000
3232 RGB images of printed digits (from 0 to 9) cropped
from pictures of house number plates. The cropped images

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

are centered on the digit of interest, but nearby digits are kept
in the image. The data set comes in two formats: 1) original
images with character-level bounding boxes and 2) MNIST-
like 32-by-32 images centered around a single character (many
of the images do contain some noise at the sides). We used
the second format in our experiments.

Classification Models: In our experiments, we evaluate the
efficacy of ClassyNet by testing it on three renowned convo-
lutional neural networks for image classification: 1) AlexNet:
2) ResNet-110; and 3) InceptionV3. AlexNet, as detailed
in [46], was a pioneering approach with five convolutional
and three fully connected layers. To assess early-exit architec-
tures, we augmented it with two branches: one post the first
convolutional layer of the main network and another post the
second convolutional layer. ResNet-110, a variant of ResNet
architecture outlined in [47], is a deep residual network with
110 layers, of which 108 are divided into three blocks. Each
block houses 36 layers, with layer sizes escalaling from one
block to the next. We experimented with ResNet-110 using
two early-exit configurations: 3_Exif, with exits at layers #18,
#72, and #110, and 7_Exit, with exits at layers #4, #18, #36,
#54, #72, #90, and #110. Finally, InceptionV'3, as described
in [48], is 48 layers deep but it has an intricate structure with
multiple branches in its modules totalling 98 conv layers. For
early-exit evaluation, we implemented a 7_Exif configuration,
positioning exits at layers #2, #5, #13, #17, #24, #36, and
#48. We conducted our experiments with 3 and 7 exits for
two primary reasons. First, since most contemporary methods
incorporate only 1 or 2 additional branches (for a total of 2 or
3 exits), we aimed to benchmark our approach against these
prevalent strategies. Second, we were keen to assess the effects
of a model with a higher number of exits. Thus, we chose to
evaluate our model with seven exits,

All our models were trained for 1000 epochs, with repeated
runs to refine hyperparameter values. The wvalues of our
hyperparameters were obtained through this experimentation
process. For all experiments, we employed the Adam opli-
mizer at a learning rate of 0.001. For the AlexNet 3_Fxir
configuration, hyperparameters are set as: weight vector [0.6,
0.2, 0.2] and exit threshold vector [0.0001, 0.005]. For the
ResMNetl 10 7_Exif configuration, hyperparameters are: weight
vector [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1] and exit threshold vector
[0.3,0.3,0.3, 0.2, 0.2, 0.2]. Finally, for the InceptionV3 7_FExit
configuration, they are: weight vector [0.3, 0015, 0,15, 0.1, 0.1,
0.1, 0.1] and exit threshold vector [0.3, 0.3, 0.3, 0.2, 0.2, 0.2].

We developed two models of ClassyNet: 1) ClassyNei_BoC
and 2) ClassyNet_BoC+Cs. ClassyNet_BoC is based on the
use of the [C design in assigning the subset of classes to
different exits as well the use of BeC approach in training
the model. For our 3 _Exit, we assigned three classes at
each of the first two exits while the last exil was assigned
all other classes. As for the 7_Exir, each of early six
exils was assigned one class and the last exit was assigned
the remaining four classes. ClassyNet_BoC+C differs from
ClassyNet_BoC in that it employs a combination of both
BoC and Cosi-sensifive loss matrix approaches. For the
rest of this section, we will refer (o anchyNeI as BN,
ClassyNet_BoC as CN and ClassyNet_BoC+Cs as CN+C.

15121

Our code implementation was built using Intel Labs distiller
framework [49].

Evaluation Platform: The experiments were conducted with
Python 3.6 and PyTorch 1.14. All the models used in our
experiments are trained and evaluated on a workstation with
128 GB of memory, an AMD Ryzen 5950X CPU, and two
Nvidia RTX 3090 GPUs,

Performance Meirics: In assessing the performance of our
ClassyNet in comparison to BranchyNet, we are considering
the following aspects.

1) Exit Efficiency: We are assessing ClassyNet's efficiency

in classifying the majority of samples belonging to
a set of predefined classes at a particular exit when
this set of predefined classes is allocated to that exit.
Because ClassyNet models use the /C design. We are
also interested in evaluating how many of the samples
who did not exit at their targeted exit are exiting at
subsequent exits.

2) Latency Time: We are interested in understanding the
impact of ClassyNet on the inference latency time. Note
that the latency time in this set of experiments is solely
based on the computation time on our workstation since
all the models are fully deployed into the workstation
memory. It is worth noling that we compute latency as
a total for all of the testing data.

3) Accuracy: We assess the impact on classification accu-
racy of our novel class-aware techniques used in
ClassyNet development. We achieve this by comparing
the accuracy of both BranchyNet and ClassyNet models
to Baseline,

2) Experiments Results (Exit Efficiency): Fig. 6 shows
the class distributions of the different ResMet-110 models
under the 7_Exit configuration and the CIFAR-10 data set.
Experiments show similar figures when using the SVHN data
set and the 3_Exit configuration, which we have to omit due
to space limitation. The results shown in the figure are for the
scenario where classes 9, 8, 6, 1. 7, and 0 are prioritized by
exits 1, 2, 3, 4, 5, and 6, respectively, while the remaining
classes are assigned to the last exit. This is just one of many
assignment scenarios possible and our approach can handle
any class assignment o any exit

Each bar in the figure represents the class breakdown of
the samples terminating at a specific exit using each method.
For instance, the BranchyNet data at Exit 1 indicates that
roughly 2500 samples finished processing at this stage and
are spread across various classes. Of these, only 320 are from
the high-priority class. In comparison, the bars for CN and
CN+C display about 450 and 600 samples, respectively, and
all these samples are from the prioritized class. This represents
a41% increase for CN and a 72% increase for CN+C. Looking
at the CN distribution, we nolice a sizeable improvement in
the number of samples of the classes assigned to a specific
exit, as the number of samples comectly classified from the
assigned classes increases by up to 75% in some classes, even
in the cases of classes assigned to the very early exits. This
clearly shows the viability of our approach in developing class-
aware models that significantly increase the number of samples
of only specific classes exiting at specific exits. Finally, the

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15122

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

milass 0 mClass 1 mClass 2 © Class 3 m Class 4 m Class 5

8§ B §ed 8 8

(-]

|
:

I
EE

s = F u
jEsg §i883: 3§
Enitl Exit2
Fig. &.
10000
BClass0 wllass1 wlass2 o~ Class3 wClass 4
9000 wmClass5 mOass 6 wmClass 7 mClass B mClass 9
2000
S000
4000
A0
2000
1000

a

§

Exitl

|1 |
°

is

mClass 6 mMClass 7 mOlass B m Class 9

-7 =il
[+ Eﬁ; i

Exits

: 3

Exitd

Distribution of the different classes of the CIFAR- 10 data set over the HesNet-110 architecture sugmented with seven exists using different models.

F i §EE E §EE E
ExitS Exite Exit?

Fig. 7. Distribution of the different classes of the CIFAR-10 data sel over the InceptionV'3 architecture augmented with seven exisis using different models.

CN+C distribution shows that adding the cost matrix to the
training process almost causes the complete disappearance of
unwanted classes at the subsequent exits compared to CN, as
they are heavily incentivized to exit from their assigned exits
because of the additional penalty associated with leaving from
later exits.

Figs. 7 and 8 show the class distribution for the AlexNet
model and InceptionV'3, respectively. InceptionV3 employs the
same class assignment as ResNet-110. In the AlexNet model,
however, classes 2 and 3 are allocated to Exit 0, classes 4 and
5 to Exit 1, with the other classes designated to the final exit.
Both figures show similar trend to the ResNet-110 model, with
CN showing a significant increase in the number of samples
from high-priority class and CN+C showing an even further
improvement in the number of samples exiting from the high-
priority class.

Finally, we asses how much faster our approach processes
high-priority classes and we compare the resulis to the
other class-specific early-exit design (CS5-EE] introduced
by Bonato and Bouganis [42]. The results are shown in
Table TI. Our method achieves processing speeds up to

L
S0end S Cs] w0 ? Cas? w0end
W | S0en S @0l §den? S0mE S Dm)
i
L]
o)
aoon
| hem Eum H=RE
tuiid
Fig. 8. Distribution of the different classes of the CIFAR-10 data sel over

the AlexMet architecture augmented with three exists vsing different models.

0.41x faster for the ResMNel-110 model and 8.64x faster
for the InceptionV3 model. In contrast, the C5-EE method
only achieves speeds of 5.77x and 5.09x, respectively.
Additionally, our approach maintains two distinct advantages
over the CS-EE design. The first one is the flexibility of
choosing how to assign classes (o different exits as any class

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT ot al: ClassyNet: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS 15123
TABLE 11 TABLE I
RATE OF INFERENCE SPEEDUP OF CLASSYNET AND CS-EE COMPARED ACCURACY RESULTS FOR THE DIFFERENT MODELS UNDER
TO THE BASE RESNET-110 AND INCEPTIONV I MODELS DIFFERENT ARCHITECTURES AND DATA SETS
| Accuracy | CS-EE| CN |CN+C AlexMNet ResMet110 ResMet110 InceptionV'3
(CIFAR-10) | (CIFAR-10) {SYHN) (CIFAR-10}
AlexMNet | Maintained - 345% | 541x Base B2.58% on.2i% 96.71% 92M%
Resnet=110 | Maintained | 5.77x | 7.51x | 94Ix 3_Exit 3 Exit 7 Exit | 3 Exit 7 _Exit 7_Exit
Inceptionvd | Maintained | 509x | 7.23x | 8.64x BN B2.34% 90.12% 98T | M6.56% 96.11% 02065
CN 8L18% | 80.02% BO.63% | 9623% O507% | OLETR
CN_C B1LI5% BORA% BOSI% | 95T1% 9551% 91.65%
11000
— 1oem
E noma
E . to process the targeted class to a much higher degree than
Eo- BN with ils class-agnostic approach. When the target class
g - represents 90% of the entire testing samples, the average
,E - latency time of CN is about 1000 ms, which is only 40% of
= um the corresponding latency time of BN.
T am sme e sox eme Tow A% s Accuracy: Table 11l summarizes the classification accuracy
of Baseline, BN, CN, and CN+C models for both 3_Exit and
Fig. 9. Latency inference time over different compositions of the testing 7 Exit architectures under both data sets. From the table,

data.

can be prioritized at any exit, compared to the other approach
where each class has an optimal exil location and there is no
mechanism to shift the classes over the exit. The second one
is the ability to handle several high-priority classes at once,
unlike the C§-EE method which can only manage one class.

Latency Time: Fig. 9 shows the latency (inference) time of
the different models for different compositions of testing data
of a total size of 10k samples using the 7_Exit architecture and
the CIFAR-10 data set. We starl with a uniform distribution
of CIFAR-10 testing data where each class has 1k testing
samples, representing 10% of the total testing data. We
manipulated the testing samples and gradually increased the
percentage of the samples belonging to one target class till it
reached 90% of the total testing data and measured average
latency at different compositions of the testing data.

The figure shows that the latency time of both the Baseline
and BN models is constant, which is to be expected given
that both of these models” inference processes are independent
of any manipulation of testing data. Moreover, BN shows a
much lower latency time than the Baseline, which is also to be
expected as the vast majority of the samples leave from earlier
exits. We can also observe that BN outperforms CN in latency
time when the testing data is uniform. More specifically, when
the target class represents 109 of the entire 10000 testing
samples, the average latency time of BN is about 2500 ms
{42% of Baseline), while for CN, the latency time is about
4300 ms (85% of Baseline). This is because CN limits the
early exits to only specific classes and forces others to later
exits, as opposed to the more open exiling criteria of BN
CN+C shows more reduction in latency time because of the
cost matrix highly penalizing samples leaving from later exits.

As the composition of the data changes, with more samples
belonging to the target class, the performance gap between
BN and CN begins to narrow down until CN overtakes BN
when nearly 50% of the samples belong to the target class.
This is because CN is class-aware and its models are trained

we observed that both early-exil models have a decrease of
less than 1% in accuracy compared to the Baseline model.
However, this decrease is minimal and could be ignored.
Moreover, we can observe that CN has a minor redoction
in accuracy compared to BN, and this reduction slightly
increases when using the more aggressive model, CN+C.
However, all the changes in accuracy among different models
are very minor as they all fall within 1% of baseline accuracy.
We attribute this slight accuracy reduction to the fact that
ClassyNet targets traditionally difficult samples of the target
classes and attempts to adjust the model to finalize the
inference process on these samples in earlier exits.

B. ClassyNet Versus BranchyNel Versus Pruning at the Edge

The objective of the experiments in this section is to evaluate
the practicality and efficiency of ClassyNet when we deploy
it on edge devices with limited resources. The main resources
we are focusing on in our experiments are the memory
requirements for model deployment and the latency of the
inference computation.

1) Experiments Design: Data Seis: We are using the same
data sets we used in Section V1-A, CIFAR-10 and SVHN.

Classification Models:

In addition to evaluating the edge deployment performance
of BN, CN, and CN+C models, we also chose to compare with
one of the very common approach used in edge deployment of
neural networks, Network Pruning. We implement two differ-
ent pruning techniques: a magnitude-based pruning (Sensitivity
Pruning) [50] and pruning method built by exploring the High
Rank of feature maps (HRank Pruning) [51].

Evaluation Platform: Similar to the previous experiments,
we used the same tools to train and develop our models. To
calculate inference measurements for edge device experiments,
we used the Nvidia Jetson TX2 equipped with an ARM Cortex
A-57 CPU and % GB of RAM. It also has a 256-core Nvidia
Pascal GPU architecture with 256 NVIDIA CUDA cores. To
simulate a lower end configuration, we disabled the GPU
in some experiments (corresponding results are omitted due

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15124

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

TABLE IV
ACCURACY AND LATENCY TIME METRICS OF DHFFERENT RESNET-110 MODELS UNDER MULTIPLE EDGE DEVICE'S MEMORY S1ZER SCENARIOR
Sensitivity HEank BN BN N CN CN+C CN+C
(Uniform) (Biased) (Uniform) {Biased) (Unilormn} (Biased)

Mem | Accu Time | Acem Time | Acen Time | Acem Time | Acem Time | Acen Time | Acem Time | Acen Time
(Bytes) | (%) (msec) | (%) (msec) | (%) (msec) | (%) (msec) | (%) (msec) | (%) (msec) | (%) (msec) | (%) (msec)
1126 | S21 13000 | 9021 13090 4651 4192 7451 1813 5827 1064
28.5M | #2013 4180 | B534 4812 15982 17891 IRIT2 5432 31827 2452
S54M | 6337 1525 | 6616 1754 | BORT 35322 | BRA1 3B6Be | BOG3 SATRY | ARAT 12735 | BO.51 S02T72 | BROT 4388
23IM | 2557 068 28.71 104 48021 49721 62823 15267 SHHEE2 T122
470K | 813 352 15.27 78 50182 61283 75281 16084 73919 B412

to space limitations). As for model partitioning deployment,
the model was split between the Nvidia Jetson environment
and the workstation server environment described earlier,
representing a cloud server. They were connected through a
combination of wireless and wired connections, mimicking
different edge—cloud network connections.

Performance Metrics: We used the Accuracy and Latency
Time metrics, similar o Section VI-A. Unlike Section VI-A,
the Latency Time in the current set of experiments refers to
the overall time that involves the computation times on the
edge device plus any computation time on the server, and the
overhead delay associated with any data transmission needed
to transfer the intermediate parameters of the model from the
edge device to the server when the inference process is split
between the edge device and the cloud server.

Evaluation Parameters; We evaluated the classification
models under different memory sizes corresponding to dif-
ferent configurations of end devices. More specifically, we
used 470 kB, 2.31 MB, 5.54 MB, 28.5 MB, and 112 MB
memory sizes in our experiments. These memory sizes maich
the memory needed to deploy the intermediate set of layers
of BranchyMNet and ClassyNet, corresponding to exits E1, E2,
E3, E5, and E7, respectively. As an example, since exit E2 is
attached to the intermediate layer #18, then the partial network
corresponding to E2 consists of the first 18 layers of the
maodel. To calculate the approximate memory needed by each
scenario, we start by calculating the number of parameters
in the partial network. In this case, the partial network has
37728 parameters. Since we are using 32-bit float precision
variahles, these parameters would need 37728%4 = 150912
bytes. Additionally, we are following the common practice of
dividing the testing data into batches where we are using a
batch size of 16, making the total memory size needed to
run this model 16%150912 = 2.31 MB. The baich size and
the resultant active memory sizes were chosen to simulate
different edge devices" memory restrictions. For example, 470
kB is in line with the memory requirements of TinyML [52]
as well as microcontrollers with very low capabilities. On the
other hand, 2.31 and 5.54 MB fit into low-end IoT devices or
high-end microcotrollers, while 13.1 MB is for a mid-end 1oT
devices, and then 54.5 MB is for a high-end loT/edge devices.

Since the objective of a pruning algorithm is to com-
press the original model to fit in the memory of the edge
device, we applied both Sensitive Pruning and HRank Pruning
pruning techniques to compress the ResNet-110 Baseline

model to fit each of the different memory sizes we chose
for our experiments. Using the pruning algorithms, the out-
put models, termed as Sensitive and HRank, have 99.59%,
07.94%, 95.05%, 74.55%, and (L.00% reductions of the original
Baseline model in order to fit into memory sizes of 470 kB,
231 MB, 5534 MB, 285 MB, and 112 MB, respectively.
MNote that the memory size of 112 MB is large enough to
accommodate the original Baseline model, and, therefore, no
reduction is needed.

2) Experiments Resulis: Table TV shows the classification
accuracy and the overall inference latency time for different
ResNet-110 models trained on the CIFAR-10 data set. The first
two columns show the performance of Sensitive and HRank
maodels, respectively. The third column shows the performance
of BN model under uniform testing data consisting of
1000 samples of each class, for a total of 10000 samples. The
fourth column shows also the performance of BN but under a
biased testing set where 90% of the samples belong to the class
designated to exit at the first exit of the ClassyNer models.
The fifth and seventh columns show the performance of CN
and CN+C models using uniform testing data, respectively.
Similarly, the sixth and eighth columns show the performance
of CN and CN+C models but with biased testing data,
respectively. Note that the BranchyNet and ClassyNet models
in the table are using the 7_Exif architecture. We experimented
with the 3_Exit architecture as well as the SYHN data set.
However, due to the space limitations and the similarity of the
results, we are omitting the results of these experiments.

From the table, we can observe that while the latency
time for both Sensitivity and HRank models decreases with
lower memory size due to the reduction in the corresponding
models, the accuracy declines dramatically significantly to
the point where these models become unusable with very
limited memory size. We can observe that the latency time of
BN increases with lower memory sizes for both the uniform
and biased testing data. More specifically, when BN model
is deployed on the device completely (112M scenario), the
inference latency time is relatively low (around 4600 ms)
compared to the pruning inference time because a high
percentage of samples terminate and exit at earlier exits. On
the other hand, looking at the scenario when the majority of
the model is deployed on the cloud (470-kB scenario), the
inference time becomes extremely long due to the connection
overhead of the frequent need to transfer information to the
cloud for additional processing. The inference time measured

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

TABLE V
LATENCY TIME MEASUREMENTS (IN MS) OF DIFFERENT
INCEPTIONY 3 MODELS UNDER MULTIPLE EDGE DEVICE'S
MEMORY S1ZES SCENARIOS [(L/) AND {B) REFER TO UNIFORM
AND BIASED SCENARIOS, RESPECTIVELY]

Mem BN BN CN CN CNC | CNC
() (B) (L8} (B) () (B}
1462M | 6312 | 6447 10553 | 3111 9813 2088
495M | 22128 | 23126 | 31688 | 10920 | 28422 | 8339
28.1M | 62053 | 57748 | 7R304 | 21454 | 74994 | 17153
6.52M | 75366 | TTE06 | 84362 | 20020 | TOBST | 19445
1.2M | 87884 | 86912 | 111222 | 37812 | 103874 | 21832

includes computation time on the device, communication time
between the device and the cloud, and the computation on the
cloud. The communication time is high because each batch of
the data might require communication with the cloud, and the
average communication time per batch is in order of 200 ms.
Because BN is class-agnostic, modifying the composition of
the testing data to become skewed toward a certain target class
has no effect on the inference time. Also, the memory size
has no effect on accuracy because the same model is used
regardless of where it is deployed.

From the table, we can observe that CN and CN+C behave
similarly in the case of uniform testing data. Moreover, we
can see that these models have higher latency times compared
to BN. This is due, once again, to the fact that both CN
models favor only a very small number of classes for early
exits, forcing the rest of the classes to exit later, resulting
in significant latency time due to the increased computation
time as well as the overhead associated with the number
of transmissions, which increases with low memory sizes,
Contrary to uniform testing data, CN models outperform BN
by up to 4x. For example, in the case when the model is
fully deployed locally on the edge device (112-MB scenario),
ClassyNet exhibits lower inference latency time as it is capable
of exploiting the biased nature of the testing data in exiling
from very early exits. On the other hand, when most of the
maodel is deployed on the cloud (470-kB scenario), ClassyNet
massively outperforms due to the reduced communication cost
since the majority of the testing data exits from the first exit
that is deployed on the edge device.

Table ¥V shows the overall latency time for different
InceptionV3 models trained on the CIFAR-10 data set. The
results show similar trends to the ResNet-110 model results.
For the sake of space, we opted to omit the resulis of both
pruning algorithms and accuracy measurements.

VII. ConcLusiON AND FUTURE WORK

In this article, we designed and developed ClassyNet, the
first dynamic class-aware classification model for edge devices
with limited resources that significantly reduces inference
latency time in supporting real-time applications. To the
best of our knowledge, this work is the first attempt at
developing a dynamic class-aware DNN model. We detailed
the architecture and design details of the proposed ClassyNet,

15125

which included two novel loss functions: 1) BoC and 2) cosi-
sensitive loss matrix to enable class-aware training. Using
real-world hardware, we compared several performance met-
rics of ClassyNet versus BranchyNet for different sets of
lesting data, exit numbers, and data sets. Furthermore, we
compared ClassyNet’s performance on edge devices with
varied memory capacity limits to that of BranchyNet and two
network pruning strategies. According to the results, ClassyNet
could achieve up to 4x quicker inference latency time than
the nearest model of comparable techniques.

We are currently exploring several promising avenues for
future work. One key area of interest is the relationship
between the number of exits in a network and the performance
of ClassyNet. Determining the oplimal number of exits in
early-exit deep learning architectures remains an active and
exciting field of research. Recent advancements include adap-
tive methods tailored to specific applications, such as exit
strategies focused on energy efficiency [53], the development
of exits that balance computational burden with predictive
accuracy [54], and the adjustment of exit numbers based on
window-hased confidence metrics [55].

While our current article has concentrated on the integration
of class-aware functionality into early-exit models, we aim
to extend ClassyNet by incorporating these dynamic and
innovative approaches to further enhance its performance. We
are also keen on developing an automated mechanism for effi-
ciently assigning classes to the various exits within ClassyNet.
Another future direction involves applying ClassyNet to sce-
narios with imbalanced data sets, which we believe will ignite
new and impactful research in class-aware classification.

REFERENCES

[1] (I Corp., Needham, MA, USA). The Growth in Connected ToT
Devices Is Expecled lo Generate 794Z8 of Data in 2025, According
ter @ New TN Forecast. Accessed: Jun. 25, 2020 [Online]. Available:
hitps:ftwww. ide.com'geidoc. jspteontainerld=prUS45213219,

(Statista Co,, Hamburg, Germany). Smarf Home-Stavistics & Facts,

Accessed: Jun, 25, 2020, [Online]. Available: hitps:/fwww statista.com’

topics 24 MWsmart - homes!,

[3] M. Hamim. 5. Paul. 5. L. Hogue, M. N. Rahman, and L-A. Bagee,
“IoT based remote health monitoring system for patients and elderly
people,” in Prac, Int. Conf. Robor, Elect. Signal Process. Techn.
(ICREST), 2019, pp. 533-538.

[4] D Jo and G.). Kim, “AR enabled 1oT for a smarl and interactive
environment: A survey and future directions.” Seasors, vol. 19, no. 19,
p. 4330, 2009, [Online]. Available: hitps:/fwaw. mdpi.com/1424-B220/
19194330

[5] H. B. Pusandi and T. Nadesm, *CONVINCE: Collaborative cross-camera
video analytics at the edge.” in Proc. JEEE Ini. Conj. Pervasive Compul.
Comamn. Workshops (PerCom Workshops), 2020, pp. 1-5,

[6] 5. Teerapittayanon, B, McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks” in Proc. 23nd
Ini. Contf. Patfern Recognil. (ICPR), 2016, pp. 24642469,

[7] ¥. Han, G. Huang, 5. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” TEEE Trans, Pattern Anal. Mach. Intell.,
vol. 44, no. 11, pp. 74367456, Nov. 2022

[E] ¥. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic
convolution: Attention over convolution kernels,” in Proc. IEEECVE
Conf, Comput, Vis. Pattern Recognit,, 2020, pp. 1103011039,

[91 B. Yang, G. Bender, (). V. Le, and J. Ngiam, “Condcony: Conditionally

parameterized convolutions for efficient inference.” in Proc. Adv. Newral

Inf. Process. Sysi., 2019, pp. 1-12.

5. K. Nukavarapu, M. Ayyat, and T. Nadeem, “iBranchy: An accelerated

edge inference platform for ToT devices,” in Proc. IEEEACM Symp.

Edge Comput., 2021, pp. 392-396. [Online]. Awvailable: https://doi.org’

10.1145/3453142.3493517

2

ot

[m

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

15126

[

2]

[13]

[14]
[13]

(18]

[17]

[1g]

[19]

[20]

21

[22]

[23]

[24]

[25]

[26]

[27]

[24]

[29]

[30]

31

[32]

[33]

[34]

[35]

[36]

Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convo-
lutional networks using vector quantization,” 2004, arXiv: 14126015,
T. Lizng, J. Glossner, L. Wang, 5. Shi, and X. Zhang, “Pruning
and quantization for deep newral network scceleration: A sur-
vey” Mewrocompuiing, vol. 461, pp. 370403, Oct. 2021.

A Gholami, 3. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021, arXiv,2103. 713630,

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv: I503.02531.

A, G, Howard et al, “MobileMets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv: 704048040,

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileMetVv2: Inveried residuals and linear boltlenecks,” in Proc, IEEE
Conf, Comput. Vis, Pattern Recognit., 2018, pp. 45104520,

S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks? Cogn, Comput., vol, 12, no, 5,
PR 954966, Jun, 2020, [Online]. Available: https.¥doi.org/10, 1007
A. Banino, J. Balaguer, and C. Blundell, “PonderMet: Leamning o
ponder,” 2021, arXiv; 2 107.05407.

X Wang, F Yu, Z-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipMet:
Learning dvnamic routing in convolutional networks,” in Proc, Eur
Comf. Commpul. Vis. (ECCV], 2018, pp. 409424,

K. Gao, Y. Zhao, E. Dudziak, R. Mullins, and C.-Z. Xu,
“Drynamic channel pruning: Festure boosting and suppression,” 2019,
arXiv: IRI00533].

Z. Fei, X. Yan, 5. Wang, and). Tian, “DeeCap: Dynamic early exiting
for efficient image captioning.” in Proc. IEEEACVF Conf. Comput. Vis.
Patiern Recognfi. (CVPR), 2022, pp. 12206-12216.

A. Bakhtiarnia, (). Zhang, and A. losifidis, “Single-layer vision trans-
formers for more accurate early exits with less overhead” 2022,
arXiv:2105.08121.

L Xin, R. Tang, Y. Yu, and J. Lin, “BERWT: Early exiting for BERT
with better fine-tuning and extension 1o regression,” in Proc. fom Confl
Eur. Chapter Azsoc. Comput., 2021, pp. 91-104, [Online]. Available:
hitps-faclanthology.orgi202 1 escl-main. 8

A, Gbrmez, V. R, Dasari, and E. Koyuncuo, “E2CM: Early exit via class
means for efficient supervised and unsupervized leaming,” in Proc, Tt
Joint Conf. Newral Netw. (IJCNN), 2022, pp. 1-8.

A. Kouwris, 5. 1. Venieriz, 5. Laskaridiz, and N. Tn. Lane, “Multi-exit
semantic segmentation networks.” 2022, arXiv:2 1603527,

Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and
early exiting for deep learning applications: Survey and research chal-
lenges” ACM Compul. Surveys, vol. 535, no. 5, pp. 1-30, 20232

M. Wolczyk et al., "Zero time waste: Recycling predictions in early exit
neural networks,” in Proc. 35th Adv. Newral Inf Process. Syst, 2021,
pp. 25162528,

W. Ju, W. Bao, L. Ge, and D. Yusn, “Dynamic early exit scheduling
for deep neural network inference through contextual bandits,” in Proc.
0th ACM Int. Conf. Inf. Knowl, Manage. (CIKM), 2021, pp. 823-832.
K. Tan, H. Li. L. Wang, X. Huang, and Z. Xu, “Empowering adaptive
early-exit inference with latency awareness,” in Proc. 35ih AAAT Confl
Artif. Inteil, 2021, pp. 98259833,

T. Sun e al., “A simple hash-based early exiting approach for language
understanding and generation,” in Proc, Find, Assoc. Comput, Linguist,
{ACL), 2022, pp. 2409-2421.

A. Ghodrati, B, E. Bejnordi, and A. Habibian, “FrameExit: Conditional
early exiting for efficient video recognition,” in Proc. IEEE/CVF Conf.
Compul. Vis. Paltern Recognil, (CVFR), 2021, pp. 1560315613,

W. Sp, L. Li, E Liv, M. He, and X. Liang, “Al on the edge: A
comprehensive review,” Artif. fntell. Rew, vol. 53, no. 8, pp. 6125-6183,
2022,

Y. Kang et al., "Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge” in Proc. 22nd Inf. Conf Archil. Support
Program. Lang. Oper. Svst. 2007, pp. 615-629. [Online]. Available:
hittps:ffidoi.ong/ 10,1 145/3037657. 3037696

E. Li. L. Zeng, £ Zhow, and X. Chen, “Edge Al: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans,
Wireless Compmun., vol, 19, no. 1, pp. 447-457, Jan, 2020,

F. Dong et al., “Multi-exit DNN inference acceleration based on multi-
dimensional optimization for edge intelligence,” TEEE Trans, Mobile
Comput., vol. 22, no. 9, pp. 3389-5405, Sep. 2023.

E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AT On-demand
accelersting deep neural network inference via edge computing,” 2019,
arXiv: 9105316,

[371

[38]

[39]

[40]

[41]

[42]

[43]

44

[43]

[46]

1471

[4£]

[49]

[50]
[511
[52]

[53]

[54

1551

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

E. G. Pacheco and R. 5. Couto, "Inference time optimization using
BranchyNet partitioning,” in FProc. TEEE Symp. Compul. Cowmmn.
(I5CC), 2020, pp. 1-6. [Online]. Available: hitps:fdol.org/10.1109

M. Ebrahimi, A. Da 5. Veith, M. Gabel, and E. de Lara, “Combining
DMNM partitioning and early exit” in Proc. 5th fnt. Workshop Edge Syst,
Anal. Netw, 2022, pp. 25-30. [Online]. Awvailable: https:fdoiorgf10.
1145/3517206.3526270

Z. Lin, Q. Lan, and K. Huang, “Resource allocation for multivser edge
inference with batching and early exiting (extended wersion),” 2022,
arXiv:2204.05223.

E. Samikwa, A. Di Maio, and T. Braun, “Adaplive early exit of
computation for energy-efficient and low-latency machine learning over
ToT networks,” in Proc, TEEE 19th Anme, Consus, Commun, Netw. Confl
{CCNC), 2022, pp. 200-206.

T. Sun et al., “Early exiting with ensemble internal classifiers,” 2021,
arXiv:2105.13792,

V. Bonato and C.-5. Bouoganis, “Class-specific early exit design
methodology for convelutional newural networks" Appl. Soft Compur.,
vol. 107, Aug. 2021, Art. no. 107316, [Online]. Available: hitps:feww.
sciencedirect.comfsclence/anticle/piirS 1 56849462 1002398

R. Duggal, 5. Freitas, 5. Dhamnani, D. H. Chau, and J. Sun,
“ELF: An early-exiting framework for long-tailed classification,” 2020,
arXiv:2006. 1 1979,

J. Fiimkrang, “Class binarization,” in Encyclopedia of Machine Learning
and Data Mining, Berlin, Germany: Springer, 2017, pp. 203-204.

C. Zhang, K. C, Tan, H. Li, and G. 5. Hong, “A cost-sensitive desp
belief network for imbalanced classification,” IEEE Trans. Newral Netw:
Learn. Syst., vol. 30, no. 1, pp. 109122, Jan. 2019.

A, Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageMet classification
with deep convolutional neural networks,” in Proc, Adw Newral Inf
Pracess, Syst, 2002, pp. 1-9, [Online]. Awvailable: https://proceedings.
neurips.co/paper’ 201 Mile/c399862d 3b3d6b Toc3436e 02406804 5b-Paper.

IPSIHB. X. Zhang, 5. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc, TEEE Conf. Comput, Vis. Pattern Recognit,, 2016,
pp- TT0-TT8.

C. Szegedy, V. Vanhoucke, 5. Ioffe, J. Shlens, and Z. Wojna, "Rethinking
the inception architecture for computer vision,” 2015, arXiv: {51 2.00567.
M. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik,
“Meural network distiller: A python package for DNN compression
research,” 2019, arXiv: F970. 12232,

5. Han, 1. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” 2015, arkiv: 1506.02626,
M. Lin et al, “HRank: Filter pruning uvsing high-rank feature
map,” 2020, arXiv: 2002 10179,

P Warden and D. Siunayake, TinyML: Machine Leaming With
TensorFlow Lite on Arduino and Ultra-low-power Microconirollers.
Sebastopol, CA, USA: O'Reilly, 2020. [Online]. Awvailable: https:f
books. google.com/booksTd=sB3ImxQEACAAJ

M. Bullo, 5. Jardak, P. Carnelli, and D. Giindiiz, *Sustainable edge
intelligence through energy-aware early exiting.” in Proc. [EEE 33nd
Tnt, Workshop Mach. Learn. Signal Process, (MLSP), 2023, pp. 1-6.
W. Wenjian, X. Qian, X. Jun, and H. Zhikun, “DynamicSlespMNet: A
multi-exit neural nefwork with adaptive inference time for sleep stage
clussification” Front Plysiol., vol. 14, May 2023, Art. no. 1171467,
[Online]. Available: hipszfwww.frontiersin.ongfanicles/10.338% phys.
20231171467

A. D Gunter and 5. J. E. Wilton, A machine learning approach for
predicting the difficulty of FPGA routing problems,” in Proc. JEEE 315t
Arrne. fnt, Symp. Field-Program. Custom Compul. Mach, (FOCM), 2023,
pp. 6374,

Mohammed Ayyal (Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer science from
Cuiro University, Giza, Egypl in 2015 and 2017,
respectively. He is currently pursuing the PhD.
degree with the Department of Computer Science,
Virginia Commonwealth University, Richmond, VA,
USA.

His current areas of interest in research include
adversarial machine leamning, generative adversarial
networks, and network security.

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

AYYAT e al: ClassyNel: CLASS-AWARE EARLY-EXIT NEURAL NETWORKS

Tamer Nadeem (Member, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from the
University of Maryland at College Park, College
Park, MD, USA.

He is an Associate Professor with the Department
of Computer Science, WVirginia Commonwealth
University (VCL), Richmond, VA, USA. He is also
the Assistant Director of the VCII Cybersecurity
Center and the Founder of the Mobile Systems
and Intelligent Communication (MuSIC) Lab,
Department of Computer Science, VCU. Prior o
WU, he was a Senior Research Scientist with Siemens Corporate Research,
Princeton, NI, USA, He holds six U5, patents and has more than 100
publications in peer-reviewed top scholarly journals and conference proceed-
ings. His research interests cover several aspects of wireless networking and
mobile computing systems, including smarnt wireless systems, mobile and edge
computing, software-defined networks, machine leaming for network systems,
network security and privacy, Internet of Things and smart city systems,
vehicular networks, and intelligent transportation systems.

Dr. Madeem serves as a member of the technical and organizing committees
of various ACM and IEEE conferences. He is currently serving on the Journal
Editorial Board for JET Comsmications and Sensors (MDFT).

15127

Bartosz Krawceyk (Member, IEEE) received the
M_Sc. and Ph.D). degrees in compuler science from
Wroctaw University of Science and Technology,
Wroctaw, Poland, in 2012 and 20135, respectively,

He is an Assistant Professor with the Chester
F. Carlson Center for Imaging Science, Rochester
Institute of Technology, Rochester, NY, USA, where
he heads the Machine Learning and Computer
Vision (ML¥ision) Lab. He has authored more than
60 journal papers and over 100 contributions to
conferences. He has coauthored the book Learming
From Imbalanced Data Sets (Springer, 3018). His current research interests
inclode machine learning, continual and lifelong learning, data streams and
concept drift, class imbalance and fairness, as well as explainable artificial
intelligence.

Dr. Krawczyk was a recipient of numerous prestigions awards for his
scientific achievements, such as the TEEE Richard Merwin Scholarship, the
IEEE Outstanding Leadership Award, and the Amazon Machine Learning
Award. He served as a guest editor for four journal special issues and a chair
for 20 special session and workshops, He is a Program Committee Member
for conferences, such as KDD (Sepior PC Member), AAAL DCAL BECMIL-
PEDD, PAKDD, and TEEE BigData. He is an Editorial Board Member of

Applied Saft Computing (Elsevier).

Authonzed hcensed use imited koo Virgink Commeonwealth University. Downloaded on Sepltember 12,2024 at 02:17.08 UTC from IEEE Xplore. Restrichions apphy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

