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ABSTRACT
Recent studies have shown that systems with limited resources

like Metadata-private Messenger (MPM) suffer from side-channel

attacks under resource allocation (RA). In the case of MPM, which

is designed to keep the identities and activities of both callers and

callees private from network adversaries, an attacker can compro-

mise a victim’s friends and keep calling the victim to infer whether

the victim is busy, which breaks the privacy guarantee of MPM.

In this work, we systematically study how to protect the privacy

of RA against the aforementioned attacks with differential privacy

(DP). Though DP has been tested by Angel et al. (IEEE S&P 2020) in

protecting RA, which lets the allocator add dummy requests follow-

ing a biased Laplace distribution to hide the existence of the victim

and then assign resources randomly, we identify that this approach

does not leverage the uncertainty from the attacker’s view, thus

leading to a loose bound of DP. As a result, more than 40% of the

resources are wasted to satisfy DP. To make the DP solutions more

practical, we precisely model the RA process from the attacker’s

view and present a thorough study of the noisy allocation mecha-

nisms by considering different distributions, scales, and biases of

noise. We identify four new mechanisms and prove that they all

follow 𝜖-DP (Angel et al. follow (𝜖 , 𝛿)-DP). Through theoretical

and empirical analysis, we found these approaches can outperform

Angel et al. by a large margin in privacy-utility tradeoff.
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1 INTRODUCTION
Resource allocation (RA) is a long-standing problem relevant to

a variety of application scenarios, such as virtual machine assign-

ment [46], storage allocation [43], network bandwidth manage-

ment [44], and channel allocation [61]. Prior works mostly focus

on the efficiency and cost of RA [9, 27, 30, 31, 33, 39, 49], e.g., how

to improve the resource utilization and guarantee the quality of

service to all users [30]. However, the privacy issues of RA have

been overlooked for a long time and were only studied recently.

Angel et al. [4] reveal that a powerful attacker can determine the

existence of other parties in the RA system. Concretely, for an

allocator managing limited resources, when one party requests

resources, the number of resources the other parties can obtain will

be affected. Therefore, the attacker can try to send a large volume

of requests and use the allocation results to infer the existence of

other users. Knowing the existence of others opens the door to

more serious attacks that can infer users’ activities. For example,

although Metadata-private messengers (MPM) are designed to hide

the calling activities between clients, such privacy guarantee can

be breached with RA side-channel and traffic analysis [4].

Existing Resource Allocators. Most of the existing allocators

(e.g., the first-in-first-out allocator) do not offer any privacy guar-

antee [3]. Recently, Angel et al. [3] proposed an allocator AKR1

that satisfies differential privacy (DP) [17]. Angel et al. consider

the scenario where the resource allocator owns a limited number

of resources and the attacker controls a large number of clients.

The attacker learns of the existence of another victim when the

requests to the allocator are not fulfilled. To protect privacy during

RA, AKR adds dummy requests to the real ones and then assigns

resources to randomly chosen requests. The number of dummy

requests follows the biased Laplace distribution, and by a standard

post-processing argument in DP (explained in Section 2.3), the exis-

tence of the victim is differentially private to the attacker. While

the dummy requests puzzle the attacker, we found that the utility

of AKR is not satisfactory. For instance, to achieve an acceptable

protection level of DP (with parameters 𝜖 = 2, 𝛿 = 10
−6
) more than

40% of the resources must be wasted in its experiment setting.

Our Solution. Different from AKR, which implies the attacker

knows the total number of requests after noise is added, we observe

that the practical attacker only has a partial view of RA. Therefore

we choose to model the RA privacy from the attacker’s view. Due

to the randomness introduced by RA, we benefit from “privacy

1
The first letter of the authors’ names.
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amplification” [5, 20] through such modeling and achieve better

privacy-utility tradeoff.

Then, we implemented the DP mechanisms under four noise

distributions, including constant (CST), uniform (UNI), one-sided
geometric (GEO), and double geometric (DGEO), and tailored them

to our new modeling. We conduct a rigorous privacy analysis and

derive much tighter privacy bounds than AKR. We prove GEO and

DGEO always satisfy 𝜖-DP under various parameters, while CST
and UNI satisfy 𝜖-DP under certain conditions. Interestingly, we

find that adding a constant noise (CST), which obviously violates

traditional DP, can be proven to satisfy DP in the context of RA,

due to the randomness of the allocation process. On the other hand,

AKR only considers non-negative Laplace noise and relies on the

post-processing argument to satisfy (𝜖 , 𝛿)-DP.

Evaluation. We evaluate the proposed mechanisms empirically

by simulating the RA process of Alpenhorn [42] with 5 million to 100
million rounds of requests, to demonstrate the privacy-utility trade-

off in real-world settings. (1) GEO outperforms other mechanisms

when 𝜖 is smaller (i.e., 𝜖 < 2) and has relatively stable performance;

(2) DGEO performs better with a larger 𝜖 (𝜖 > 2). Compared to

AKR which wastes 44% of the resources, DGEO only wastes 10% of

resources with 𝜖 = 2. Moreover, when 𝜖 = 2.25, AKR utilizes 60% of

the resources while DGEO achieves 97% utilization. (3) Parameters

of the mechanisms have to be carefully tuned and negative bias

should be avoided. The advantage over AKR is especially surprising

as AKR is supposed to have better utility under the relaxed (𝜖 , 𝛿)-DP,

whereas our mechanisms follow the strict 𝜖-DP. This justifies the

effectiveness of our privacy analysis.

Contributions. The main contributions are summarized below:

• We conduct a rigorous privacy analysis of differentially pri-

vate RA, and derive tighter privacy bounds under the at-

tacker’s view for four noisy mechanisms.

• We theoretically and empirically evaluate our proposed

mechanisms. One mechanism, called GEO, leads to the best

privacy-utility tradeoff and outperforms AKR by a large mar-

gin.

• We published the code in a GitHub repository [14].

2 BACKGROUND
2.1 Problem Definition
Resource allocation (RA) assigns limited resources to the requesting

parties, and we focus on RA within computing systems in this

paper. Examples include resource management in data centers [2],

assignment of virtual machines (VMs) in cloud [46], cache allocation

in computers [43], and channel allocation for Metadata-private

Messenger (MPM) [42]. Below we first provide an abstract view

of standard RA and describe its involved parties and procedure.

Then, we describe the attackers’ goals and capabilities in RA. The

frequently used notations are defined in Table 1.

RA Parties and Procedure. Our abstraction of standard RA

considers a scenario where an allocator allocates resources based
on the requests submitted by a number of clients. The allocator

can contain one server or a group of servers for fault-tolerance. In

the setting of data center, the allocator can be a virtual machine

manager (VMM), and the client can be a data center tenant. In the

Notation Description

𝐷,𝐷 ′ Neighboring datasets differing in one victim

𝑘 Number of available resources

𝑚 Number of compromised clients

𝑑 Number of noisy requests (can be negative)

𝑦 Number of resources dispatched to attacker

𝑥ℓ , 𝑥𝑟 , 𝑝, 𝑠, 𝜇 Parameters of the noisy mechanisms

Table 1: Notations frequently used in this paper.

Allocator
Request

Clients compromised 
by attacker

Victim

Resource granted

Figure 1: An example of RA. An allocator has six resources and
the total number of requests sent by attacker is six. Privacy
of the victim is violated when the attacker observes one of
the requests is not fulfilled.

setting of MPM, where two users can set up a call in a private way,

the allocator can be a callee and the client can be a caller.

Regarding the RA procedure, we assume it takes rounds of in-

teractions between the allocator and the clients. In each round, the

allocator receives requests from its clients for resources (e.g., CPUs

in a cloud and communication channels to be allocated to a caller

in MPM) and makes the best efforts to serve the requests. Hence,

for each request, the allocator either accepts it and allocates the

resources, or rejects it when all resources have been occupied.

Following prior work [3], we assume the quantity of the re-

sources is a limited number 𝑘 , and all resources are identical. Each

round, some clients send requests, and each request asks for one

piece of resource. Because the resources are identical, the requests

are also identical (except the requesters’ IDs). We note that some as-

sumptions can be relaxed (e.g., resources are not identical and each

client can request multiple resources) to match different application

scenarios, and we discuss these variations in Section 6.2.

Adversary Model. Since the clients’ requests might not always be

fulfilled under limited resources, the allocator’s response could leak

information about the existence of some clients. Figure 1 illustrates

how such inference attack can be conducted. Formally, we assume

the attacker in the strongest attack scenario who can:

• compromise all clients except one victim client, and we denote
the number of compromised clients as𝑚.

• know the number of available resources 𝑘 before RA.

• compromise more clients than the resources, i.e.,𝑚 ≥ 𝑘 , and

all requests are submitted at the same time.

The attacker can tell there is a victim requesting a resource if less

than 𝑘 requests from the attacker are fulfilled.

We assume the adversary is malicious who can behave arbitrarily

rather than being semi-honest. We only consider the privacy issues

in RA and other issues like availability (e.g., the attacker blocks

a victim from getting resources by overwhelming the allocator)

are out of scope. We note that an adaptive attacker can exploit

the correlation of results between multiple rounds, and infer more
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information that weakens the allocation privacy. We propose a few

approaches to tackle such adversary in Section 6.1.

Regarding the allocator, we assume it is trustworthy, and can

see all clients and requests and add noises. Hence, the allocator can

analyze the historical data to estimate the parameters to be used

by our mechanisms without privacy issues. We also assume the

communication between the victim and the allocator is secure, so

the number of the victim’s requests are not leaked.

Impact of RA Side-channel Leakage. Even though the infor-

mation about the victim during RA is seemingly insignificant, it

can be leveraged as a side channel to break privacy-enhancing

technologies or make the subsequent attacks more effective.

Specifically, Angel et al. described an attack based on the RA side-

channel [4] against MPM. MPM like Vuvuzela [61], Alpenhorn [42],

Stadium [60] and Karaoke [41] hide both the message content and

its metadata (including sender, receiver, time of communication,

etc.) from the network adversaries. In essence, a userwithin anMPM

initiates a conversation with her friend on an agreed time or round

and encrypts the messages with a shared key. In the conversation

round, the user initiates 𝑘 channels to 𝑘 friends (including the friend

to have the “real” conversation). To avoid leaking metadata, users

are forced to send and receive a message on each channel in each

round
2
. Since MPM requires the clients to always be online, only

the communicating parties of a client should be protected, while

the client’s existence is known.

It turns out the privacy guarantee of MPM can be entirely vi-

olated. As shown by Angel et al. [4], a user usually has a greater

number of friends than 𝑘 channels. When the attacker controls𝑚

(𝑚 ≥ 𝑘) friends of the user and lets them call the user, if the user is

busy (e.g., not responding) to more than𝑚 − 𝑘 callers controlled by

the attacker, the attacker knows the user is communicating with

others who are out of her control. Moreover, when the attacker com-

promises the friends of multiple users, she can infer which users

are likely active in a given round with intersection and disclosure

attacks [1, 45]. Specifically, the attacker can narrow down the pos-

sible sender-recipient pairs by ignoring all the idle users during the

first round of calling. Then the attacker can build intersections of

active users and keep reducing the set of possible sender-recipient

pairs during additional rounds. Because the requests and resources

are all identical under our assumptions, detecting such inference

attack is also very challenging.

Existing Resource Allocators. We aim to design an RA that

hides the existence of the victimwhilemaximizing request fulfillment.
One trivial solution that provides perfect privacy is to have the

allocator withhold all the resources and reject every request, but

obviously, this solution has zero utility. Angel et al. characterizes

the existing allocators into (1) FIFO (first in, first out) allocator, (2)

Uniform allocator, (3) Slot-based resource allocator (SRA) and (4)

Randomized resource allocator (RRA) [3], while FIFO and uniform

allocators are non-private and SRA and RRA are private. However,

both SRA and RRA incur prominent utility loss.

2
MPM is different from the normal messenger apps in that it can decline legitimate

calls to provide metadata privacy. Yet, given that each conversation round has very

small latency (e.g., measured in micro-seconds in the context of Alpenhorn [3]), the

impact of call declining on user experience remains moderate.

2.2 A Primer on Differential Privacy
Our work applies differential privacy (DP) mechanisms on RA.

We briefly overview DP in this subsection and describe how AKR
applies DP to RA [3] in the next subsection.

In the standard (central) setting, a trusted data curator adds noise

(e.g., through the Laplace mechanism or Geometric mechanism)

to fulfill a DP notion (e.g., (𝜖, 𝛿)-DP) given a query from a data

consumer, which bounds the information leakage provably.

Definition 1 ((𝜖, 𝛿)-Differential Privacy). [17] An algorithm
M satisfies (𝜖, 𝛿)-differential privacy against an adversary, where
𝜖, 𝛿 ≥ 0, iff for any two neighboring datasets 𝐷 and 𝐷′, and any
subset 𝑌 of all possible outcomes of algorithmM, we have

Pr [M(𝐷) ∈ 𝑌 ] ≤ 𝑒𝜖 Pr
[
M(𝐷′) ∈ 𝑌

]
+ 𝛿 (1)

We consider two datasets 𝐷 and 𝐷′ to be neighbors, denoted as

𝐷 ≃ 𝐷′ if and only if 𝐷 = 𝐷
′ +𝑢 or 𝐷

′
= 𝐷 +𝑢, where 𝐷 +𝑢 denotes

the dataset resulted from adding one user’s data 𝑢 to the dataset

𝐷 . 𝜖 measures privacy loss at a differential change in data, which

is also called privacy budget. 𝛿 models the probability when the

algorithmM fails to be differentially private, which is also called

“failure probability”. The value of 𝛿 is normally very small in order

to keep the algorithm satisfying DP most of the time. When 𝛿 = 0,

we simplify the (𝜖, 0)-DP to 𝜖-DP and call it pure DP.

Laplace Mechanism [17]. It computes a function 𝑓 on input

dataset 𝐷 while satisfying 𝜖-DP, by adding to 𝑓 (𝐷) a random noise.

The magnitude of the noise depends on GS𝑓 , i.e., the global 𝐿1
sensitivity of 𝑓 , defined as (on any two neighboring datasets 𝐷 ≃
𝐷′),

GS𝑓 = max

𝐷≃𝐷 ′
| |𝑓 (𝐷) − 𝑓 (𝐷′) | |1 (2)

When 𝑓 outputs a single element,M can be written as:

M(𝐷) = 𝑓 (𝐷) + L
(
GS𝑓
𝜖

)
(3)

where L (𝑠) denotes a random variable sampled from the Laplace

distribution with scale parameter 𝑠 such that Pr [L (𝑠) = 𝑥] =
1

2𝑠 𝑒
−|𝑥 |/𝑠

. When 𝑓 outputs a vector,M adds independent samples

of L
(
GS𝑓
𝜖

)
to each element of the vector.

Geometric Mechanism [40]. If the output domain is discrete,

one can use this mechanism, which draws noise from the double

geometric distribution: Pr [DG (𝑠) = 𝑥] = 1−𝑒− 1

𝑠

1+𝑒− 1

𝑠
𝑒−

1

𝑠
|𝑥 |/GS𝑓

, for

𝑥 ∈ Z. The Geometric mechanism satisfies 𝜖-DP.

Composition. Two properties, i.e., composition and post-processing,
of DP, are frequently used to build complicated algorithms from the

basic mechanisms. Sequential composition states that combining

multiple subroutines that satisfy DP for (𝜖1, 𝛿1), (𝜖2, 𝛿2), · · · results
in a mechanism that satisfies (𝜖, 𝛿)-DP for 𝜖 =

∑
𝜖𝑖 and 𝛿 =

∑
𝛿𝑖 .

Advanced composition, e.g., Rényi DP [48], provides smaller privacy

degradation (𝜖 grows sub-linearly). The post-processing property

states that, any operation (post-process) of an (𝜖, 𝛿)-DP algorithm’s

result still satisfies (𝜖, 𝛿)-DP.

Definition 2 (Rényi Differential Privacy [48]). Amechanism
M : X → Y is said to satisfy (𝜈, 𝜏)-RDP if the following holds for
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any two neighboring datasets 𝐷,𝐷′

1

𝜈 − 1 logE𝑜∼M(𝐷 )

[(
Pr [M(𝐷) = 𝑜]
Pr [M(𝐷′) = 𝑜]

)𝜈 ]
≤ 𝜏 .

Theorem 1. [RDP Sequential Composition [48]] IfM1 andM2

are (𝜈, 𝜏1)-RDP and (𝜈, 𝜏2)-RDP respectively then the mechanism
combining the two 𝑔(M1 (𝐷),M2 (𝐷)) is (𝜈, 𝜏1 + 𝜏2)-RDP.

Theorem 2. [RDP to (𝜖, 𝛿)-DP [48]] If a mechanism is (𝜈, 𝜏)-RDP,
then it also satisfies (𝜏 + log 1/𝛿

𝜈−1 , 𝛿)-DP.

2.3 Differentially Private Allocation in AKR
As all the requests are identical from the allocator’s point of view,

the key to providing privacy is to “control” the number of resources

the attacker receives. Thus, AKR asks the allocator to add dummy

requests. Specifically, AKR sets the dataset𝐷 to be all requests made

by clients, and computes the noise L
(
GS𝑓
𝜖

)
. To ensure the number

of added requests (i.e.,M(𝐷) in Equation 3) is non-negative, a bias

𝜇 is added when sampling the Laplace noise so that the probability

of the noise being negative is bounded by 𝛿 , which we refer to as

the biased Laplace distribution. The workflow of AKR is:

• Input: 𝑘 , 𝜇, GS𝑓 , 𝜖 , 𝐷

• Noise 𝑑 ←−
⌈
max

(
0, 𝜇 + L

(
GS𝑓
𝜖

))⌉
• Set 𝑄 ←− |𝐷 | + 𝑑 dummy requests

• 𝑈 ←− uniformly select min ( |𝑄 | , 𝑘) items out of 𝑄

• Output:𝑈
Overall, AKR satisfies (𝜖, 𝛿)-DP. Below is its DP proof.

Theorem 3 (DP Proof for AKR [3]). Algorithm M is (𝜖 , 𝛿)-
differentially private for 𝜖 = 1/𝑠 and 𝛿 =

∫
1

−∞ L (𝑤 |𝜇, 1/𝜖) 𝑑𝑤 . Specif-
ically, for any subset of values 𝐿 in the range [𝑓 (𝐷) ,∞) ofM:

Pr [M (𝐷) ∈ 𝐿] ≤ 𝑒𝜖Pr
[
M

(
𝐷′

)
∈ 𝐿

]
+ 𝛿

and

Pr
[
M

(
𝐷′

)
∈ 𝐿

]
≤ 𝑒𝜖Pr [M (𝐷) ∈ 𝐿]

where 𝑓 (𝑆) computes the cardinality of set 𝑆 .

Note that:

𝛿 =

∫
1

−∞
L (𝑤 |𝜇, 1/𝜖) 𝑑𝑤 =

{
1

2
𝑒𝜖 (1−𝜇 ) if 𝜇 > 1

1 − 1

2
𝑒𝜖 (1−𝜇 ) if 𝜇 ≤ 1

We can see 𝜇 tends to be large in order to have a small 𝛿 .

Given that the noise is non-negative, what the attacker observes

after allocation can be seen as a post-processing of the requests, as

the victim’s request is indistinguishable from the added dummy re-

quests. Specifically, let𝑌 be a random variable denoting the number

of resource attacker gets. Since the attacker only learns which re-

quests of her were fulfilled, from her point of view dummy requests

and victim are indistinguishable. Thus for each value 𝑙 ∈ [0, 𝑘],
Pr [𝑌 = 𝑙 |M(𝐷) = 𝑡] = Pr [𝑌 = 𝑙 |M(𝐷′) = 𝑡], where 𝑡 is the num-

ber of requests with dummies. Combined with the inequalities gov-

erning the probabilities thatM outputs each value of 𝑡 for 𝐷 and

𝐷′, respectively. We have that Pr [𝑌 = 𝑙 |𝐷] ≤ 𝑒𝜖Pr [𝑌 = 𝑙 |𝐷′] + 𝛿 ,
and similarly with 𝐷 and 𝐷′ exchanged. Thus the distribution of

the number of attacker’s requests allocated are very close for 𝐷

and 𝐷′.

3 MODELING RESOURCE ALLOCATION
In this section, we first demonstrate the problem of AKR’s modeling

of RA. Then, we present a taxonomy of different ways to “add noise”

in RA and a general approach to model privacy.

3.1 Privacy Amplification from Allocation
We argue that AKR’s modeling of RA leads to suboptimal utility due

to the lack of consideration for the attacker’s view and capabilities.

Though AKR, by its definition, does not reveal the number of total

requests each round, their proof indicates a stronger statement

that the DP guarantee holds even when the attacker observes the

total number of requests after noise is added (i.e., the number of

requests from both the attacker and the victim). More specifically,

their proof guarantees that the noisy total number of requests is

bounded by (𝜖, 𝛿)-DP when honest clients are added. However,

such information is not actually accessible to the attacker, thus it

creates a gap between the proof and the actual definition of the

RA problem. Examining the attacker’s view is crucial for privacy

amplification in our study. By comprehending the capabilities and

limitations of the attackers, we can construct a precise analysis and

avoid unnecessary noise. In real-world scenarios, the capability of

an attacker can be considerably limited, as they are typically not

granted access to the internal states of an allocator. In fact, if the

attacker can observe the internal states of an allocator, she just

needs to access the number of requests before adding noise, which

defeats all DP-based protection.

We note that such a modeling gap is common in DP for ease

of proof. For example, in DP-SGD [22], the privacy guarantee is

proved on each SGD step, implying that the attacker can observe the

intermediate steps, but such information should not be accessible

to the attacker. A similar case also appears in the proof of privacy

blanket [6, Theorem 3.1] (which assumes the attacker has unrealistic

extra information for the ease of proof) for the shuffle DP model.

Hence, we propose to more precisely model the attacker’s ca-

pabilities and offer a tighter bound under the notion of DP. By

conducting the privacy analysis from scratch, we present a set of

“privacy amplification” results3. In this paper, the privacy ampli-

fication stems from the fact that the attacker only has a partial
view of the allocation result. The attacker is aware of whether the

other compromised clients receive the allocated resources, except

for the one uncompromised client. Compared to AKR, which has to

introduce larger noise to deter the (unrealistic) attacker, we can use

smaller noise to satisfy DP. In Section 5.2 (“Why Models Attacker’s

View”), we elaborate the impact of privacy amplification.

3.2 Design Space
As described in Section 2.1, RA takes two steps: (1) receive a request,

and (2) allocate the resource if the request is accepted. Hence, for

privacy protection, the allocator can add noise to either (1) the

number of requests (i.e., by adding dummy requests or removing

some requests), or (2) the number of available resources (i.e., by

withholding some available resource). After that, the allocator can

randomly select requests and assign resources to them. Therefore,

the design space for the allocator is composed of:

3
Privacy amplification refers to the effect where we can prove the privacy cost is

reduced after some operations (e.g., subsampling [5] and shuffling [20]).
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• DS1: Choosing Where to Add Noise. The allocator can
add noise to either the number of requests or the number

of resources or both. Our analysis shows that randomizing

the number of resources has the same effect as randomizing

the number of requests (explained later), thus we focus on

designing methods to add noise to the number of requests.

In Section 6.4, we give a few real-world examples.

• DS2: Choosing How Noise is Generated. The allocator
adds noise to the observed number of requests, and we have

the flexibility to choose:

– The distribution of the noise.

– The range (support) of the distribution.

We found AKR only covered part of the design space: (1) AKR
considered RA as post-processing and only adds non-negative noise
(dummy requests) to the requests. (2) AKR did not consider distri-

butions other than the Laplace distribution.

Adding Noise to Resource. Beyond adding noise to the requests,

we can choose to add noise to the resources. Here we consider that

the noise is always negative, or the resources are withheld from

being assigned to clients. The positive noise can be seen as “creat-

ing” resources on the fly and assigning more than what is asked by

a client, which could be impractical for a real-world system. Yet,

we can prove that withholding any number of resources can be

equivalently modeled as assigning them to dummy requests. Specif-

ically, the allocator could withhold 𝑛 resources from 𝑘 requests,

which results in 𝑘 − 𝑛 random requests getting resources. This is

equivalent to that 𝑛 requests being randomly removed from the

system (so that the rest 𝑘 − 𝑛 requests are granted with resources).

Thus, we only consider adding noise to requests.

3.3 Privacy Modeling
Under DS1, wemodel RA’s privacy through the lens of DP as follows.

We use 𝑑 to denote the random variable for the number of noisy

requests. 𝐷 denotes the number of requests made in a round. Given

two neighboring datasets 𝐷 , 𝐷′, w.l.o.g., we assume 𝐷′ equals to 𝐷
plus the honest request from the victim client

4
. RA’s privacy can

be quantified as:

Pr
[
ViewAM (𝐷 ) = 𝑦

]
Pr

[
ViewAM (𝐷

′ ) = 𝑦

] =

∑𝑥𝑟
𝑖=𝑥ℓ

Pr [𝑑 = 𝑖 ] Pr [𝑦 | |𝐷 | + 𝑑 ]∑𝑥𝑟
𝑖=𝑥ℓ

Pr [𝑑 = 𝑖 ] Pr [𝑦 | |𝐷 ′ | + 𝑑 ]
(4)

where ViewAM (·) models the allocation outcomes in the attacker’s

view. Note thatViewAM differs fromM in Equation 1 in thatViewAM
is a partial view of the final allocation outcome. Pr [𝑑 = 𝑖] denotes
the probability 𝑑 = 𝑖 , where 𝑑 is a random variable and 𝑖 is within

some range [𝑥ℓ , 𝑥𝑟 ], and Pr [𝑦 | |𝐷 | + 𝑑] is the probability that at-

tacker gets 𝑦 resources. This equation measures the difference in

the attacker’s observation that is impacted by the one honest re-

quest. If 𝑑 ≥ 0, the allocator adds some dummy requests; 𝑑 < 0

models removing some requests (e.g., ignoring requests). Notice

that Equation 4 follows 𝜖-DP, which is different from AKR that

follows (𝜖 , 𝛿)-DP.

With Pr [𝑦 | |𝐷 | + 𝑑], we are able to more precisely model RA pri-

vacy than AKR and captures the randomness introduce by RA, since

4
For the other neighboring case (𝐷 ′ equals to 𝐷 minus the honest request), the model-

ing and proofs are similar, so it is omitted in this version due to page limit.

𝑦 represents only the output in the attacker’s view (i.e., 𝑦 ≤ |𝐷 |).
We now describe the detailed analysis of Pr [𝑦 | |𝐷 | + 𝑑] under two
cases: 𝑑 ≥ 0 and 𝑑 < 0. We enumerate all possible situations under

RA and derive the exact probability expressions for Pr [𝑦 | |𝐷 | + 𝑑]
and Pr [𝑦 | |𝐷′ | + 𝑑](i.e., Equation 5 and Equation 6).

Request Addition (𝑑 ≥ 0). For the case of 𝐷 , assuming there are

𝑚 requests from 𝐷 , given a specific number of dummy requests

𝑑 ≥ 0, we have:

∀(𝑘 − 𝑑)+ ≤ 𝑦 ≤ min(𝑘,𝑚),

Pr [𝑦 | |𝐷 | + 𝑑] =
(𝑚
𝑦

) ( 𝑑
𝑘−𝑦

)(𝑚+𝑑
𝑘

) (5)

Pr [𝑦 | |𝐷 | + 𝑑] = 0 if 𝑦 is outside of the above range. 𝑦 has to

satisfy 𝑦 ≤ min(𝑘,𝑚) because what the attacker observes cannot
exceed the total number of resources 𝑘 or the number of requests

𝑚. Similarly, 𝑦 ≥ (𝑘 − 𝑑)+ (we use 𝑥+ to denote max(0, 𝑥)) because
there are only 𝑑 other requests, so the attacker must get at least

(𝑘 − 𝑑)+ resources.
We only model the case when the number of requests 𝑚 ≥

𝑘 − 𝑑 because when𝑚 < 𝑘 − 𝑑 , all requests are fulfilled (no pri-

vacy leakage). In that case, Pr [𝑦 | |𝐷 | + 𝑑] = 1 for 𝑦 = 𝑚 and

Pr [𝑦 | |𝐷 | + 𝑑] = 0 otherwise.

The denominator of Equation 5 is

(𝑚+𝑑
𝑘

)
because we have a total

of𝑚 +𝑑 requests and we allocate 𝑘 resources to them (equivalent to

choosing 𝑘 from𝑚+𝑑 requests to allocate resources). Thus there are(𝑚+𝑑
𝑘

)
possible assignments. The numerator is

(𝑚
𝑦

) ( 𝑑
𝑘−𝑦

)
because,

for the fixed set of𝑚 requests controlled by the attacker, 𝑦 of them

are fulfilled; there are

(𝑚
𝑦

)
possible assignments. Similarly, for the

rest𝑑 requests, there are

( 𝑑
𝑘−𝑦

)
possible assignments. So all together

there are

(𝑚
𝑦

) ( 𝑑
𝑘−𝑦

)
possible assignments that satisfy the constraint

that 𝑦 resources go to𝑚 processes.

For the case of 𝐷′, which has an additional honest request, the

attacker could receive one fewer resource. Thus we have:

∀(𝑘 − 𝑑 − 1)+ ≤ 𝑦 ≤ min(𝑘,𝑚),

Pr
[
𝑦 |

��𝐷′�� + 𝑑] = (𝑚
𝑦

) (𝑑+1
𝑘−𝑦

)(𝑚+𝑑+1
𝑘

) (6)

Similar to Equation 5, in Equation 6, when 𝑚 < 𝑘 − 𝑑 − 1,

Pr [𝑦 | |𝐷′ | + 𝑑] = 1 for 𝑦 =𝑚 and Pr [𝑦 | |𝐷′ | + 𝑑] = 0 otherwise.

Request Removal (𝑑 < 0). For the case of 𝐷 (the honest request

does not exist), when the number of added dummy requests is

negative (𝑑 < 0), some requests will be removed randomly. We

have:

Pr [𝑦 | |𝐷 | + 𝑑] =
{

1 if 𝑦 = min(𝑚 + 𝑑, 𝑘)+
0 otherwise

(7)

This case is simpler than “Request Addition”, and what the attacker

observes is deterministic: if after adding negative noise 𝑑 ,𝑚 + 𝑑 is

still greater than𝑘 , then the attacker will always receive𝑘 resources;

if𝑚 + 𝑑 ≤ 𝑘 , then the attacker will always receive𝑚 + 𝑑 resources.
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For the case of 𝐷′, there are𝑚 + 1 + 𝑑 requests, and we need to

consider whether the honest request is fulfilled. Let 𝑥 = min(𝑚 +
1 + 𝑑, 𝑘)+, which leads to two scenarios:

• Allocator assigns resources to the honest client: in this case,

𝑦 can only be 𝑥 −1. The probability of the allocator assigning
resources to the honest client is

𝑥
𝑚+1 , which is equivalent

to the case of selecting 𝑥 = min(𝑚 + 1 + 𝑑, 𝑘)+ items from a

total of𝑚 + 1 items without replacement and that the honest

client is selected.

• Allocator does not assign resources to the honest client: 𝑦

must be 𝑥 if the honest request is not fulfilled, which happens

with probability 1 − 𝑥
𝑚+1 .

Thus we have:

Pr
[
𝑦 |

��𝐷′�� + 𝑑] = 
1 − 𝑥

𝑚+1 if 𝑦 = 𝑥
𝑥

𝑚+1 if 𝑦 = 𝑥 − 1
0 otherwise

(8)

where 𝑥 = min(𝑚 + 1 + 𝑑, 𝑘)+.
We want to highlight that considering request removal (negative

noise) is another key difference from AKR.

Attacker’s Strategy. From the attacker’s point of view, it is im-

portant to set𝑚 (the number of compromised clients) to a value

that can maximize privacy leakage (i.e., maximize Equation 4). Re-

call that we assume 𝑘 (resource capacity) is known to the attacker,

and each client can submit at most one request (see Section 2.1).

Following the previous analysis of request addition and request

removal, we can derive the best attacker strategy below we follow

this strategy for this rest of the paper.

Theorem 4. The maximum privacy leakage happens when the
attacker sends𝑚 = 𝑘 requests.

Proof. We consider the cases of noise 𝑑 < 0 and 𝑑 ≥ 0, and

prove𝑚 = 𝑘 causes maximum privacy leakage in both cases.

First, considering the case when noise is non-negative (𝑑 ≥
0), the attacker’s goal is to choose𝑚 to maximize the difference

between the cases of 𝐷 and 𝐷′. Note that the difference can only

be observed when𝑚 + 𝑑 ≥ 𝑘 because otherwise, all requests will

be granted with resources. To ensure𝑚 + 𝑑 ≥ 𝑘 for all 𝑑 ≥ 0, we

have𝑚 ≥ 𝑘 . Based on the previous analysis, when 0 ≤ 𝑑 < 𝑘 , there

is no privacy at 𝑦 = 𝑘 − 𝑑 − 1, because

Pr [𝑦 | |𝐷 | + 𝑑 ] = 0, Pr
[
𝑦 |

��𝐷 ′�� + 𝑑 ]
=

𝑚!𝑘!

(𝑘 − 𝑑 − 1)! (𝑚 + 𝑑 + 1)!
Thus it does not matter to the attacker what value to set to𝑚 in

this case. For 𝑑 ≥ 𝑘 , the privacy protection is given by

Pr [𝑦 | |𝐷 | + 𝑑 ]
Pr [𝑦 | |𝐷 ′ | + 𝑑 ] =

(𝑚
𝑦

) ( 𝑑
𝑘−𝑦

)
/
(𝑑+𝑚

𝑘

)(𝑚
𝑦

) (𝑑+1
𝑘−𝑦

)
/
(𝑑+𝑚+1

𝑘

) ≤ 1 + 𝑘

𝑚 + 𝑑 + 1 − 𝑘

In order to maximize the above, we need to set𝑚 to its minimum

within the range of𝑚 ≥ 𝑘 , that is,𝑚 = 𝑘 .

Now, we consider the case when negative noise (𝑑 < 0) is added.

By observing Equation 7 and Equation 8, we know that to trigger

the different outputs for case 𝐷 and 𝐷′ (i.e., 𝑦 =𝑚 + 𝑑 for case 𝐷

and 𝑦 =𝑚 +𝑑 + 1 for case 𝐷′),𝑚 +𝑑 needs to be < 𝑘 . The difference

of 𝐷 and 𝐷′ (privacy protection) is then given by

Pr [𝑦 | |𝐷 | + 𝑑]
Pr [𝑦 | |𝐷′ | + 𝑑] =

1

1 − 𝑚+1+𝑑
𝑚+1

=
𝑚 + 1
−𝑑 (9)

To have𝑚+𝑑 < 𝑘 (i.e., 𝑑 < 𝑘 −𝑚) hold for all 𝑑 < 0, we have𝑚 ≤ 𝑘 .

Now, in order to maximize Equation 9,𝑚 is to be set to 𝑘 . □

4 NOISY MECHANISMS
In this section, we analyze different noisy mechanisms under DS2.

As the RA output is discrete, we choose discrete distributions for the

mechanisms. Specifically, we consider constant, uniform, one-sided

geometric, and double geometric distributions, and name themCST,
UNI, GEO, DGEO for short. Though these mechanisms have been

studied in the standard DP [24, 25], we conducted new theoretical

analysis to derive tighter privacy bounds, which require extensive

proof work as shown in Appendix A. In Table 2, a summary of

different mechanisms is given. In particular, 1) we prove the DP

bounds for all mechanisms, though CST and UNI only satisfy DP

when certain conditions are met (i.e., noise sample space should be

at least 𝑘); 2) our mechanisms outperform AKR in utility by a large

margin
5
.

4.1 Constant Noise (CST)
In this case, we consider request addition only, and the noise 𝑑

always equals a constant number 𝑐 . Observing Equations (5) and (6),

the valid 𝑦 support sets differ in one case where 𝑦 = 𝑘 − 𝑑 − 1. But
as long as 𝑑 ≥ 𝑘 , both Pr [𝑦 | |𝐷 | + 𝑑] and Pr [𝑦 | |𝐷′ | + 𝑑] have the
same valid set of 𝑦 ∈ {0, 1, · · · ,min(𝑚,𝑘)}, and the privacy can be

quantified as:

Pr [𝑦 | |𝐷 | + 𝑑 ]
Pr [𝑦 | |𝐷 ′ | + 𝑑 ] =

(𝑚𝑦 ) ( 𝑑
𝑘−𝑦)

(𝑑+𝑚𝑘 )
(𝑚𝑦 ) ( 𝑑+1𝑘−𝑦)
(𝑑+𝑚+1𝑘 )

=
(𝑚 + 𝑑 + 1) (𝑑 + 𝑦 + 1 − 𝑘 )
(𝑚 + 𝑑 + 1 − 𝑘 ) (𝑑 + 1) (10)

As a result, we have the following theorem:

Theorem 5. Assuming an allocator has 𝑘 resources, constant noise
has to be at least 𝑘 to satisfy DP.

Proof. Suppose the resource allocated to the attacker is 𝑦, and

the attacker always sends out𝑚 = 𝑘 requests. Then we have{
𝑦 ∈ {(𝑘 − 𝑑)+, (𝑘 − 𝑑)+ + 1, · · · , 𝑘} when 𝐷

𝑦 ∈ {(𝑘 − 𝑑 − 1)+, (𝑘 − 𝑑 − 1)+ + 1, · · · , 𝑘} when 𝐷′
(11)

Note that 𝑦 = (𝑘 − 𝑑)+ happens in 𝐷 when all dummy requests get

resources and the remaining resources go to the attacker. Similarly,

𝑦 = (𝑘 − 𝑑 − 1)+ happens in 𝐷′ when the victim and all dummy

requests get resources and the remaining resources go to the at-

tacker. When 𝑑 ≥ 𝑘 , 𝑦 ∈ {0, 1, · · · , 𝑘} for both 𝐷 and 𝐷′. Thus,
given𝑚 = 𝑘 and Equation 10, we can give an upper-bound of its

privacy leakage as:

𝑒𝜖 =
Pr [𝑦 | |𝐷 | + 𝑑 ]
Pr [𝑦 | |𝐷 ′ | + 𝑑 ] =

(𝑚 + 𝑑 + 1) (𝑑 + 𝑦 + 1 − 𝑘 )
(𝑚 + 𝑑 + 1 − 𝑘 ) (𝑑 + 1) ≤ 𝑘 + 𝑑 + 1

𝑑 + 1 (12)

where 𝑒𝜖 = 𝑘+𝑑+1
𝑑+1 is reached at 𝑦 = 𝑘 . □

This is a surprising result, as adding a fixed noise should not

satisfy DP. In our case, adding a fixed noise still provides privacy

because of the randomness of the allocation process. Still, we argue

that it does not offer good utility. Due to the constraint 𝑐 ≥ 𝑘 , the

utility is never more than 0.5.

5
The numbers come from simulation of Section 5.2. The theoretical analysis of utility

has also been done, but omitted due to page limit.
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Privacy Noise Noise Sign DP Condition Utility (𝜖=0.65) Utility (𝜖=1.7) Utility (𝜖=2.3)

CST 𝜖-DP Constant + Noise 𝑐 ≥ 𝑘 0.50 0.50 0.50

UNI 𝜖-DP Discrete uniform +/− Right bound 𝑥𝑟 ≥ 𝑘 0.46 0.65 0.70

GEO 𝜖-DP One-sided geometric +/− - 0.47 0.82 0.90

DGEO 𝜖-DP Double geometric +/− - 0.44 0.77 0.98
AKR [3] (𝜖 , 𝛿 )-DP Laplace + - 0.32 0.53 0.59

Table 2: A summary of different mechanisms and their utility under some representative 𝜖 values. Note that 𝑘 = 10 and 𝛿 = 10
−6.

4.2 Uniform Mechanism (UNI)
In this case, the discrete noise (it can be negative or non-negative)

is drawn uniformly from [𝑥ℓ , 𝑥𝑟 ]:

Pr [𝑑 = 𝑖] = 1

𝑥𝑟 − 𝑥ℓ + 1
, 𝑖 = 𝑥ℓ , 𝑥ℓ + 1, . . . , 𝑥𝑟 (13)

𝑥ℓ and 𝑥𝑟 define the shape of distribution used in UNI, with 𝑥ℓ
defining the starting point. In Appendix A.1, we prove attacker’s

view satisfies DP when 𝑥𝑟 ≥ 𝑘 or [−𝑘 − 1, 0] ∈ [𝑥ℓ , 𝑥𝑟 ].
Yet, our analysis shows UNI is also not recommended when

the utility requirement is more critical. This is because the utility

degrades linearly to negative noise when the number of requests

equals the number of resources. In a nutshell, suppose the total

number of requests is 𝑛 and 𝑛 = 𝑘 . Removing requests causes

less resource to be allocated with certainty while adding requests

results in the same with a probability. With this, our goal is to

have 𝑥ℓ ≥ 0 and 𝑥𝑟 ≥ 𝑘 to achieve the best privacy and utility

tradeoff, and Appendix B studies how these parameters should be

determined.

4.3 One-sided Geometric Mechanism (GEO)
Intuitively, reducing the probability density of large noise can re-

duce the amount of dummy requests added, and thus improve utility.

To this end, we adopt the geometric distribution within the range

[𝑥ℓ ,∞) with the noise distribution:

Pr [𝑑 = 𝑖] = 𝑝 (1 − 𝑝)𝑖−𝑥ℓ , 𝑖 = 𝑥ℓ , 𝑥ℓ + 1, 𝑥ℓ + 2, . . . (14)

Like UNI, 𝑥ℓ also models the starting point of the new distribu-

tion. For 𝑝 , a larger value makes the noise decay faster and has

negligible probability for large value 𝑖 , thus improving utility. In

terms of privacy, we can also prove attacker’s view satisfies DP (See

Appendix A.2). For the same reason in Section 4.2, negative noise

has negative influence on utility in a deterministic way. Therefore,

though GEO tolerates negative noise (i.e., 𝑥ℓ can be negative), we

do not recommend setting 𝑥ℓ < 0.

The two parameters 𝑥ℓ and 𝑝 both influence 𝜖 and utility: For

𝑥ℓ > 0, increasing 𝑥ℓ reduces both 𝜖 and utility, and increasing 𝑝

raises 𝜖 and utility. For 𝑥ℓ < 0, utility and privacy varies in different

cases. Appendix B studies the parameter settings.

4.4 Double Geometric Mechanism (DGEO)
AKR adds a biased Laplace noise to the number of requests (ex-

plained in Section 2.3). Likely, we propose to draw the noise from a

biased double geometric distribution:

Pr [𝑑 = 𝑖] = 1 − 𝑒−𝜖
1 + 𝑒−𝜖 𝑒

−𝜖 |𝑖−𝜇 | , ∀𝑖 ∈ Z (15)

We call 𝑠 = 1/𝜖 the scale of the noise and 𝜇 the bias of the noise.

Adding double-geometric noise with a scale 1/𝜖 to the number of

requests satisfies 𝜖-DP [17, 40], and we prove it in Appendix A.3.

AKR chooses Laplace noise, which is similar to DGEO but in the

continuous domain.AKR sets a positive bias 𝜇 so that the probability

that the noise is negative is bounded by 𝛿 , and the authors prove

AKR follows (𝜖, 𝛿)-DP. In order to have a small𝛿 (i.e., the probability

of failing DP to be small), 𝜇 must be fairly large which leads to

unsatisfactory utility. For example, when 𝛿 equals a common value

of 10
−6

, 𝜇 has to be at least 15 (it is even larger than the number of

real requests and resources) to achieve 𝜖 = 1 for 𝑘 = 10.

Hence, accommodating negative noise without using a large bias

is essential to high utility, and we show it is possible. In a nutshell,

negative noise may relax the pre-allocation 𝜖 , but not necessarily

introduce 𝛿 . Although negative noise introduces a discrepancy

between the possible outcomes of 𝐷 and 𝐷′ from the attacker’s

view, as well as in the range of 𝑦 (resources dispatched to the

attacker), it does not violate DP when combined with non-negative

noise as proved in Theorem 8 of Section A.3 (i.e., the attacker’s

view satisfies DP). In Section 5.2, we provide empirical analysis to

show the impact of RA on utility and privacy from the attacker’s

view.

5 EVALUATION
In this section, we evaluate the privacy and utility of different mech-

anisms. Here we summarize the key results. 1) Our mechanisms

outperform AKR by 11% to 65% in terms of utility (e.g., DGEO out-

performs AKR by 53% given 𝜖 = 2). GEO has a clear advantage for

smaller 𝜖 while DGEO is able to achieve better utility with larger 𝜖 .

2) Different parameters can achieve similar privacy protection but

lead to very different levels of utility.

5.1 Evaluation Setup

Settings. To compare different mechanisms in the privacy-utility

tradeoff, we choose to simulate RA using a real-world system set-

ting. Similar to AKR, we take Alpenhorn [42], an MPM, as one

of our target systems. In essence, a user in Alpenhorn starts a

conversation with his/her friend at an agreed time or round. In a

conversation round, the user initiates 𝑘 channels to 𝑘 friends, then

sends and receives messages on each channel to hide the real com-

munication pattern. Section 2.1 describes how its privacy guarantee

can be violated. The evaluation by AKR models how Alpenhorn

allocates channels for requests to defend against allocation-based

side-channel attacks. Similar to AKR, we set the resource capacity
𝑘 = 10 for most of the experiments, meaning that a user has a

maximum of 10 channels that can be established with other clients.

We also experiment with larger 𝑘 (15, 20) to test the scalability of

the proposed mechanisms and AKR. AKR sets an upper bound to

the number of requests in each round and considers at most 10% of

them to be honest requests. We remove the upper bound and set

the number of victim requests to at most 1 to simulate the worst

case for the victim, as explained in Section 2.1. Note that AKR uses
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a Poisson distribution to simulate the request number from all users

while our total requests in case 𝐷 and 𝐷′ are fixed to𝑚 and𝑚 + 1,
respectively. Given that we assume at most one victim exists dur-

ing allocation, we did not apply the Poisson distribution. Unless

otherwise stated, we simulate 10 million independent rounds of

allocation with requests of attacker𝑚 = 𝑘 (the optimal attacker

strategy, as proved in Theorem 4), and measure privacy and utility.

In Section 6.3, we try to justify the choice of simulation setup

and discuss the limitations of simulation.

Metrics. We evaluate the performance of different mechanisms

under three metrics: privacy, utility, and waiting overhead. Regard-

ing privacy, we compute the empirical 𝜖 by Equation 4 with the

simulation results, and the larger value indicates more privacy leak-

age. Theoretical 𝜖 can be derived from Theorem 5 to Theorem 8, but

their values are not always computable. For the study of parameters

(Appendix B), we compute some theoretical 𝜖 for the comparison.

As for the utility, we mainly measure the empirical resource
utilization 𝑈 , or how many (in ratio) resources are put into real

use after allocation, from the simulation results. This differs from

the classic DP that considers the accuracy of the analysis results as

utility, or how close the noisy output is to the ground truth. The

same utility measure is chosen by AKR as well.𝑈 is given by:

𝑈 =

𝑘∑︁
𝑗=0

Pr [𝑟 = 𝑗] 𝑗
𝑘

(16)

where 𝑟 is the number of fulfilled requests, 𝑘 is the number of

resources, and Pr [𝑟 = 𝑗] is the probability of 𝑗 requests being ful-

filled.

While resource utilization is relevant to the overhead on the

allocator, the overhead on the client can be measured by their

waiting time (or waiting overhead). We use the probability of the

victim getting the resource in any round, as the higher probability

should lead to a shorter waiting time for the resource. For example,

in Alpenhorn (original version that is not protected by DP) with 𝑘

resources and𝑚 attacker requests, the probability that the victim

gets resource Pr [𝑉𝑎] is given by:

Pr [𝑉𝑎] =
(𝑘−1
𝑚

) (
1

1

)( 𝑘
𝑚+1

) (17)

Denoting the Pr [𝑉𝑏 ] as the probability that the victim gets re-

sources after DP, the ratio between Pr [𝑉𝑎] and Pr [𝑉𝑏 ] represents
the amount of waiting overhead caused by DP mechanisms.

Implementation. We implement our code in Python 3.7.10 with

NumPy 1.19.5 libraries. The implementation is open-sourced [14].

5.2 Evaluation Results
We compare the performance of different mechanisms, i.e., CST,
UNI, GEO, DGEO, and AKR with simulation.

First, we enumerate different 𝜖 values for each mechanism and

compute the best utility value, which is derived by searching in

the space of possible mechanism parameters. Figure 2 illustrates

the quantitative results of the tradeoff between privacy and utility.

Note that, for AKR, since it is (𝜖, 𝛿)-DP, we set 𝛿 = 10
−6
, which is

commonly chosen by other DP works (Angel et al. even chooses a

larger value, 𝛿 = 10
−4

[3]).
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Figure 2: Comparison of different mechanisms. The ranges
of 𝜖 for CST and UNI are limited. CST’s utility never exceeds
0.5 because at least 𝑘 dummy requests are required to make
it differentially private. The utility of GEO does not increase
when 𝜖 is between 1.8 to 2.3, and we speculate this is because
the parameters leading to the optimal utility have not been
discovered through simulation.
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Figure 3: Allocation results by GEO with 𝑝 = 0.90, which sets
the bias to 10. The 𝑥-axis represents the number of fulfilled
requests of the attacker, and the 𝑦-axis represents the fre-
quency of each output out of 100million rounds.We increase
the simulation rounds from 10million to 100million in order
to yield precise results.

In general, we found that all of our proposed mechanisms have

better utility than AKR for every 𝜖 when the parameters are fine-

tuned. Specifically, GEO has better utility given lower 𝜖 (i.e., under

2) while DGEO yields better utility given more relaxed 𝜖 (i.e., over

2). AKR reaches the utility of 0.58with (2, 10−6)-DP, whileGEO and

DGEO are able to achieve the utility of 0.89 with 2-DP, increasing

the utility by 0.31 (53%). Overall, the margin of DGEO over AKR
ranges from 0.05 to 0.39, GEO is able to outperform AKR over a

range of 0.08 to 0.36, and UNI is able to outperform AKR by at most

0.15. This result is surprising as (𝜖, 𝛿)-DP usually yields better utility

than 𝜖-DP. We believe this is due to the fact that our mechanisms

have the ability to accommodate negative noise, while AKR has to

use a large bias to satisfy DP.

Since CST cannot achieve a utility value of more than 0.5, in the

following experiments, we focus on the other mechanisms. In the

previous experiment, we change the mechanism parameters to fit

𝜖 , but in the real-world deployment, the parameters are determined

ahead. Here we evaluate the impact of the parameters related to

bias. For DGEO and AKR, they are represented by 𝜇. For UNI and
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GEO, the starting point (𝑥ℓ for UNI and GEO) models the bias. We

configure bias to a small value of 10. With the utility targeting 0.5,

GEO and DGEO are able to bound privacy with 𝜖 of 0.80 and 0.77.

UNI and AKR result in much higher 𝜖 at 1.28 and 1.5. Hence, with

a small bias, our mechanisms can protect allocation with better

privacy while achieving the same utility as AKR.
So far, the prior experiments quantitatively measure how the

mechanisms perform. Like Angel et al. [3], we visualize privacy

protection under a fixed set of parameters. Specifically, we measure

the difference in allocation results (𝐷 and 𝐷′) based on the number

of resources allocated to the attacker. Figure 3 shows the visualiza-

tion of GEO, when bias is configured to 10. The lines of 𝐷 and 𝐷′

stay close, suggesting the privacy leakage of GEO is small.

Regarding the waiting overhead Pr [𝑉𝑎], we found UNI, GEO,
DGEO and AKR reach 1.45, 1.92, 1.91 and 1.88 when configuring

bias to 10, suggesting our mechanisms either have similar or lower

waiting overhead than AKR. Still, we acknowledge that such over-

head is significant and we discuss this issue in Section 6.3.

Impact of Parameters. To assess the impact of mechanism pa-

rameters, we compute the privacy and utility values theoretically,

as explained in Section 5.1. Here we summarize the guideline for

setting parameters and leave the details to Appendix B.

For UNI, one should avoid large 𝑥𝑟 as the privacy benefit dimin-

ishes and utility drops noticeably. Regarding 𝑥ℓ , we found negative

values do not offer good privacy and small 𝑥ℓ is necessary to main-

tain good privacy. For GEO, a negative starting point 𝑥ℓ should be

avoided as it does no good to utility or privacy. We suggest that

a small positive starting point 𝑥ℓ with a moderately high 𝑝 value

would be optimal for GEO. For example, an 𝑥ℓ of 3 with 𝑝 = 0.7

can achieve reasonable privacy 𝜖 = 1.24 and a good utility of 0.75.

Our evaluation in Appendix B also indicates that a small positive

bias 𝜇 with a scale 𝑠 around 1 would be optimal for DGEO. For the

larger resource capacity 𝑘 , GEO and DGEO still perform well.

Why Models Attacker’s View. In Section 4.4, we argue that

modeling the attacker view is better than modeling the whole view

that is adopted by AKR. Here we justify this claim under the same

simulation. Figure 4 shows an example with the zero-mean (𝜇 = 0)

double-geometric distribution under simulation. Given two differ-

ent cases𝐷 and𝐷′, Figure 4a depicts the difference of output before
allocation and Figure 4b shows the output after allocation from the

attacker’s view, assuming DGEO with scale 1 is applied to allocate

𝑘 = 10 resources, and 𝐷 contains𝑚 = 10 requests. Our study shows

that the existence of the victim can drastically affect the portion of

resources an attacker can get after allocation.

Original 𝜖 used 4 2 1 0.5 0.2

Empirical 𝜖 before RA 4.00 2.00 1.03 0.54 0.27

Empirical 𝜖 after RA 3.28 2.26 2.01 1.90 1.79

Theoretical bound of 𝜖 after RA 3.29 2.26 2.07 1.91 1.79

Table 3: Comparison of different settings of DGEO with 𝑘 =

10. We use 5 different 𝜖 values (first row). Row 2 shows the
empirical 𝜖 is close to the original 𝜖, which indicates our
simulation has only small errors. Row 3 is the empirical 𝜖
after RA, which deviates from the original 𝜖. The last row
shows our theoretical bound of 𝜖 given in Theorem 8 is close
to the empirical value.

(a) Before RA. (b) After RA.

Figure 4: Distribution of output over 5 million runs. Before
RA, we draw noise from a double geometric distribution with
𝜖 = 1 and 𝑘 = 10. After RA, the distribution changes, and the
privacy leakage increases (the empirical 𝜖 rises to 2.07).

Table 3 uses four different zero-mean double geometric distribu-

tions to further explain why RA itself should be part of the privacy

modeling. First, when the original 𝜖 decreases, more noise is ex-

pected, which leads to an increase in privacy protection for both

before and after RA. However, given a relatively high scale (i.e.,

small 𝜖), the privacy protection after RA can be 6 times worse than

that before RA. Such extra information leakage is an indicator that

the privacy budget is affected by RA.

We also take a step forward to measure the privacy amplifica-

tion caused by modeling the attacker’s view. We adjust AKR by

replacing its Laplace noise with double geometric noise, which we

denote as AKR-DGEO, and compare it with DGEO. As their noise
mechanisms become the same, we can exemplify the privacy-utility

tradeoff without and with privacy amplification. Our empirical

analyses indicate that, for a utility measure of approximately 0.42,

privacy amplification results in a decrease in the privacy parameter

𝜖 from 1.00 to 0.59. Likewise, when the utility measure is near 0.60,

𝜖 diminishes from 2.00 to 1.43 after amplification.

6 DISCUSSION
6.1 Privacy Consumption over Multiple Rounds
Like Angel et al. [3], our analysis focuses on a single round. Pri-

vacy normally degrades over multiple rounds rapidly. For instance,

naively applying the sequential composition property of DP over

multiple rounds deteriorates the privacy guarantee (i.e., 𝜖) linearly.

Inspired by previous work, we identify three ways to curb privacy

consumption: (1) using advanced composition [48] to reduce the

total 𝜖 , (2) reusing noise for repeated requests [21, 59], and (3)

bounding the number of requests. Though relaxations could hap-

pen for the attacker’s background knowledge [16], our approach

does not limit the attacker’s background knowledge but rather their

view, and therefore we believe composition works in our case. Next,

we discuss how the three methods can be applied in more detail.

Using Advanced Composition. Traditional composition theo-

rem in DP may result in a union bound over noise, which is sub-

optimal. Avoiding union bound for multiple queries has been an im-

portant open problem in differential privacy [58]. The well-known

advanced composition theorem [18] adjusts pure DP to approxi-

mate (𝜖, 𝛿)-DP with 𝛿 > 0 to yield better composition results. In

cases where the attacker interacts with the allocator over multiple

rounds, we argue that the leakage can be modeled by the 𝑘-fold

adaptive composition [18].
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Mironov [48] proposed new bounding techniques for advanced

composition under Rényi DP (RDP) to this end. In our case, we can

transform 𝜖-DP to (𝛼, 𝜖)-RDP for any 𝛼 > 0 [48], compose RDP

with Theorem 1, and transform back to (𝜖, 𝛿)-DP with Theorem 2.

Popular DP libraries like Opacus have supported RDP advanced

composition [53]. Alternatively, we can utilize Equations 4 and 5

in [52] to derive the (𝜖 , 𝛿)-DP bound directly and employ numerical

methods [26] to obtain more accurate results.

Yet, it is an open question to directly prove the RDP guarantee

for our mechanisms (to avoid conversions mentioned above and

compose better). One possible route is to follow the proof of the

discrete Gaussian mechanism [11] and we leave it as a future work.

Reusing Noise. When new incoming requests are from the same

set of clients of the previous round, the server can avoid consuming

an extra privacy budget by reusing the noise generated for the

previous round [21, 59]. In this way, the attacker gains no more

information than the previous round while the server consumes

no extra budget. Specifically, the output of the algorithm remains

the same if we fix the randomness that happens in a certain round.

Thus, the server can utilize a persistent secret key for a pseudo-

random function (PRF) over the same set of clients, where in each

round the server is able to simulate the same randomness for the

same set of clients.

Bounding the Number of Requests. Drawing from [19], we can

simplify the privacy analysis by eliminating the need to consider

every RA round for each client by capping client requests over a

period (e.g., a maximum of 2 calls daily for MPM clients).

6.2 Other Settings
Though our study primarily examines clients submitting binary

requests for a single resource under worst-case privacy, it can be

extended to (1) the non-binary setting in which clients can submit

requests for more than one resource, (2) the multi-resource setting

in which there are multiple kinds of resources and clients can

request arbitrary resources, and (3) the average-case privacy.

Non-binary Requests that Can be Fulfilled Partially. This

setting can be transformed into the binary case by casting each non-

binary request as multiple binary requests. The global sensitivity

will be changed to the number of maximum requests per client.

Non-binary Requests that Cannot be Fulfilled Partially. The

problem is transformed into an optimization problem aiming for

maximum utilization of resources [36]. In general, the allocator

picks the requests that maximize its target function. The allocator

can add noise to the number of requests, which we expect to yield

worse utility compared to our primary setting. This is because

when requests for large resources are added or removed from the

allocator, a great amount of resources are wasted.

Multiple-resources Allocation. A multiple-resource allocator

deals with multiple types of resources simultaneously. In this set-

ting, the privacy protection of the allocator subjects to sequential

composition, thus the overall privacy depends on the summation of

all privacy losses. The intuition is that the privacy leakage of each

allocation can be seen as auxiliary information, and be combined

with leakage from allocations of other types of resources.

Multiple Honest Requests. Multiple honest requests in alloca-

tion happen when the attacker is not strong enough to control all

other clients except the victim. Assume the requests are binary in

this setting and the attacker does not know the resource distribu-

tion among the honest requests. In this case, the honest requests

(other than the one from the victim) are equivalent to the dummy

requests in our primary setting because the distribution among

them remains unknown to the attacker. Therefore, we can add less

noise in this setting in order to achieve the same privacy guarantee.

We have justified the above assumption by experimenting with

DGEO (the results are omitted due to page limit).

6.3 Limitations

Empirical Study on Privacy. The privacy analysis in our evalua-

tion is empirical-based (i.e., 𝜖’s are calculated empirically based on

our simulation result). We choose simulation for two main reasons.

First, we aim to compare the privacy-utility tradeoff of different

mechanisms at different privacy parameters (e.g., Figure 2), and the

computational overhead will be very high if the experiments are

executed on large-scale real-world systems. Second, for the MPM

system we evaluate, there is no published dataset about its commu-

nication data, so we have to simulate the allocations. In fact, Angel

et al. took a similar approach to evaluate privacy empirically [3],

and the scale of our simulation is comparable or larger (from 5 mil-

lion rounds to 100 million rounds). Simulation has been leveraged

to evaluate other privacy-preserving systems for the same reason,

like differentially oblivious databases [54]. We also acknowledge

the limitation of our simulation, which does not fully approximate

real-world, large-scale systems.

Efficiency. Adding dummies results in higher waiting overhead

because the clients now need to go through more rounds in order to

get the desired resources. However, once the resources are allocated,

no additional delay should be observed.

The spatial overhead due to serving the dummy clients could

be prominent, especially for systems that operate on very limited

resources. The same limitation exists in AKR, and the overhead is

often unavoidable for systems leveragingDP. On the other hand, our

approach provides better resource utilization than AKR, e.g., 98%
under DGEO and 59% under AKR when 𝜖 = 2.3. Higher resource

utilization also leads to smaller waiting overhead. For example, for

an approach with 40% utilization, the chances for a user to get

resource allocated within 5 dialing rounds in Alpenhorn is about

99%. Our proposed mechanisms all surpass 40% as shown in Table 2.

Attacks against DPRA. Potential side-channel attacks against

DP algorithms, such as timing attacks [32], may compromise our

DPRA, but require adaptation to the RA setting.

6.4 Real-world Examples and Utility Analysis
Here we first give a few examples of how the noise under 𝑑 ≥ 0

and 𝑑 < 0 can be instantiated in real-world systems. We follow the

basic setting as described in Section 2.1 first (i.e., all resources are

identical and one request asks for one piece of resource).
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• In the cloud setting, users request for VMs and whether they

are served is based on the available resources like CPU and

memory. When 𝑑 > 0, the allocator creates dummy VMs

that potentially occupy resources. When 𝑑 < 0, not all the

requested resources are allocated to the VM (even though

there are available resources).

• Inside a computer, requests to cache resources (e.g., cache

ways) are automatically generated during a memory access,

which can lead to cache side-channel attacks [66]. 𝑑 > 0

will assign cache ways to dummy programs and 𝑑 < 0 will

skip the caching of some memory content. Either option

will reduce the accuracy of the attack which relies on cache

contention between attacker and victim.

• In MPM, the requests are from a user’s friends who intend

to start a conversation in a round. Noise 𝑑 > 0 is to add fake

friends and 𝑑 < 0 means to reject some requests.

For more complex allocators, we can extend the DP mechanisms

following Section 6.2. For example, the buddy system manages

memory in the power of two increments [37] and we can support

it by considering the memory requests as non-binary. When con-

current requests are supported by multiple resource pools (e.g.,

hypervisor resource pools [62]), multiple-resources allocation can

be applied.

Regarding the results of the privacy-utility tradeoff (e.g., sum-

marized in Table 2), we argue they are practical in the real-world

setting. For example, a study of Google Cloud shows the resource

utilization is 40% - 60% and the resource waste due to early task

termination is 4.53 - 14.22% [23]. In this case, the utility afterDGEO
and GEO should be acceptable (e.g., 0.82 for GEO at 𝜖 = 1.7).

7 RELATED WORK

Joint DP. We focus on the partial view of the attacker. The Joint

DP definition proposed by Kearns et al. [36] formalizes this intu-

ition, primarily to compute equilibrium in games with incomplete

information [36, 55, 56]. Note that Joint DP is just a definition, and

classic DP primitives like the Laplace mechanism are still used.

We are the first to formally investigate the design space and adapt

various DP mechanisms to RA.

Private Matching and Allocation. Our problem can be seen as

a variation of the private allocation/matching problem, through

which users have (non-binary) valuations for products (potentially

in multiple rounds), and the goal is to maximize welfare while

protecting users’ private value for each good. Existing works [10, 15,

29, 34, 35, 50] have applied DP algorithms (e.g., Laplace mechanism)

that are asymptotically interesting. Our modeling of RA is different

and we explored different noisy mechanisms.

Biased Noise. AKR employs biased noise to satisfy DP, while

DGEO uses it to improve the privacy-utility tradeoff. Biased noise

has been examined before. Mazloom and Gordon [47] introduced

a modified 2-sided geometric distribution to generate noise that

enables differentially private access patterns with high efficiency.

DJoin [51] cuts Laplace noise at zero to provide distributed queries

with DP. Shrinkwrap [7] offers a truncated Laplace mechanism

for differentially private data federation, where dummies are intro-

duced to pad intermediate results. He et al. [28] proposes a model

for private record linkage, allowing the disclosure of the true match-

ing records while keeping the protocol executions indistinguishable

when non-matching records are replaced.

DP Against Side-channel Leakage. The leakage from RA can

be considered as allocation-based side channels [3]. A more com-

mon type of side channel is consumption-based, which happens

when the system resources (e.g., network bandwidth and cache)

are consumed. A number of works have applied DP to protect

the system against the latter type of leakage. The protected re-

sources/services include procfs of system statistics [64], streaming

traffic [67], Trusted Execution Environment (TEE) [65], health data

(e.g., ECG data) [57], task schedules [13], and packet scheduler [8].

Another related line of work is differentially oblivious [12],

which was proposed to address the fundamental limitation of

ORAM (Oblivious RAM). Though ORAM can protect the program’s

secret by hiding its memory access pattern, it incurs a very high

performance overhead. By converting full obliviousness to differ-

ential obliviousness, one can obtain meaningful privacy with little

overhead [12, 38, 63]. While this paper also hides a victim’s secret

(i.e., its existence at a certain time), it considers an orthogonal ad-

versary model where the attacker observes part of the true results

without any mechanism to hide the victim-related information.

8 CONCLUSION
In this paper, we studied the problem of privacy protection des-

ignated under resource allocation and systematically modeled it

through the lens of differential privacy. Specifically, we identified

the key issues of a prior system AKR and propose to consider

negative noise and mechanisms other than the standard Laplace

noise. We designed four different mechanisms, CST,UNI,GEO, and

DGEO, and proved they all satisfy 𝜖-DP. In both theoretical and

empirical analysis, we found our mechanisms outperform AKR in

utility ranging from 11% to 65% given a privacy budget 𝜖 . Among

the proposed mechanisms, we recommend GEO, which has a good

privacy-utility tradeoff and performs especially well when 𝜖 is small

(e.g., less than 2). Ultimately, we hope to use this work to attract

more attention to the privacy issues of resource allocation and

encourage new privacy-preserving solutions to be designed.
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A PROOFS OF 𝜖-DP FOR NOISY MECHANISMS
A.1 Uniform Mechanism

Theorem 6. Assume the server has 𝑘 resources. Adding a random
noise drawn uniformly from {𝑥ℓ , 𝑥ℓ + 1, . . . , 𝑥𝑟 } (both 𝑥ℓ and 𝑥𝑟 ≥ 𝑘

are integers) to the number of requests satisfies 𝜖-DP, where

𝑒𝜖 ≤ 𝑚𝑎𝑥
𝑦∈𝑌

(
𝑓 (𝑦) +∑𝑥𝑟

𝑖=max(𝑥ℓ ,𝑘−𝑦) 𝑔(𝑖)

𝑓1 (𝑦) +
∑𝑥𝑟
𝑖=max(𝑥ℓ ,(𝑘−𝑦−1)+ ) 𝑔(𝑖 + 1)

)
(18)

where 𝑌 = {1, 2, . . . , 𝑘}, 𝑔(𝑖) = (𝑘!)2 (𝑖!)2
𝑦!( (𝑘−𝑦)!)2 (𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = 1𝑥ℓ+𝑘≤𝑦<𝑘 + (−𝑘 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘 ,
𝑓1 (𝑦) = 𝑘−𝑦+1

𝑘+1 1𝑥ℓ+𝑘+1≤𝑦≤𝑘 +
𝑦+1
𝑘+11𝑥ℓ+𝑘≤𝑦<𝑘 +

(−𝑘 − 1 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘−1.

Assume an allocator has 𝑘 resources. W.l.o.g., 𝐷 contains 𝑚

requests and 𝐷′ contains𝑚 + 1 requests. Before going further into

examination of the privacy, we first consider the value of𝑚. For the

view of an attacker, it is crucial to set𝑚 to an optimal value that

causes maximum leakage during allocation. This optimal value is 𝑘

is shown in previous analysis in Section 3.2.

We examine the probability the attacker gets assigned𝑦 resources

after allocation. In the case of 𝐷 ,

Pr
[
ViewAM (𝐷 ) = 𝑦

]
=

+∞∑︁
𝑖=−∞

Pr [𝑑 = 𝑖 ] Pr [𝑦 | |𝐷 | + 𝑑 ]

=

𝑥𝑟∑︁
𝑖=max(𝑥ℓ ,𝑘−𝑦)

Pr [𝑑 = 𝑖 ] Pr [𝑦 | |𝐷 | + 𝑑 ] + Pr [𝑑 = 𝑦 − 𝑘 ] · 1

+ Pr [𝑑 < −𝑘 ] 1𝑦=0

=
1

𝑥𝑟 − 𝑥ℓ + 1

(
𝑥𝑟∑︁

𝑖=max(𝑥ℓ ,𝑘−𝑦)

(𝑚
𝑦

) ( 𝑖
𝑘−𝑦

)(𝑚+𝑖
𝑘

)

+ 1𝑥ℓ +𝑘≤𝑦<𝑘 + (−𝑘 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘

)
=

1

𝑥𝑟 − 𝑥ℓ + 1

(
1𝑥ℓ +𝑘≤𝑦<𝑘 + (−𝑘 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘

+
𝑥𝑟∑︁

𝑖=max(𝑥ℓ ,𝑘−𝑦)

𝑘!𝑘!𝑖!𝑖!

𝑦! ( (𝑘 − 𝑦)!)2 (𝑖 − 𝑘 + 𝑦)!(𝑘 + 𝑖 )!

)
Similarly, for the case of 𝐷′,

Pr
[
ViewAM (𝐷

′ ) = 𝑦

]
=

+∞∑︁
𝑖=−∞

Pr [𝑑 = 𝑖 ] Pr
[
𝑦 |

��𝐷 ′�� + 𝑑 ]
=

𝑥𝑟∑︁
𝑖=max(𝑥ℓ ,𝑘−𝑦−1,0)

Pr [𝑑 = 𝑖 ] Pr
[
𝑦 |

��𝐷 ′�� + 𝑑 ]
+ Pr [𝑑 < −𝑘 − 1] 1𝑦=0

+ 𝑘 − 𝑦 + 1
𝑘 + 1 Pr [𝑑 = 𝑦 − 𝑘 − 1] + 𝑦 + 1

𝑘 + 1 Pr [𝑑 = 𝑦 − 𝑘 ]

=
1

𝑥𝑟 − 𝑥ℓ + 1

(
𝑥𝑟∑︁

𝑖=max(𝑥ℓ ,𝑘−𝑦−1,0)

(𝑚
𝑦

) ( 𝑖+1
𝑘−𝑦

)(𝑚+𝑖+1
𝑘

) + (
𝑦 + 1
𝑘 + 1

)
1𝑥ℓ +𝑘≤𝑦<𝑘

+ 𝑘 − 𝑦 + 1
𝑘 + 1 1𝑥ℓ +𝑘+1≤𝑦≤𝑘 + (−𝑘 − 1 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘−1

)
=

1

𝑥𝑟 − 𝑥ℓ + 1

(
𝑘 − 𝑦 + 1
𝑘 + 1 1𝑥ℓ +𝑘+1≤𝑦≤𝑘 +

𝑦 + 1
𝑘 + 11𝑥ℓ+𝑘≤𝑦<𝑘

+ (−𝑘 − 1 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘−1+
𝑥𝑟∑︁

𝑖=max(𝑥ℓ ,(𝑘−𝑦−1)+ )

(𝑘!)2 ( (𝑖 + 1)!)2

𝑦!(𝑘 − 𝑦)!2 (𝑖 + 1 − 𝑘 + 𝑦)!(𝑘 + 𝑖 + 1)!

)
Therefore, privacy protection here satisfies

𝑒𝜖 ≤ 𝑚𝑎𝑥
𝑦∈𝑌

(
𝑓 (𝑦) +∑𝑥𝑟

𝑖=max(𝑥ℓ ,𝑘−𝑦) 𝑔(𝑖)

𝑓1 (𝑦) +
∑𝑥𝑟
𝑖=max(𝑥ℓ ,(𝑘−𝑦−1)+ ) 𝑔(𝑖 + 1)

)
where 𝑌 = {1, 2, . . . , 𝑘}, 𝑔(𝑖) = (𝑘!)2 (𝑖!)2

𝑦!( (𝑘−𝑦)!)2 (𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = 1𝑥ℓ+𝑘≤𝑦<𝑘 + (−𝑘 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘 ,
𝑓1 (𝑦) = 𝑘−𝑦+1

𝑘+1 1𝑥ℓ+𝑘+1≤𝑦≤𝑘 +
𝑦+1
𝑘+11𝑥ℓ+𝑘≤𝑦<𝑘

+ (−𝑘 − 1 − 𝑥ℓ ) 1𝑦=0,𝑥ℓ<−𝑘−1.

A.2 One-sided Geometric Mechanism
Theorem 7. Assume the server has 𝑘 resources. Adding a random

noise drawn from the geometric distribution (with parameter 𝑝 and
starting from integer 𝑥ℓ ) to the number of requests satisfies 𝜖-DP,
where

𝑒𝜖 ≤ max

𝑦∈𝑌

©­­«
𝑓 (𝑦) + 𝑝 ( (𝑘 )!)2

𝑦!( (𝑘−𝑦)!)2
∑∞
𝑖=max(𝑘−𝑦,𝑥ℓ ) 𝑔(𝑖)

𝑓1 (𝑦) + 𝑝 (1−𝑝 )−1 ( (𝑘 )!)2
𝑦!( (𝑘−𝑦)!)2

∑∞
𝑖=𝑥0

𝑔(𝑖 + 1)

ª®®¬
and 𝑌 = {0, 1, . . . , 𝑘}, 𝑔(𝑖) = (1−𝑝 )

𝑖−𝑥ℓ (𝑖!)2
(𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = (1−𝑝)𝑦−𝑘−𝑥ℓ1𝑘+𝑥ℓ ≤𝑦<𝑘 +
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ

)
1𝑦=0,𝑥ℓ<−𝑘 ,

𝑓1 (𝑦) = 𝑝

𝑘+1 (−𝑦 + 𝑘 + 1) (1 − 𝑝)
𝑦−𝑘−1−𝑥ℓ1𝑘+1+𝑥ℓ ≤𝑦≤𝑘 +

1+𝑦
𝑘+1𝑝 (1 −

𝑝)𝑦−𝑘−𝑥ℓ1𝑘+𝑥ℓ ≤𝑦<𝑘 +
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ−1

)
1𝑦=0,𝑥ℓ<−𝑘−1, 𝑥0 =

max((𝑘 − 𝑦 − 1)+, 𝑥ℓ ).

https://differentialprivacy.org/open-problem-avoid-union/
https://differentialprivacy.org/open-problem-avoid-union/
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703ED7601.html
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703ED7601.html
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We provide the detailed proof as follows. Given an allocator with

𝑘 resources and an attacker sending𝑚 = 𝑘 requests, we assess the

probability of the attacker being allocated 𝑦 resources.

Pr
[
ViewAM (𝐷) = 𝑦

]
=

∞∑︁
𝑖=max(𝑘−𝑦,𝑥ℓ )

𝑝 (1 − 𝑝)𝑖−𝑥ℓ
(𝑚
𝑦

) ( 𝑖
𝑘−𝑦

)(𝑚+𝑖
𝑘

) + 𝑓 (𝑦)

=
𝑝 (𝑘!)2

𝑦! ((𝑘 − 𝑦)!)2
∞∑︁

𝑖=max(𝑘−𝑦,𝑥ℓ )

(1 − 𝑝)𝑖−𝑥ℓ (𝑖!)2

(𝑖 − 𝑘 + 𝑦)!(𝑘 + 𝑖)! + 𝑓 (𝑦)

where

𝑓 (𝑦) = 𝑝 (1−𝑝)𝑦−𝑘−𝑥ℓ1𝑘+𝑥ℓ ≤𝑦<𝑘+
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ

)
1𝑦=0,𝑥ℓ<−𝑘 .

Similarly, for the other case,

Pr
[
ViewAM (𝐷

′) = 𝑦

]
=

∞∑︁
𝑖=𝑥0

𝑝 (1 − 𝑝)𝑖−𝑥ℓ
(𝑚
𝑦

) ( 𝑖+1
𝑘−𝑦

)(𝑚+𝑖+1
𝑘

) + 𝑓 ′ (𝑦)
=

∞∑︁
𝑖=𝑥0

𝑝 (1 − 𝑝)𝑖−𝑥ℓ (𝑘!)2 ((𝑖 + 1)!)2

𝑦!((𝑘 − 𝑦)!)2 (𝑖 + 1 − 𝑘 + 𝑦)!(𝑘 + 𝑖 + 1)!
+ 𝑓1 (𝑦)

where 𝑥0 = max((𝑘 − 𝑦 − 1)+, 𝑥ℓ ) and

𝑓1 (𝑦) =
(−𝑦 + 𝑘 + 1)𝑝 (1 − 𝑝)𝑦−𝑘−1−𝑥ℓ

𝑘 + 1 1𝑘+1+𝑥ℓ ≤𝑦≤𝑘

+ (1 + 𝑦)𝑝 (1 − 𝑝)
𝑦−𝑘−𝑥ℓ

𝑘 + 1 1𝑘+𝑥ℓ ≤𝑦<𝑘

+
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ−1

)
1𝑦=0,𝑥ℓ<−𝑘−1

Given the above numerator and denominator, we have the privacy

protection satisfies

𝑒𝜖 ≤ max

𝑦∈𝑌

©­­«
𝑓 (𝑦) + 𝑝 ( (𝑘 )!)2

𝑦!( (𝑘−𝑦)!)2
∑∞
𝑖=max(𝑘−𝑦,𝑥ℓ ) 𝑔(𝑖)

𝑓1 (𝑦) + 𝑝 (1−𝑝 )−1 ( (𝑘 )!)2
𝑦!( (𝑘−𝑦)!)2

∑∞
𝑖=𝑥0

𝑔(𝑖 + 1)

ª®®¬
where 𝑌 = {0, 1, . . . , 𝑘}, 𝑔(𝑖) = (1−𝑝 )

𝑖−𝑥ℓ (𝑖!)2
(𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = (1−𝑝)𝑦−𝑘−𝑥ℓ1𝑘+𝑥ℓ ≤𝑦<𝑘 +
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ

)
1𝑦=0,𝑥ℓ<−𝑘 ,

𝑓1 (𝑦) = 𝑝

𝑘+1 (−𝑦 + 𝑘 + 1) (1 − 𝑝)
𝑦−𝑘−1−𝑥ℓ1𝑘+1+𝑥ℓ ≤𝑦≤𝑘 +

1+𝑦
𝑘+1𝑝 (1 −

𝑝)𝑦−𝑘−𝑥ℓ1𝑘+𝑥ℓ ≤𝑦<𝑘 +
(
1 − (1 − 𝑝)−𝑘−𝑥ℓ−1

)
1𝑦=0,𝑥ℓ<−𝑘−1 and

𝑥0 = max((𝑘 − 𝑦 − 1)+, 𝑥ℓ ).

A.3 Double Geometric Mechanism
Theorem 8. Assume the server has 𝑘 resources. Adding a random

noise drawn from the double geometric distribution (with bias 𝜇 and
scale 𝑠) to the number of requests satisfies 𝜖-DP, where

𝑒𝜖 ≤ max

𝑦∈𝑌
©­«

𝑓 (𝑦) +∑+∞
𝑖=(𝑘−𝑦)+ 𝑒

− 1

𝑠
|𝑖−𝜇 |𝑔(𝑖)

𝑓1 (𝑦) +
∑+∞
𝑖=(𝑘−𝑦−1)+ 𝑒

− 1

𝑠
|𝑖−𝜇 |𝑔(𝑖 + 1)

ª®¬
where 𝑌 = {1, 2, . . . , 𝑘}, 𝑔(𝑖) = (𝑘!)2 (𝑖!)2

𝑢!( (𝑘−𝑦)!)2 (𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = 𝑒−
1

𝑠
|𝑦−𝑘−𝜇 |

1𝑦≠𝑘 +
∑−𝑘−1
𝑖=−∞ 𝑒−

1

𝑠
|𝑖−𝜇 |

1𝑦=0,

𝑓1 (𝑦) =
𝑒−

1

𝑠 |𝑦−𝑘−1−𝜇 | (𝑘−𝑦+1)
𝑘+1 + 𝑒

−1
𝑠 |𝑦−𝑘−𝜇 | (𝑦+1)

𝑘+1 1𝑦≠𝑘 +∑−𝑘−2
𝑖=−∞ 𝑒−

1

𝑠
|𝑖−𝜇 |

1𝑦=0, and 𝑠 is the scale parameter in double
geometric distribution.

Here 𝑓 (𝑦) and 𝑓1 (𝑦) in Theorem 8 are from negative noise and

the summations are from positive noise. When positive noise is

being added, the probability of the attacker getting 𝑦 allocation

can be straightforwardly calculated by substituting Pr [𝑑 = 𝑖] in
Equation 4 with the biased double geometric distribution. For neg-

ative noise, the attacker can only get 𝑦 < 𝑘 with a probability of

𝑒−𝜖 |𝑦−𝑘−𝜇 | for the case of 𝐷 . Whereas for the case of 𝐷′ the at-
tacker can still get 𝑘 resources if noise equals to −1, and the victim

is removed. Or else, the attacker will get𝑦 < 𝑘 resources in all other

negative noise cases. This whole process is given by 𝑓1 (𝑦). Finally,
the privacy bound in Theorem 8 is derived from the worst case 𝑦.

Given an allocator with 𝑘 resources and an attacker sending

𝑚 = 𝑘 requests, we assess the probability the attacker is allocated

𝑦 resources.

Pr
[
ViewAM (𝐷 ) = 𝑦

]
=

+∞∑︁
𝑖=−∞

Pr [𝑑 = 𝑖 ] Pr [𝑦 | |𝐷 | + 𝑑 ]

=
1 − 𝑒− 1

𝑠

1 + 𝑒− 1

𝑠

(
𝑒−

1

𝑠 |𝑦−𝑘−𝜇 |1𝑦≠𝑘 +
−𝑘−1∑︁
𝑖=−∞

𝑒−
1

𝑠 |𝑖−𝜇 |1𝑦=0

+
+∞∑︁

𝑖=(𝑘−𝑦)+
𝑒−

1

𝑠 |𝑖−𝜇 |
(𝑚
𝑦

) ( 𝑖
𝑘−𝑦

)(𝑚+𝑖
𝑘

) )
=
1 − 𝑒− 1

𝑠

1 + 𝑒− 1

𝑠

( +∞∑︁
𝑖=(𝑘−𝑦)+

𝑘!𝑘!𝑖!𝑖!𝑒−
1

𝑠 |𝑖−𝜇 |

𝑦!( (𝑘 − 𝑦)!)2 (𝑖 − 𝑘 + 𝑦)!(𝑘 + 𝑖 )!

+ 𝑒−
1

𝑠 |𝑦−𝑘−𝜇 |1𝑦≠𝑘 +
−𝑘−1∑︁
𝑖=−∞

𝑒−
1

𝑠 |𝑖−𝜇 |1𝑦=0

)
Similarly,

Pr
[
ViewAM (𝐷

′ ) = 𝑦

]
=

+∞∑︁
𝑖=−∞

Pr [𝑑 = 𝑖 ] Pr
[
𝑦 |

��𝐷 ′�� + 𝑑 ]
=
1 − 𝑒− 1

𝑠

1 + 𝑒− 1

𝑠

(
𝑒−

1

𝑠 |𝑦−𝑘−1−𝜇 | (𝑘 − 𝑦 + 1)
𝑘 + 1 +

−𝑘−2∑︁
𝑖=−∞

𝑒−
1

𝑠 |𝑖−𝜇 |1𝑦=0

+ 𝑒−
1

𝑠 |𝑦−𝑘−𝜇 | (𝑦 + 1)
𝑘 + 1 1𝑦≠𝑘

+
+∞∑︁

𝑖=(𝑘−𝑦−1)+

𝑒−
1

𝑠 |𝑖−𝜇 | (𝑘!)2 ( (𝑖 + 1)!)2
𝑦!( (𝑘 − 𝑦)!)2 (𝑖 + 1 − 𝑘 + 𝑦)!(𝑘 + 𝑖 + 1)!

)
Given the above numerator and denominator, we have privacy

protection as follows

𝑒𝜖 ≤ max

𝑦∈𝑌
©­«

𝑓 (𝑦) +∑+∞
𝑖=(𝑘−𝑦)+ 𝑒

− 1

𝑠
|𝑖−𝜇 |𝑔(𝑖)

𝑓1 (𝑦) +
∑+∞
𝑖=(𝑘−𝑦−1)+ 𝑒

− 1

𝑠
|𝑖−𝜇 |𝑔(𝑖 + 1)

ª®¬
where 𝑌 = {1, 2, . . . , 𝑘}, 𝑔(𝑖) = (𝑘!)2 (𝑖!)2

𝑢!( (𝑘−𝑦)!)2 (𝑖−𝑘+𝑦)!(𝑘+𝑖 )! ,

𝑓 (𝑦) = 𝑒−
1

𝑠
|𝑦−𝑘−𝜇 |

1𝑦≠𝑘 +
∑−𝑘−1
𝑖=−∞ 𝑒−

1

𝑠
|𝑖−𝜇 |

1𝑦=0,

𝑓1 (𝑦) =
𝑒−

1

𝑠 |𝑦−𝑘−1−𝜇 | (𝑘−𝑦+1)
𝑘+1 + 𝑒−

1

𝑠 |𝑦−𝑘−𝜇 | (𝑦+1)
𝑘+1 1𝑦≠𝑘 +∑−𝑘−2

𝑖=−∞ 𝑒−
1

𝑠
|𝑖−𝜇 |

1𝑦=0, and 𝑠 is the scale parameter.
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(a) 𝜖 ofUNI given different 𝑥ℓ and
𝑥𝑟 .
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(b) Utility of UNI given different
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Figure 5: Impact of 𝑥ℓ and 𝑥𝑟 on UNI.
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(a) 𝜖 of GEO given different 𝑝 and
𝑥ℓ .
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(b) Utility of GEO given different
𝑝 and 𝑥ℓ .

Figure 6: Impact of 𝑝 and 𝑥ℓ on GEO.

B IMPACT OF PARAMETERS

Starting Point 𝑥ℓ and End Point 𝑥𝑟 of UNI. In Figure 5, we

display privacy and utility across various 𝑥𝑟 (𝑥𝑟 = 10, 15, 20) and 𝑥ℓ
values (along the 𝑥-axis). Notably, 𝑥𝑟 = 15 largely mirrors 𝑥𝑟 = 20 in

terms of 𝜖 , even though 𝑥𝑟 = 20 is expected to offer superior privacy.

Regarding utility, 𝑥𝑟 = 10 consistently ranks highest for different

𝑥ℓ , followed by 𝑥𝑟 = 15 and 𝑥𝑟 = 20. Regarding 𝑥ℓ , increasing its

value enhances privacy (resulting in a lower 𝜖), with utility peaking

when 𝑥ℓ ranges between [−5, 0]. However, we observe two outliers
related to 𝑥ℓ in Figure 5a. First, a peak is observed when 𝑥ℓ = −10,
because all requests in 𝐷 are removed deterministically but the

probability of the same situation for 𝐷′ is 1

𝑘+1 , where victim exists.

Second, when 𝑥ℓ = 𝑥𝑟 = 10, 𝜖 drops to 1.75 because this special case

implies that the attacker gets no resource in the victim’s absence.

Geometric Parameter 𝑝 and Starting Point 𝑥ℓ ofGEO. Figure 6
depicts how 𝑝 and 𝑥ℓ affectGEO. For 𝑥ℓ = −50 and 𝑥ℓ = −10, both 𝜖
and utility approach 0 due to the high likelihood of request removal.

At 𝑥ℓ = 0, utility is high but 𝜖 consistently exceeds 2. For 𝑥ℓ = 10, 20,

𝜖 is below 1.5, with utility rising as 𝑥ℓ increases. For 𝑝 , its influence

on 𝜖 is minimal, except at 𝑥ℓ = 10 where 𝜖 increases sharply after

𝑝 = 0.5. Utility consistently grows with 𝑝 across all settings.

Geometric Scale 𝑠 and Bias 𝜇 of DGEO. In DGEO, the scale

parameter 𝑠 determines the noise’s decay rate. A smaller 𝑠 results

in noise more closely concentrated around the bias 𝜇. 𝜇 introduces

more noise to the allocation, impacting post-allocation privacy. We

evaluate the influence of these parameters on privacy and utility,

presenting the findings in Figure 7. Introducing bias 𝜇 improves

privacy, especially when 𝑠 < 1. For larger 𝑠 , the distribution resem-

bles a discrete uniform, keeping 𝜖 stable (around 2 for 𝜇 ≥ 0). 𝑠 has

limited utility impact unless 𝜇 = 0.

Resource Capacity 𝑘 . We set 𝑘 to 10 for the prior experiments

like Angel et al. [3]. Here we test our mechanisms and AKR on

0 1 2 3 4 5
s

0

2

4

6

8

10 = 10
= 0
= 5
= 10

(a) 𝜖 ofDGEO given different scale
𝑠 and bias 𝜇.
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(b) Utility ofDGEO given different
scale 𝑠 and bias 𝜇.

Figure 7: Impact of 𝑠 and 𝜇 on DGEO.
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(a) Comparison of mechanisms
under 𝑘=15.
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(b) Comparison of mechanisms
under 𝑘=20.

Figure 8: Privacy protection and utility under 𝑘 = 15, 20. The
ranges for the x-axis differ for 𝑘 because not all utility values
can be derived under every 𝜖.

𝑘 = 15, 20. Figure 8 shows the privacy-utility tradeoff. For AKR,
besides the default 𝛿 = 10

−6
, we also evaluate 𝛿 = 10

−12
, bringing

its privacy closer to 𝜖-DP. Figure 8 illustrates that 𝛿 significantly

impacts AKR’s utility, with average gaps of 0.2 for 𝑘 = 15 and 0.1 for

𝑘 = 20. GEO and DGEO still perform well for these new 𝑘 values

and better than AKR.
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