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ABSTRACT

Recent studies have shown that systems with limited resources
like Metadata-private Messenger (MPM) suffer from side-channel
attacks under resource allocation (RA). In the case of MPM, which
is designed to keep the identities and activities of both callers and
callees private from network adversaries, an attacker can compro-
mise a victim’s friends and keep calling the victim to infer whether
the victim is busy, which breaks the privacy guarantee of MPM.

In this work, we systematically study how to protect the privacy
of RA against the aforementioned attacks with differential privacy
(DP). Though DP has been tested by Angel et al. (IEEE S&P 2020) in
protecting RA, which lets the allocator add dummy requests follow-
ing a biased Laplace distribution to hide the existence of the victim
and then assign resources randomly, we identify that this approach
does not leverage the uncertainty from the attacker’s view, thus
leading to a loose bound of DP. As a result, more than 40% of the
resources are wasted to satisfy DP. To make the DP solutions more
practical, we precisely model the RA process from the attacker’s
view and present a thorough study of the noisy allocation mecha-
nisms by considering different distributions, scales, and biases of
noise. We identify four new mechanisms and prove that they all
follow e-DP (Angel et al. follow (e, §)-DP). Through theoretical
and empirical analysis, we found these approaches can outperform
Angel et al. by a large margin in privacy-utility tradeoff.
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1 INTRODUCTION

Resource allocation (RA) is a long-standing problem relevant to
a variety of application scenarios, such as virtual machine assign-
ment [46], storage allocation [43], network bandwidth manage-
ment [44], and channel allocation [61]. Prior works mostly focus
on the efficiency and cost of RA [9, 27, 30, 31, 33, 39, 49], e.g., how
to improve the resource utilization and guarantee the quality of
service to all users [30]. However, the privacy issues of RA have
been overlooked for a long time and were only studied recently.
Angel et al. [4] reveal that a powerful attacker can determine the
existence of other parties in the RA system. Concretely, for an
allocator managing limited resources, when one party requests
resources, the number of resources the other parties can obtain will
be affected. Therefore, the attacker can try to send a large volume
of requests and use the allocation results to infer the existence of
other users. Knowing the existence of others opens the door to
more serious attacks that can infer users’ activities. For example,
although Metadata-private messengers (MPM) are designed to hide
the calling activities between clients, such privacy guarantee can
be breached with RA side-channel and traffic analysis [4].

Existing Resource Allocators. Most of the existing allocators
(e.g., the first-in-first-out allocator) do not offer any privacy guar-
antee [3]. Recently, Angel et al. [3] proposed an allocator AKR!
that satisfies differential privacy (DP) [17]. Angel et al. consider
the scenario where the resource allocator owns a limited number
of resources and the attacker controls a large number of clients.
The attacker learns of the existence of another victim when the
requests to the allocator are not fulfilled. To protect privacy during
RA, AKR adds dummy requests to the real ones and then assigns
resources to randomly chosen requests. The number of dummy
requests follows the biased Laplace distribution, and by a standard
post-processing argument in DP (explained in Section 2.3), the exis-
tence of the victim is differentially private to the attacker. While
the dummy requests puzzle the attacker, we found that the utility
of AKR is not satisfactory. For instance, to achieve an acceptable
protection level of DP (with parameters € = 2,5 = 107%) more than
40% of the resources must be wasted in its experiment setting.

Our Solution. Different from AKR, which implies the attacker
knows the total number of requests after noise is added, we observe
that the practical attacker only has a partial view of RA. Therefore
we choose to model the RA privacy from the attacker’s view. Due
to the randomness introduced by RA, we benefit from “privacy
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amplification” [5, 20] through such modeling and achieve better
privacy-utility tradeoff.

Then, we implemented the DP mechanisms under four noise
distributions, including constant (CST), uniform (UNI), one-sided
geometric (GEO), and double geometric (DGEO), and tailored them
to our new modeling. We conduct a rigorous privacy analysis and
derive much tighter privacy bounds than AKR. We prove GEO and
DGEO always satisfy e-DP under various parameters, while CST
and UNI satisfy e-DP under certain conditions. Interestingly, we
find that adding a constant noise (CST), which obviously violates
traditional DP, can be proven to satisfy DP in the context of RA,
due to the randomness of the allocation process. On the other hand,
AKR only considers non-negative Laplace noise and relies on the
post-processing argument to satisfy (e, §)-DP.

Evaluation. We evaluate the proposed mechanisms empirically
by simulating the RA process of Alpenhorn [42] with 5 million to 100
million rounds of requests, to demonstrate the privacy-utility trade-
off in real-world settings. (1) GEO outperforms other mechanisms
when € is smaller (i.e., € < 2) and has relatively stable performance;
(2) DGEO performs better with a larger € (¢ > 2). Compared to
AKR which wastes 44% of the resources, DGEO only wastes 10% of
resources with € = 2. Moreover, when € = 2.25, AKR utilizes 60% of
the resources while DGEO achieves 97% utilization. (3) Parameters
of the mechanisms have to be carefully tuned and negative bias
should be avoided. The advantage over AKR is especially surprising
as AKR is supposed to have better utility under the relaxed (e, §)-DP,
whereas our mechanisms follow the strict e-DP. This justifies the
effectiveness of our privacy analysis.

Contributions. The main contributions are summarized below:

e We conduct a rigorous privacy analysis of differentially pri-
vate RA, and derive tighter privacy bounds under the at-
tacker’s view for four noisy mechanisms.

e We theoretically and empirically evaluate our proposed
mechanisms. One mechanism, called GEO, leads to the best
privacy-utility tradeoff and outperforms AKR by a large mar-
gin.

e We published the code in a GitHub repository [14].

2 BACKGROUND
2.1 Problem Definition

Resource allocation (RA) assigns limited resources to the requesting
parties, and we focus on RA within computing systems in this
paper. Examples include resource management in data centers [2],
assignment of virtual machines (VMs) in cloud [46], cache allocation
in computers [43], and channel allocation for Metadata-private
Messenger (MPM) [42]. Below we first provide an abstract view
of standard RA and describe its involved parties and procedure.
Then, we describe the attackers’ goals and capabilities in RA. The
frequently used notations are defined in Table 1.

RA Parties and Procedure. Our abstraction of standard RA
considers a scenario where an allocator allocates resources based
on the requests submitted by a number of clients. The allocator
can contain one server or a group of servers for fault-tolerance. In
the setting of data center, the allocator can be a virtual machine
manager (VMM), and the client can be a data center tenant. In the
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Notation ‘ Description

D,D’ Neighboring datasets differing in one victim
k Number of available resources
m Number of compromised clients
d Number of noisy requests (can be negative)
y Number of resources dispatched to attacker

X¢, Xr, D, S, 4 | Parameters of the noisy mechanisms

Table 1: Notations frequently used in this paper.

@ Clients compromised
by attacker

Allocator -
B Victim

— Request
'// /‘l \ \\- Resource granted

Figure 1: An example of RA. An allocator has six resources and
the total number of requests sent by attacker is six. Privacy
of the victim is violated when the attacker observes one of
the requests is not fulfilled.

setting of MPM, where two users can set up a call in a private way,
the allocator can be a callee and the client can be a caller.
Regarding the RA procedure, we assume it takes rounds of in-
teractions between the allocator and the clients. In each round, the
allocator receives requests from its clients for resources (e.g., CPUs
in a cloud and communication channels to be allocated to a caller
in MPM) and makes the best efforts to serve the requests. Hence,
for each request, the allocator either accepts it and allocates the
resources, or rejects it when all resources have been occupied.
Following prior work [3], we assume the quantity of the re-
sources is a limited number k, and all resources are identical. Each
round, some clients send requests, and each request asks for one
piece of resource. Because the resources are identical, the requests
are also identical (except the requesters’ IDs). We note that some as-
sumptions can be relaxed (e.g., resources are not identical and each
client can request multiple resources) to match different application
scenarios, and we discuss these variations in Section 6.2.

Adversary Model. Since the clients’ requests might not always be
fulfilled under limited resources, the allocator’s response could leak
information about the existence of some clients. Figure 1 illustrates
how such inference attack can be conducted. Formally, we assume
the attacker in the strongest attack scenario who can:

o compromise all clients except one victim client, and we denote
the number of compromised clients as m.

e know the number of available resources k before RA.

e compromise more clients than the resources, i.e., m > k, and
all requests are submitted at the same time.

The attacker can tell there is a victim requesting a resource if less
than k requests from the attacker are fulfilled.

We assume the adversary is malicious who can behave arbitrarily
rather than being semi-honest. We only consider the privacy issues
in RA and other issues like availability (e.g., the attacker blocks
a victim from getting resources by overwhelming the allocator)
are out of scope. We note that an adaptive attacker can exploit
the correlation of results between multiple rounds, and infer more
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information that weakens the allocation privacy. We propose a few
approaches to tackle such adversary in Section 6.1.

Regarding the allocator, we assume it is trustworthy, and can
see all clients and requests and add noises. Hence, the allocator can
analyze the historical data to estimate the parameters to be used
by our mechanisms without privacy issues. We also assume the
communication between the victim and the allocator is secure, so
the number of the victim’s requests are not leaked.

Impact of RA Side-channel Leakage. Even though the infor-
mation about the victim during RA is seemingly insignificant, it
can be leveraged as a side channel to break privacy-enhancing
technologies or make the subsequent attacks more effective.

Specifically, Angel et al. described an attack based on the RA side-
channel [4] against MPM. MPM like Vuvuzela [61], Alpenhorn [42],
Stadium [60] and Karaoke [41] hide both the message content and
its metadata (including sender, receiver, time of communication,
etc.) from the network adversaries. In essence, a user within an MPM
initiates a conversation with her friend on an agreed time or round
and encrypts the messages with a shared key. In the conversation
round, the user initiates k channels to k friends (including the friend
to have the “real” conversation). To avoid leaking metadata, users
are forced to send and receive a message on each channel in each
round 2. Since MPM requires the clients to always be online, only
the communicating parties of a client should be protected, while
the client’s existence is known.

It turns out the privacy guarantee of MPM can be entirely vi-
olated. As shown by Angel et al. [4], a user usually has a greater
number of friends than k channels. When the attacker controls m
(m > k) friends of the user and lets them call the user, if the user is
busy (e.g., not responding) to more than m — k callers controlled by
the attacker, the attacker knows the user is communicating with
others who are out of her control. Moreover, when the attacker com-
promises the friends of multiple users, she can infer which users
are likely active in a given round with intersection and disclosure
attacks [1, 45]. Specifically, the attacker can narrow down the pos-
sible sender-recipient pairs by ignoring all the idle users during the
first round of calling. Then the attacker can build intersections of
active users and keep reducing the set of possible sender-recipient
pairs during additional rounds. Because the requests and resources
are all identical under our assumptions, detecting such inference
attack is also very challenging.

Existing Resource Allocators. We aim to design an RA that
hides the existence of the victim while maximizing request fulfillment.
One trivial solution that provides perfect privacy is to have the
allocator withhold all the resources and reject every request, but
obviously, this solution has zero utility. Angel et al. characterizes
the existing allocators into (1) FIFO (first in, first out) allocator, (2)
Uniform allocator, (3) Slot-based resource allocator (SRA) and (4)
Randomized resource allocator (RRA) [3], while FIFO and uniform
allocators are non-private and SRA and RRA are private. However,
both SRA and RRA incur prominent utility loss.

2MPM is different from the normal messenger apps in that it can decline legitimate
calls to provide metadata privacy. Yet, given that each conversation round has very
small latency (e.g., measured in micro-seconds in the context of Alpenhorn [3]), the
impact of call declining on user experience remains moderate.
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2.2 A Primer on Differential Privacy

Our work applies differential privacy (DP) mechanisms on RA.
We briefly overview DP in this subsection and describe how AKR
applies DP to RA [3] in the next subsection.

In the standard (central) setting, a trusted data curator adds noise
(e.g., through the Laplace mechanism or Geometric mechanism)
to fulfill a DP notion (e.g., (€, §)-DP) given a query from a data
consumer, which bounds the information leakage provably.

DEFINITION 1 ((€, §)-DIFFERENTIAL PRIVACY). [17] An algorithm
M satisfies (€, 8)-differential privacy against an adversary, where
€, > 0, iff for any two neighboring datasets D and D’, and any
subset Y of all possible outcomes of algorithm M, we have

Pr{M(D) € Y] < e€Pr[M(D') e Y] +5 (1)

We consider two datasets D and D’ to be neighbors, denoted as
D =~ D’ ifand only if D = D +uorD’ = D+u, where D+u denotes
the dataset resulted from adding one user’s data u to the dataset
D. e measures privacy loss at a differential change in data, which
is also called privacy budget. § models the probability when the
algorithm M fails to be differentially private, which is also called
“failure probability”. The value of § is normally very small in order
to keep the algorithm satisfying DP most of the time. When § = 0,
we simplify the (e, 0)-DP to e-DP and call it pure DP.

Laplace Mechanism [17]. It computes a function f on input
dataset D while satisfying e-DP, by adding to f(D) a random noise.
The magnitude of the noise depends on GSy, i.e., the global L;
sensitivity of f, defined as (on any two neighboring datasets D =
D),
’
GSy = max [1f(D) - £(D)ll @

When f outputs a single element, M can be written as:

GS
MD) = f(D)+L (%) )
where L (s) denotes a random variable sampled from the Laplace
distribution with scale parameter s such that Pr[L(s) =x] =
2—1$e_|x /s, When f outputs a vector, M adds independent samples

GS
of L (Tf) to each element of the vector.

Geometric Mechanism [40]. If the output domain is discrete,
one can use this mechanism, which draws noise from the double

e_%lx‘/csf, for

1
geometric distribution: Pr [DG (s) = x] = %
x € Z. The Geometric mechanism satisfies e}lJr)eP.
Composition. Two properties, i.e., composition and post-processing,
of DP, are frequently used to build complicated algorithms from the
basic mechanisms. Sequential composition states that combining
multiple subroutines that satisfy DP for (€1, 81), (€2, 82), - - - results
in a mechanism that satisfies (¢, §)-DP for € = ), ¢; and § = }; 6.
Advanced composition, e.g., Rényi DP [48], provides smaller privacy
degradation (e grows sub-linearly). The post-processing property
states that, any operation (post-process) of an (€, §)-DP algorithm’s

result still satisfies (e, §)-DP.

DEFINITION 2 (RENYI DIFFERENTIAL PRIVACY [48]). A mechanism
M : X — Y is said to satisfy (v, 7)-RDP if the following holds for
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any two neighboring datasets D, D’

1 Pr[M(D) =o] \"
V_llogEo~M(D) [(Pr [M(D’) = o] sT
THEOREM 1. [RDP Sequential Composition [48]] If M1 and M;

are (v, 71)-RDP and (v, 72)-RDP respectively then the mechanism
combining the two g(M1 (D), M2(D)) is (v, 71 + 72)-RDP.

THEOREM 2. [RDP to (€, 8)-DP [48]] If a mechanism is (v, T)-RDP,
log1/8 8)-DP.

v—1 >

then it also satisfies (7 +

2.3 Differentially Private Allocation in AKR

As all the requests are identical from the allocator’s point of view,
the key to providing privacy is to “control” the number of resources
the attacker receives. Thus, AKR asks the allocator to add dummy
requests. Specifically, AKR sets the dataset D to be all requests made
by clients, and computes the noise L (%) To ensure the number
of added requests (i.e., M(D) in Equation 3) is non-negative, a bias
1 is added when sampling the Laplace noise so that the probability
of the noise being negative is bounded by §, which we refer to as
the biased Laplace distribution. The workflow of AKR is:

e Input: k, 4, GSf, e, D
e Noise d «— [max (0,/,1 +L (%))-‘
e Set Q < |D| +d dummy requests
e U «uniformly select min (|Q|, k) items out of Q
e Output: U
Overall, AKR satisfies (¢, §)-DP. Below is its DP proof.

THEOREM 3 (DP Proor For AKR [3]). Algorithm M is (e, §)-
differentially private fore = 1/s and § = /_100 L (w|y, 1/€) dw. Specif-
ically, for any subset of values L in the range [f (D), c0) of M:

PriM(D) € L] < ePr[M(D’) € L] +6
and
Pr(M (D) e L] <ePr[M (D) € L]
where f(S) computes the cardinality of set S.

Note that:

1 1,e(1-p)
§= ‘/_oo L(wlp, 1/€)dw = {1 2 Leeli-w)

We can see i tends to be large in order to have a small 8.

Given that the noise is non-negative, what the attacker observes
after allocation can be seen as a post-processing of the requests, as
the victim’s request is indistinguishable from the added dummy re-
quests. Specifically, let Y be a random variable denoting the number
of resource attacker gets. Since the attacker only learns which re-
quests of her were fulfilled, from her point of view dummy requests
and victim are indistinguishable. Thus for each value I € [0, k],
Pr(Y =IM(D)=t] =Pr[Y =IlIM(D’) = t], where t is the num-
ber of requests with dummies. Combined with the inequalities gov-
erning the probabilities that M outputs each value of t for D and
D’, respectively. We have that Pr [Y = [|D] < e€Pr[Y = [|D’] + 6,
and similarly with D and D’ exchanged. Thus the distribution of
the number of attacker’s requests allocated are very close for D
and D’.

ifp>1
ifp<i
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3 MODELING RESOURCE ALLOCATION

In this section, we first demonstrate the problem of AKR’s modeling
of RA. Then, we present a taxonomy of different ways to “add noise”
in RA and a general approach to model privacy.

3.1 Privacy Amplification from Allocation

We argue that AKR’s modeling of RA leads to suboptimal utility due
to the lack of consideration for the attacker’s view and capabilities.
Though AKR, by its definition, does not reveal the number of total
requests each round, their proof indicates a stronger statement
that the DP guarantee holds even when the attacker observes the
total number of requests after noise is added (i.e., the number of
requests from both the attacker and the victim). More specifically,
their proof guarantees that the noisy total number of requests is
bounded by (€, 6)-DP when honest clients are added. However,
such information is not actually accessible to the attacker, thus it
creates a gap between the proof and the actual definition of the
RA problem. Examining the attacker’s view is crucial for privacy
amplification in our study. By comprehending the capabilities and
limitations of the attackers, we can construct a precise analysis and
avoid unnecessary noise. In real-world scenarios, the capability of
an attacker can be considerably limited, as they are typically not
granted access to the internal states of an allocator. In fact, if the
attacker can observe the internal states of an allocator, she just
needs to access the number of requests before adding noise, which
defeats all DP-based protection.

We note that such a modeling gap is common in DP for ease
of proof. For example, in DP-SGD [22], the privacy guarantee is
proved on each SGD step, implying that the attacker can observe the
intermediate steps, but such information should not be accessible
to the attacker. A similar case also appears in the proof of privacy
blanket [6, Theorem 3.1] (which assumes the attacker has unrealistic
extra information for the ease of proof) for the shuffle DP model.

Hence, we propose to more precisely model the attacker’s ca-
pabilities and offer a tighter bound under the notion of DP. By
conducting the privacy analysis from scratch, we present a set of
“privacy amplification” results®. In this paper, the privacy ampli-
fication stems from the fact that the attacker only has a partial
view of the allocation result. The attacker is aware of whether the
other compromised clients receive the allocated resources, except
for the one uncompromised client. Compared to AKR, which has to
introduce larger noise to deter the (unrealistic) attacker, we can use
smaller noise to satisfy DP. In Section 5.2 (“Why Models Attacker’s
View”), we elaborate the impact of privacy amplification.

3.2 Design Space

As described in Section 2.1, RA takes two steps: (1) receive a request,
and (2) allocate the resource if the request is accepted. Hence, for
privacy protection, the allocator can add noise to either (1) the
number of requests (i.e., by adding dummy requests or removing
some requests), or (2) the number of available resources (i.e., by
withholding some available resource). After that, the allocator can
randomly select requests and assign resources to them. Therefore,
the design space for the allocator is composed of:

3Privacy amplification refers to the effect where we can prove the privacy cost is
reduced after some operations (e.g., subsampling [5] and shuffling [20]).
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e DS1: Choosing Where to Add Noise. The allocator can
add noise to either the number of requests or the number
of resources or both. Our analysis shows that randomizing
the number of resources has the same effect as randomizing
the number of requests (explained later), thus we focus on
designing methods to add noise to the number of requests.
In Section 6.4, we give a few real-world examples.

e DS2: Choosing How Noise is Generated. The allocator
adds noise to the observed number of requests, and we have
the flexibility to choose:

— The distribution of the noise.
— The range (support) of the distribution.

We found AKR only covered part of the design space: (1) AKR
considered RA as post-processing and only adds non-negative noise
(dummy requests) to the requests. (2) AKR did not consider distri-
butions other than the Laplace distribution.

Adding Noise to Resource. Beyond adding noise to the requests,
we can choose to add noise to the resources. Here we consider that
the noise is always negative, or the resources are withheld from
being assigned to clients. The positive noise can be seen as “creat-
ing” resources on the fly and assigning more than what is asked by
a client, which could be impractical for a real-world system. Yet,
we can prove that withholding any number of resources can be
equivalently modeled as assigning them to dummy requests. Specif-
ically, the allocator could withhold n resources from k requests,
which results in k — n random requests getting resources. This is
equivalent to that n requests being randomly removed from the
system (so that the rest k — n requests are granted with resources).
Thus, we only consider adding noise to requests.

3.3 Privacy Modeling

Under DS1, we model RA’s privacy through the lens of DP as follows.
We use d to denote the random variable for the number of noisy
requests. D denotes the number of requests made in a round. Given
two neighboring datasets D, D’, w.l.o.g., we assume D’ equals to D
plus the honest request from the victim client*. RA’s privacy can
be quantified as:

i=x,

Pr [vaewu;;(m - y] X, Prid=ilPry]| D] +d]

Pr [Viewﬁ(D) =y] X, Prid=ilPrly]||D|+d]

where Viewﬁ (+) models the allocation outcomes in the attacker’s

view. Note that Viewi{/l differs from M in Equation 1 in that Viewi{/[
is a partial view of the final allocation outcome. Pr [d = i] denotes
the probability d = i, where d is a random variable and i is within
some range [xg, x|, and Pr [y | |D| + d] is the probability that at-
tacker gets y resources. This equation measures the difference in
the attacker’s observation that is impacted by the one honest re-
quest. If d > 0, the allocator adds some dummy requests; d < 0
models removing some requests (e.g., ignoring requests). Notice
that Equation 4 follows e-DP, which is different from AKR that
follows (e, 6)-DP.

With Pr [y | |D| + d], we are able to more precisely model RA pri-
vacy than AKR and captures the randomness introduce by RA, since

“4For the other neighboring case (D’ equals to D minus the honest request), the model-
ing and proofs are similar, so it is omitted in this version due to page limit.
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y represents only the output in the attacker’s view (i.e., y < |D|).
We now describe the detailed analysis of Pr [y | |[D| + d] under two
cases: d > 0 and d < 0. We enumerate all possible situations under
RA and derive the exact probability expressions for Pr [y | |D| + d]
and Pr [y | |D’| + d](i.e., Equation 5 and Equation 6).

Request Addition (d > 0). For the case of D, assuming there are
m requests from D, given a specific number of dummy requests
d > 0, we have:

V(k —d)+ <y < min(k, m),

(W)

Priy|ID]+d] = -5 %)
("¢%)

Prly | |D|+d] = 0 if y is outside of the above range. y has to
satisfy y < min(k, m) because what the attacker observes cannot
exceed the total number of resources k or the number of requests
m. Similarly, y > (k — d)4+ (we use x4 to denote max(0, x)) because
there are only d other requests, so the attacker must get at least
(k — d)+ resources.

We only model the case when the number of requests m >
k — d because when m < k — d, all requests are fulfilled (no pri-
vacy leakage). In that case, Pr[y | |D|+d] = 1 fory = m and
Pr [y | D] +d] = 0 otherwise.

The denominator of Equation 5 is (m]:— d) because we have a total
of m+d requests and we allocate k resources to them (equivalent to
choosing k from m+d requests to allocate resources). Thus there are
(m,:d) possible assignments. The numerator is (7) (kfy) because,
for the fixed set of m requests controlled by the attacker, y of them
are fulfilled; there are ('Z) possible assignments. Similarly, for the

rest d requests, there are (kiy) possible assignments. So all together

there are (’;’) ( k‘_i y) possible assignments that satisfy the constraint
that y resources go to m processes.

For the case of D’, which has an additional honest request, the
attacker could receive one fewer resource. Thus we have:

V(k —d—1); <y < min(k, m),

m\ (d+1
Priy | [D’|+d] = —((’i,zfsﬂy)) 6)
k

Similar to Equation 5, in Equation 6, when m < k —d — 1,
Priy||D’| +d] =1fory=mandPr[y | |D’| +d] = 0 otherwise.

Request Removal (d < 0). For the case of D (the honest request
does not exist), when the number of added dummy requests is
negative (d < 0), some requests will be removed randomly. We
have:

1 ify=min(m+d k)4
0 otherwise

Pr[y||D|+d]={ )
This case is simpler than “Request Addition”, and what the attacker
observes is deterministic: if after adding negative noise d, m + d is
still greater than k, then the attacker will always receive k resources;
if m+d < k, then the attacker will always receive m + d resources.
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For the case of D’, there are m + 1 + d requests, and we need to
consider whether the honest request is fulfilled. Let x = min(m +
1+ d, k)4, which leads to two scenarios:

o Allocator assigns resources to the honest client: in this case,
y can only be x — 1. The probability of the allocator assigning
resources to the honest client is ﬁ which is equivalent
to the case of selecting x = min(m + 1 + d, k) items from a
total of m + 1 items without replacement and that the honest
client is selected.

e Allocator does not assign resources to the honest client: y
must be x if the honest request is not fulfilled, which happens
with probability 1 - +%+.

Thus we have:

’ 1- xm% ' ify=x
Priy||D’|+d] = X ify=x-1 ®)
0 otherwise

where x = min(m + 1+ d, k).
We want to highlight that considering request removal (negative
noise) is another key difference from AKR.

Attacker’s Strategy. From the attacker’s point of view, it is im-
portant to set m (the number of compromised clients) to a value
that can maximize privacy leakage (i.e., maximize Equation 4). Re-
call that we assume k (resource capacity) is known to the attacker,
and each client can submit at most one request (see Section 2.1).
Following the previous analysis of request addition and request
removal, we can derive the best attacker strategy below we follow
this strategy for this rest of the paper.

THEOREM 4. The maximum privacy leakage happens when the
attacker sends m = k requests.

Proor. We consider the cases of noise d < 0 and d > 0, and
prove m = k causes maximum privacy leakage in both cases.

First, considering the case when noise is non-negative (d >
0), the attacker’s goal is to choose m to maximize the difference
between the cases of D and D’. Note that the difference can only
be observed when m + d > k because otherwise, all requests will
be granted with resources. To ensure m+d > k for alld > 0, we
have m > k. Based on the previous analysis, when 0 < d < k, there
is no privacy at y = k —d — 1, because

m!k!

k—d—1)!(m+d+1)!
Thus it does not matter to the attacker what value to set to m in
this case. For d > k, the privacy protection is given by

Prly | |D|+d] =O,Pr[y||D'|+d] =

Priy|Dl+d] ()G k
Priy [ID/[+d] — (m)(&) (@) =" mtd+1-k

In order to maximize the above, we need to set m to its minimum
within the range of m > k, that is, m = k.

Now, we consider the case when negative noise (d < 0) is added.
By observing Equation 7 and Equation 8, we know that to trigger
the different outputs for case D and D’ (i.e., y = m + d for case D
and y = m+d+1 for case D’), m+d needs to be < k. The difference
of D and D’ (privacy protection) is then given by

Priy|IDl+d] = 1 m+1 ©)
’ - 1+d -
Priy| D[ +d] 1 mtld d
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To have m+d < k (i.e.,d < k—m)hold foralld < 0, we have m < k.
Now, in order to maximize Equation 9, m is to be set to k. m]

4 NOISY MECHANISMS

In this section, we analyze different noisy mechanisms under DS2.
As the RA output is discrete, we choose discrete distributions for the
mechanisms. Specifically, we consider constant, uniform, one-sided
geometric, and double geometric distributions, and name them CST,
UNI, GEO, DGEO for short. Though these mechanisms have been
studied in the standard DP [24, 25], we conducted new theoretical
analysis to derive tighter privacy bounds, which require extensive
proof work as shown in Appendix A. In Table 2, a summary of
different mechanisms is given. In particular, 1) we prove the DP
bounds for all mechanisms, though CST and UNI only satisfy DP
when certain conditions are met (i.e., noise sample space should be
at least k); 2) our mechanisms outperform AKR in utility by a large

margin®.

4.1 Constant Noise (CST)

In this case, we consider request addition only, and the noise d
always equals a constant number c. Observing Equations (5) and (6),
the valid y support sets differ in one case where y = k — d — 1. But
aslongasd > k,both Pr [y | |D| + d] and Pr [y | |D’| + d] have the
same valid set of y € {0, 1, - -, min(m, k) }, and the privacy can be
quantified as:

(DG
Priy|IDI+d] (%)  (m+d+1)(d+y+1-k) (10)
Priy [ID’]+d] — ()(#)  (m+d+1-k)(d+1)

(d+71:1+1)

As a result, we have the following theorem:

THEOREM 5. Assuming an allocator has k resources, constant noise
has to be at least k to satisfy DP.

Proor. Suppose the resource allocated to the attacker is y, and
the attacker always sends out m = k requests. Then we have

ye{(k—d)4, (k—d)y+1,--- k} when D 11)
ye{(k—d=1)s (k=d—1)s+1--- .k} whenD’

Note that y = (k — d)+ happens in D when all dummy requests get
resources and the remaining resources go to the attacker. Similarly,
y = (k — d — 1) happens in D’ when the victim and all dummy
requests get resources and the remaining resources go to the at-
tacker. When d > k,y € {0,1,---,k} for both D and D’. Thus,
given m = k and Equation 10, we can give an upper-bound of its
privacy leakage as:

e_ Priy| |D|+d] :(m+d+1)(d+y+1—k)7k+d+1 (12)
Priy|[D'|+d] (m+d+1-k)(d+1) d+1
where e€ = k;z;rl is reached at y = k. O

This is a surprising result, as adding a fixed noise should not
satisfy DP. In our case, adding a fixed noise still provides privacy
because of the randomness of the allocation process. Still, we argue
that it does not offer good utility. Due to the constraint ¢ > k, the
utility is never more than 0.5.

>The numbers come from simulation of Section 5.2. The theoretical analysis of utility
has also been done, but omitted due to page limit.
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‘ Privacy ‘ Noise ‘ Noise Sign ‘ DP Condition ‘ Utility (€=0.65) ‘ Utility (e=1.7) ‘ Utility (e=2.3)
CST e-DP Constant + Noise ¢ > k 0.50 0.50 0.50
UNI e-DP Discrete uniform +/- Right bound x, > k 0.46 0.65 0.70
GEO e-DP One-sided geometric +/- - 0.47 0.82 0.90
DGEO e-DP Double geometric +/- - 0.44 0.77 0.98
AKR [3] | (e, 8)-DP Laplace + - 0.32 0.53 0.59

Table 2: A summary of different mechanisms and their utility under some representative ¢ values. Note that k = 10 and § = 107°.

4.2 Uniform Mechanism (UNI)

In this case, the discrete noise (it can be negative or non-negative)
is drawn uniformly from [xg, x;]:

1

Prld=i] = ——,
Xr—xp+1

i=xp,xp+1,...,xr (13)
x¢ and x, define the shape of distribution used in UNI, with x,
defining the starting point. In Appendix A.1, we prove attacker’s
view satisfies DP when x, > k or [—k — 1,0] € [xp, x,].

Yet, our analysis shows UNI is also not recommended when
the utility requirement is more critical. This is because the utility
degrades linearly to negative noise when the number of requests
equals the number of resources. In a nutshell, suppose the total
number of requests is n and n = k. Removing requests causes
less resource to be allocated with certainty while adding requests
results in the same with a probability. With this, our goal is to
have x, > 0 and x, > k to achieve the best privacy and utility
tradeoff, and Appendix B studies how these parameters should be
determined.

4.3 One-sided Geometric Mechanism (GEO)

Intuitively, reducing the probability density of large noise can re-
duce the amount of dummy requests added, and thus improve utility.
To this end, we adopt the geometric distribution within the range
[xp, 00) with the noise distribution:

Prid=il=p(1-p) ™, i=xpxp+Lx,+2,... (14)

Like UNI, x, also models the starting point of the new distribu-
tion. For p, a larger value makes the noise decay faster and has
negligible probability for large value i, thus improving utility. In
terms of privacy, we can also prove attacker’s view satisfies DP (See
Appendix A.2). For the same reason in Section 4.2, negative noise
has negative influence on utility in a deterministic way. Therefore,
though GEO tolerates negative noise (i.e., xp can be negative), we
do not recommend setting xp < 0.

The two parameters x, and p both influence € and utility: For
xp > 0, increasing x reduces both e and utility, and increasing p
raises € and utility. For x, < 0, utility and privacy varies in different
cases. Appendix B studies the parameter settings.

4.4 Double Geometric Mechanism (DGEO)

AKR adds a biased Laplace noise to the number of requests (ex-
plained in Section 2.3). Likely, we propose to draw the noise from a
biased double geometric distribution:

_1-e€

= e~€li-ul viez (15)
e

Prld =il

We call s = 1/e the scale of the noise and p the bias of the noise.
Adding double-geometric noise with a scale 1/€ to the number of
requests satisfies e-DP [17, 40], and we prove it in Appendix A.3.

AKR chooses Laplace noise, which is similar to DGEO but in the
continuous domain. AKR sets a positive bias y so that the probability
that the noise is negative is bounded by &, and the authors prove
AKR follows (¢, §)-DP. In order to have a small § (i.e., the probability
of failing DP to be small),  must be fairly large which leads to
unsatisfactory utility. For example, when § equals a common value
of 1078, i has to be at least 15 (it is even larger than the number of
real requests and resources) to achieve € = 1 for k = 10.

Hence, accommodating negative noise without using a large bias
is essential to high utility, and we show it is possible. In a nutshell,
negative noise may relax the pre-allocation €, but not necessarily
introduce 8. Although negative noise introduces a discrepancy
between the possible outcomes of D and D’ from the attacker’s
view, as well as in the range of y (resources dispatched to the
attacker), it does not violate DP when combined with non-negative
noise as proved in Theorem 8 of Section A.3 (i.e., the attacker’s
view satisfies DP). In Section 5.2, we provide empirical analysis to
show the impact of RA on utility and privacy from the attacker’s
view.

5 EVALUATION

In this section, we evaluate the privacy and utility of different mech-
anisms. Here we summarize the key results. 1) Our mechanisms
outperform AKR by 11% to 65% in terms of utility (e.g., DGEO out-
performs AKR by 53% given € = 2). GEO has a clear advantage for
smaller € while DGEO is able to achieve better utility with larger e.
2) Different parameters can achieve similar privacy protection but
lead to very different levels of utility.

5.1 Evaluation Setup

Settings. To compare different mechanisms in the privacy-utility
tradeoff, we choose to simulate RA using a real-world system set-
ting. Similar to AKR, we take Alpenhorn [42], an MPM, as one
of our target systems. In essence, a user in Alpenhorn starts a
conversation with his/her friend at an agreed time or round. In a
conversation round, the user initiates k channels to k friends, then
sends and receives messages on each channel to hide the real com-
munication pattern. Section 2.1 describes how its privacy guarantee
can be violated. The evaluation by AKR models how Alpenhorn
allocates channels for requests to defend against allocation-based
side-channel attacks. Similar to AKR, we set the resource capacity
k = 10 for most of the experiments, meaning that a user has a
maximum of 10 channels that can be established with other clients.
We also experiment with larger k (15, 20) to test the scalability of
the proposed mechanisms and AKR. AKR sets an upper bound to
the number of requests in each round and considers at most 10% of
them to be honest requests. We remove the upper bound and set
the number of victim requests to at most 1 to simulate the worst
case for the victim, as explained in Section 2.1. Note that AKR uses
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a Poisson distribution to simulate the request number from all users
while our total requests in case D and D’ are fixed to m and m + 1,
respectively. Given that we assume at most one victim exists dur-
ing allocation, we did not apply the Poisson distribution. Unless
otherwise stated, we simulate 10 million independent rounds of
allocation with requests of attacker m = k (the optimal attacker
strategy, as proved in Theorem 4), and measure privacy and utility.

In Section 6.3, we try to justify the choice of simulation setup
and discuss the limitations of simulation.

Metrics. We evaluate the performance of different mechanisms
under three metrics: privacy, utility, and waiting overhead. Regard-
ing privacy, we compute the empirical € by Equation 4 with the
simulation results, and the larger value indicates more privacy leak-
age. Theoretical € can be derived from Theorem 5 to Theorem 8, but
their values are not always computable. For the study of parameters
(Appendix B), we compute some theoretical € for the comparison.
As for the utility, we mainly measure the empirical resource
utilization U, or how many (in ratio) resources are put into real
use after allocation, from the simulation results. This differs from
the classic DP that considers the accuracy of the analysis results as
utility, or how close the noisy output is to the ground truth. The
same utility measure is chosen by AKR as well. U is given by:

k .
U:ZPr[r:j]% (16)
=

where r is the number of fulfilled requests, k is the number of
resources, and Pr [r = j] is the probability of j requests being ful-
filled.

While resource utilization is relevant to the overhead on the
allocator, the overhead on the client can be measured by their
waiting time (or waiting overhead). We use the probability of the
victim getting the resource in any round, as the higher probability
should lead to a shorter waiting time for the resource. For example,
in Alpenhorn (original version that is not protected by DP) with k
resources and m attacker requests, the probability that the victim
gets resource Pr [V, ] is given by:

() Q)
(m]:-l)

Denoting the Pr[V,] as the probability that the victim gets re-
sources after DP, the ratio between Pr [V,] and Pr [V}, ] represents
the amount of waiting overhead caused by DP mechanisms.

Pr(V4] = (17)

Implementation. We implement our code in Python 3.7.10 with
NumPy 1.19.5 libraries. The implementation is open-sourced [14].

5.2 Evaluation Results

We compare the performance of different mechanisms, i.e., CST,
UNI, GEO, DGEO, and AKR with simulation.

First, we enumerate different e values for each mechanism and
compute the best utility value, which is derived by searching in
the space of possible mechanism parameters. Figure 2 illustrates
the quantitative results of the tradeoff between privacy and utility.
Note that, for AKR, since it is (¢, §)-DP, we set § = 107, which is
commonly chosen by other DP works (Angel et al. even chooses a
larger value, § = 1074 [3]).
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Figure 2: Comparison of different mechanisms. The ranges
of € for CST and UNI are limited. CST’s utility never exceeds
0.5 because at least k dummy requests are required to make
it differentially private. The utility of GEO does not increase
when € is between 1.8 to 2.3, and we speculate this is because
the parameters leading to the optimal utility have not been
discovered through simulation.
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Figure 3: Allocation results by GEO with p = 0.90, which sets
the bias to 10. The x-axis represents the number of fulfilled
requests of the attacker, and the y-axis represents the fre-
quency of each output out of 100 million rounds. We increase
the simulation rounds from 10 million to 100 million in order
to yield precise results.

In general, we found that all of our proposed mechanisms have
better utility than AKR for every e when the parameters are fine-
tuned. Specifically, GEO has better utility given lower € (i.e., under
2) while DGEO yields better utility given more relaxed € (i.e., over
2). AKR reaches the utility of 0.58 with (2, 10~°)-DP, while GEO and
DGEO are able to achieve the utility of 0.89 with 2-DP, increasing
the utility by 0.31 (53%). Overall, the margin of DGEO over AKR
ranges from 0.05 to 0.39, GEO is able to outperform AKR over a
range of 0.08 to 0.36, and UNI is able to outperform AKR by at most
0.15. This result is surprising as (€, §)-DP usually yields better utility
than e-DP. We believe this is due to the fact that our mechanisms
have the ability to accommodate negative noise, while AKR has to
use a large bias to satisfy DP.

Since CST cannot achieve a utility value of more than 0.5, in the
following experiments, we focus on the other mechanisms. In the
previous experiment, we change the mechanism parameters to fit
€, but in the real-world deployment, the parameters are determined
ahead. Here we evaluate the impact of the parameters related to
bias. For DGEO and AKR, they are represented by p. For UNI and
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GEO, the starting point (x; for UNI and GEO) models the bias. We
configure bias to a small value of 10. With the utility targeting 0.5,
GEO and DGEO are able to bound privacy with € of 0.80 and 0.77.
UNI and AKR result in much higher € at 1.28 and 1.5. Hence, with
a small bias, our mechanisms can protect allocation with better
privacy while achieving the same utility as AKR.

So far, the prior experiments quantitatively measure how the
mechanisms perform. Like Angel et al. [3], we visualize privacy
protection under a fixed set of parameters. Specifically, we measure
the difference in allocation results (D and D’) based on the number
of resources allocated to the attacker. Figure 3 shows the visualiza-
tion of GEO, when bias is configured to 10. The lines of D and D’
stay close, suggesting the privacy leakage of GEO is small.

Regarding the waiting overhead Pr [V,], we found UNI, GEO,
DGEO and AKR reach 1.45, 1.92, 1.91 and 1.88 when configuring
bias to 10, suggesting our mechanisms either have similar or lower
waiting overhead than AKR. Still, we acknowledge that such over-
head is significant and we discuss this issue in Section 6.3.

Impact of Parameters. To assess the impact of mechanism pa-
rameters, we compute the privacy and utility values theoretically,
as explained in Section 5.1. Here we summarize the guideline for
setting parameters and leave the details to Appendix B.

For UNI, one should avoid large x, as the privacy benefit dimin-
ishes and utility drops noticeably. Regarding x,, we found negative
values do not offer good privacy and small x; is necessary to main-
tain good privacy. For GEO, a negative starting point x, should be
avoided as it does no good to utility or privacy. We suggest that
a small positive starting point x, with a moderately high p value
would be optimal for GEO. For example, an x; of 3 with p = 0.7
can achieve reasonable privacy € = 1.24 and a good utility of 0.75.
Our evaluation in Appendix B also indicates that a small positive
bias y with a scale s around 1 would be optimal for DGEO. For the
larger resource capacity k, GEO and DGEO still perform well.

Why Models Attacker’s View. In Section 4.4, we argue that
modeling the attacker view is better than modeling the whole view
that is adopted by AKR. Here we justify this claim under the same
simulation. Figure 4 shows an example with the zero-mean (i = 0)
double-geometric distribution under simulation. Given two differ-
ent cases D and D’, Figure 4a depicts the difference of output before
allocation and Figure 4b shows the output after allocation from the
attacker’s view, assuming DGEO with scale 1 is applied to allocate
k = 10 resources, and D contains m = 10 requests. Our study shows
that the existence of the victim can drastically affect the portion of
resources an attacker can get after allocation.

Original € used 4 2 1 05 0.2
Empirical € before RA 4.00 2.00 1.03 054 0.27
Empirical € after RA 3.28 226 201 190 179

Theoretical bound of € after RA |3.29 226 2.07 191 179

Table 3: Comparison of different settings of DGEO with k =
10. We use 5 different ¢ values (first row). Row 2 shows the
empirical ¢ is close to the original ¢, which indicates our
simulation has only small errors. Row 3 is the empirical €
after RA, which deviates from the original e. The last row
shows our theoretical bound of € given in Theorem 8 is close
to the empirical value.
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Figure 4: Distribution of output over 5 million runs. Before
RA, we draw noise from a double geometric distribution with
€ =1 and k = 10. After RA, the distribution changes, and the
privacy leakage increases (the empirical € rises to 2.07).

Table 3 uses four different zero-mean double geometric distribu-
tions to further explain why RA itself should be part of the privacy
modeling. First, when the original e decreases, more noise is ex-
pected, which leads to an increase in privacy protection for both
before and after RA. However, given a relatively high scale (i.e.,
small €), the privacy protection after RA can be 6 times worse than
that before RA. Such extra information leakage is an indicator that
the privacy budget is affected by RA.

We also take a step forward to measure the privacy amplifica-
tion caused by modeling the attacker’s view. We adjust AKR by
replacing its Laplace noise with double geometric noise, which we
denote as AKR-DGEO, and compare it with DGEO. As their noise
mechanisms become the same, we can exemplify the privacy-utility
tradeoff without and with privacy amplification. Our empirical
analyses indicate that, for a utility measure of approximately 0.42,
privacy amplification results in a decrease in the privacy parameter
€ from 1.00 to 0.59. Likewise, when the utility measure is near 0.60,
€ diminishes from 2.00 to 1.43 after amplification.

6 DISCUSSION
6.1 Privacy Consumption over Multiple Rounds

Like Angel et al. [3], our analysis focuses on a single round. Pri-
vacy normally degrades over multiple rounds rapidly. For instance,
naively applying the sequential composition property of DP over
multiple rounds deteriorates the privacy guarantee (i.e., €) linearly.
Inspired by previous work, we identify three ways to curb privacy
consumption: (1) using advanced composition [48] to reduce the
total €, (2) reusing noise for repeated requests [21, 59], and (3)
bounding the number of requests. Though relaxations could hap-
pen for the attacker’s background knowledge [16], our approach
does not limit the attacker’s background knowledge but rather their
view, and therefore we believe composition works in our case. Next,
we discuss how the three methods can be applied in more detail.

Using Advanced Composition. Traditional composition theo-
rem in DP may result in a union bound over noise, which is sub-
optimal. Avoiding union bound for multiple queries has been an im-
portant open problem in differential privacy [58]. The well-known
advanced composition theorem [18] adjusts pure DP to approxi-
mate (€, §)-DP with § > 0 to yield better composition results. In
cases where the attacker interacts with the allocator over multiple
rounds, we argue that the leakage can be modeled by the k-fold
adaptive composition [18].
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Mironov [48] proposed new bounding techniques for advanced
composition under Rényi DP (RDP) to this end. In our case, we can
transform e-DP to («, €)-RDP for any a > 0 [48], compose RDP
with Theorem 1, and transform back to (¢, §)-DP with Theorem 2.
Popular DP libraries like Opacus have supported RDP advanced
composition [53]. Alternatively, we can utilize Equations 4 and 5
in [52] to derive the (e, §)-DP bound directly and employ numerical
methods [26] to obtain more accurate results.

Yet, it is an open question to directly prove the RDP guarantee
for our mechanisms (to avoid conversions mentioned above and
compose better). One possible route is to follow the proof of the
discrete Gaussian mechanism [11] and we leave it as a future work.

Reusing Noise. When new incoming requests are from the same
set of clients of the previous round, the server can avoid consuming
an extra privacy budget by reusing the noise generated for the
previous round [21, 59]. In this way, the attacker gains no more
information than the previous round while the server consumes
no extra budget. Specifically, the output of the algorithm remains
the same if we fix the randomness that happens in a certain round.
Thus, the server can utilize a persistent secret key for a pseudo-
random function (PRF) over the same set of clients, where in each
round the server is able to simulate the same randomness for the
same set of clients.

Bounding the Number of Requests. Drawing from [19], we can
simplify the privacy analysis by eliminating the need to consider
every RA round for each client by capping client requests over a
period (e.g., a maximum of 2 calls daily for MPM clients).

6.2 Other Settings

Though our study primarily examines clients submitting binary
requests for a single resource under worst-case privacy, it can be
extended to (1) the non-binary setting in which clients can submit
requests for more than one resource, (2) the multi-resource setting
in which there are multiple kinds of resources and clients can
request arbitrary resources, and (3) the average-case privacy.

Non-binary Requests that Can be Fulfilled Partially. This
setting can be transformed into the binary case by casting each non-
binary request as multiple binary requests. The global sensitivity
will be changed to the number of maximum requests per client.

Non-binary Requests that Cannot be Fulfilled Partially. The
problem is transformed into an optimization problem aiming for
maximum utilization of resources [36]. In general, the allocator
picks the requests that maximize its target function. The allocator
can add noise to the number of requests, which we expect to yield
worse utility compared to our primary setting. This is because
when requests for large resources are added or removed from the
allocator, a great amount of resources are wasted.

Multiple-resources Allocation. A multiple-resource allocator
deals with multiple types of resources simultaneously. In this set-
ting, the privacy protection of the allocator subjects to sequential
composition, thus the overall privacy depends on the summation of
all privacy losses. The intuition is that the privacy leakage of each
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allocation can be seen as auxiliary information, and be combined
with leakage from allocations of other types of resources.

Multiple Honest Requests. Multiple honest requests in alloca-
tion happen when the attacker is not strong enough to control all
other clients except the victim. Assume the requests are binary in
this setting and the attacker does not know the resource distribu-
tion among the honest requests. In this case, the honest requests
(other than the one from the victim) are equivalent to the dummy
requests in our primary setting because the distribution among
them remains unknown to the attacker. Therefore, we can add less
noise in this setting in order to achieve the same privacy guarantee.
We have justified the above assumption by experimenting with
DGEO (the results are omitted due to page limit).

6.3 Limitations

Empirical Study on Privacy. The privacy analysis in our evalua-
tion is empirical-based (i.e., €’s are calculated empirically based on
our simulation result). We choose simulation for two main reasons.
First, we aim to compare the privacy-utility tradeoff of different
mechanisms at different privacy parameters (e.g., Figure 2), and the
computational overhead will be very high if the experiments are
executed on large-scale real-world systems. Second, for the MPM
system we evaluate, there is no published dataset about its commu-
nication data, so we have to simulate the allocations. In fact, Angel
et al. took a similar approach to evaluate privacy empirically [3],
and the scale of our simulation is comparable or larger (from 5 mil-
lion rounds to 100 million rounds). Simulation has been leveraged
to evaluate other privacy-preserving systems for the same reason,
like differentially oblivious databases [54]. We also acknowledge
the limitation of our simulation, which does not fully approximate
real-world, large-scale systems.

Efficiency. Adding dummies results in higher waiting overhead
because the clients now need to go through more rounds in order to
get the desired resources. However, once the resources are allocated,
no additional delay should be observed.

The spatial overhead due to serving the dummy clients could
be prominent, especially for systems that operate on very limited
resources. The same limitation exists in AKR, and the overhead is
often unavoidable for systems leveraging DP. On the other hand, our
approach provides better resource utilization than AKR, e.g., 98%
under DGEO and 59% under AKR when € = 2.3. Higher resource
utilization also leads to smaller waiting overhead. For example, for
an approach with 40% utilization, the chances for a user to get
resource allocated within 5 dialing rounds in Alpenhorn is about
99%. Our proposed mechanisms all surpass 40% as shown in Table 2.

Attacks against DPRA. Potential side-channel attacks against
DP algorithms, such as timing attacks [32], may compromise our
DPRA, but require adaptation to the RA setting.

6.4 Real-world Examples and Utility Analysis

Here we first give a few examples of how the noise under d > 0
and d < 0 can be instantiated in real-world systems. We follow the
basic setting as described in Section 2.1 first (i.e., all resources are
identical and one request asks for one piece of resource).
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o In the cloud setting, users request for VMs and whether they
are served is based on the available resources like CPU and
memory. When d > 0, the allocator creates dummy VMs
that potentially occupy resources. When d < 0, not all the
requested resources are allocated to the VM (even though
there are available resources).

e Inside a computer, requests to cache resources (e.g., cache
ways) are automatically generated during a memory access,
which can lead to cache side-channel attacks [66]. d > 0
will assign cache ways to dummy programs and d < 0 will
skip the caching of some memory content. Either option
will reduce the accuracy of the attack which relies on cache
contention between attacker and victim.

o In MPM, the requests are from a user’s friends who intend
to start a conversation in a round. Noise d > 0 is to add fake
friends and d < 0 means to reject some requests.

For more complex allocators, we can extend the DP mechanisms
following Section 6.2. For example, the buddy system manages
memory in the power of two increments [37] and we can support
it by considering the memory requests as non-binary. When con-
current requests are supported by multiple resource pools (e.g.,
hypervisor resource pools [62]), multiple-resources allocation can
be applied.

Regarding the results of the privacy-utility tradeoff (e.g., sum-
marized in Table 2), we argue they are practical in the real-world
setting. For example, a study of Google Cloud shows the resource
utilization is 40% - 60% and the resource waste due to early task
termination is 4.53 - 14.22% [23]. In this case, the utility after DGEO
and GEO should be acceptable (e.g., 0.82 for GEO at € = 1.7).

7 RELATED WORK

Joint DP. We focus on the partial view of the attacker. The Joint
DP definition proposed by Kearns et al. [36] formalizes this intu-
ition, primarily to compute equilibrium in games with incomplete
information [36, 55, 56]. Note that Joint DP is just a definition, and
classic DP primitives like the Laplace mechanism are still used.
We are the first to formally investigate the design space and adapt
various DP mechanisms to RA.

Private Matching and Allocation. Our problem can be seen as
a variation of the private allocation/matching problem, through
which users have (non-binary) valuations for products (potentially
in multiple rounds), and the goal is to maximize welfare while
protecting users’ private value for each good. Existing works [10, 15,
29, 34, 35, 50] have applied DP algorithms (e.g., Laplace mechanism)
that are asymptotically interesting. Our modeling of RA is different
and we explored different noisy mechanisms.

Biased Noise. AKR employs biased noise to satisfy DP, while
DGEO uses it to improve the privacy-utility tradeoff. Biased noise
has been examined before. Mazloom and Gordon [47] introduced
a modified 2-sided geometric distribution to generate noise that
enables differentially private access patterns with high efficiency.
DJoin [51] cuts Laplace noise at zero to provide distributed queries
with DP. Shrinkwrap [7] offers a truncated Laplace mechanism
for differentially private data federation, where dummies are intro-
duced to pad intermediate results. He et al. [28] proposes a model
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for private record linkage, allowing the disclosure of the true match-
ing records while keeping the protocol executions indistinguishable
when non-matching records are replaced.

DP Against Side-channel Leakage. The leakage from RA can
be considered as allocation-based side channels [3]. A more com-
mon type of side channel is consumption-based, which happens
when the system resources (e.g., network bandwidth and cache)
are consumed. A number of works have applied DP to protect
the system against the latter type of leakage. The protected re-
sources/services include procf's of system statistics [64], streaming
traffic [67], Trusted Execution Environment (TEE) [65], health data
(e.g., ECG data) [57], task schedules [13], and packet scheduler [8].
Another related line of work is differentially oblivious [12],
which was proposed to address the fundamental limitation of
ORAM (Oblivious RAM). Though ORAM can protect the program’s
secret by hiding its memory access pattern, it incurs a very high
performance overhead. By converting full obliviousness to differ-
ential obliviousness, one can obtain meaningful privacy with little
overhead [12, 38, 63]. While this paper also hides a victim’s secret
(i.e., its existence at a certain time), it considers an orthogonal ad-
versary model where the attacker observes part of the true results
without any mechanism to hide the victim-related information.

8 CONCLUSION

In this paper, we studied the problem of privacy protection des-
ignated under resource allocation and systematically modeled it
through the lens of differential privacy. Specifically, we identified
the key issues of a prior system AKR and propose to consider
negative noise and mechanisms other than the standard Laplace
noise. We designed four different mechanisms, CST, UNI, GEO, and
DGEO, and proved they all satisfy e-DP. In both theoretical and
empirical analysis, we found our mechanisms outperform AKR in
utility ranging from 11% to 65% given a privacy budget e. Among
the proposed mechanisms, we recommend GEO, which has a good
privacy-utility tradeoff and performs especially well when € is small
(e.g., less than 2). Ultimately, we hope to use this work to attract
more attention to the privacy issues of resource allocation and
encourage new privacy-preserving solutions to be designed.
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A PROOFS OF ¢-DP FOR NOISY MECHANISMS

A.1 Uniform Mechanism
THEOREM 6. Assume the server has k resources. Adding a random

noise drawn uniformly from {x¢,x¢ + 1,...,x,} (both x; and x, > k
are integers) to the number of requests satisfies e-DP, where
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Assume an allocator has k resources. W.lo.g., D contains m
requests and D contains m + 1 requests. Before going further into
examination of the privacy, we first consider the value of m. For the
view of an attacker, it is crucial to set m to an optimal value that
causes maximum leakage during allocation. This optimal value is k
is shown in previous analysis in Section 3.2.

We examine the probability the attacker gets assigned y resources
after allocation. In the case of D,
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Similarly, for the case of D’,
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Therefore, privacy protection here satisfies
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A.2 One-sided Geometric Mechanism

THEOREM 7. Assume the server has k resources. Adding a random
noise drawn from the geometric distribution (with parameter p and
starting from integer x¢) to the number of requests satisfies e-DP,
where
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We provide the detailed proof as follows. Given an allocator with
k resources and an attacker sending m = k requests, we assess the
probability of the attacker being allocated y resources.
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Given the above numerator and denominator, we have the privacy
protection satisfies
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A.3 Double Geometric Mechanism

THEOREM 8. Assume the server has k resources. Adding a random
noise drawn from the double geometric distribution (with bias y and
scale s) to the number of requests satisfies e-DP, where
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Here f(y) and fi(y) in Theorem 8 are from negative noise and
the summations are from positive noise. When positive noise is
being added, the probability of the attacker getting y allocation
can be straightforwardly calculated by substituting Pr [d = i] in
Equation 4 with the biased double geometric distribution. For neg-
ative noise, the attacker can only get y < k with a probability of
e~€lY=k=1l for the case of D. Whereas for the case of D’ the at-
tacker can still get k resources if noise equals to —1, and the victim
is removed. Or else, the attacker will get y < k resources in all other
negative noise cases. This whole process is given by fi (y). Finally,
the privacy bound in Theorem 8 is derived from the worst case y.

Given an allocator with k resources and an attacker sending
m = k requests, we assess the probability the attacker is allocated
y resources.
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Given the above numerator and denominator, we have privacy
protection as follows
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(a) € of UNI given different x, and (b) Utility of UNI given different
Xr. xp and x;-.

Figure 5: Impact of x; and x, on UNI.
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Figure 6: Impact of p and x, on GEO.

B IMPACT OF PARAMETERS

Starting Point x, and End Point x; of UNI. In Figure 5, we
display privacy and utility across various x, (x, = 10, 15, 20) and x,
values (along the x-axis). Notably, x, = 15 largely mirrors x, = 20in
terms of €, even though x, = 20 is expected to offer superior privacy.
Regarding utility, x, = 10 consistently ranks highest for different
x¢, followed by x, = 15 and x, = 20. Regarding x,, increasing its
value enhances privacy (resulting in a lower €), with utility peaking
when x; ranges between [—5, 0]. However, we observe two outliers
related to x, in Figure 5a. First, a peak is observed when x, = —10,
because all requests in D are removed deterministically but the
probability of the same situation for D’ is ﬁ, where victim exists.
Second, when xp = x, = 10, € drops to 1.75 because this special case
implies that the attacker gets no resource in the victim’s absence.

Geometric Parameter p and Starting Point x, of GEO. Figure 6
depicts how p and x; affect GEO. For xp = —50 and xp = —10, both €
and utility approach 0 due to the high likelihood of request removal.
At xp = 0, utility is high but € consistently exceeds 2. For x, = 10, 20,
€ is below 1.5, with utility rising as x, increases. For p, its influence
on € is minimal, except at x, = 10 where € increases sharply after
p = 0.5. Utility consistently grows with p across all settings.

Geometric Scale s and Bias y of DGEO. In DGEO, the scale
parameter s determines the noise’s decay rate. A smaller s results
in noise more closely concentrated around the bias p. y introduces
more noise to the allocation, impacting post-allocation privacy. We
evaluate the influence of these parameters on privacy and utility,
presenting the findings in Figure 7. Introducing bias y improves
privacy, especially when s < 1. For larger s, the distribution resem-
bles a discrete uniform, keeping € stable (around 2 for p > 0). s has
limited utility impact unless y = 0.

Resource Capacity k. We set k to 10 for the prior experiments
like Angel et al. [3]. Here we test our mechanisms and AKR on
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Figure 7: Impact of s and i on DGEO.
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Figure 8: Privacy protection and utility under k = 15, 20. The
ranges for the x-axis differ for k because not all utility values
can be derived under every c.

k = 15,20. Figure 8 shows the privacy-utility tradeoff. For AKR,
besides the default § = 1079, we also evaluate § = 10~12, bringing
its privacy closer to e-DP. Figure 8 illustrates that § significantly
impacts AKR’s utility, with average gaps of 0.2 for k = 15 and 0.1 for
k = 20. GEO and DGEO still perform well for these new k values
and better than AKR.
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