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ABSTRACT  
Kriging has gained significant attention for reliability analysis primarily because of the analytical form of its 
uncertainty information, which facilitates adaptive training and establishing stopping criteria for the training process. 
Learning functions play a significant role in both selection of training points and stoppage of the training. For these 
functions, most existing learning functions evaluate candidate training points individually. However, lack of 
consideration for the global effects can lead to suboptimal training. In addition, the subjectivity of these stopping 
criteria may result in over or undertraining of surrogate models. To overcome these gaps, we propose Global Error-
based Learning Function (GELF) for optimal refinement of Kriging surrogate models for the specific purpose of 
reliability analysis. Instead of prioritizing training points based on their uncertainty and proximity to the limit state 
like the existing learning functions, GELF for the first time directly and analytically associates the maximum error in 
the failure probability estimate to the global effect of choosing a candidate training point. This development 
subsequently facilitates an adaptive training scheme that minimizes the error in adaptive reliability estimation to the 
highest degree. For this purpose, GELF uses hypothetical future uncertainty information by treating the current 
construction of the surrogate model as a generative model. The proposed method is tested on three classic benchmark 
problems and one practical engineering problem. Results indicate that the proposed method has significantly better 
computational efficiency than the state-of-the-art methods while achieving high accuracy in all the numerical 
examples.  
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1. Introduction 
Reliability analysis assesses the performance of engineering systems in the presence of uncertainties, which can be 
aleatory (e.g., natural randomness) or epistemic (e.g., lack of knowledge). The objective of structural reliability 
analysis is to estimate the probability of a rare event of interest, often the failure of an engineering system, which is 
determined by a multivariate limit state function that describes the underlying failure mechanisms. The analytic 
solution of the failure probability 𝑃𝑓 is usually in the form of a multifold probability integral, in which the integrand 
is the joint probability density function (PDF) of the random variables and the domain is determined by the limit state 
function. The joint PDF may not be available, and the evaluation of the limit state function is often implicit. Therefore, 
the direct evaluation of this integral is not possible in practical applications. Thus, the failure probability is often 
“estimated” instead of “calculated”.  
 
In the estimation of 𝑃𝑓, the limit state function needs to be evaluated many times given different realizations of the 
random variables. With advances in science and technology, physical phenomena associated with the limit state 
functions can be modelled with high fidelity considering various complexities. However, the significant improvement 
of the model accuracy also gives rise to the more demanding computational cost. Therefore, the estimation of 𝑃𝑓, 
which requires a significant number of high-fidelity simulations, can be computationally prohibitive in practical 
engineering problems, especially in the most straight forward type of method, i.e., simulation methods, such as Monte 
Carlo simulation (MCS) [1]. The estimation of 𝑃𝑓 using MCS can be formulated as follows: 
 

𝑃̂𝑓 =
𝑛𝑓

𝑁𝑀𝐶𝑆
 (1) 

 
where 𝑁𝑀𝐶𝑆 is the total number of simulations in the MCS, and 𝑛𝑓 is the number of structural failures in the MCS. 
When 𝑃𝑓 is very small, i.e., the failure event is rare, the required 𝑁𝑀𝐶𝑆 will be very large, hence the prohibitive 
computational costs. Other simulation methods, such as importance sampling [1] and subset simulation [2], have been 
proposed to alleviate the computational burden. However, these methods still require a significant number of high-
fidelity simulations. Another group of methods for estimating 𝑃𝑓 is referred to as approximation methods, such as First 
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Order Reliability Method (FORM) and Second Order Reliability Method (SORM) [3,4]. These methods can efficiently 
estimate 𝑃𝑓, however, they often suffer from errors associated with the reduced order approximation of the limit state 
function, especially when the limit state function is highly nonlinear.  
 
In the last decade, surrogate model methods have become prevalent in the reliability community because of the ability 
of the surrogate models to achieve balance between accuracy and efficiency. The main idea of methods based on 
surrogate models is to construct a cheap-to-evaluate model that mimics the behavior of the limit state function. The 
produced surrogate model will be used subsequently in simulation methods to estimate 𝑃𝑓. To emulate the actual 
model, a certain number of model evaluations are required, which are also referred to as training points. Kriging [5], 
among various other surrogate models such as Polynomial Chaos Expansion [6] and Polynomial Response Surface 
[7–9], has drawn significant more attention because of its built-in capability to provide uncertainty information for its 
predictions. This uncertainty information is essential, as it can be used in both active learning function and stopping 
criterion, which are the two most important components in the adaptive reliability analysis methods. The former is 
used to adaptively select training points to construct the surrogate model, while the latter is used to assess the adequacy 
of the training process for reliability analysis. Many refer to Kriging-based reliability methods with this adaptive 
feature as adaptive Kriging methods. 
 
There have been numerous works on adaptive Kriging methods for reliability analysis. Inspired by Efficient Global 
Optimization  [10], Bichon et al. [11] proposed Efficient Global Reliability Analysis (EGRA) with the widely known 
Efficient Feasibility Function (EFF) that is used as both active learning function and stopping criterion. Echard et al. 
[5] proposed another popular 𝑈 learning function in their active learning reliability method that combines Kriging and 
Monte Carlo Simulation (AK-MCS). Lv et al. [12] proposed the H learning function that is based on information 
entropy. Yang et al. [13] proposed an Expected Risk Function (ERF) that determines the risk that the sign of a 
candidate training point is wrongly classified. Sun et al. [14] proposed the Least Improvement Function (LIF) that 
takes both uncertainty information and joint PDF into account. Wang and Shafieezadeh [15] proposed an Error-based 
Stopping criterion (ESC) to effectively quantify the error of the Kriging surrogate model when estimating failure 
probability. In addition, adaptive Kriging methods have also been used in other reliability-related analyses such as 
reliability-based design optimization [16–19], value of information analysis [20], reliability updating [21,22]  and 
Bayesian updating [23], thanks to Kriging’s capability of providing the uncertainty information.  
 
In most existing adaptive Kriging methods, the learning functions are built to consider the proximity of candidate 
training points to the limit state and the degree of uncertainty. Different learning functions may assign different 
weights on the two characteristics of the candidate training points. It is reasonable to choose training points that are 
close to the limit state function and the uncertainty of the assigned sign by the surrogate model is high, as such 
candidates will have higher probabilities of being wrongly classified to the safe domain or failure domain. However, 
these learning functions neglect to consider the actual impact of selecting training points. Selecting the candidate with 
the highest wrong sign estimation probability does not necessarily mean that it will benefit the surrogate model to the 
highest degree for the purposes of reliability analysis. In addition, existing learning functions evaluate all the candidate 
training points individually without considering their global impacts. To overcome these challenges and explore how 
the uncertainty information can be effectively used to assist with the construction of the Kriging surrogate model, we 
propose a global error-based learning function (GELF) for adaptive Kriging methods. The objective of GELF is to 
construct a Kriging surrogate model most efficiently and to achieve an acceptable level of error for reliability analysis. 
Instead of evaluating the learning function for each candidate training point like the existing learning functions, GELF 
determines the global impact of new training points considering a set of essential candidate training points collectively. 
The impact is measured using the concept of maximum error of the estimated failure probability, which directly 
quantifies the quality of the surrogate model.     
 
The rest of this paper is organized into four sections. Section 2 provides a review of adaptive Kriging methods. Section 
3 introduces the proposed GELF and the corresponding adaptive Kriging method. The performance of GELF and the 
proposed method is demonstrated through computational experiments in Section 4. The conclusions are drawn in 
Section 5. 
 
2. A review of adaptive Kriging methods 
This section provides an overview of adaptive Kriging methods for reliability analysis, which is comprised of three 
subsections on a brief review of Kriging, active learning functions and stopping criteria, respectively.  
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2. 1 Kriging surrogate model 
Let 𝑔(𝒙) denote the limit state function that is evaluated with a high-fidelity finite element model and 𝒙 the vector 
that contains the random variables representing the uncertainty. The Kriging surrogate model for 𝑔(𝒙)  shown by 
𝑔̂(𝒙) can be formulated as follows: 
 

𝑔̂(𝒙) = 𝐹(𝜷, 𝒙) +  ℊ𝓅(𝒙) = 𝜷𝑇𝒇(𝒙) + ℊ𝓅(𝒙) (2) 
 
where 𝐹(𝜷, 𝒙) is the regression component, and ℊ𝓅(𝒙) is a Gaussian process, 𝐹(𝜷, 𝒙) is the product of the Kriging 
basis 𝒇(𝒙) and corresponding set of coefficients 𝜷. The Gaussian process ℊ𝓅(𝒙) has a zero mean and a covariance 
matrix. The reader can refer to [24] for the details of construction of the Kriging surrogate model.   
The constructed Kriging surrogate model 𝑔̂(𝒙) follows a normal distribution as follows: 
 

𝑔̂(𝒙) ~ 𝑁 (𝜇𝑔̂(𝒙), 𝜎𝑔̂
2(𝒙)) (3) 

 
where 𝜇𝑔̂(𝒙) is the estimated Kriging mean and 𝜎𝑔̂

2(𝒙) is the corresponding variance, which represents uncertainty 
information. In this study, a MATLAB package named UQLab [25] is used to construct the Kriging surrogate model. 
The codes are extended to implement the proposed learning function.  
 
Kriging’s capability of providing uncertainty information can facilitate the adaptive construction process of the 
surrogate model for reliability analysis. Numerous adaptive Kriging methods have been developed for reliability 
analysis. Although with many differences, these methods consist of three main components that can affect 
performance significantly. The first is the active learning function to choose the best training points to construct the 
surrogate model, the second is the stopping criterion that provides the stop signal for adding new training points, and 
the third is the simulation method to perform the reliability analysis with the constructed surrogate model. The most 
commonly used simulation method is Monte Carlo simulation (MCS); however, other simulation methods, such as 
importance sampling [1] and subset simulation [2], can be used to solve different problems. The use of different 
simulation methods is not the focus of this study and will not be further discussed. Active learning functions and 
stopping criteria, however, will be elaborated in the next two subsections.   
 
2.2 Active learning functions 
Except for the set of initial training points, all the other training points are selected by the active learning function, 
thus, active learning functions play an important role in the construction of the surrogate model. Numerous active 
learning functions have been proposed to efficiently construct the Kriging surrogate model. Two of the most 
commonly used active learning functions are Expected Learning Function (𝐸𝐹𝐹) [11] and 𝑈 learning function [5].  
The mathematical expression of 𝐸𝐹𝐹 is as follows:  
 

𝐸𝐹𝐹(𝒙) = ∫ [𝜖(𝒙) − |𝑎 − ℎ|]ϕ(ℎ; 𝜇𝐺𝑃(𝒙), 𝜎𝐺𝑃(𝒙))𝑑ℎ

𝑎+𝜖(𝒙)

𝑎−𝜖(𝒙)

= (𝜇𝑔̂(𝒙) − 𝑎) [2Φ (
𝑎 − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃 (𝒙∗)
) − Φ (

𝑎− − 𝜇𝐺𝑃(𝒙∗)

𝜎𝐺𝑃 (𝒙∗)
) − Φ (

𝑎+ − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃(𝒙)
)]

−𝜎𝑔̂(𝒙) [2ϕ (
𝑎 − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃(𝒙)
) − ϕ (

𝑎− − 𝜇𝐺𝑃(𝒙∗)

𝜎𝐺𝑃 (𝒙∗)
) − ϕ (

𝑎+ − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃(𝒙)
)]

+2𝜎𝐺𝑃(𝒙) [Φ (
𝑎+ − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃(𝒙)
) − Φ (

𝑎− − 𝜇𝐺𝑃(𝒙)

𝜎𝐺𝑃 (𝒙)
)]

 

 

(4) 

where ϕ(∙) is the standard Gaussian probability density function (PDF), Φ is the standard Gaussian cumulative 
density function (CDF),  𝑎 = 0 ,  𝜖(𝒙) = 2𝜎𝑔̂(𝒙) , 𝑎+ = 𝑎 + 𝜖(𝒙)  and 𝑎− = 𝑎 − 𝜖(𝒙) . The term [𝜖(𝒙) − |𝑎 − ℎ|] 
measures the proximity of the untried point to the limit state 𝑔(𝒙) = 𝑎 , and is weighted by the term 
𝜙(ℎ; 𝜇𝑔̂(𝒙), 𝜎𝑔̂(𝒙)). 𝑈 learning function has the following mathematical expression: 
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𝑈(𝒙∗) =  
|𝜇𝑔̂(𝒙)|

𝜎𝑔̂(𝒙)
 (5) 

 
There are many other active learning functions, e.g., H learning function [12], Expected Risk Function (ERF) [13] and 
Least Improvement Function (LIF) [14] to name a few. Most existing active learning functions aim to find training 
points that are close to the predicted limit state and have higher uncertainty, as these points are more prone to be 
wrongly classified as failed or safe. Different active learning functions may assign different weights to the proximity 
and uncertainty. For instance, the 𝑈 learning function tends to assign a higher weight to points close to the predicted 
limit state rather than those that are further away but have higher uncertainty compared to 𝐸𝐹𝐹. Choosing the points 
that have higher probabilities of being wrongly classified can help to correct the potential error of the surrogate model, 
however, it not necessarily the most effective manner to improve the overall accuracy of the surrogate model. In 
addition, when choosing a training point, all the candidate points are evaluated using the active learning function 
individually, that is, the impact of adding the selected training point to the entire surrogate model is not fully 
considered. In this study, a novel active learning function is proposed that considers the global impact of candidate 
training points. This learning function will be introduced in Section 3.   
 
2.3 Stopping criteria 
Another key component in adaptive Kriging methods is the stopping criterion. A loose stopping criterion can lead to 
an inaccurate surrogate model that cannot provide an accurate estimate of failure probability. On the other hand, an 
overly conservative one may lead to unnecessary training. A commonly used approach is to check the value of the 
chosen active learning function for all the candidate points against a predefined threshold. For instance, if the 𝑈 
learning function is used for training, no new training points are needed when the 𝑈 learning function values for all 
the candidate training points are larger than 2. This type of stopping criterion works, as it often guarantees that all the 
candidate training points have a low probability of wrong classification. However, not all stopping criteria that depend 
on values of active learning functions have physical or statistical meaning, and the threshold value can be subjective. 
In Wang and Shafieezadeh [15], it was shown that stopping criterion based on both 𝑈 learning function and 𝐸𝐹𝐹 can 
lead to significant over or undertraining. To address this challenge, an efficient error-based stopping criterion (ESC) 
was proposed in Wang and Shafieezadeh [15]. In ESC, the maximum error rate 𝜖𝑚̂𝑎𝑥 of the estimated probability of 
failure was derived and used as the stopping criterion for the construction of the surrogate model. This maximum error 
rate can be estimated using the following equation: 
 

𝜖𝑚̂𝑎𝑥 = 𝑚𝑎𝑥 (|
𝑁̂𝑓

𝑁̂𝑓 − 𝑆̂𝑓
𝑢

− 1| , |
𝑁̂𝑓

𝑁̂𝑓 + 𝑆̂𝑠
𝑢 

− 1|) (6) 

 
where 𝑁̂𝑓 is the estimated number of points in the failure domain out of the entire candidate training point population 
by the surrogate model, 𝑆̂𝑓 is the total number of wrong sign estimations in the estimated failure domain 𝛺̂𝑓 by the 
surrogate model, and 𝑆̂𝑠 is the one in estimated safe domain 𝛺̂𝑠 by the surrogate model, 𝑆̂𝑓

𝑢and 𝑆̂𝑠
𝑢 are the upper bounds 

of 𝑆̂𝑓 and 𝑆̂𝑠, respectively. In Wang and Shafieezadeh [15], it was found that both 𝑆̂𝑠 and 𝑆̂𝑓 follow Poisson binomial 
distributions with means and variances shown below: 
 

𝑆̂𝑠~𝑃𝐵 (∑ 𝑃𝑖
𝑤𝑠𝑒  

𝑁̂𝑠

𝑖=1

, ∑ 𝑃𝑖
𝑤𝑠𝑒  (1 − 𝑃𝑖

𝑤𝑠𝑒  )

𝑁̂𝑠  

𝑖=1

) (7) 

𝑥𝑖 ∈  𝛺̂𝑠  
  

𝑆̂𝑓~𝑃𝐵 (∑ 𝑃𝑖
𝑤𝑠𝑒  

𝑁̂𝑓

𝑖=1

, ∑ 𝑃𝑖
𝑤𝑠𝑒  (1 − 𝑃𝑖

𝑤𝑠𝑒  )

𝑁̂𝑓 

𝑖=1

) (8) 

𝑥𝑖 ∈ 𝛺̂𝑓  
 
where 𝑃𝐵 represents the Poison Binomial distribution and 𝑃𝑖

𝑤𝑠𝑒 is the probability of wrong sign estimation for 𝑥𝑖 , 
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which can be computed as 𝑃𝑖
𝑤𝑠𝑒 = 𝛷 (−

|𝜇𝑔̂(𝒙)|

𝜎𝑔̂(𝑥)
), where 𝛷(∙) is the standard Gaussian cumulative density function. 

Thus, the upper and lower bounds of 𝑆̂𝑠 and 𝑆̂𝑓 with a confidence level 𝛼 can be found as: 
 

𝑆̂𝑠 ∈ (𝜣𝑆̂𝑠

−1 (
𝛼

2
) , 𝜣𝑆̂𝑠

−1 (1 −
𝛼

2
)) (9) 

  

𝑆̂𝑓 ∈ (𝜣𝑆̂𝑓

−1 (
𝛼

2
) , 𝜣𝑆̂𝑓

−1 (1 −
𝛼

2
)) (10) 

 
where 𝜣𝑆̂𝑠

−1 and 𝜣𝑆̂𝑓

−1 are the inverse CDF of the Poisson binomial distributions in Eq. (7) and (8). The reader is referred 
to Wang and Shafieezadeh [15] for more details. The estimate of the maximum error 𝜖𝑚̂𝑎𝑥  provides very useful 
information on how accurate the constructed Kriging surrogate model is in terms of estimating the failure probability. 
A threshold 𝜖𝑡ℎ𝑟  can be set as 5%. When 𝜖𝑚̂𝑎𝑥 ≤ 𝜖𝑡ℎ𝑟, it indicates the Kriging surrogate model is accurate enough and 
no more training points are needed. ESC has been proven very effective in many studies [19,20,26,27].  Albeit with 
its efficacy, ESC only contributes to the stopping criterion component. In this study, the concept behind ESC is 
extended to facilitate the selection of the training point as well. The proposed active learning function and method are 
introduced in the next section. 
 
3. Adaptive Kriging Reliability Method with an Error-Based Learning Function 
In this study, we propose a novel adaptive Kriging reliability method with a global error-based learning function (AK-
GELF-MCS) that aims to overcome the challenges mentioned in Section 2.2.  
 
3.1 Global Error-Based Learning Function 
The main objective of our proposed GELF is to identify the training point that can have the greatest global impact on 
the surrogate model given it is added to the surrogate model. The first important question is: how do we know if the 
impact of adding a new training point is even good? The most existing learning functions to choose the training point 
evaluate the candidate training points individually and are not able to capture the global impact. To achieve the greatest 
efficiency and accuracy, a more explicit and objective goal of the learning function is needed. Here in this study, we 
propose to utilize ESC, a stopping criterion that has been proven effective, as the signal of the quality of the surrogate 
model, that is, we want to choose the training points that reduce the maximum error in ESC. ESC is measured using 
the pool of the candidate training points and the change of ESC can reflect the global impact.  Here comes the second 
important question: how do we measure the ESC of adding a training point before evaluating it? This is possible with 
the hypothetical future variance.  
Assume we have a Kriging surrogate constructed with 𝑚 training points denoted as 𝑔̂𝑃(𝒙) = 𝑔̂ (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚
). It 

follows the Gaussian distribution as follows: 
 

𝑔̂𝑃(𝒙)~𝑁(𝜇𝑃(𝒙), 𝜎𝑃
2(𝒙)) (11) 

 
where 𝒙 can be any point,  𝜇𝑃(0, 𝒙) is the mean and 𝜎𝑃

2(0, 𝒙) is the variance for the current construction of the 
surrogate model. Let us assume that a hypothetical future Kriging surrogate is constructed with the current 𝑚 training 
points and a potential future training point 𝒙𝑚+1. Let 𝑦𝐹 denote the hypothetical future simulated prediction at 𝒙𝑚+1. 
It is obvious that 𝑦𝐹  follows 𝑁(𝜇𝑃(𝒙𝑚+1), 𝜎𝑃

2(𝒙𝑚+1)). Therefore, a hypothetical future surrogate model at any 𝒙 
follows the Gaussian distribution as follows: 

 
𝑔̂𝐹 (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹) ~𝑁(𝜇𝐹 (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹) , 𝜎𝐹

2(𝒙|{𝒙(𝑖)}
𝑖=1

𝑚+1
, 𝑦𝐹)) (12) 

 
where the hypothetical future mean 𝜇𝐹 (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹) follows a Gaussian distribution whose mean is still 𝜇𝑃(𝒙), 

and the hypothetical future variance 𝜎𝐹
2(𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹)  depends only on 𝒙𝑚+1  and thus is replaced with 

𝜎𝐹
2(𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
) . It is worth noting that we do not need any new evaluations of the finite element model or 

optimization of the parameter 𝜽. However, we do need to recalculate the correlation 𝒓(𝒙) and autocorrection matrix 



-6- 
 

𝑹(𝒙), of which the computational costs are negligible compared with the expensive-to-evaluate limit state function. 
Therefore, in each iteration, we can construct the hypothetical future surrogate model for any candidate training point. 
Note that this definition has been applied in conjunction with existing learning functions such as EFF in two multi-
fidelity reliability analysis methods [28,29]. However, in this study, the definition is utilized in a more meaningful 
way where the global impact regarding the maximum error is quantified by the proposed learning function, which will 
be introduced as follows. 
 
As the hypothetical future prediction 𝑦𝐹  follows 𝑁(𝜇𝑃(𝒙𝑚+1), 𝜎𝑃

2(𝒙𝑚+1)), assuming that the hypothetical future 
mean 𝜇𝐹 (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹) stays the same as that of the present model 𝜇𝑃(𝒙), the hypothetical wrong sign estimation 

for any candidate training point 𝒙 given a selected training point 𝒙𝑚+1 can be calculated as follows: 
 

𝑃𝑖,𝐹
𝑤𝑠𝑒(𝒙|𝒙𝑚+1) = 𝛷 (−

|𝜇𝑃(𝒙)|

𝜎𝐹(𝒙|{𝒙(𝑗)}𝑗=1
𝑚+1)

) 

 
Accordingly, the hypothetical future total number of wrong sign estimations in the estimated failure domain 𝛺̂𝑓, 𝑆̂𝑓, 
and the one in estimated safe domain 𝛺̂𝑠, 𝑆̂𝑓,𝐹, follow the following distributions:  
 

𝑆̂𝑠,𝐹(𝒙𝑚+1)~𝑃𝐵 (∑ 𝑃𝑖,𝐹
𝑤𝑠𝑒(𝒙|𝒙𝑚+1) 

𝑁̂𝑠

𝑖=1

, ∑ 𝑃𝑖,𝐹
𝑤𝑠𝑒(𝒙|𝒙𝑚+1) (1 − 𝑃𝑖,𝐹

𝑤𝑠𝑒(𝒙|𝒙𝑚+1) )

𝑁̂𝑠  

𝑖=1

) (13) 

𝒙𝑖 ∈  𝛺̂𝑠  
  

𝑆̂𝑓,𝐹(𝒙𝑚+1)~𝑃𝐵 (∑ 𝑃𝑖,𝐹
𝑤𝑠𝑒  

𝑁̂𝑓

𝑖=1

(𝒙|𝒙𝑚+1) , ∑ 𝑃𝑖,𝐹
𝑤𝑠𝑒  (1 − 𝑃𝑖,𝐹

𝑤𝑠𝑒(𝒙|𝒙𝑚+1)  )

𝑁̂𝑓 

𝑖=1

) (14) 

𝒙𝑖 ∈ 𝛺̂𝑓  
 
Note that as the assumption that the hypothetical future mean 𝜇𝐹 (𝒙|{𝒙(𝑖)}

𝑖=1

𝑚+1
, 𝑦𝐹) stays the same as that of the present 

model 𝜇𝑃(𝒙), the hypothetical future estimated failure and safe domains stay the same as 𝛺̂𝑓 and 𝛺̂𝑠, respectively. 
Accordingly, the hypothetical future estimated total numbers of points in the failure and safe domains are still 𝑁̂𝑓 and 
𝑁̂𝑠, respectively. Therefore, the upper and lower bounds of 𝑆̂𝑠,𝐹 and 𝑆̂𝑓,𝐹 with a confidence level 𝛼 can be found as: 
 

𝑆̂𝑠,𝐹(𝒙𝑚+1) ∈ (𝜣𝑆̂𝑠,𝐹(𝒙𝑚+1)
−1 (

𝛼

2
) , 𝜣𝑆̂𝑠,𝐹(𝒙𝑚+1)

−1 (1 −
𝛼

2
)) (15) 

  

𝑆̂𝑓,𝐹(𝒙𝑚+1) ∈ (𝜣𝑆̂𝑓,𝐹(𝒙𝑚+1)
−1 (

𝛼

2
) , 𝜣𝑆̂𝑓,𝐹(𝒙𝑚+1)

−1 (1 −
𝛼

2
)) (16) 

 
where 𝜣𝑆̂𝑠,𝐹(𝒙𝑚+1)

−1  and 𝜣𝑆̂𝑓,𝐹(𝒙𝑚+1)
−1  are the inverse CDF of the Poisson binomial distributions in Eq. (13) and (14). For 

any new candidate training point 𝒙𝑚+1, the corresponding hypothetical future ESC can be evaluated and used as the 
active learning function to select the next best training point. The candidate training point with the smallest 
hypothetical future ESC can be selected. Thus, a GELF can be formulated as follows: 
 

𝐺𝐸𝐿𝐹(𝒙𝑚+1) = 𝑚𝑎𝑥 (|
𝑁̂𝑓

𝑁̂𝑓 − 𝑆̂𝑓,𝐹
𝑢 (𝒙𝑚+1)

− 1| , |
𝑁̂𝑓

𝑁̂𝑓 + 𝑆̂𝑠,𝐹
𝑢 (𝒙𝑚+1) 

− 1|) 

 
(17) 

The proposed GELF is the first learning function that associates the effect of candidate training points directly to the 
maximum error of the failure probability estimation. Instead of trying to find the training points that have larger 
uncertainties and are close to the limit state like the existing learning functions, GELF aims to find the training points 
that directly lower the maximum error caused by the surrogate model to the highest degree. GELF utilizes the concept 
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of hypothetical future variance and collectively evaluates the candidate training points instead of evaluating each 
candidate training point individually, thus enabling the consideration of the global impact. In the next subsection, the 
adaptive Kriging method with the proposed GELF is introduced. 
 
3.2 Application process of the proposed method 
The proposed GELF can be easily incorporated in the adaptive Kriging framework. The flowchart of the approach is 
shown in Fig. 2. In Step 1, set of candidate training points, denoted as 𝑺, of the size of 𝑁𝑀𝐶𝑆 is generated using Latin 
Hypercube sampling. In Step 2, Randomly select 𝑁𝑖 initial training points (𝑁𝑖 is determined as min {12, (𝐷 + 1)(𝐷 +
2)/2 }) from 𝑺. Evaluate the 𝑁𝑖 points using computational, e.g., finite element, models to get the initial training point 
set {𝒙(𝑖)}

𝑖=1

𝑚=𝑁𝑖  . Afterwards in Step 3, construct the Kriging surrogate model 𝑔̂ (𝒙|{𝒙(𝑖)}
𝑖=1

𝑁𝑖 ) with the current set of 

training points {𝒙(𝑖) , }
𝑖=1

𝑚 . Then, the responses 𝜇𝑃(𝒙) are obtained from the Kriging surrogate model 𝑔̂ (𝒙|{𝒙(𝑖), }
𝑖=1

𝑁𝑖 )  
for every candidate training point in 𝑺. According to responses 𝜇𝑃(𝒙), the failure probability 𝑃̂𝑓 can be estimated via 
MCS. However, it is not guaranteed that the surrogate model is sufficiently accurate for the reliability analysis. Thus, 
the ESC as follows needs to be checked: 
 

𝜖𝑚̂𝑎𝑥 < 5% (18) 
 
If the ESC is satisfied, move to Step 6 to check the sufficiency of the population of 𝑺 using the criterion as follows: 
 

𝐶𝑂𝑉𝑃̂𝑓
= √

1 − 𝑃̂𝑓

𝑁𝑀𝐶𝑆𝑃̂𝑓

 (19) 

 
If 𝐶𝑂𝑉𝑃̂𝑓

 is smaller than 5%, go to Step 9 and report the failure probability. Otherwise, an additional number 𝑁∆𝑆 of 
candidate training points should be added to S, and the process should move back to Step 4. If in Step 5 the ESC is 
not satisfied, new training point needs to be added using 𝐺𝐸𝐿𝐹 in Step 7. Afterwards in Step 8, update the set of 
training points with the best training point identified in Step 7, and then go back to Step 3. 
 

 
Fig. 2   Flowchart of the proposed method 



-8- 
 

 
The proposed method uses GELF to select the training point that aims to lower the estimated maximum error of the 
surrogate model most efficiently while considering the global impact of adding the training point. Note that it is not 
advised to construct the hypothetical future surrogate model for every candidate training point, although the cost of 
constructing a hypothetical future surrogate model is negligible, each evaluation of GELF will require the hypothetical 
future surrogate model to be evaluated 𝑁𝑚𝑐𝑠 times. If every candidate training point is evaluated using GELF, a total 
number of 𝑁𝑚𝑐𝑠

2  evaluations of Kriging surrogate model is needed, of which the computational costs can increase 
significantly when the required 𝑁𝑚𝑐𝑠 increases for problems with small failure probability. Therefore, we propose to 
use a set of essential candidate training points. The essential candidate training points can be selected based on any 
learning function. EFF is used in this study for the selection of essential candidate training points. It is found that the 
larger the essential candidate training point set, the better the performance of the proposed method. However, a larger 
set will also increase the computational cost. Based on our numerical investigations, we found that 2,000 essential 
candidate training points are sufficient. In addition, the impact of the value of 𝑁𝑒  is investigated through the 
computational experiments in Section 4. 
 
4. Computational experiments  
To evaluate the performance of 𝐺𝐸𝐿𝐹 and the proposed method, four computational experiments, including three 
classic benchmark problems and one practical engineering problem, are investigated. These computational 
experiments have at least one of the following properties: highly nonlinear, non-differentiable, and high-dimensional.  
The performance of the proposed method is compared with AK-MCS [5] with ESC [15], which is referred to as AK-
MCS-ESC, and Polynomial Chaos Kriging using 𝐸𝐹𝐹 as the learning function and the beta stability (0.005) as the 
stopping criterion as in [30], which is referred to as PCK-EFF-BS. All the computational experiments are repeated 20 
times.  
 
4.1 Example 1: 2D problem 
The first example is based on a classical two dimensional problem investigated in many studies [31,32]. The limit 
state function is shown as follows: 
 

𝑔(𝑥1, 𝑥2) = −1 + (0.9063𝑥1 + 0.4226𝑥2 − 6)2 + (0.9063𝑥1 + 0.4226𝑥2 − 6)3

            −0.6(0.9063𝑥1 + 0.4226𝑥2 − 6)4 + (0.4226𝑥1 − 0.9063𝑥2) (20)
 

 
where 𝑥1 follows a uniform distribution between 4.5 and 7.5, and 𝑥2 follows a uniform distribution between 4.7 and 
7.7.  The proposed method AK-GELF-ESC is applied, and the results are compared with the other state-of-the-art 
methods. The results of the reliability analyses are summarized in Table 1. Note that the beta stability threshold for 
PCK-EFF-BS is changed to 5 ∙ 10−4 after observing the accuracy of the method for this problem, as the threshold of 
0.005 which is stated in [30] to be an appropriate value will yield extremely large errors. The boxplots for the training 
point numbers and errors are presented in Fig. 3. It can be observed that the proposed method requires around 28% 
fewer training points to converge compared to AK-MCS-ESC. Also, the average error of the proposed method is lower 
than the other methods. Both the efficiency and accuracy of analysis are improved by taking advantage of the proposed 
error-based learning function. PCK-EFF-BS costs the most training points, albeit with a more conservative threshold, 
but cannot guarantee the robustness of convergence.  
 
Fig. 4 shows the error trend comparison of AK-GELF-ESC and AK-MCS-ESC with the same set of initial training 
points. The proposed method converges significantly faster than AK-MCS-ESC. The distribution of the initial training 
points and the added training points are shown in Fig. 5. It is noted that both AK-GELF-ESC and AK-MCS-ESC can 
construct an accurate surrogate model, while the proposed method requires fewer training points.  
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Table 1 Reliability results for Example 1 

Method 
Average number of 
training points (Standard 
deviation) 

𝑷𝒇 (Standard deviation) Average error* 
(Standard deviation) 

MCS - 7.09×10-3 - 
AK-GELF-ESC 36.75 (5.24) 7.16×10-3 (2.43×10-4) 0.60% (0.54%) 
AK-MCS-ESC 50.05 (8.00) 7.03×10-3 (2.71×10-4) 1.01% (1.14%) 
PCK-EFF-BS 55.35(15.92) 7.23×10-3 (6.99×10-4) 4.29% (8.06%) 

*: denoting the average of the errors incurred by the surrogate model (compared with crude MCS) for 20 runs.   
 

 
Fig. 3 The comparison of different methods for Example 1 

 

 
Fig. 4 The comparison of error trends for Example 1 
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Fig. 5 The comparison of contours in the standard normal space for Example 1 

 

 
Fig. 6 The results for the proposed method with different numbers of essential points 

 
A parametric study on the number of essential points is performed for this example. The results are presented in the 
boxplots in Fig. 6. It can be observed that with a larger number of essential candidate training points, the proposed 
method will provide more stable results.  
 
4.2 Example 2: Oscillator problem 
The second example is an undamped single degree of freedom system as shown in Fig. 7. This problem has been 
investigated in many studies [2,5,33–35]. The limit state function is described below: 
 

𝑔(𝑐1, 𝑐2 , 𝑚, 𝑟, 𝑡1 , 𝐹1) = 3𝑟 − |
2𝐹1

𝑚𝜔0
2 𝑠𝑖𝑛 (

𝜔0𝑡1

2
)| (21) 

 

where 𝜔0 =  √
𝑐1+𝑐2

𝑚
  is the system frequency. There are six random variables in the limit state function. The 

probabilistic descriptions of the six random variables are presented in Table 2.  
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Fig. 7 Oscillator 

 
The proposed method is applied and compared with the other state-of-the-art methods. Table 3 summarizes the results 
of reliability analysis by different methods, and Fig. 8 presents the boxplots for the number of training points and 
errors. For this example, AK-GELF-ESC performs better than AK-MCS-ESC in both accuracy and efficiency. The 
proposed method uses around 90% of the training points of AK-MCS-ESC to achieve an average error that is 46% 
smaller. PCK-EFF-BS, albeit with a similar number of training points compared to AK-GELF-ESC, has a much larger 
error than the other methods.  
 
Table 2 Random variables in the oscillator 

Random variable Distribution Mean Standard deviation 
𝑚 Normal 1 0.05 
𝑘1 Normal 1 0.1 
𝑘2 Normal 0.1 0.01 
𝑟 Normal 0.65 0.05 

𝐹1 Normal 1 0.2 
𝑡1 Normal 1 0.2 

 
 
Table 3 Reliability results for Example 2 

Method 
Average number of 
training points (Standard 
deviation) 

𝑷𝒇 (Standard deviation) Average error* 
(Standard deviation) 

MCS - 2.85×10-2 - 
AK-GELF-ESC 30.55(3.51) 2.87×10-3 (0.92×10-4) 1.33% (1.25%) 
AK-MCS-ESC 34.15(3.85) 2.88×10-3 (1.38×10-3) 2.88% (1.93%) 
PCK-EFF-BS 29.55(10.49) 2.91×10-3 (3.42×10-3) 6.5% (10.25%) 

*: denoting the average of the errors incurred by the surrogate model (compared with crude MCS) for 20 runs.   
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Fig. 8 The comparison of different methods for Example 2 

 
 
4.2 Example 3: 10-Dimensional problem 
The third problem is a 10-dimensional problem that has been studied in [5,36,37]. The limit state function is shown 
as follows:   
 

𝑔(𝑥1, … , 𝑥𝑛) = (𝑛 + 3𝜎√𝑛) − ∑ 𝑥𝑖

𝑛

𝑖=1

(22) 

 
where all the random variables 𝑥𝑖s, follow independent lognormal distributions with a mean of 1 and a standard 
deviation of 0.2, and 𝑛 is set to be 10. The proposed method is applied and compared with the other state-of-the-art 
methods. The results of reliability analysis by different methods are summarized in Table 4. The boxplots for the 
number of training points and errors are presented in Fig. 9. For this example, AK-GELF-ESC and AK-MCS-ESC 
have very similar computational costs; however, the average error of the proposed method is only around 40% of that 
of AK-MCS-ESC. On the other hand, PCK-EFF-BS uses only 52.4 training points on average, but the errors are 
extremely high, which indicates that the beta stability may not be a good stopping criterion for all the problems.  
 
Table 4 Reliability results for Example 3 

Method 
Average number of 
training points (Standard 
deviation) 

𝑷𝒇 (Standard deviation) Average error* 
(Standard deviation) 

MCS - 2.7×10-3 - 
AK-GELF-ESC 67.85(8.31) 2.75×10-3 (1.14×10-4) 1.4% (1.03%) 
AK-MCS-ESC 68.1(9.96) 2.84×10-3 (9.34×10-5) 3.42% (2.01%) 
PCK-EFF-BS 52.4(22.01) 2.43×10-3 (8.83×10-4) 20.68% (26.74%) 

*: denoting the average of the errors incurred by the surrogate model (compared with crude MCS) for 20 runs.   
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Fig. 9 The comparison of different methods for Example 3 

 
4.4 Example 4: Natural gas pipeline problem 
The last numerical example is a practical engineering problem related to a natural gas pipeline. Natural gas pipelines 
and networks are essential infrastructure that transport and distribute natural gas over long distances. The failure of 
pipelines may lead to significant impacts on the economy, environment and society [38]. Therefore, the reliability of 
pipelines is a major concern. The existing data indicate that corrosion is one of the main causes for the failure of gas 
pipelines [39,40]. For instance, 38.5% and 26.5% recorded failures of gas transmission pipelines are caused by 
corrosion according to the Lithuanian and European Gas pipeline Incident data Group (EGIG) databases, respectively 
[39,40]. The operational data also reveal that local pitting corrosion, which is typically a high density of corrosion pits 
in a small area, is responsible for a large percentage of through-wall defects. Reduction of the pipe wall thickness 
under local pitting corrosion may lead to high stress concentrations in the pipe wall and eventually cause the rupture 
of the pipe. The objective of this numerical example is to investigate the reliability of a natural gas pipeline with such 
local pits or defects. A finite element model is constructed to model the natural gas pipe with a defected zone using 
similar settings as the one in [38]. The key parameters of the pipe model can be found in Table 5.  
 
Table 5 Detailed parameters of the pipe 

Description Distribution Mean COV 
Pressure Uniform  4.5 MPa 21.28% 

Pipe thickness Lognormal 14.3 5% 
Elastic modulus Lognormal 2.0·105 MPa 5% 

Crack depth Uniform 5.5 mm 37.14% 
Pipe diameter Deterministic 1220 mm - 
Crack length Deterministic 200 mm - 
Crack width Deterministic 6.7 mm - 

Ultimate von Mises stress Deterministic 612 MPa - 
 
Referring to existing work [41,42] this engineering application adopts the von Mises (distortion energy) theory in 
ANSYS software to analyze the stress distribution of the defected pipe. When the von Mises stress reaches the ultimate 
stress throughout the defected area, the corresponding applied internal pressure can be defined as the failure pressure 
and failure event is considered to occur. Keeping consistency with the existing works [38,43], this example adopts 
SHELL element to model the pipe structure, and the reduced thickness SHELL element is used to model the defect.  
To balance the accuracy and efficiency, the defected and the adjacent areas are meshed with a smaller element size. 
The pressure load is applied uniformly to the inside face of the pipe. Fig. 10 illustrates the finite element model of the 
pipe. As the primary focus of this application lies in validating the performance of the proposed method, some 
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reasonable simplifications are made in the modeling process, such as the corrosion degree is directly reflected in the 
random variable of crack depth, instead of modeling the chemical and physical process.  
 
The proposed method with 2,000 essential candidate training points is performed and compared with the other state-
of-the-art methods. The results of reliability analysis by different methods are summarized in Table 6. For this problem, 
the reference result by MCS is not available due to the extremely high computational costs. Thus, the errors are not 
reported here. We can still observe that while the proposed method and AK-MCS-ESC reach very close estimates of 
failure probability, the proposed method requires nearly 20% fewer training points compared to AK-MCS-ESC and 
achieves more stable results. From the boxplots in Fig. 11, it can also be shown that PCK-EFF-BS produces unstable 
results, as the beta stability stops training too early.  

 
 

Fig. 10 Illustration of the finite element model for the defected pipe  
 
Table 6 Reliability results for Example 4 

Method Average number of training points 
(Standard deviation) 𝑷𝒇 (Standard deviation) 

AK-GELF-ESC 37.0 (5.2) 1.86×10-3 (8.45×10-5) 
AK-MCS-ESC 45.5 (6.3) 1.87×10-3 (7.48×10-5) 
PCK-EFF-BS 28.9 (6.8) 1.65×10-3 (5.30×10-4) 
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Fig. 11 The comparison of different methods for Example 4 

 
6. Conclusions 
How to efficiently construct an accurate Kriging surrogate model for reliability analysis has been a major problem in 
Kriging-assisted reliability analysis. Various active learning functions have been developed, which try to find the 
training points that help construct the Kriging surrogate model. In this study, we propose a global error-based learning 
function that takes an alternative approach than the one in the other studies. Instead of trying to locate the training 
points that have large uncertainties and are close to the limit state, the proposed method aims to find the training points 
that directly lower the maximum error of the Kriging-based reliability estimate by considering the future hypothetical 
uncertainty information of the important candidate training points. The global impact of selecting the training point is 
considered to ensure that the best training point is selected. The proposed method has been evaluated on three 
numerical problems and one practical engineering problem. The results show that the proposed method can construct 
a Kriging surrogate model for reliability analysis more efficiently while maintaining desired accuracy. The proposed 
method outperforms the other state-of-the-art methods in both accuracy and efficiency in the cases investigated. The 
proposed active learning function can be easily extended to integrate with different simulation methods to tackle 
extremely rare event problems in future research. In addition, it has the potential of being used to efficiently quantify 
the risks of real-world projects more comprehensive engineering modeling, and also for other reliability related 
problems, such as time-dependent reliability problems and reliability-based design optimization problems. 
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