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Abstract

Energy-efficient sensing with physically secure communication for biosen-
sors on, around, and within the human body is a major area of research
for the development of low-cost health care devices, enabling continuous
monitoring and/or secure perpetual operation. When used as a network of
nodes, these devices form the Internet of Bodies, which poses challenges
including stringent resource constraints, simultaneous sensing and commu-
nication, and security vulnerabilities. Another major challenge is to find an
efficient on-body energy-harvesting method to support the sensing, com-
munication, and security submodules. Due to limitations in the amount of
energy harvested, we require a reduction in energy consumed per unit in-
formation, making the use of in-sensor analytics and processing imperative.
In this article, we review the challenges and opportunities of low-power
sensing, processing, and communication with possible powering modalities
for future biosensor nodes. Specifically, we analyze, compare, and contrast
(@) different sensing mechanisms such as voltage/current domain versus time
domain, (b) low-power, secure communication modalities including wire-
less techniques and human body communication, and (c) different powering
techniques for wearable devices and implants.
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1. INTRODUCTION

In today’s data-driven world, modern medical devices and biosensor nodes benefit from seamless
connectivity, capturing valuable patient-specific information. This information is then analyzed
to gain insights through artificial intelligence, enabling closed-loop bioelectronic medical devices
such as smart insulin pumps, connected pacemakers, neurostimulators, and performance moni-
toring devices, among many others. However, connectivity to these devices through traditional
wireless techniques typically results in (#) high communication power and (§) vulnerability to
hacking, as the wireless signals can be picked up by a nearby eavesdropper (1). Evidently, the
communication power consumed in a sensor node is usually orders of magnitude higher than the
sensing and computation power (2, 3). However, a sensor node on, in, or around the human body
does not need to communicate continuously because of data redundancy in either the temporal or
spatial domain. Spatiotemporal in-sensor analytics (ISA), in the form of compressive sensing (CS),
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anomaly detection, and collaborative intelligence, has recently been shown to reduce the commu-
nication power by orders of magnitude while losing less than 2% of information (4). ISA reduces
the transmission payload of the sensor and thereby decreases the communication power, which,
in turn, reduces the amount of power needed to sense and transmit a unit amount of information.

While ISA reduces the energy requirements of sparse information systems, other sensor nodes
with continuous data streaming to the cloud require low-power communication, which is among
the foremost requirements for connected biosensors as a result of their energy constraints. An-
other important consideration is information security (5, 6). With traditional wireless techniques
like Bluetooth, an attacker could hack into a pacemaker, insulin pump, or brain implant simply by
intercepting and analyzing the wireless signals. In reality, this has not yet happened, but researchers
have been demonstrating the risks for more than a decade (1, 7).

Traditional wireless techniques use radiative communication among wearable and implantable
devices using electromagnetic (EM) fields. Owing to the radiative nature of conventional wire-
less communication, EM signals propagate in all directions, which could inadvertently allow an
eavesdropper to intercept the information. In this context, the human body, primarily due to its
high water content, has emerged as a channel for low- to medium-loss transmission, enabling an
energy-efficient means of data transfer termed human body communication (HBC). However,
beyond the electro-quasistatic (EQS) range of frequencies (frequencies higher than a few tens of
megahertz, where the wavelength becomes similar to the length of the human body and effectively
makes the body a radiative antenna), conventional HBC implementations suffer from significant
EM radiation, which also compromises security.

Secure, low-power communication techniques (such as EQS-HBC or MedRadio), along with
spatiotemporal ISA and CS, have shown immense promise toward building a virtually zero-power,
secure network of biomedical sensor nodes for applications including continuous monitoring,
brain—-machine interfaces, and closed-loop bioelectronic medicine. The extremely low power of
EQS-HBC (8-10) enables perpetual wearable and implantable devices with simultaneous sensing,
computation, communication, powering, and stimulation for myriad biosensors. A secure, low-
power connectivity solution for multiple sensors on, around, or in the body is termed the Internet
of Bodies (IoB) (11; see https://engineering.purdue.edu/C-IoB) (Figure 14). Various sensors
on the body, such as blood pressure (BP), electrocardiogram (ECQG), electroencephalogram (EEG),
photoplethysmogram (PPG) and glucose sensors, collect information about different biophysical
parameters. All of these sensor nodes need to have individual energy-harvesting, power manage-
ment, ISA, and on-body communication modalities such that they either communicate among
themselves or transmit the collected information to an on-body hub, such as a smartwatch. This
on-body hub needs to have its own source of power, processing (edge analytics), local monitoring
and control, network management, and a communication modality to transmit information to the
cloud. The cloud performs central monitoring and control, and can send important information
and control signals back to the on-body hub and the sensor nodes. The extent of resource availabil-
ity (in terms of energy, memory, and processing capabilities) decreases from the cloud to the hub to
the individual sensor nodes; therefore, the design of these sensor nodes is extremely important for
both low overall power consumption and high information transfer for unit energy consumption.

2. CONNECTED BIOELECTRONIC SOLUTIONS:
INTERNET OF BODIES

As a subset of the Internet of Things (IoT), the IoB represents a network of tiny devices on, in, or
around the human body, comprising functions such as sensing, analytics, communication, actua-
tion, powering, and harvesting. These nodes range from health care devices such as continuous
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Figure 1 (Figure appears on preceding page)

(@) The concept of the IoB and its applications in biosensing. (b) Six challenges in modern biosensing. () Example of a traditional
biosensing architecture. (d) Design philosophy for energy-efficient biosensors. Abbreviations: ADC, analog-to-digital converter;
BP, blood pressure; ECG, electrocardiogram; EEG, electroencephalogram; FE, front end; HBC, human body communication;
IoB, Internet of Bodies; PPG, photoplethysmogram; RX, receiver; TX, transmitter; pC, microcontroller.

glucose monitors with connected insulin pumps, connected pacemakers, and ingestible pills to
consumer electronic devices such as smartwatches, wireless ear pods, and augmented/virtual real-
ity headsets. In the remainder of this review, we focus on the application of the IoB to connected
bionodes and discuss various challenges and opportunities.

2.1. Challenges in Today’s Connected Biosensors

The primary challenges in developing connected biosensors are shown in Figure 15 and discussed
in the following subsections.

2.1.1. Energy efficiency. Wearable biosensors (on or around the human body) must oper-
ate with extremely low power consumption for extended battery life. For implanted devices,
this requirement is even more stringent, as these devices need to operate either with harvested
power (approximately tens to hundreds of microwatts) or with a cubic-millimeter-sized battery
that can hold only ~2 J of energy, assuming a state-of-the-art energy density of 2 kJ/cm?® (see
https://en.wikipedia.org/wiki/Lithium-ion_battery). As a result, even with an average power
consumption of 10 wW, the battery will run out in less than 3 days, requiring that the patient un-
dergo surgery to replace the battery. For this reason, the implanted bionode’s power consumption
must be lower than the limits posed by the various modes of energy harvesting.

2.1.2. Data volume. Modern biosensors can create huge volumes of data during continuous
operation. For example, a single-channel neural sensor sampling neuronal activity (up to 10 kHz
in frequency) at the Nyquist rate and with a 16-bit analog-to-digital converter (ADC) generates
data at 10 x 2 x 16 = 320 kbps. With 32 parallel channels, the bit rate increases to 10.24 Mbps,
requiring extremely fast data transfer. Assuming that the data transfer occurs through traditional
radio-frequency (RF) communication [which requires ~1 nJ/bit (12)], the communication energy
itself will exceed 10 mW, which is very hard to support with any form of harvested energy. There-
fore, the data volume must be reduced through CS (13, 14), digital compression (9), or some other
form of ISA.

2.1.3. Security. Small-form-factor biosensors have limited resources in individual nodes and
thus can support only a subset of intended security features, such as software encryption. As a
result, these devices are extremely prone to privacy attacks (15), so they require advanced de-
sign methodologies in which the security features are built into the hardware itself (i.e., hardware
security) (16-19) and the hardware’s physical properties enhance security (20, 21).

2.1.4. Powering. As explained in Section 2.1.1, powering of wearable or implantable biosen-
sors poses significant challenges in terms of achievable energy consumption by the sensors and
today’s battery technology, requiring frequent battery replacement. Energy-harvesting techniques
involving near-infrared (NIR) (22, 23), ultrasonic (24-29), thermoelectric (30), RF/inductive (31—
33), magnetoelectric (34-36), capacitive (37-39), and human body—coupled EQS (9, 10, 40-44)
modes of energy transfer have recently been investigated to solve the challenge of powering the
biosensors. However, the highest possible harvested power that is achieved through these meth-
ods is usually ~100 pW for reasonable form factors and channel lengths, leading to significant
interest in development of sub-50 wW bionodes.
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2.1.5. Multiple access. Another important consideration in developing a network of bionodes
is the requirement for the channel (air for RE, the human body for HBC) to be accessed by multiple
devices, which may operate at the same time or using the same frequency band. This capability may
require (#) intelligent methods of frequency allocation when multiple devices access the channel at
the same time, (b) duty cycling with separate communication slot allocations for multiple devices
when they access the channel using the same frequency band, or (¢) proper use of code-division
multiple access when multiple devices access the channel using the same frequency band at the
same time.

2.1.6. Network of nodes for multifunction operation. Multifunctional operation is another
important requirement for future biosensing and actuation systems. For example, patients with
certain neurological disorders can benefit from neuroprosthesis techniques to restore movement
in paralyzed muscles. These systems traditionally focus on a single function with specific motor as-
sistance, such as a hand grasp. However, paralysis often affects multiple aspects of life that patients
want restored (45). Implementation of a separate system for each function is often impractical,
since each device requires its own interface as well as real estate on the body. Additionally, hetero-
geneity across pathologies makes it difficult to use a single approach that is applicable to everyone.
Therefore, a modular, scalable system that can be adapted to an individual’s unique needs helps
improve the patient’s quality of life.

2.1.7. Translation of novel architectures to viable systems. In the past decade, a myriad of
new circuits, architectures, and techniques have been proposed for bionode powering, sensing, and
communication. However, translation of these techniques into viable systems that can be used
for long-term monitoring is a major consideration that is often overlooked. Therefore, further
research and evaluation are required to assess the practicality and safety of these techniques.

Figure 1c shows the traditional biosensing architecture, comprising a biosensor node and an
on-body hub with which the biosensor node communicates. The biosensor node consists of a
front end that amplifies and filters the incoming analog biophysical signal, followed by an ADC
that digitizes the analog signal. A microcontroller can optionally be used for ISA; it performs
some form of compression/analytics on the digitized data to reduce the volume of data to be
communicated. Finally, a communication transmitter sends the data through a channel (which
could be the wireless channel for EM communication or the human body itself for EQS-HBC),
and the data are received by the on-body hub. In a biosensing scenario, the biosensor node is
usually an extremely small wearable device or implant with limited resources (energy, memory,
and computational power). In contrast, the on-body hub is expected to have greater resources due
to the asymmetric network configuration.

The total amount of energy consumed in the bionode is given by Equation 1:

Etoml = Esensing + EISA + Ecomm; 1.
where
Esensing = bltsensed X E/bltsensingy 2.
EISA = f{bitsensed}, 3.
and
Ecomm = bltcummunicated X E/bltwlnmunication' 4.

For a biosensing system, the primary goal is to minimize the total energy, Eior1, while maximiz-
ing the amount of information transmitted. Therefore, the design philosophy (Figure 1d) for
energy-efficient biosensors is usually based on reducing the energy consumption per unit amount
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of information eventually transmitted. This goal can be achieved by either (#) reducing the energy
per bit, which requires better sensing and communication techniques (discussed in Sections 3 and
4, respectively), or () reducing the number of bits per unit amount of information, which requires
ISA (discussed in Section 5).

2.2. Societal and Medicinal Impact of Connected Biosensors:
Wearable and Implantable Devices

Expenditure on wearable and implantable health care devices has become a significant portion
of overall health care expenses in the USA. From 2018 to 2019, US health care costs increased
by 4.6% to US$3.8 trillion, or 17.7% of gross domestic product (46). By 2023, these costs
are projected to exceed US$5.1 trillion, of which more than 15% will be spent on wearable
and implantable devices. These continuous monitoring systems are expected to improve at-
home patient care and diagnostics, and electroceuticals (including neuromodulation techniques)
will provide opportune and appropriate neurostimulation that promises to replace or augment
pharmaceuticals.

2.3. Energy Requirements in Biosensor Nodes

The energy requirements of a biosensor are often dominated by the energy requirement for com-
munication (2, 3). Assuming the energy efficiency of wireless communication is ~1 nJ/bit (12), a
transmitter would consume ~1 mW power for a nominal data rate of 1 Mbps (the expected rate
for a multichannel neural recorder, for example). Additionally, a traditional bionode includes an
ADC for digitization and an optional CS unit for data volume reduction. Each of these modules
would consume ~50-100 wW power at the target data rates for state-of-the-art implementations
(9, 47). Therefore, the overall power consumption of the transmitter would be ~1.2 mW—more
than three times higher than in the established energy-harvesting techniques for millimeter- to
centimeter-scale implants. Consequently, achieving a reduction in communication power has at-
tracted significant attention in recent years. A <50 p]/bit (at 1 Mbps) wireless communication
technique involving both MedRadio and HBC standards (48) renders the communication power
similar to that of digitization and compression.

2.4. Achieving Ultralow-Power Biosensor Nodes

To achieve ultralow-power biosensing, all of the submodules in the bionode (sensing, com-
putation/analytics, and communication) must incorporate certain innovations in terms of
energy efficiencies. Furthermore, powering and network-level interaction techniques must be
implemented so that the bionode can operate continuously without manual intervention.

2.4.1. Low-power sensing techniques. Low-power sensing techniques including CS, time-
domain sensing, and collaborative sensing have garnered significant interest in recent years. CS
utilizes the inherent sparsity of biophysical signals and reduces the digitized communication
payload, thereby reducing communication energy. Time-domain sensing can achieve moderate
resolution (12-18 bits) for biosensors without using complex voltage-mode or current-mode ar-
chitecture. This is possible because most of the biophysical signals are low frequency (hertz to
kilohertz range) and, thus, the availability of “time” can be used to average the noise and achieve
a high signal-to-noise ratio (SNR), eventually resulting in high resolution. Methods related to CS
and time-domain sensing are discussed in detail in Section 3.

2.4.2. In-sensor analytics for reducing communication power. ISA can reduce communi-
cation energy either by making the communication event driven or by compressing the sensed
data (4). Event-driven communication enables nonuniform duty cycling during data transmission,
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which reduces the overall communication energy without losing important information. Some ISA
techniques applicable to biosensors are discussed in detail in Section 5.

2.4.3. Communication and powering. In most cases, traditional RF communication around
the body consumes more than 1 nJ/bit, which places significant constraints on high-speed commu-
nication (>1 Mbps or more, requiring >1 mW power) because, in most cases, energy-harvesting
techniques can provide only ~100 puW power. The challenge is even greater for implants: Re-
placing a battery requires surgery, so energy harvesting is the only viable option (49). Recent
techniques in low-power communication are discussed in detail in Section 4, and powering tech-
niques are described in Section 6. Earlier publications from several research groups in all of these
different domains are cited in this review and summarized in Table 1.

3. ULTRALOW-POWER SENSING: TOWARD BATTERYLESS,
PERPETUAL OPERATION

"To minimize energy consumption per unit information, investigators will need to explore energy-
efficient techniques for sensing and communication requirements, along with data volume

reduction using ISA. This section discusses recent methods in energy-efficient sensing.

Table 1  Popular research directions for the constituent elements of biosensing nodes
Modality/architecture Salient features References
Sensing High-impedance, chopper-stabilized front | Low frequency, low noise 50-52
ends
Voltage- versus time-domain architecture | Low frequency, low power 56,57
Compressive sensing Sparse signals, low power 58-61, 63, 66-68
ADC-less sensing Low frequency, extremely low 69,70
power
Communication MedRadio/low-power wireless Low interference, low power 48,76, 89
EQS capacitive HBC Ultralow power, physically secure 75,77-83
EQS galvanic HBC and biphasic HBC Short distance (few centimeters) 9,70, 84
MQS (magnetic) HBC Approximately near field; no effect | 85-87
of body
EM-wave HBC High DR, good energy efficiency, 88
not as secure
In-sensor analytics Event-driven compression Asynchronous, low power 60, 61
Spike and/or anomaly detection Asynchronous, ultralow power 97-103
Learning-based analytics Low power machine learning 111,112
Wireless powering Near-infrared Lowest form factor, needs repeater | 22,23
Ultrasound Low form factor at low 24-29
frequencies, needs repeater
RF/inductive Large coil/antenna, traditional 31-33
architecture
Magnetoelectric Better power transfer efficiency 34-36
than RF, safe
Capacitive Larger form factors, short distances | 37-39
EQS Full-body powering for wearables 9,40-42

Abbreviations: ADC, analog-to-digital converter; DR, data rate; EM, electromagnetic; EQS, electro-quasistatic; HBC, human body communication;
MQS, magneto-quasistatic; RF, radio-frequency.
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3.1. Biosensing Systems and Their Salient Features

Many naturally occurring biophysical signals, such as ECG, EEG, electromyogram, and electro-
corticogram, are slowly varying. Most of the energy content of these signals is contained within
low frequencies (1 Hz-10 kHz), as shown in Figure 24 (50). However, the resolution and dy-
namic range requirements for these applications can be large (12-16 bits for traditional biosensing
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Figure 2 (Figure appears on preceding page)

(2) Amplitudes and frequencies of well-known biosignals, indicating the requirement for LF (1 Hz-10 kHz) sensing of low-amplitude
(up to microvolt) signals. (b)) The primary challenges in such systems arise from LF flicker noise that coincides with the frequency of the
biosignals and from requirements for high input impedance and high resolution. However, the power consumption of (¢) different
modalities and (d) architectures usually lies within a range of a few tens of microwatts. Abbreviations: ADC, analog-to-digital converter;
AP, action potentials; AT'C, analog-to-time converter; BP, blood pressure; ECG, electrocardiogram; ECoG, electrocorticogram; EM,
electromagnetic; EMG, electromyogram; EMI, electromagnetic interference; EXG, collective term for ECG, ECoG, and EMG; FB,
feedback; FE, front end; GSR, galvanic skin response; HE, high-frequency; HR, heart rate; LE, low-frequency; LFP, local field
potentials; PPG, photoplethysmogram; RX, receiver; TDC, time-to-digital converter. Panel # adapted from Reference 50. Data in
panel 4 from Reference 55.

I10

applications and up to 20 bits for extremely low amplitude EEG). Traditional voltage-mode and
current-mode ADC designs in such high-resolution applications become severely limited by the
low-frequency flicker noise originating from the amplifiers and ADCs, as well as by requirements
for high input impedance, low DC offsets, and low power consumption (Figure 25). Techniques
such as chopping help mitigate the challenges posed by flicker noise. Flicker noise (or 1/f noise)
arises from Si-SiO; interface nonidealities in traditional complementary metal-oxide semicon-
ductor (CMOS)-based circuits (used to amplify and digitize biosignals) and is most prevalent at
lower frequencies. Chopping upconverts the input biosignal to a higher frequency, so that the low-
frequency flicker noise at the input of the CMOS amplifier does not affect the biosignal (51, 52).
Similarly, autozeroing techniques or DC servo loops (51-53) help reduce any DC offsets result-
ing from the electrodes used for acquisition of the biosignal. Voltage-mixing/positive-feedback
techniques help improve the input impedance of the sensor (52, 53), so that most of the signal is
available at the input of the sensor.

The sensing itself can be divided into low-frequency (hertz—megahertz) and high-frequency
(megahertz—terahertz) techniques (Figure 2¢). Low-frequency techniques can be potentiomet-
ric, amperometric, inductive, or capacitive, each of which can be read out either in the electrical
signal domain (voltage/current) or using time-domain techniques (frequency/time period). High-
frequency techniques can be either noninteracting with the biomatter (such as resonant techniques
used to read out a capacitive sensor) or interacting with the biomatter (such as imaging, Doppler,
or PPG systems). The interacting techniques offer better resolution and, sometimes, measurement
from a distance (54). If we plot the power consumption of such sensing front ends with respect
to ADC resolution and Nyquist frequency (55), we find that for the biosensing area of interest,
the power consumption is usually limited to the range of a few to tens of microwatts, which is
significantly lower than the commonly observed milliwatt power consumption of communication.

In recent years, time-based ADCs have attracted significant interest because of their ability to
utilize the availability of time (since signals are of very low frequency) in an energy resolution—
scalable manner (2, 56, 57). For high-resolution requirements, the signal to be sensed is converted
into an equivalent frequency, and it is then simply observed using a counter for a longer amount
of time for a change in the average frequency. For low-resolution requirements, the frequency is
observed for a shorter amount of time and can then be turned off (through duty cycling) to save
energy.

Even though time-based methods ensure energy resolution scalability within a certain range,
the resolution cannot be made infinitely high by measuring for a longer time (or averaging the
noise). The ambient noise statistics; process, voltage, and temperature variation; and jitter accu-
mulation in the ring oscillator would limit the achievable resolution, of which jitter accumulation
is the dominant factor (56, 57) in a controlled environment. The scaled quantization error in
measuring a fixed frequency within a predefined amount of time decreases with the time of mea-
surement. However, the accumulated jitter from the ring oscillator increases with the total time
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of measurement. If the slope of the linear plot of accumulated jitter versus measurement time is
k, then the achievable resolution is limited to log, (1/k) bits.

3.2. Emerging Techniques in Ultralow-Power Sensing

Some of the emerging techniques that aim to minimize power consumption and/or the quantity
of data generated are presented in the following subsections.

3.2.1. Compressive sensing. Compressed-domain sensing/CS (13, 14) is a mathematical tool
in signal processing that defies the Shannon-Nyquist sampling theorem by sampling a sparse
signal at a rate lower than the Nyquist rate while still being able to reconstruct the signal with
negligible error. Since its inception, CS has been used in medical imaging (58), ISA (59), health
care (60, 61), neural (9), and audio acquisition (62, 63) applications. CS algorithms assume that the
signal to be sampled has a sparse representation, and sparse signals with randomly (i.e., from an
independent and identically distributed Gaussian distribution) undersampled data can be recov-
ered with low error by formulating them as an optimization problem. Therefore, the advantage
of using CS is twofold: (#) CS allows a lower sampling rate, which reduces the power consump-
tion in the ADC and clock generation circuitry, and (4) compression creates a smaller quantity of
data with rich information content, which reduces the burden on the subsequent processing and
communication modules.

Because many biophysical signals can be represented in sparse form (64), it is possible to lever-
age the superior energy efficiency of CS for biosensing (for two comprehensive reviews on CS, see
References 64 and 65). One publication (66) used submicrowatt CS hardware employing 65 nm
CMOS technology with online self-adaptivity for incoming signals with varying sparsity. Initial
efforts toward self-adaptivity used either an asynchronous ADC with an adjustable sampling rate
(67) or temporal decimation and wavelet shrinkage (68). Both techniques were utilized with spe-
cific incoming signals. Another, more general technique (66) exploits online sensory data statistics
for dynamic reconfiguration (in terms of compression algorithm, compression harshness, and sam-
pling frequency). Recent publications (9, 62, 63) have demonstrated a fully digital CS subsystem
equipped with an on-chip, two-stage sparsifier and a dual varying-seed pseudorandom bit sequence
sensing-matrix generator, with a variable compression factor ranging from 5 to 33.33. The two-
stage discrete wavelet transform-based sparsifier ensures that the CS module works effectively for
both sparse and nonsparse signals.

3.2.2. ADC-less sensing. Traditional sensor nodes consist of a transducer, analog amplifiers,
an ADC, an optional digital compression unit, and a digital communication module. The ADC
consumes a large amount of power while creating multiple bits from each sample of the input
data, increasing the burden on the communication module. The digital compression unit reduces
this communication burden by lowering the number of bits to be transmitted, but it consumes
additional energy. An alternative is to use an ADC-less architecture, which creates a pulse width—
modulated signal corresponding to each input sample. This process encodes the analog informa-
tion into the analog pulse width of the signal, which can still be communicated using a digital-
friendly transmitter, since the amplitude of the pulse width-modulated signal remains rail to
rail. This method was proposed by Naderiparizi et al. (69), while Chatterjee et al. (70) reported
the first integrated circuit implementation for resource-constrained wireless neural implants,
obviating the need for power-hungry ADC and digital compression modules.

Given that all biosensing applications involve asymmetric resource distribution (the sensor
nodes/transmitters usually have limited resources, while the hub/receiver can have greater re-
sources in terms of energy, memory, and processing capabilities), reducing energy consumption at
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the node transmitter through the use of such ADC-less architectures would be extremely useful.
This area is one direction for future research.

3.2.3. Collaborative sensing. Collaborative wireless sensor networks (71, 72) can sense an ana-
log signal from multiple sensors, utilizing collaborative efforts among the sensor nodes and their
communication with one another and with the cloud. The power optimization and trade-offs of
such networks have been analyzed (4) for large-area IoT test beds, and these networks can be used
for biosensing applications as well.

The techniques described above help reduce the energy cost of sensing. However, energy con-
sumption during communication is usually the dominant component of a biosensor node; for this
reason, it is extremely important to choose a data transmission modality that helps reduce the
overall, system-level power consumption.

4. ULTRALOW-POWER COMMUNICATION: DESIGNING
PERPETUAL SYSTEMS

4.1. The Journey from Personal Area Networks to Body Area Networks
to the Internet of Bodies

Communication in the IoB can be categorized in terms of the source of the data (which is the
biosensing node) or the destination of the data (Figure 34). The destination could be any of the
following:

B An on-sensor processor. The processor could be at a distance of a few millimeters to
centimeters, and the communication may require only petajoules-per-bit energy, as wired
communication can be used in this scenario.

m An on-body processor/aggregator. This device could be a smartwatch, for example, at a
distance of a few centimeters to meters, and would require body area network (BAN)-
based communication. Technologies available for this purpose include Bluetooth low-energy
(BLE), Zigbee, ANT, MedRadio, HBC, and so forth, which can consume 10-1,000 pJ/bit of
energy, depending on the design.

m A remote processor at an off-body access point. The processor could be at a distance of a few
meters and would require a personal area network (PAN) for communication. Technologies
available for this purpose include BLE, Zigbee, Wi-Fi, ANT, and so on, all of which could
consume more than 1 nJ/bit of energy.

Most wireless communication techniques employed for BANs and PANs (for example,
BLE, Zigbee, ANT, or Wi-Fi) typically consume two to three orders of magnitude more
power than sensing and computation, making them the biggest bottleneck in achieving energy-
harvested/batteryless sensor nodes (2, 3, 73, 74). For a megabit-per-second communication link,
wireless data transfer results in power consumption of 1 mW or more (Figure 35). Note, however,
that all biosensors will eventually be envisioned to perpetually operate using harvested energies
from various (light, vibrational, thermal, RE, inductive, magnetic, human body-coupled) sources;
these energies would be limited to a few hundred microwatts even in the most favorable conditions.
Therefore, we need to either reduce the communication burden through better ISA techniques
or decrease the number of petajoules per bit of the communication itself.

When research on low-power BANS started in the late 2000s, there was little difference be-
tween techniques used for BANs and PANs. However, with the widespread use of new and
emerging techniques such as extremely low power MedRadio or HBC, the energy efficiencies
in BAN communication decreased to ~10 pJ/bit (48, 75). This decrease led to an ~100-
fold increase in power benefits over traditional wireless technology, bridging the gap between
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Figure 3 (Figure appears on preceding page)

() Communication requirements and technologies used between the source and different destinations of data in the Internet of Bodies.
(&) The gap between harvested energy and traditional wireless communication requirements (73). (c) Energy efficiency versus data rate
for available technologies. The radius of each circle indicates the qualitative security of the communication scheme. (4) Comparison of
available technologies in terms of their power consumption, data rate, interference rejection capabilities, and security. (¢) Benefits of
upcoming capacitively terminated HBC technologies. Abbreviations: BAN, body area network; BLE, Bluetooth low-energy; EM,
electromagnetic; EQS, electro-quasistatic; HBC, human body communication; PAN, personal area network; RE, radio-frequency.
Panel b adapted from Reference 73.
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sensing/computation power and communication power. As a result, the design of extremely low
power biosensor nodes will become a codesign problem among sensing, computing, and commu-
nication (and perhaps even security), instead of being limited only by communication power.

Figure 3¢ depicts energy efficiency versus data rate for various communication technologies.
Almost all well-known, traditional wireless techniques consume more than 1 nJ/bit and offer low
EM security because EM waves are present even at a distance of 5-10 m, making the signals
susceptible to hacking (1, 7). Emerging techniques such as low-power MedRadio (48, 76), EQS-
HBC (9, 10, 70, 75, 77-87), and EM-wave HBC (88) offer improved energy efficiencies because
of their lower carrier frequencies; lower output power (MedRadio/EM-wave HBC); and non—
50 €, high-impedance terminations (EQS/EM-wave HBC). Interestingly, EQS-HBC signals stay
relatively constrained within the human body, offering better security than EM. The amount of
leakage increases with frequency, though, which means that low-frequency EQS-HBC offers very
high physical security. However, because the human body is susceptible to various environmental
interference, operation of devices using these techniques is much less robust than for those using
standardized techniques such as MedRadio or MIMO OFDM (multiple-input, multiple-output
orthogonal frequency-division multiplexing; IEEE 802.11 ac/ad), which were designed for low
interference.

Figure 3d compares and contrasts different communication techniques for biosensors. For
example, it shows the benefits of EQS-HBC with capacitive termination as an alternative to
radio wave-based wireless BAN, terminated with a 50  antenna. In EQS communication, low-
frequency (<1 MHz) electrical signals are communicated between two sensor nodes (transmitter
and receiver) placed on the body, using the human body as a transmission channel. Capacitive
termination at both transmitter and receiver renders channel loss a function of capacitive division
(75), meaning that we have a flat-band channel, even at low frequencies, instead of a high-pass
channel, which is common in 50 € HBC systems. The use of lower frequencies for operation,
along with a wide bandwidth, leads to improved energy efficiencies for EQS-HBC. EQS com-
munication also performs better in terms of physical security, as most of the signal is confined
within the body. In terms of excitation and termination at the receiver and transmitter, the main
quasistatic modalities are the capacitive (75, 77-83), galvanic (84), magnetic (85-87), and biphasic
(9, 70) modalities.

4.2. Low-Power Techniques in Wireless Communication
for the Internet of Bodies

The following subsections present a nonexhaustive list of recent techniques in wireless
communication for the IoB.

4.2.1. Low-rate wireless personal area networks and body area networks. The LR-WPAN
(low-rate wireless personal area network) is a technical standard that is maintained by the IEEE
802.15.4 Working Group (which started in 2003). It focuses on low-power wireless communica-
tion techniques using physical-layer, data link-layer, and network-layer optimizations. In contrast,
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BAN:Ss evolved as part of the IEEE 802.15.6 standard (2011), which aims to provide the low-power
features of the 802.15.4 standard while optimizing for short-range communication around the

body.

4.2.2. MedRadio. MedRadio (the Medical Device Radiocommunications Service, formerly
called the Medical Implant Communication Service) aims to support the development of low-cost
medical sensor technologies for diagnostic, therapeutic, and monitoring purposes by dedicating
certain low-interference frequency bands (primarily near 400 MHz, although 2.36-2.39 GHz
medical BAN devices also fall into the MedRadio category). The standards governing these tech-
nologies were developed in the late 1990s and early 2010s, when they became part of IEEE
802.15.6. However, with recent trends in low-power wireless integrated circuit design due to
digital-friendly, high-speed, low-power processes, the MedRadio space has attracted renewed
interest (48, 76, 89).

4.2.3. Human body communication. HBC uses the conductive properties of human tissue
to communicate signals for devices located in, on, or around the human body. The use of low-
frequency EQS signaling helps restrict the signals to the body, without significant leakage, while
simultaneously achieving low power consumption due to the use of low carrier frequencies.

4.3. Emerging Techniques in Energy-Efficient Human Body Communication

In the next subsection, we discuss some of the emerging techniques in low-power/energy-efficient
HBC.

4.3.1. Capacitively terminated, broadband, low-frequency electro-quasistatic human body
communication. Use of the human body as a low-loss broadband communication medium (79,
80) enables energy efficiencies below 10 pJ/bit, similar to those of wireline transceivers (90, 91), as
well as strong physical security (1). Maity et al. (75) were the first to create a sub-10 pJ/bit capaci-
tive HBC link with voltage-mode signaling and high-impedance termination allowing broadband
communication. The low channel loss and absence of up- or downconversion resulted in radically
improved energy efficiencies.

The key challenge in broadband HBC comes from the antenna effect in the human body,
which picks up unwanted interference that corrupts the signal. An interference detection and re-
jection loop using an adaptive notch at the integrating receiver enabled a 6.3 pJ/bit transceiver for
30 Mbps data transfer through the body (the energy efficiency was ~100 times lower than that of
traditional wireless BANs) with an interference-robust (i.e., able to tolerate a —30 dB SNR) HBC
transceiver. Chatterjee et al. (48) and Park & Mercier (86) later developed <10 pJ/bit transceivers
with on-chip clocking architectures. For ultralow-power physiological monitoring and secure au-
thentication, Maity et al. (8) recently demonstrated a 415 nW capacitive EQS-HBC link with
data rates of 1-10 kbps that exhibits physical and mathematical security through integration of an
AES-256 encryption engine with the HBC transceiver. Chatterjee et al. (83) analyzed the theoret-
ical limits of power consumption in such systems and demonstrated adiabatic techniques with a
hardware-aware modulation scheme to improve energy efficiencies. In the future, such low power
levels could enable the design of batteryless wearable patches.

4.3.2. Multimode resonant human body communication for communication and power-
ing. A major source of power consumption in a voltage-mode capacitive HBC transmitter is the
interelectrode parasitic capacitance. The use of an inductance across this capacitor presents a par-
allel resonance at the load of the transmitter, which in turn reduces power consumption during
data communication (40-42). Similarly, the use of a series resonance at the transmitter output
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(with a series inductor) increases the output voltage by a factor of Q (where Q is the quality fac-
tor of the inductor). Because the power transfer in a voltage-mode capacitive HBC link increases
quadratically with the output voltage of the power transmitter, this method increases the power
transferred through the body by a factor of Q*. In comparison to two studies (40, 41) in which the
amount of power transferred decreased with distance between the transmitter and receiver, a third
study (42) achieved almost constant power transfer and efficiency throughout the body because
the operation was at a much lower frequency [1 MHz (42) versus 40 MHz (40, 41)].

4.3.3. Biphasic quasistatic brain communication for powering and communicating with
deep brain implants. Capacitive HBC is not very effective in implantable devices because of
the absence of a strong return path from within the body. In contrast, galvanic HBC consumes
more power because a significant amount of DC current flows into the surrounding tissue if the
signal is not DC balanced. Biphasic QBC (9) reduces power consumption in the galvanic modality
by using AC coupling at the output. In comparison to galvanic HBC, biphasic QBC achieves
~41 times less power at an EQS frequency of 1 MHz.

Even with such low-power data communication techniques, the energy cost of communication
still dominates in a biosensor node. Consequently, it is imperative to investigate available in-sensor
computation techniques that can reduce the computation burden in the node.

5. IN-SENSOR DATA ANALYTICS: COMPUTATION
VERSUS COMMUNICATION

As the number of distributed sensors in the IoB increases, the total amount of data transfer to the
back-end hub/cloud servers becomes prohibitively large, resulting in network congestion and high
energy consumption during data transmission at the sensor node (92). This motivates the need
for ISA, which can perform context-aware data acquisition with some amount of computation,
followed by transmission if necessary, resulting in interesting trade-offs (Figure 44). Depending
on the amount of ISA performed in the biosensor, the total energy could be dominated by either
the communication energy or the computation energy.

5.1. Trade-Offs Between Computation and Communication

The computation and communication energies (Ecomp and Eomm, respectively) in a biosensor node
are defined as follows:

Ecomp = (Ecomp/bit) x number of bits switched, 5.

Ecomm = (Ecomm/bit) x number of bits transmitted. 6.

For digital computation units (which are the conventional implementation), the low-frequency
region of Eeym/bit is usually dominated by the static leakage current in the devices used for com-
putation, while the high-frequency region is dominated by the dynamic energy of bit switching
(93, 94). For optimum energy efficiency, the designer looks for a region where the sum of the
leakage and dynamic energies can be minimized. As a result, Ecomp/bit is in the range of a few
femtojoules to petajoules. On the other hand, E oum/bit is usually determined by the receiver’s
bit error rate sensitivity for a particular data rate, by the communication channel loss, and by the
transmitter’s efficiency (2, 4). As a result, Ecomm/bit typically ranges from hundreds of petajoules
to a few nanojoules for modern implementations.

Figure 4b compares Ecomm with Ecomyp for the same number of bits being computed or com-
municated. State-of-the-art wireless transceiver implementations (95) consume ~10* times more
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(#) Computation versus communication energies in a biosensor, based on the amount of ISA performed. (b)) Comparison of
communication and computation energies [both theoretical and from standard implementations (2)], showing that communication
energy is ~10* times higher than computation energy (with the same number of bits). (¢) Trade-offs between analog and digital
computation (96). (d) Trade-offs in scenarios involving ((D) no ISA, () duty-cycled communication, and (®)) compression with
duty-cycled communication. Abbreviations: CMOS, complementary metal-oxide semiconductor; ISA, in-sensor analytics; SNR,
signal-to-noise ratio. Figure adapted with permission from References 2 and 3.

energy than computational bit switching in 45 nm and 65 nm technology nodes. This bottle-
neck analysis signifies that intelligent computation within a sensor node (ISA) can reduce total
energy consumption by enabling selective data transmission, which decreases Ecomm at the cost of
additional Ecopp.
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Figure 4¢ shows the trade-offs involved in implementing an analog versus a digital computa-
tion unit in terms of the SNR requirement of the application (96). For low-SNR requirements,
an analog unit can perform much more power-efficient computations due to the use of inherent
device properties for computation (for example, vector multiplication of transconductance with
input voltage can generate a vector output current, and Kirchhoff’s current law can help add those
vector currents, without any bulky digital multiplier or adder). The analog implementation also
leads to fewer devices, resulting in lower power. However, analog units suffer from accumulation of
the effects of noise and mismatch over multiple stages, so they are beneficial only for applications
that can tolerate low SNR.

Finally, Figure 4d shows the trade-offs in three different scenarios. In the first scenario, no ISA
is considered, and the sensed data are simply transmitted out using continuous streaming, leading
to a high amount of power. In the second scenario, the communication is duty cycled, resulting
in lower data rates and lower power but also lower information content. However, in the third
scenario, by enabling compression and in-sensor storage, we can send more effective information
per unit amount of power, at the cost of additional memory requirements.

5.2. Examples of In-Sensor Analytics in Biosensing

On the basis of the communication and computation energy trade-offs, the application at hand,
and the amount of resources available at the resource-constrained biosensor node, partial or com-
plete processing of the acquired data can take place in the sensor node itself [for example, spike
timing detection compression for an implanted neural node (97-99)]. In this section, we discuss
some common ISA techniques for biosensors, including anomaly/outlier detection and data com-
pression, spike detection and spiking band power calculation for neural sensors, and machine
learning-based analytics.

5.2.1. Anomaly detection and data compression. Anomaly detection methods can enable se-
lective (and immediate) data transmission when an anomaly occurs in an otherwise normal sensor
readout. For example, in health care, selective ECG data transmission with arrhythmia (anomaly)
detection would ensure immediate notification with minimum communication cost. Data com-
pression, on the other hand, would ensure that the maximum quantity of information between
transmissions can be stored in a small amount of on-sensor memory. Zhang et al. (60) used a
matrix-multiplying ADC in 130 nm CMOS technology, demonstrating ECG-based cardiac ar-
rhythmia detection. Anvesha et al. (61) demonstrated arrhythmia detection with a time-based CS
ADC.

5.2.2. Spike detection for neural sensing. Researchers investigating neural signal acquisition
applications have focused primarily on increasing the number of recording channels. As the num-
ber of channels increases, the quantity of data recorded increases, and it becomes infeasible to
communicate all the data from a neural implant to a nearby hub. However, most of the infor-
mation in the neural signals resides in the spikes; therefore, detecting and communicating the
occurrence and shape of the spikes are enough for most applications. Detection of spike occur-
rence is typically performed by traditional thresholding methods. Although the shape of the spike
is not preserved, simple thresholding is still useful in scenarios where only the occurrence of spikes
is of interest (100, 101).

Various implementations of thresholding for spike detection have been reported (102,
103). Compression techniques have also been demonstrated on neural spikes using optimized
vector quantization methods (104), CS (105-107), wavelet transform (108, 109), Walsh—
Hadamard transform (98), and spiking band power calculation (99, 110). Wavelet transform- and
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Walsh-Hadamard transform-based techniques retain information on both the occurrence and the
shape of the spike.

5.2.3. Learning-based analytics. For wearable devices, in which the bionodes have greater
resources than in implantable devices, lightweight machine learning algorithms (tinyML) can be
implemented as a part of the data analytics. The algorithm in a transfer learning-based cuffless BP
estimation technique using PPG (111) employs visibility graphs to create images from PPG signals
with features related to the waveform morphology. The results demonstrate that the difference
between the estimated and actual systolic and diastolic BP is —0.080 £ 10.097 mm Hg and 0.057 +
4.814 mm Hg, respectively. This research has been extended to a small-scale convolutional neural
network using a modified LeNet-5 architecture (112).

The research described in this section reinforces the need to incorporate certain processing
capabilities into biosensor nodes according to their application. There will be interesting trade-
offs among sensing, processing, and communication, which will differ according to the application
and the particular modalities chosen for these three functions. However, these trade-offs will be
governed by the devices’ energy availability. In the next section, we discuss the various techniques
for powering these nodes.

6. POWERING THE BIOSENSORS: ENERGY HARVESTING
IN A WEARABLE OR IMPLANTABLE DEVICE

In the last decade, researchers have explored various modalities of bionode energy harvesting,
including mechanical (vibrational, triboelectric, and piezoelectric), thermal (thermoelectric), ra-
diative (photovoltaic, infrared, NIR, RF), chemical (electrochemical), magnetic (inductive and
magnetoelectric), and electric (EQS-HBC and capacitive) methods. Figure 5« depicts the power
densities for these techniques.

In comparison to wearable biosensors, the requirements for implanted biosensors are much
more stringent as a result of the small form factor and lower amount of resources. Techniques
including NIR light (22, 23), ultrasound (24-29), RF/inductive (31-33), magnetoelectric (34-36),
capacitive (37-39), and EQS-HBC (9, 40-42) modes have recently been demonstrated.

Figure 5b,c shows the various modalities of powering an implant. The figure also compares
these modalities in terms of parameters including the amount of tissue absorption/scattering, max-
imum power transferred, transduction efficiency, form factor of the device, robustness, and safety.
RF/inductive methods suffer from tissue absorption, while ultrasound suffers from bone absorp-
tion (for example, in the skull for a brain implant). Hence, ultrasound methods require repeaters
below the bone layer. Similarly, NIR requires repeaters to improve both powering and communi-
cation. Magnetoelectric methods exhibit extremely low loss within human tissues, since the human
body has a relative permeability of ~1 at or below frequencies of tens of megahertz. As a result,
magnetoelectric methods are safer than EM or EQS methods, and high magnetic fields can be ap-
plied across the human body so that the bionodes receive enough power. However, creation of such
magnetic fields requires significant energy, which is somewhat acceptable given that the magnetic
fields are created from the body-worn hub, which has higher energy resources. Capacitive and
EQS-HBC methods do not suffer from significant tissue absorption or transduction losses. How-
ever, the capacitive mode of powering requires parallel conductive plates to be placed on either
side of the tissue (creating a capacitor), which could increase the form factor of the device. EQS-
HBC methods, on the other hand, rely on the creation of electric fields from the implant (bionode)
to the hub; the signals pass through the tissue following the equations for dipole coupling (9, 10),
thereby reducing the voltage received as a function of the distance squared.
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a Energy availability of different modes of power transfer with a cm? volume

Power transfer/energy-harvesting modalities in today’s biosensors, with their pros and cons

Mechanical Thermal Radiative Chemical Magnetic Electric
Photovoltaic
s
2 10 Thilae- — (outdoor) W EQS—
2w electric electrlc Thermo- Photovoltaic
%g 10 V|brat|ons electric (indoor) Inductive Capacitive
£= [ (human) (human) IR/NIR ~9oo
%3- 10 MHZ Electro-
chemlcal
a0

Note: Wearable applications can afford cm? volume (or cm? area). Most |mplants can afford only mm?3 volume (or mm? area).

b Different methods of wireless power transfer to an implant (where certain modes such as photovoltaic
or thermal gradients do not work)
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€ Performance of different techniques for wirelessly powering an implant
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Figure 5

(@) Available modalities of power transfer to a biosensor and their typical power densities. (5) A subset of modalities for powering an
implant (49). (¢) Comparison of power transfer modalities for an implant. Abbreviations: EQS, electro-quasistatic; HBC, human body
communication; IR, infrared; ME, magnetoelectric; NIR, near-infrared; RF, radio-frequency. Panel 4 adapted from Reference 49.

6.1. Upcoming Methods of Powering a Wearable Device

Power transfer using RF/inductive methods has traditionally been employed for wearable nodes.
Although the amount of power transferred using these methods can be hundreds of microwatts
or more for a centimeter-scale device, there are certain limitations related to the device’s form
factors and the frequency to be used. Also, near-field power transfer is limited by distance, and
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far-field methods suffer from body-shadowing effects (41). Additionally, the orientation of the
inductive coils at the transmitter and receiver determines the amount of power transferred. Newer
techniques for sending power through the human body (40-42) can transfer power throughout the
body (and any wearable device, placed anywhere on the body, can pick it up) with no dependence
on orientation.

6.1.1. Electro-quasistatic body-coupled powering. The first EQS powering techniques (40,
41) showed that body-coupled power transmission exhibits a path loss that is 30-70 dB lower than
in far-field RF in the presence of body shadowing. The wearable system works with an operating
frequency of 40 MHz and could recover 2 pW from a 1.2 mW source placed 160 cm away on the
body. However, the amount of power transferred decreases with distance.

6.1.2. Resonant whole-body powering. Modak et al. (42, 43) reported a resonant whole-body
powering technique that uses frequencies around 1 MHz, allowing similar path loss throughout
the body (a better EQS scenario). Measurements showed a wearable-wearable power transfer
of more than 5 pW from an ~60 wW source (~8% efficiency), regardless of where the device
was located on the body. The system also employed a 2.19 pW communication system using
EQS-HBC, which demonstrated the feasibility of communication with the harvested energy.

Cho et al. (44) recently developed an electrical model of on-body powering. They showed that
more than 1 mW of power can be transmitted in favorable scenarios, including large devices and
short distances.

6.2. Upcoming Methods of Powering an Implantable Device

The energy requirements for an implant are much more constrained than for a wearable device
because of the implant’s small size and the inability to use or replace batteries. RE inductive, ultra-
sound, and optical methods of powering an implant suffers a high amount of end-to-end loss (for
example, RF is absorbed in the tissue, while ultrasound is absorbed in the bones); therefore, re-
peaters are often required for both powering and communication. New capacitive, biphasic EQS,
and magnetoelectric methods show promise in terms of device form factors, low amount of tissue
absorption, and safety.

6.2.1. Capacitive powering. Capacitive powering techniques rely on power transfer using two
sets of differential plates: One set of plates is part of the implant, while the other set is wearable
(37-39). With capacitive patches measuring 20 mm long x 20 mm wide x 3 mm thick, and a
3-mm-thick beef tissue sample in between, the maximum amount of power transfer is 12 mW, with
36% efficiency (39). However, this method requires large capacitive plates and a short distance
between the implant and the surface of the body.

6.2.2. Biphasic quasistatic brain communication. Chatterjee et al. (9) demonstrated the
biphasic mode of powering along with communication. A headphone-shaped body-worn hub
can send power to implanted neural nodes through differential excitation and pickup. A maxi-
mum of a few microwatts of power is available at an implant located 55 mm inside the brain with
>35 V (root mean square) applied via the wearable hub. This method has low loss and avoids
signal transduction, resulting in high end-to-end efficiency. However, it relies on the creation of
large electric fields around the body for powering, which could give rise to safety concerns.

6.2.3. Magnetoelectric powering. Using the airlike permeability of the human body, magnetic
fields can propagate through tissue with almost no loss. Researchers have used this property (34—
36) to demonstrate ~400 pW of power transfer to an implant from a wearable device that creates
a 0.1 mT magnetic field at a distance of ~30 mm. For isoenergy density, this magnetic field is

www.annualreviews.org  Biosensors for the IoB

I21



122

equivalent to a 300 kV/m electric field, which means that the creation of such magnetic fields will
consume significant energy. However, the high power may be justified because the magnetic field
is created at a wearable hub, with access to better power sources.

On the basis of the discussion presented in Sections 4-6, we believe that EQS-HBC/capacitive
modes for communication and magnetoelectric methods for powering could become an opti-
mum solution for small implants such as wireless neural nodes. For wearable applications, on the
other hand, body-coupled powering and HBC show excellent potential for the development of
extremely energy efficient, perpetual biosensor nodes.

7. A NOTE ON SECURITY AND DATA PRIVACY

Because of the resource constraints inherent in a small-form-factor bionode, advanced encryp-
tion techniques and high-overhead countermeasures for advanced attacks [such as side-channel
attacks (SCA)] are often infeasible to implement on sensor nodes. However, standard encryption
algorithms such as AES-256 can consume less than 200 nW power for data rates below 20 kbps
(8) on a wearable sensor node.

7.1. Threat Models

Some of the most important threat models for biosensors are described in the following
subsections.

7.1.1. Side-channel attacks. Even though the mathematical complexity of the key recovery
algorithm for AES-256 is 2%°¢ (which means that a brute-force method could break the encryption
with a probability of 1/2°¢), nontraditional techniques such as EM SCA or power SCA can reduce
the recovery complexity to only 2'*, which can be broken within 50 s (113). Correlational power
analysis algorithms are used to break the AES key by looking at the fluctuations at the power lines
during encryption; therefore, these algorithms pose less of a risk for wearable and implantable
devices, as the attacker needs physical access to the devices. On the other hand, correlational
EM analysis (CEMA) can break the AES key by analyzing the EM radiation from the devices
during encryption. CEMA-based SCA pose a greater risk for biosensor security, as attacks can be
performed even from a distance by use of a high-sensitivity receiver.

7.1.2. Replay attack/mimicking a device. A malicious attacker can impersonate a sensor node
and replay/mimic the data transmitted by the original device, creating confusion at the receiver.
If the malicious device transmits the data with enough power, it can also jam the intended
transmission, resulting in loss of important biophysical information.

7.2. Hardware Solutions

Software-based masking techniques to prevent SCA require significant computational power.
Therefore, we focus on low-overhead hardware solutions for both SCA and replay attacks.

7.2.1. Side-channel attack countermeasures. Das et al. (16) demonstrated a white-box mod-
eling and signature attenuation countermeasure for EM and power SCA. This countermeasure is
based on techniques such as current-domain signature attenuation (CDSA) (17, 18, 114) that help
reduce the signatures used in power SCA, along with local EM signature suppression through
low-level metal routing (18, 19).

CDSA uses a constant current source to supply the AES current, reducing the correlated fluc-
tuations on the power lines during encryption and improving the figure of merit for correlational
power analysis countermeasures. In contrast, local EM signature suppression is implemented by
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routing the encryption hardware (the crypto engine) using lower-level metals in a CMOS process.
This technique ensures that the higher-level, thicker metals in the CMOS process do not carry
correlated currents during encryption, which could otherwise leak critical information in the form
of EM signals. The use of these techniques led to a >33-fold SCA security improvement over the
state of the art (18). A digital-friendly implementation of CDSA with low-level metal routing for
fast time-to-market applications has been demonstrated (115).

7.2.2. Countermeasures against data mimicking. Physically unclonable function-based tech-
niques are used to generate a device-specific signature, exploiting the inherent manufacturing
process variations. However, these techniques are usually applied in the digital domain, which
requires additional hardware and processing steps. Chatterjee et al. (20) proposed a new type of
physically unclonable function for resource-constrained IoT and biosensor nodes that utilizes the
analog and RF properties intrinsic to all transmitter nodes. Each transmitter inherently possesses
analog/RF nonidealities on top of an intended digital signal (or the mimicked digital data, in the
case of a malicious device) due to certain variations in the manufacturing process. Given that
these nonidealities differ for every transmitter, in situ machine learning hardware at the resource-
rich receiver can detect a particular transmitter by analyzing these nonidealities. A malicious
transmitter that mimics (or alters) someone else’s data can also be identified separately from the
intended transmitter. The development of this system was motivated by the unique voice signa-
tures in human-to-human communication, which our brains use to map a person’s identity to their
voice.

Undoubtedly, there is a strong demand for the incorporation of security features during design
time for resource-constrained, small biosensor nodes to protect personal and health-related infor-
mation, emphasizing the need for further exploration of low-cost, lightweight hardware security
primitives. As a result, this area is quickly becoming a major focus of research in biosensors.

8. CONCLUSION: VISION FOR THE FUTURE

Biosensors differ from traditional wireless sensor networks in terms of specific challenges in wear-
able and implantable applications, including resource (energy, computation, memory) availability,
security, and powering. In this review, we have identified the primary design objective of such
connected biosensor nodes, which is to minimize the energy consumption per unit amount of in-
formation. We have focused on a broad analysis of the constituent units of such sensors in terms of
sensing, processing, communication, and powering, all of which need to be designed for holistic,
system-level resource optimization for constrained biosensors. We have also discussed numerous
challenges in the form of system-level adaptive control, reliability, security, latency, and powering
limitations, indicating future research directions toward smart, secure, and connected bioelec-
tronic medicine, as well as the IoB in general, that has the potential to enrich human lives by
leveraging progress in the various technologies discussed throughout this review.
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