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Abstract—Emerging communication services and satellite sys-
tem deployments pose heightened interference challenges for
crucial passive radiometer sensors used in environmental and
atmospheric sensing. Therefore, there is an urgent necessity
to develop effective approaches for detecting, mitigating, and
characterizing the influence of anthropogenic sources, commonly
referred to as radio frequency interference (RFI) on passive
Earth-observing microwave radiometers. Experimenting the co-
existence of active communication and passive sensing systems
would greatly benefit from a thorough and realistic dataset
covering a wide range of scenarios. The insufficient availability
of extensive datasets in the radio frequency (RF) domain,
particularly in the context of active/passive coexistence, poses a
significant obstacle to progress. This limitation is particularly
notable in the context of comprehending the effectiveness of
conventional model-based RFI detection approaches when ap-
plied to advanced 5th-generation (5G) wireless communication
signals. This study first shows the development of an experimental
passive radiometer and 5G testbed system and aims to assess the
efficacy of the widely employed spectral kurtosis RFI detection
approach within controlled anechoic chamber experiments. Our
experimental setup comprises a fully calibrated SDR-based L-
band radiometer subjected to diverse 5G wireless signals, varying
in power levels, frequency resource block group allocation,
and modulation techniques. Significantly, our testbed facilitates
the concurrent recording of ground truth temperatures while
subjecting the radiometer to 5G signal transmission which helps
to understand the overall effect in the radiometer. This distinctive
configuration provides insights into the effectiveness of traditional
RFI detection models, offering valuable perspectives on the
associated challenges in RFI detection.

Index Terms—Microwave radiometer, remote sensing, deep
learning, RF1, 5G, active-passive spectrum coexistence

I. INTRODUCTION

The wireless spectrum is a vital and finite resource that
significantly influences daily life, playing an essential role in
both Earth observation and active wireless communication [1].
It plays a crucial role in mobile broadband, weather fore-
casting, astronomy, and space exploration [2]. This synergy
becomes evident as technologies overlap in frequency bands,
serving both active communication and passive observation
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needs, underscoring their interconnected nature for the benefit
of humanity. In Earth observation, passive radiometers play
an important role by converting natural thermal radiation into
brightness temperature (1), crucial for deriving geophysical
parameters like soil moisture, ocean salinity, and atmospheric
water vapor [3]. These sensors, requiring no physical contact,
ensure precise and non-intrusive measurements of environmen-
tal variables. Their heightened sensitivity enables the detection
of slight changes in thermal emission. However, challenges
arise from radio frequency interference (RFI), primarily caused
by anthropogenic signals such as active wireless communi-
cations. RFI introduces bias into calibrated radiometric data,
affecting the accuracy of geophysical parameter estimates and
posing a threat to Earth observation endeavors.

In this study, spectral kurtosis [4], a conventional RFI
detection method, has been tested on a controlled anechoic
chamber radiometer dataset. This physical testbed consists
of a customizable 5G new radio (NR) system that may
broadcast wireless communication signals and is presented
together with a calibrated L-band radiometer that is akin to
those used in satellite-based Earth observation for remote
sensing. Researchers can use this experimental dataset to
further assess how well algorithms for RFI detection, iden-
tification, classification, mitigation, and spectrum coexistence
work [5]. This study is primarily dedicated to the identification
of RFI in time-frequency spectrograms, aiming to eliminate
contaminated frequency segments and utilize the unaffected
portions for scientific purposes. Our investigation reveals
that while spectral kurtosis effectively identifies RFI within
a spectrogram, the substantial power transmission from 5G
could amplify the overall impact on radiometers, potentially
introducing bias to measurements. Our future studies will
aim to evaluate more conventional and data-driven approaches
for RFI detection and mitigation to enhance the reliability
of radiometer measurements both in chamber and outdoor
environments [6]-[8].

The paper is structured as follows: Section II presents
the spectral kurtosis algorithm. The whole testbed and the
experimental scenarios and data processing are discussed in
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Sections IIT and IV respectively. Section V provides the :
Finally, conclusions are drawn in Section VI.

II. RFI DETECTION WITH SPECTRAL KURTOSI

Spectral kurtosis is a statistical tool to find non-G:
behavior in a fixed number of samples. It has been
adapted in RFI detection and mitigation through the 1
domain transformation. We start with computing the sho
Fourier transform (STFT) of the received signal x(t) ¢

S(f, )= / z(t) - w(t —71) ce I ft gt
where S(f,7) is the STFT of z(¢), w(t — 7) is the v
function centered at time 7, and f represents the frec

To calculate spectral kurtosis estimator SK (f) [4], [9] sceunu
and fourth order moments are computed as

My(f) = ISP Ma(f) =D IS(L7IY @)

which are utilized further to estimate final spectral kurtosis
SK(f) defined in (3).

SK(f) = (=) N7z — - 3)

where N is the total number of time samples in S(f, 7).

In the context of the Binary Hypothesis criterion, the
detector stage is tasked with deciding between two hypotheses
in the transformed domain. Specifically, the hypotheses are
stated as follows. Hy: The sample is considered RFI clean,
represented as SK,,—pgrr(f). This is calculated from the
radiometer samples inside the anechoic chamber that is not
contaminated by RFI. H;: The sample is marked as RFI-
contaminated, represented as SKpgp;(f). This is derived from
contaminated radiometer samples.

The decision is made by comparing the estimated SK(f)
in each frequency bin with a predetermined threshold value «.
The threshold value « is determined by setting a probability of
false alarm (Pg4) a priori. Pr 4 is defined as the probability of
erroneously choosing hypothesis /1; when the true hypothesis
is Hy, equivalently Ppy = P(H1|Hp). Your specific « is set
to achieve a 0.3% false alarm rate, and it is applied with both
upper (a,,) and lower threshold criteria (o). This ensures that
the decision process maintains a controlled probability of false
alarms during the hypothesis testing for RFI contamination.
The decision rule is formulated as follows:

if oy < SK(f) < au

Choose H
otherwise

Choose H;

More details on establishing the threshold with respect to L-
band radiometer will be illustrated in Section IV-B.

III. OVERALL TESTBED

A. Experimental Setup

The experiment setup includes a 5G transmitter and an L-
band microwave radiometer as passive receiver [5], [10]. The
experiment is conducted inside a radio-neutral zone (anechoic

5G Transmitter

Fig. 1: Experimental setup illustrating the 5G signal transmit-
ter and L-band radiometer configuration within the anechoic
chamber.

chamber) at Mississippi State University. The arrangement of
the dual-polarized L-band radiometer receiver antenna and the
5G transmitter antenna was designed to ensure an unobstructed
line of sight between them, as illustrated in Fig. 1. The 5G
transmitter was remotely controlled during the experiment to
reduce any unwanted bias. Within the anechoic chamber, the
radiometer antenna was placed at the front position, while the
5G transmitter antenna was situated at the back. The ambient
temperature in the anechoic chamber was rigorously regulated
and maintained at a consistent level throughout the experiment.

B. 5G Transmission System

The 5G NR waveforms were formulated utilizing MAT-
LAB’s 5G Toolbox, adhering to the most recent specifications
outlined by the 3rd Generation Partnership Project (3GPP).
This toolbox facilitates the generation of a comprehensive
5G waveform, encompassing the entire transmission link,
which includes channel encoding, modulation, and Multiple
Input Multiple Output (MIMO) precoding. We modified the
waveform generation to control transmission parameters such
as resource block allocation in the frequency domain, slot and
symbol positioning in the time domain, modulation schemes,
transmission power levels, and channel coding rates. These
adjustments were made to align with our experimental objec-
tives. After generation, the complex In-phase and Quadrature
(IQ) samples undergo conversion into a binary format using
MATLAB’s dedicated function, a crucial step for the subse-
quent over-the-air transmission process [11].

Our design utilizes GNU Radio with a Software Defined
Radio (SDR) device—specifically, the Universal Software
Radio Peripheral (USRP) B210 model—for over-the-air trans-
mission. The USRP B210 acts as the bridge between the
digital and analog RF worlds. It supports a broad RF spectrum
ranging from 70 MHz to 6 GHz and boasts an instantaneous
bandwidth of up to 56 MHz. Further details about the 5G
transmitter testbed can be found in our previous publications
(51, [12].
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1) 5G Frame and Carrier Structure: In 5G networks,
time frames are typically segmented into 10 ms intervals,
known as subframes, in accordance with the 5G specifications
[13]. These subframes are further divided into smaller units
called slots, which consist of OFDM (Orthogonal Frequency-
Division Multiplexing) symbols, representing the smallest
scheduling units within this time frame architecture. In 5G,
time frames are 10 ms subframes. Subcarrier spacing (SCS)
regulates subcarrier frequency, impacting data transmission
efficiency. 5G NR offers a range of SCS options, including 15,
30, 60, 120, and 240 kHz. The structure of an NR subframe,
encompassing the number of slots and the duration of each
OFDM symbol, is governed by the chosen SCS. Employing
longer SCS results in shorter slot duration, thus allowing
more slots per subframe. Despite SCS variations, subframes
maintain a fixed duration of 1 ms, with each slot usually
comprising 14 OFDM symbols. In the frequency domain, the
organization of 5G networks is outlined by the frequency
resource grid. The smallest unit within this grid is the resource
element (RE), defined by the intersection of an OFDM symbol
in the time domain and a subcarrier in the frequency domain.
A resource block (RB), consisting of 12 consecutive REs, is
the smallest frequency resource unit that can be allocated to
a user for a specified transmission time interval (TTI). This
allocation is dynamic, allowing for adaptation to the varying
data needs of different users. Notably, the bandwidth of an
RB depends on the chosen SCS; wider SCS values lead to
larger RBs. Furthermore, RBs are aggregated into resource
block groups (RBGs). The size of an RBG, determined by a
higher-layer protocol, consists of ‘P’ RBs, with the minimum
value of ‘P’ being 2.

2) Preliminary 5G power experiment: During waveform
generation, we adjusted signal power by specifying the power
gain. To assess the relationship between set power gain and
received signal power, we conducted experiments focusing on
the 5G transmitter, excluding the radiometer. The signal was
transmitted via a coaxial cable and captured by a spectrum
analyzer connected to the transmitter’s USRP B210, linked
to a PC running GNU Radio for signal transmission. We
generated a variety of waveforms, differing in the number of
allocated RBGs and power gain settings. On the receiver’s
side, we measured the average power of the received signal
for each configuration. The outcomes of these measurements
are detailed in Table 1. Analysis of the data reveals a clear
trend: increasing the power gain leads to an increase in the
average received power levels, uniformly across all tested RBG
allocations. Furthermore, increasing the number of allocated
RBGs exhibited a marginal impact on the measured power of
the received signal.

C. L-Band Radiometer

We construct a passive receiver employing an L-band mi-
crowave radiometer [14] to assess the impact of 5G transmis-
sions on passive remote sensing. This system functions within
the 1400-1427 MHz range of the RF spectrum, having a 27
MHz bandwidth.

TABLE I: Transmitted Power Estimation in 5G

RBGs | Power gain (dB) | Avg Power (dBm) | RBGs | Power gain (dB) | Avg Power (dBm)
-20 -51 -20 -47
10 -42 10 38
2 0 -32 8 0 29
10 -22 10 19
20 16.11 20 15
20 48.5 20 47
10 41.9 10 38
4 0 322 16 0 28
10 21.5 10 17.6
20 15.7 20 13.8

1) Radiometer Design Schematic: The radiometer’s hard-
ware architecture is divided into three main components: RF
front-end, digital back-end, and receiving antenna. In the
RF front-end, a single-pole four-throw (SP4T) RF relay is
employed, optimized for the 1-3 GHz frequency band. This
relay enables 250 ms time delays for each through connection
via external triggering. Both H-pol and V-pol antennas are
connected to the RF relay’s Ist and 2nd port, while the 3rd
and 4th ports are connected to a 50-ohm matched load (HS
or ambient source) and a reverse low-noise amplifier (LNA)
terminated with a 50-ohm matched load (active cold source,
ACS) respectively. The connectivity involves these ports being
linked to the dual-polarized antenna and reference loads,
succeeded by a 20 dB RF isolator that ensures unidirectional
signal flow within the 1-2 GHz frequency range. Following
the isolator, there is a custom-designed bandpass (BP) RF
filter, operational from 1400 MHz to 1427 MHz with a center
frequency of 1413.5 MHz, and subsequently another LNA op-
erating from 1.2 GHz to 1.6 GHz. The entirety of the RF front-
end, positioned on a temperature-controlled aluminum plate,
maintains consistent performance by minimizing stochastic
variations in noise levels. Our custom-built digital back-end
leverages a highly versatile National Instruments USRP B210
as a software-defined radio (SDR). This allows for real-time
digitization of the incoming RF signal at 30 MHz, directly
from the front-end’s LNA. An Intel Next Unit of Computing
(NUC) mini PC serves as the brain, seamlessly managing
data acquisition and storage. Two Raspberry Pis handle spe-
cific tasks: one orchestrates the SP4T RF relay for efficient
port switching (250 ms integration time), while the other
meticulously monitors temperatures of all critical components,
including the dual-polarized antenna and coaxial cables. To
mitigate the impact of temperature fluctuations, a dedicated
controller unit utilizes a Peltier cell to maintain stable front-
end conditions, ensuring pristine radiometric measurement

accuracy.
2) Radiometer Calibration: To establish the accuracy and

stability of our radiometer’s 75 measurements, we employed
a multifaceted calibration procedure. This involved referenc-
ing three well-characterized external sources: liquid nitrogen
(LN), dry ice (DI), and a hot source (HS). Additionally, we
continuously monitored the TB of a blackbody (anechoic
chamber walls) and the sky for an hour to assess calibration
stability. The internal temperature was maintained at 305.15
K throughout the experiment. The system noise temperature
(T’sys) was determined to be 537.1 K utilizing the Y-technique
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Fig. 2: Data pre-processing steps for radiometer. a) Raw IQ samples received from the radiometer. A single sample has 1s of
integration time with H-pol, V-pol, refl, and ref2. Each state consists of 0.25 s integration time. b) PSD and Spectrograms of
received 1Q samples before filtering, c) after filtering, d) internal RFI removed e) spectral kurtosis after pre-processing and f)

PDF of spectral kurtosis to estimate threshold.

with LN and DI sources as described in [3]. This translates to
a total noise figure (NF) of 4.4 dB. Based on T, bandwidth
(27 MHz), and integration time (250 ms), the theoretical noise
equivalent delta temperature (NEAT) is calculated as 0.21
K. Additional details on radiometer calibration and system
performance can be found in [10].

IV. METHODOLOGY

A. Experiment Scenario

The experimental setup encompasses various scenarios, each
involving an examination of the impacts of 5G waveforms on
radiometric systems. 5G waveforms are purposefully transmit-
ted within the radiometer’s working bandwidth (1400-1427
MHz) to develop an in-band experiment. The experimental
configuration includes multiple scenarios, each entailing an
in-depth exploration of the impact of 5G waveforms on
radiometric systems. Various gain settings are used for 5G
transmissions, ranging from -20 dB to 20 dB in 10-step
increments. Three different modulation schemes are used in
the trials along with changes in frequency and gain: 64QAM,
16QAM, and Quadrature Phase Shift Keying (QPSK). The
study’s scope is expanded by the incorporation of several
modulation schemes, which enables a wider investigation of
the ways in which various modulation approaches contribute
to the impacts on radiometric measurements that have been re-
ported. Additionally, various combinations of RBGs allocation
are included in transmitted signals to understand the efficacy
of RFI detection algorithms.

B. Data Pre-Processing and Threshold Estimation

Effective data pre-processing is essential for establishing a
threshold in RFI detection as it significantly improves result
quality and reliability by addressing issues such as noise,
outliers, and inconsistencies. This ensures accurate capture
of underlying patterns and trends in the data. In this sec-
tion, we present a workflow to eliminate internal bias and
establish threshold « in binary hypothesis criterion discussed
in Section II. Fig. 2(a) illustrates IQ samples of a complete
cycle (1000 ms), comprising four segments. The first two
segments represent H-pol and V-pol, reflecting antenna ob-
servations of the scene. The third and fourth segments display
responses from internal reference loads (Ref-1 and Ref-2 for
HS and ACS, respectively). Fig. 2(b) depicts spectrograms of
uncalibrated raw 1Q samples with no 5G transmission. These
domain transformations reveal undesired biases and spikes in
the radiometer data when no transmission occurs within the
anechoic chamber. Potential culprits for these biases include
internal electronic and RF instruments. To address this issue,
we design a Butterworth low-pass filter with a high order of 28
and a cutoff frequency of 10 MHz. This filter attenuates higher
frequency components, allowing only signals below 10 MHz to
pass through with minimal distortion, as illustrated in Fig. 2(c).
Additionally, an internal RFI detection algorithm is developed
within the filtered region to eliminate any unwanted biases
from the data. An outlier mask is generated by analyzing 200
different no-RFI (with no transmission) samples to identify
contaminated frequency bins. This outlier mask is uniformly
applied across all samples to ensure consistency throughout
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Fig. 3: Flagged time-frequency bins with spectral kurtosis for
various signal gains and RBGs for H-pol.

the dataset. The resulting samples, after internal RFI removal
(IRR), are depicted in Fig. 2(d). After this process, spectral
kurtosis is estimated from 3. This is illustrated in Fig. 2(e).
Probability density function (PDF) of estimated spectral kur-
tosis is illustrated 2f. This shows the acceptable region for H
and establishment of decision threshold with 0.3% false alarm
rate.

C. Quantifying Impact of 5G transmission

This section introduces the evaluation metrics for assessing
the impact of 5G-induced RFI on the L-band radiometer.
The study observes in-band transmissions in a controlled
anechoic chamber with highly absorbing materials. These ma-
terials, with high emissivity, ensure the radiometer-measured
brightness temperature approximates the antenna’s physical
temperature. The anechoic chamber’s high absorbance and
non-reflective properties enable a direct attribution of observed
effects to the transmission. For both in-band and out-of-
band emissions, the impact on the radiometer is characterized
by the temperature difference (AT) given by the expression
AT = Trp — Tnorr- Here, TNorp is directly calculated
from the antenna temperature, serving as the ground truth, and
Trrr represents the RFI-contaminated brightness temperature
estimated through radiometer internal and external calibration.

V. RESULTS
A. Overall Performance

In this section, overall performance in detecting and miti-
gating RFI in an L-band radiometer will be illustrated. RFI
sources are 5G NR signals with different RBGs and power
levels. In Fig. 3, flagged time-frequency bins for a particular
sample are depicted with different RBGs and power levels.
With higher number of resources occupied within the spectrum
results in a higher number of flagged time-frequency bins.
For a specific RBG allocation, higher power gain level also
results in a higher number of corrupted measurements within a
sample. As gain increases, the system may operate closer to the
upper limit of its dynamic range, contributing to contaminated
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Fig. 4: Effects of RFI in radiometer with in-band transmissions
with different RBGs and power gain a) before RFI removal b)
after RFI removal

measurements. Moreover, high power transmitters can cause
power leakage to adjacent frequency bins which results in a
higher number of flagged bins by the detection algorithm. This
phenomenon could be attributed to imperfect filtering from
the transmitter side. Consequently, it is imperative to consider
important filtering techniques during in-band transmissions,
particularly when a higher number of RBGs are allocated for
the 5G transmission. Figure. 4(a) and 4(b) illustrate the overall
effect in radiometer compared with ground truth information
before and after RFI removal respectively. Comparing ATp
with both cases shows overall affect has been significantly
reduced in the radiometer. The presence of raw 1Q samples
has enabled the application of advanced domain transformation
techniques, facilitating the recovery of time-frequency bins
within specific samples. Nonetheless, the impact on AT as
depicted in Fig. 4(b) indicates that the radiometer is affected
to a lesser extent by missed RFI detection cases at lower
power levels compared to higher power levels. The high power
gain levels contribute to higher 75, and improper detection
of RFI in such high-power gain scenarios could significantly
impact the overall measurements. This observation suggests
that conventional RFI detection algorithms, such as spectral
kurtosis, may face challenges in effectively addressing the
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characteristics of 5G signals, especially during high-power
gain transmissions. Future studies will utilize Receiver Op-
erating Characteristic (ROC) curves to examine how the prob-
ability of detection varies in relation to the false alarm rate.

B. Challenges with Conventional Method

This section will illustrate an example case of RFI con-
taminated radiometer sample and how spectral kurtosis is
utilized to detect and mitigate the anthropogenic signal effect.
Fig. 5(a) displays the spectral kurtosis of the measurement,
captured under conditions of 2RBG and a power level of
-10 gain. Fig. 5(b) and (c) illustrate the fully calibrated
Tp spectrogram before and after RFI removal respectively.
While spectral kurtosis effectively eliminates the majority
of contaminated portions, the detection algorithm tends to
overlook frequency bins adjacent to the RBG bandwidth.
This oversight results in an overall bias in the measurements,
indicated by ATp = 0.92K. This highlights the need for
more advanced RFI detection algorithms that can leverage both
time-frequency properties are required to detect RFI.
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VI. SUMMMARY AND CONCLUSION
This study demonstrates the evaluation of the widely used
spectral kurtosis RFI detection approach in the presence of
5G signal transmission within a controlled anechoic chamber.
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Our results demonstrate the overall effectiveness of spectral
kurtosis in mitigating RFI in an L-band radiometer exposed
to diverse 5G signal. However, challenges arise, particularly
at higher power levels, where conventional RFI detection
algorithms may exhibit limitations, leading to potential biases
in measurements. The impact of missed RFI detection cases is
more pronounced in high-power gain scenarios, highlighting
the need for advanced RFI detection algorithms capable of
addressing the unique characteristics of 5G signals. Future
studies will emphasize integrating more RFI detection algo-
rithms for both internal chambers and external environments.
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