

1 **Analytical Robust Design Optimization for Hybrid Design Variables: An Active-
2 learning Methodology Based on Polynomial Chaos Kriging**

4 Chaolin Song¹, Abdollah Shafieezadeh^{2*}, Rucheng Xiao¹, Bin Sun¹

5 ¹Department of Bridge Engineering, Tongji University, Shanghai, 200092, China

6 ²Risk Assessment and Management of Structural and Infrastructure Systems (RAMSIS) Lab, Department of Civil,
7 Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, United States

8 *Email address of the corresponding author: shafieezadeh.1@osu.edu

10 **ABSTRACT**

11 In robust design optimization, statistical moments of performance are widely adopted in formulating
12 robustness metrics. To address the high computational costs stemming from the many-query nature of such
13 optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been
14 developed based on surrogate models. However, existing methods consider random variables as the sole
15 model input, which excludes, from the application scope, problems that also involve deterministic design
16 variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology
17 for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical
18 moments of performance are developed considering that the Polynomial Chaos Kriging model is established
19 in the augmented space of the deterministic design and random variables. This is achieved by systematically
20 decoupling associations with deterministic input from random input, providing effective solutions even
21 when the orthonormality of the basis function is not applicable in the augmented space. This work also
22 presents an active-learning framework enabling seamless implementation of various numerical
23 optimization methods. Several numerical examples and a practical application illustrate the performance
24 and superiority of the proposed method.

25
26 **Key words:** *Robust design optimization, Polynomial Chaos Kriging, analytical formula, robustness index,
27 hybrid random and deterministic design variables*

30 **1. Introduction**

31 Structural optimization has emerged as a powerful tool for developing optimal design solutions, taking into
32 account various constraints within the design domain. Besides many successful implementations, it has
33 been acknowledged that multiple sources of aleatory and epistemic uncertainties are able to influence the
34 system performance [1]. Therefore, incorporating uncertainties into the design optimization has received
35 much attention and become a vital branch of structural optimization. Reliability-based design optimization
36 and robust design optimization are two allied but distinct approaches [2]. The former is concerned with
37 providing the most desirable design while quantitatively setting constraints for the failure probability [3].
38 The latter, on the other hand, typically aims at optimizing the mean response of a system while reducing its
39 sensitivity in the face of variations [4].

40 The earliest work for robust design was pioneered by Genichi Taguchi [5]. Subsequently, a number
41 of studies extended Taguchi's method (see reviews by Beyer and Sendhoff [6], Zang et al. [7], and Park et
42 al. [8]). With the developments of computational mechanics and numerical optimization methods,
43 researchers have also made efforts to take a broader view on robust design [9]. Various formulations have
44 been present as robustness metrics under optimization frameworks. In general, these measures can be
45 grouped into the possibilistic type (e.g., fuzzy sets, convex models, information gap methods [10, 11]) and
46 probabilistic type [4]. The latter, as the primary concern of this work, is well suited when sufficient
47 information is provided to define the joint probability distribution of random parameters. In such cases, the
48 mean and variance of structural response are typically consolidated to define the problem. Notably,
49 compared with deterministic design optimization, a significantly higher computational challenge
50 intrinsically exists due to the incorporation of uncertainty analysis into the optimization routine. Techniques
51 grounded in surrogate modeling [12-14], which aim at creating a cheaper-to-evaluate mathematical model
52 as a substitute for the original computational model, have garnered significant interest for mitigating the
53 computational challenges in RDO [15, 16]. To fully take advantage of the information from surrogate
54 models and eliminate the computational burden of uncertainty quantification, a key research direction is
55 the development of analytical approaches for computing the robustness index. With such analytical
56 estimation, solving a RDO problem can be as simple as handling a deterministic counterpart.

57 Surrogate models akin to Polynomial Chaos Expansion (PCE) and Polynomial Dimensional
58 Decomposition (PDD) typically use a set of orthonormal polynomials to fit the trend of a generic output
59 function. Taking advantage of the orthonormality feature, Polynomial basis-based models serve as powerful
60 tools for analytically estimating various properties of the stochastic response. For example, Ren and
61 Rahman [17] established analytical formulas for the first two statistical moments and first-order derivatives
62 with respect to a variable using PDD and proposed a sequential gradient-based optimization framework.
63 Lee and Rahman [18] further developed a generalized PCE model founded on a whitening transformation
64 algorithm, and therefore random variables obeying dependent distributions can be better handled in their
65 proposed framework. Chakraborty et al. [19] formulated an analytical expression for estimating robustness
66 via hybrid Polynomial Correlated Function Expansion. Zhou et al. [20] developed the PC-GK-SBL
67 surrogate model, which combined polynomial chaos expansion (PCE) and Gaussian kernel (GK) in the
68 sparse Bayesian learning (SBL) framework. Liu et al. [21] investigated the analytical RDO method based
69 on PC-GK-SBL, and proposed an active learning function to adaptively refine the training data combining
70 the nearest distance to existing training samples and the distance to the located optimal solution.

71 Despite recent advancements in surrogate model-based analytical RDO, critical gaps within
72 existing methodologies persist and warrant attention. In many practical engineering applications, despite
73 facing a variety of internal and environmental uncertainties, some design variables should still be regarded
74 as deterministic. This is either because the corresponding output is intrinsically certain (e.g., the design of
75 the number of elements and other topological parameters) or because the associated uncertainty can be
76 confidently eliminated through validation (e.g., the parameters of a damper can be accurately measured
77 during the manufacturing process in some cases). However, most existing methods assume random
78 variables as the sole input to the surrogate model and subsequently develop analytical formulas. These
79 methods therefore struggle with problems that simultaneously incorporate deterministic design variables
80 and random variables, because the primary assumption for derivation is not founded. Artificially assuming

81 the deterministic variables as random inputs by introducing very small coefficients of variation is the
 82 simplest approach to transform the problem. However, this approach may not be appropriate since some
 83 design variables are inherently certain, thus introducing a conceptual inconsistency. Beyond that, treating
 84 such variables as random may considerably affect the efficiency of RDO by incurring additional
 85 computational burdens and introduce errors challenging the ability of RDO in minimizing the cost function
 86 and meeting constraint requirements.

87 To bridge the gap, this paper introduces a new method for efficient analytical robust design
 88 optimization considering hybrid random and deterministic design variables. The Polynomial Chaos Kriging
 89 (PCK) is used here as the surrogate model. PCK interprets the PCE in the universal Kriging framework to
 90 capture the global trend, making it a suitable choice due to its superior predictive capabilities as evidenced
 91 in [22]. The main contributions of this work are in the following two fronts. First, different from established
 92 methods [17-19, 21], this study proposes analytical solutions for the statistical moments based upon a global
 93 PCK surrogate model that is established on the augmented domain for all deterministic design and random
 94 variables. During the derivation process, this work systematically decouples the parts with deterministic
 95 input from those with random input, therefore yielding effective solutions even when the orthonormality of
 96 basis function is not applicable. Several classical numerical examples and a practical application of robust
 97 tuned mass damper (TMD) design optimization demonstrate the superiority of the proposed method
 98 compared to the state-of-the-art approaches. Additionally, compared with previous work [23], this paper
 99 symmetrically compares the method performance with and without the introduction of PCE trend for
 100 Kriging in RDO. Through investigations, it is evident that the PCK surrogate model generally perform
 101 slightly better than the Kriging surrogate model for solving RDO problems, because of the improvement of
 102 the ability to capture the global trend.

103 The paper is organized as follows. Section 2 recalls the fundamental theory about robust design
 104 optimization and the PCK surrogate model. Section 3 presents the proposed method, specifically active
 105 learning and PCK-assisted analytical RDO. Section 4 provides numerical and practical examples to
 106 illustrate the performance of the proposed method. Section 5 summarizes the conclusions of this work.
 107

108 2. Preliminaries

109 This section presents an overview of robust design optimization including a typical formulation of RDO
 110 problems. This is followed by an introduction to Kriging and PCK surrogate models.
 111

112 2.1 Robust Design Optimization

113 As an important branch of structural optimization, RDO aims at optimizing the design scheme while
 114 maintaining the objective or feasibility robustness. Let \mathbf{d} denote the design variables of optimization, which
 115 consists of two parts, i.e., \mathbf{d}_d , the deterministic design variables, and \mathbf{d}_μ , the mean value of some random
 116 variables. Let ξ denote the vector of random variables. The variance-based robust design optimization can
 117 be formulated as:

$$118 \begin{aligned} & \min_{(\mathbf{d})} obj(\mathbf{d}_d, \xi) \\ & \text{s. t.: } \left\{ \begin{array}{l} con_i(\mathbf{d}_d, \xi) \leq 0, i = 1, 2, \dots, n \\ \mathbf{d} = [\mathbf{d}_d, \mathbf{d}_\mu] \\ \xi \sim f(\xi | \mathbf{d}_\mu) \\ \mathbf{d}_l \leq \mathbf{d} \leq \mathbf{d}_u \end{array} \right. \end{aligned} \quad (1)$$

118 where $obj(\cdot)$ denotes the objective function, $con_i(\cdot)$ denotes the constraint function ($i = 1, 2, \dots, n$),
 119 $f(\xi | \mathbf{d}_\mu)$ denotes the distribution of ξ given \mathbf{d}_μ , and \mathbf{d}_l and \mathbf{d}_u denote the upper and lower bounds for the
 120 design variables, respectively. The weighted sum of the expected value and standard deviation of a
 121 performance function has been typically adopted to describe $obj(\cdot)$ and $con_i(\cdot)$, e.g., $\alpha_E \mathbb{E}[g(\mathbf{d}_d, \xi)] +$
 122 $\alpha_s \mathbb{S}[g(\mathbf{d}_d, \xi)]$ where $g(\cdot)$ denotes the performance function, α_E and α_s denote the weight factors. In some
 123 works, this problem is presented as a dual-objective optimization problem [24, 25]; however, due to space
 124 limit, the rest of this paper only focuses on the single-objective optimization as presented in Eq. (1).

125
126 **2.2 Kriging**

127 Kriging, developed by Krige [26] and Matheron [27], aims to predict the response of a function, based on
128 the assumption that the function of interest is a realization of a stochastic Gaussian process. Let \hat{g} denote
129 the predictor of Kriging and \mathbf{x} denote the vector of input; the predicted value of a point can be written as:

$$\hat{g}(\mathbf{x}) = F(\mathbf{x}) + z(\mathbf{x}) \quad (2)$$

130 where $F(\mathbf{x})$ is the regression part which can be expressed based on the regression model $\mathbf{f}(\mathbf{x})$ and
131 regression parameters $\boldsymbol{\beta}$, and $z(\mathbf{x})$ is a stationary Gaussian random process.

132 When defining the covariance between the outputs of two points (\mathbf{x} and \mathbf{x}') based on the distance, for a
133 dim dimensional problem, a typical Gaussian correlation model is:

$$R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}') = \prod_{k=1}^{dim} r(\theta_k, x_k, x'_k) = \prod_{k=1}^{dim} \exp \left[-\frac{1}{2} \left(\frac{x_k - x'_k}{\theta_k} \right)^2 \right] \quad (3)$$

134 Subsequently, the mean and variance of $\hat{g}(\mathbf{x})$ can be expressed as [28]:

$$\mu_K(\mathbf{x}) = \mathbf{f}(\mathbf{x})^T \boldsymbol{\beta}^* + \mathbf{r}^T \mathbf{R}^{-1} (\mathbf{Y}_m - \mathbf{f}(\mathbf{X}_m) \boldsymbol{\beta}^*) \quad (4)$$

$$\sigma_K^2(\mathbf{x}) = \sigma^2 (1 + \mathbf{u}^T (\mathbf{f}(\mathbf{X}_m)^T \mathbf{R} \mathbf{f}(\mathbf{X}_m))^{-1} \mathbf{u} - \mathbf{r}^T \mathbf{R}^{-1} \mathbf{r}) \quad (5)$$

135 where \mathbf{R} is the correlation matrix with $R_{ij} = R(\boldsymbol{\theta}, \mathbf{x}^{(i)}, \mathbf{x}^{(j)})$, and $\mathbf{r} = \{R(\boldsymbol{\theta}, \mathbf{x}^{(1)}, \mathbf{x}), \dots, R(\boldsymbol{\theta}, \mathbf{x}^{(m)}, \mathbf{x})\}$. $\boldsymbol{\theta}$ is
136 a vector of hyper-parameters that can be determined by the maximum likelihood estimation [29]. $\boldsymbol{\beta}^*$
137 denotes the generalized least-squares estimate.

138
139 **2.3 PC-Kriging**

140 Considering a vector \mathbf{x} describing the input variable, Polynomial Chaos Expansions (PCE) [30]
141 approximates the original performance function $g(\mathbf{x})$ by a sum of orthonormal polynomials:

$$\hat{g}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) \quad (6)$$

142 where $\Psi_{\alpha}(\cdot)$ denotes the multivariate orthonormal polynomials, c_{α} denotes the corresponding coefficient,
143 α denotes the index of the order of polynomials, and \mathcal{A} denotes the set of polynomials selected for
144 approximating $g(\cdot)$ [31, 32]. As noticed, compared to traditional regression models such as linear or
145 quadratic regressions, PCE shows better flexibility and performance in capturing the global trend of a
146 function. Therefore, some researchers proposed the PC-Kriging (or called PCK in the rest of this paper) to
147 take advantage of not only the global regression capability of PCE but also the interpolation and uncertainty
148 quantification capabilities of Kriging [22].

149 Let \mathbf{x} also denote the vector of input variables. The prediction of PCK can be formulated as:

$$\hat{g}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) + z(\mathbf{x}) \quad (7)$$

150 Compared with Eq. (2) the main difference lies in the introduction of the PCE as the global trend of the
151 surrogate model. And therefore, the same correlation model, such as the Gaussian model of Eq. (3) and the
152 corresponding hyperparameter $\boldsymbol{\theta}$ can be used to characterize the Gaussian random process $z(\mathbf{x})$.

153
154 **3. Methodology: Active-learning PCK-assisted RDO**

155 For a robust design optimization problem, as was explained in Section 2.1, the objective function ($obj(\cdot)$)
156 or the constraint function ($con(\cdot)$) can be formulated as $\alpha_E \mathbb{E}[g(\mathbf{x})] + \alpha_S \mathbb{S}[g(\mathbf{x})]$, where $g(\cdot)$ denotes the
157 performance function and α_E and α_S denote the weight factors. When both the deterministic design
158 variables and random variables are considered as input, it is noticed that $\mathbf{x} = [\mathbf{d}_d, \boldsymbol{\xi}]$. Therefore, with the
159 application of surrogate model, i.e., $\hat{g}(\cdot)$ as a substitute for the original function $g(\cdot)$, the statistical
160 properties can be estimated by simulation methods, such as MCS. However, the nested structure of
161 uncertainty quantification and optimization still challenges the solving procedure because numerous
162 evaluations of the robustness metric can be required in the optimization routine. Motivated by using
163 analytical solutions to fundamentally address this challenge and the genuine need to simultaneously

incorporate random and deterministic design variables, this work proposes new analytical solutions based on the PCK surrogate model in the rest of this section. Several remarks such as the strategy for dealing with difference correction models or distributions are also provided at the end of this section.

3.1 Analytical solution of the expectation of PCK

Let us consider $g(\mathbf{x})$ as the objective of the RDO problem, where \mathbf{x} denotes the input variables. As noticed, when the surrogate model is built on the augmented domain, the set of input variables can be presented as $\mathbf{x} = [\mathbf{d}_d, \boldsymbol{\xi}]$. Let dim_{ξ} denote the dimension of the input variable $\boldsymbol{\xi}$ with $\boldsymbol{\xi} = \{\xi_1, \dots, \xi_{dim_{\xi}}\}$, and dim_d denote the dimension of the input variable \mathbf{d}_d with $\mathbf{d}_d = \{d_{d,1}, \dots, d_{d,dim_d}\}$. The dimension of the input of PCK is therefore $dim = dim_{\xi} + dim_d$.

With optimized hyperparameters $\boldsymbol{\theta}^* = (\boldsymbol{\theta}_d^*, \boldsymbol{\theta}_{\xi}^*)$, $\boldsymbol{\theta}_d^* = \{\theta_{d,1}^*, \dots, \theta_{d,dim_d}^*\}$, $\boldsymbol{\theta}_{\xi}^* = \{\theta_{\xi,1}^*, \dots, \theta_{\xi,dim_{\xi}}^*\}$ and the optimized coefficients of PCE denoted by \mathcal{A}^* , the prediction of a PCK can be recast as:

$$\hat{g}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) + \mathbf{r}^T \mathbf{R}^{-1} (\mathbf{Y}_m - F(\mathbf{X}_m)) \quad (8)$$

Let \mathbf{y}^* denote $\mathbf{R}^{-1}(\mathbf{Y} - F(\mathbf{X}_m))$. Note that $F(\mathbf{X}_m)$ is denoted by the PCE of Eq. (6), and \mathbf{R} is the matrix with $R_{ij} = R(\boldsymbol{\theta}^*, \mathbf{x}, \mathbf{x}^{(i)})$. \mathbf{R}^{-1} , \mathbf{Y} and $F(\mathbf{X}_m)$ are independent of the input \mathbf{x} . Considering that $\mathbf{y}^* = [\gamma_1^*, \dots, \gamma_m^*]^T$ where m denotes the number of training samples of PCK, Eq. (8) can be recast as:

$$\hat{g}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) + \sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}^*, \mathbf{x}, \mathbf{x}^{(i)}) \quad (9)$$

where $\mathbf{X}_m = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ denotes the database of the training samples. With input \mathbf{x} consisting of \mathbf{d}_d and $\boldsymbol{\xi}$, Eq. (9) can be further expanded to:

$$\hat{g}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) + \sum_{i=1}^m \left[\gamma_i^* \prod_{j=1}^{dim_d} r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) \prod_{k=1}^{dim_{\xi}} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) \right] \quad (10)$$

Thus, the expectation for $\hat{g}(\mathbf{x})$ can be formulated as:

$$\begin{aligned} \mathbb{E}[\hat{g}(\mathbf{x})] &= \mathbb{E} \left[\sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) + \sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)}) \right] \\ &= \mathbb{E} \left[\sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) \right] + \sum_{i=1}^m \left(\gamma_i^* \cdot \prod_{j=1}^{dim_d} r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) \cdot \mathbb{E} \left[\prod_{k=1}^{dim_{\xi}} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) \right] \right) \end{aligned} \quad (11)$$

For the first part of Eq. (11), i.e., $\mathbb{E}[\sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x})]$, it worth noticing that due to deterministic design variable \mathbf{d}_d is also considered as input, $\mathbb{E}[\sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x})] \neq c_0$ that is only correct when \mathbf{x} consists of all random variables and corresponding polynomial basis functions are adopted. Herein, let $\Psi_{\alpha}(\mathbf{x}) = \prod_{j=1}^{dim_d} \psi_{\alpha}(d_{d,j}) \cdot \prod_{k=1}^{dim_{\xi}} \psi_{\alpha}(\xi_k)$ generally denote the multi-variant polynomial that is the product of polynomial basis in each dimension. With independent input variables, the above equation can be reformulated as:

$$\mathbb{E} \left[\sum_{\alpha \in \mathcal{A}^*} c_{\alpha} \Psi_{\alpha}(\mathbf{x}) \right] = \sum_{\alpha \in \mathcal{A}^*} \left(c_{\alpha} \cdot \prod_{j=1}^{dim_d} \psi_{\alpha}(d_{d,j}) \cdot \prod_{k=1}^{dim_{\xi}} \mathbb{E}[\psi_{\alpha}(\xi_k)] \right) \quad (12)$$

Furthermore, it is noticed that:

$$\mathbb{E}[\psi_{\alpha}(\xi_k)] = \int f(\xi_k | \mathbf{d}_{\mu}) \cdot \psi_{\alpha}(\xi_k) d\xi_k \quad (13)$$

For the second part of Eq. (11), when the separated Gaussian correlation model as shown by Eq. (3) is adopted, and random variables are independent, $\mathbb{E} \left[\prod_{k=1}^{dim_{\xi}} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) \right]$ can be formulated as:

$$\mathbb{E} \left[\prod_{k=1}^{dim_{\xi}} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) \right] = \prod_{k=1}^{dim_{\xi}} \mathbb{E} \left(\exp \left[-\frac{1}{2} \left(\frac{\xi_k - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right)^2 \right] \right) \quad (14)$$

192 For a single component of the above equation, the expectation can be calculated as:

$$\mathbb{E}\left(\exp\left[-\frac{1}{2}\left(\frac{\xi_k - \xi_k^{(i)}}{\theta_{\xi,k}^*}\right)^2\right]\right) = \int \sqrt{2\pi} \theta_{\xi,k}^* \cdot f(\xi_k | \mathbf{d}_\mu) \cdot \mathcal{N}\left[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2\right] d\xi_k \quad (15)$$

193

194 Therefore, combining Eqs. (11)-(15), the expected value of the prediction of PCK can be efficiently
195 determined. Notably, the analytical solution for some parts of the equations depends on the distribution of
196 random variables. For a comprehensive understanding, the formulas for the expectation when random
197 variables follow Gaussian distributions are provided in Appendix A, and those for uniform distributions
198 provided in Appendix B.

199

200 3.2 Analytical solution of the variance of PCK

201 This section focuses on the analytical solution for the variance of the PCK prediction. The variance of the
202 stochastic output based on a PCK surrogate model can be formulated as:

$$\text{var}(\hat{g}(\mathbf{x})) = \mathbb{E}[\hat{g}(\mathbf{x})^2] - \mathbb{E}[\hat{g}(\mathbf{x})]^2 \quad (16)$$

203 As the formula for determining $\mathbb{E}[\hat{g}(\mathbf{x})]$ has been provided in the previous section, $\mathbb{E}[\hat{g}(\mathbf{x})]^2$ can be easily
204 calculated. The rest of this section focuses on the computation of $\mathbb{E}[\hat{g}(\mathbf{x})^2]$.

$$\begin{aligned} \mathbb{E}[\hat{g}(\mathbf{x})^2] &= \mathbb{E}\left[\left(\sum_{\alpha \in \mathcal{A}^*} c_\alpha \Psi_\alpha(\mathbf{x}) + \sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right)^2\right] \\ &= \mathbb{E}\left(\left[\sum_{\alpha \in \mathcal{A}^*} c_\alpha \Psi_\alpha(\mathbf{x})\right]^2\right) + 2 \times \mathbb{E}\left[\sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} \gamma_i^* c_\alpha \Psi_\alpha(\mathbf{x}) R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right] + \mathbb{E}\left(\left[\sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right]^2\right) \end{aligned} \quad (17)$$

205 For the first part of Eq. (17), it is worth noticing that due to the introduction of deterministic design variables,
206 $\mathbb{E}[(\sum_{\alpha \in \mathcal{A}} c_\alpha \Psi_\alpha(\mathbf{x}))^2] \neq \sum_{\alpha \in \mathcal{A}} c_\alpha^2$. With independent variables, it can be formulated as:

$$\begin{aligned} &\mathbb{E}\left(\left[\sum_{\alpha \in \mathcal{A}^*} c_\alpha \Psi_\alpha(\mathbf{x})\right]^2\right) \\ &= \sum_{\alpha \in \mathcal{A}^*} \sum_{\vartheta \in \mathcal{A}^*} \left(c_\alpha c_\vartheta \cdot \prod_{j=1}^{\text{dim}_d} \psi_\alpha(d_{d,j}) \psi_\vartheta(d_{d,j}) \cdot \prod_{k=1}^{\text{dim}_\xi} \mathbb{E}[\psi_\alpha(\xi_k) \psi_\vartheta(\xi_k)] \right) \end{aligned} \quad (18)$$

207 Then, $\mathbb{E}[\psi_\alpha(\xi^{(k)}) \psi_\vartheta(\xi^{(k)})]$ can be obtained as:

$$\mathbb{E}[\psi_\alpha(\xi_k) \psi_\vartheta(\xi_k)] = \int f(\xi_k | \mathbf{d}_\mu) \cdot \psi_\alpha(\xi_k) \cdot \psi_\vartheta(\xi_k) d\xi_k \quad (19)$$

208

209 For the second part of Eq. (17), $\sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} \gamma_i^* c_\alpha \Psi_\alpha(\mathbf{x}) R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})$ can be formulated as:

$$\begin{aligned} &\mathbb{E}\left[\sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} \gamma_i^* c_\alpha \Psi_\alpha(\mathbf{x}) R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right] \\ &= \mathbb{E}\left(\sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} c_\alpha \Psi_\alpha(\mathbf{x}) \left[\gamma_i^* \prod_{j=1}^{\text{dim}_d} r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) \prod_{k=1}^{\text{dim}_\xi} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) \right] \right) \end{aligned} \quad (20)$$

210 Let $\Psi_\alpha(\mathbf{x}) = \prod_{j=1}^{\text{dim}_d} \psi_\alpha(d_{d,j}) \cdot \prod_{k=1}^{\text{dim}_\xi} \psi_\alpha(\xi_k)$ generally denote the multi-variant polynomial that is the
211 product of the polynomial basis in each dimension. Subsequently, the above equation can be reformulated
212 as:

$$\begin{aligned} &\mathbb{E}\left[\sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} \gamma_i^* c_\alpha \Psi_\alpha(\mathbf{x}) R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right] \\ &= \sum_{i=1}^m \sum_{\alpha \in \mathcal{A}^*} \left(\gamma_i^* c_\alpha \cdot \prod_{j=1}^{\text{dim}_d} \psi_\alpha(d_{d,j}) r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) \cdot \mathbb{E}\left[\prod_{k=1}^{\text{dim}_\xi} \psi_\alpha(\xi_k) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})\right] \right) \end{aligned} \quad (21)$$

213 Let us also consider that the separated Gaussian correlation model is applied, and the random variables are
214 independent. It is therefore $\mathbb{E}\left[\prod_{k=1}^{\text{dim}_\xi} \psi_\alpha(\xi_k) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})\right] = \prod_{k=1}^{\text{dim}_\xi} \mathbb{E}[\psi_\alpha(\xi_k) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})]$ which can be
215 recast as:

$$\mathbb{E}[\psi_\alpha(\xi_k)r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})] = \sqrt{2\pi}\theta_{\xi,k}^* \int f(\xi_k | \mathbf{d}_\mu) \cdot \psi_\alpha(\xi_k) \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k \quad (22)$$

216
217 For the third part of Eq. (17), $\mathbb{E}([\sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})]^2)$ can be recast as:

$$\begin{aligned} & \mathbb{E}\left(\left[\sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right]^2\right) \\ &= \mathbb{E}\left[\sum_{i=1}^m \sum_{t=1}^m \left(\gamma_i^* \gamma_t^* \cdot \prod_{j=1}^{\text{dim}_d} [r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(t)})] \cdot \prod_{k=1}^{\text{dim}_\xi} [r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})]\right)\right] \end{aligned} \quad (23)$$

218 Let $\chi_{i,t}$ denote $\gamma_i^* \gamma_t^* \prod_{j=1}^{\text{dim}_d} [r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(i)}) r(\theta_{d,j}^*, d_{d,j}, d_{d,j}^{(t)})]$ that is deterministic given i, t . The above
219 equation can be simplified as:

$$\mathbb{E}\left(\left[\sum_{i=1}^m \gamma_i^* R(\boldsymbol{\theta}, \mathbf{x}, \mathbf{x}^{(i)})\right]^2\right) = \sum_{i=1}^m \sum_{t=1}^m \left(\chi_{i,t} \cdot \mathbb{E}\left[\prod_{k=1}^{\text{dim}_\xi} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})\right]\right) \quad (24)$$

220 With the same assumption that the probability density functions for the random variables are independent
221 and the Gaussian correlation model is adopted, $\mathbb{E}\left[\prod_{k=1}^{\text{dim}_\xi} r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})\right]$

$$\begin{aligned} &= \prod_{k=1}^{\text{dim}_\xi} \mathbb{E}[r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})], \text{ where:} \\ & \quad \mathbb{E}[r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})] \\ &= 2\pi(\theta_{\xi,k}^*)^2 \int f(\xi_k | \mathbf{d}_\mu) \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(t)}, (\theta_{\xi,k}^*)^2] d\xi_k \end{aligned} \quad (25)$$

222 Therefore, combining the above equations, $\text{var}(\hat{g}(\mathbf{x}))$ can be efficiently obtained based on the
223 distribution of random variables, together with the standard deviation of the performance function

224 $\mathbb{S}[\hat{g}(\mathbf{x})] = \sqrt{\text{var}(\hat{g}(\mathbf{x}))}$. For the full analytical solutions, readers are referred to Appendix A and B for
225 Gaussian and uniform distributions, respectively. For the integrity of this work, the authors make some
226 remarks as follows, to further discuss the advantages of this analytical robustness formula and the
227 assumptions made during the derivation.

228 **Remark 1: On the distribution of the random variables and the correlation model**

229 This section discusses the main assumptions made for the derivation of the analytical formula of
230 the robustness index, i.e., the expectation and standard deviation of $\hat{g}(\cdot)$, as well as the way to release those
231 assumptions. A key assumption is that the random variables are independent and the random variables ξ
232 follow certain types of distributions (Gaussian or uniform distributions). For other cases, probabilistic
233 transformation strategies can be adopted to smooth the performance function and to facilitate the calculation
234 of the statistics. Another assumption is that the separated Gaussian correlation model is adopted for the
235 PCK surrogate model. Because the separated Gaussian correlation model is the most popular one and due
236 to the limit on paper length, this work does not present the full analytical formulations for other types of
237 correlation models. Future works can expand upon this by reformulating Eq. (13), Eq. (22) and Eq. (25).

238 **Remark 2: On the difference between PCK and Kriging**

239 The main difference between the PCK and the Kriging surrogate model lies in the establishment of
240 the trend function, i.e., $F(\mathbf{x})$ in Eq. (1) designed as $\mathbf{f}(\mathbf{x})^T \boldsymbol{\beta}$ or $\sum_{\alpha \in \mathcal{A}} c_\alpha \Psi_\alpha(\mathbf{x})$. Taking advantage of the
241 ability to capture the global trend of the function, PCK provides a group of optimized basis functions. In
242 comparison, Kriging requires that the user define the type of global trend function before the
243 implementation of the surrogate model. Despite this difference, the above derivations in Section 3.1 and
244 3.2 can be extended to Kriging [23]. On the other hand, as PCK provides better ability to capture the global
245 trend of the function, PCK is seen to provide slightly better performance when estimating the statistical
246 moments than Kriging for the same training dataset. This is validated by the comparison in Appendix D for
247 the performance of PCK and ordinary Kriging for five classical numerical examples.

251
252 **Remark 3: On the objective of analytical robustness formula**

253 To further highlight the motivation behind this work, Appendix E compares the computational cost
254 of estimating the statistical moments using both MCS and the formulated analytical equations. It is evident
255 that the proposed analytical formulas are significantly faster than repeated sampling, offering nearly 100
256 times improvement in cost for some cases. Considering that global search optimization methods, such as
257 evolutionary algorithms, are applied for global searching or improved handling of problems with discrete
258 design variables, the proposed analytical formula prove immensely beneficial as numerous evaluations of
259 the robustness index might be needed during the optimization loop. Additionally, when viewed as a specific
260 interpretation of Kriging, it is evident that estimating the statistical moments of PCK is more costly than
261 Kriging, for both analytical estimation and MCS approaches. This is mainly because the trend function of
262 a PCK surrogate model is inherently not simpler than that of an ordinary Kriging.
263

264 **Remark 4: On the deterministic design variables**

265 As one of the primary motivations of this work, this remark presents the main difference due to the
266 introduction of deterministic design variables. Notably, for problems without deterministic design variables,
267 the above equations can be simplified by removing all terms associated with d (see Eqs. (11), (18), (21)
268 and (23)). The simplified equations are consistent with the previous work [20], despite the difference
269 between the adopted surrogate models.
270

271 **Remark 5: About the scaling**

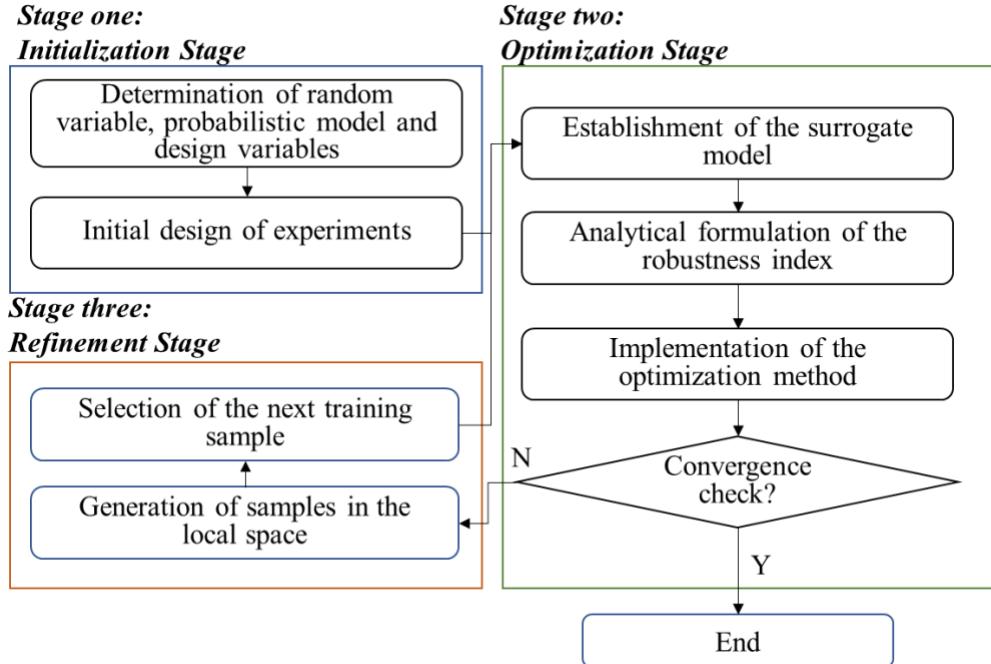
272 It is worthy to note that in order to guarantee the numerical stability, an auxiliary space can be
273 introduced by scaling the input variables, i.e., $\mathbf{x} \rightarrow \mathbf{u}$ by:

$$u_j = \frac{x_j - \mu(x_j)}{\sigma(x_j)} \quad j = 1, 2, \dots, \dim \quad (26)$$

274 In this case, the optimized correlation parameter $\boldsymbol{\theta}^*$ is based on the auxiliary space, and therefore scaling
275 of the training data is needed when calculating the statistics. Let $\mathbf{X}_m = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\}$ denote the training
276 samples in the original space and $\mathbf{U}_m = \{\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(m)}\}$ denotes the training samples in the auxiliary space.
277 It is $\mathbf{x}^{(i)} = [\boldsymbol{\xi}^{(i)}, \mathbf{d}_d^{(i)}]$ and $\mathbf{u}^{(i)} = [\mathbf{u}_{\xi}^{(i)}, \mathbf{u}_{d_d}^{(i)}]$ ($i = 1, 2, \dots, m$). The parameters and bounds for the
278 distributions of random variables can also be scaled. The formulated analytical expressions are still feasible
279 in the auxiliary space after scaling.
280

281 **3.3 The proposed framework**

282 It is worth noticing that when taking advantage of the proposed analytical formula to express robustness
283 index, it is still vital to establish an accurate mapping from the input to output space, i.e., guaranteeing the
284 accuracy of the surrogate model especially in the region of interest. To this end, following the well-known
285 concept of active learning, a generalized framework for efficient PCK-assisted robust design optimization
286 is presented in this section. Fig. 1 illustrates the flowchart of the proposed method.
287



288
289
290

291 As noticed, the proposed method mainly consists of three stages. The first step is named as
292 **Initialization Stage**. In this stage, based on the robust design optimization problem, the associated design
293 variables, random variables and the probabilistic model should be established. The formulation of the RDO
294 problem should be set up as indicated in Eq. (1). For performance functions involving complex
295 computational models, an initial design of experiments should be determined, and the performance models
296 are accordingly evaluated. Techniques such as Latin hypercube sampling can be used to generate initial
297 training samples.

298 Subsequently, the framework enters the next stage: **Optimization Stage**. The PCK surrogate model
299 is firstly established in the augmented space, i.e., $\mathbf{d}_d \times \xi$. Then, based on the proposed analytical formula
300 of robustness in Section 3.2 and Section 3.3, the objective and constraint functions are analytically
301 expressed. Based on the feature of the problem, such as discrete or continuous optimization, single-modal
302 and multi-modal optimization, the numerical optimization method is selected. The RDO problem is
303 subsequently solved with the current surrogate model. Three criteria are adopted in this paper to guarantee
304 the accuracy of the final solution. First, the number of implementations of an optimization algorithm must
305 be larger than Ψ_n . Furthermore, let Ψ_{mse} denote the threshold for the mean squared error. The mean value
306 for the mean squared error (σ_K / μ_K) of local samples should be smaller than Ψ_{mse} to guarantee the accuracy
307 of the surrogate model in the local region. Also, the change of the optimal solution in the current iteration
308 and the last iteration should be smaller than the threshold Ψ_Δ to ensure the robustness of the solution. If all
309 criteria are satisfied, the method ends and the optimal solution is provided. Otherwise, the method enters
310 the third stage for the refinement of the surrogate model.

311 The third stage of the proposed method is the **Refinement Stage** of the surrogate model. A group
312 of realizations are firstly sampled centered on the optimal solution from Stage Two. This work adopts the
313 original distribution of random variables to general samples, i.e., implementing the MCS. Then, the
314 probability density of the sample and the uncertainty level of the prediction are combined as the learning
315 function to select the next training sample, e.g., $LF(\mathbf{x}) = PDF(\mathbf{x}) \cdot \sigma_K(\mathbf{x})$. The sample that maximizes the
316 learning function is selected and evaluated on the original function. After refinement of the training
317 database, the method goes back to the second stage for the next implementation of optimization.

318

319 **4. Numerical Examples**

320 In this section, the proposed method is carefully investigated on several numerical examples and a practical
 321 engineering application about TMD design optimization. Multiple other surrogate-based methods are
 322 compared to indicate the superiority of the proposed method. For a fair comparison, these methods are
 323 implemented 10 times independently. The results are then compared, either by using their average or by
 324 focusing on those with median performance in discrete problems. The UQLab toolbox (version 2.0.0) is
 325 adopted for the establishment of the surrogate models, e.g., PCK, Kriging and etc. Either a Gaussian or
 326 uniform distribution is defined to cover the design space of a design or random variable, thus facilitating
 327 the establishment of a PCK model in the toolbox. Hybrid Genetic Algorithm (HGA) is selected as the
 328 method for training PCK and Kriging [28]. All numerical experiments are implemented based on a
 329 computer with AMD Ryzen 5900HX CPU, RAM 32 GB.

330 **4.1 Example one**

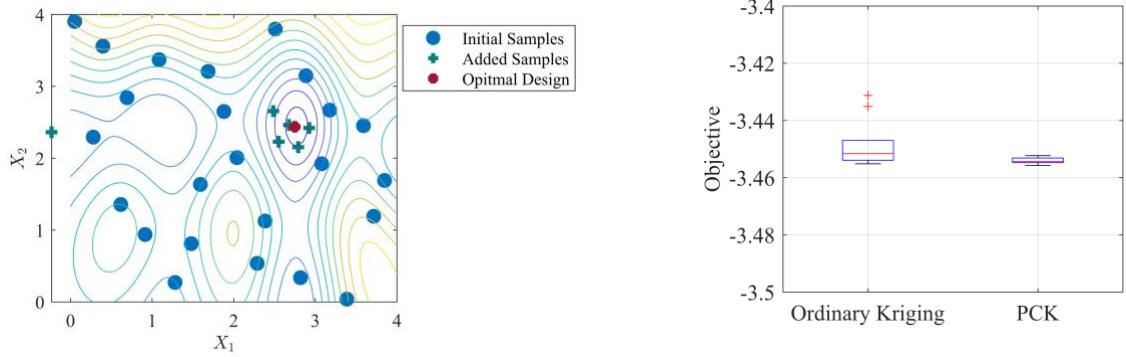
331 The first example is a two-dimensional numerical problem, named 2D Haupt function [21]. Two
 332 independent random variables are considered in this example. The mean values of the random variables are
 333 taken as the design variables with standard deviation of 0.2.

$$\begin{aligned}
 & \min_{(\mathbf{d}_\mu)} \mu_g + \sigma_g \\
 & \text{where: } \left\{ \begin{array}{l} g(\xi) = \xi_1 \sin(4\xi_1) + 1.1\xi_2 \sin(2\xi_2) \\ \xi_i \sim \mathcal{N}(d_{\mu,i}, 0.2^2), i = 1, 2 \\ 0 \leq d_{\mu,i} \leq 4, i = 1, 2 \\ \mathbf{d}_\mu = [d_{\mu,1}, d_{\mu,2}] \end{array} \right. \quad (27)
 \end{aligned}$$

334 As this example is a multimodal optimization problem, a heuristics optimization method, called the
 335 improved $(\mu+\lambda)$ differential evolution (IDE) [33], is applied to search for the best solution. Table 1
 336 compares the results from the proposed method and several other techniques, including relevance vector
 337 machine (RVM), radial basis function (RBF), artificial neural network (ANN), sparse polynomial chaos
 338 expansion based on the least angle regression (PCE-LAR), Kriging with passive learning, Kriging with
 339 Expected Improvement (EI) learning function and Kriging with Mean Squared Error (MSE) learning
 340 function [21]. As the PCK can be considered as a specific interpretation of Kriging, in this context, the
 341 ordinary Kriging-based proposed framework is also compared here to illustrate the influence of the
 342 surrogate model. From the presented results, it can be observed that:

343 • The use of surrogate models, such as ANN, RBF or Kriging, can significantly reduce the calls to
 344 the performance function when solving this RDO problem; however, the direct application of these
 345 techniques may not guarantee that a true global optimal solution is found. The maximum relative error
 346 incurred by the surrogate model, such as RBF, can be as large as 122%. On the other hand, after adaptive
 347 refining the surrogate model, such as Kriging-EI and Kriging-MSE, the methods can yield much better
 348 solutions, and the proposed method generally achieves the best performance.

349 • The ‘No’ or ‘Yes’ is indicated in the last column of Table 1 to distinguish the methods with
 350 analytical solutions from the methods with Monte Carlo Simulation to assess the robustness index.
 351 Because the evaluations of robustness index are required many times in the optimization routine, surrogate
 352 model-based methods still suffer from the nested loop of optimization and uncertainty quantification with
 353 the lack of analytical solutions. For instance, taking into account 950 evaluations of robustness index as
 354 counted by the optimization with crude MCS, considerable computational time is required to solve this
 355 two-dimensional problem even with surrogate models. In comparison, the proposed surrogate model-
 356 based analytical method consumes only tens of seconds to accurately finish the whole computation; the
 357 computational efficiency can be boosted over 100 times. The advantage of developing analytical robust
 358 optimization can be therefore clearly shown by the avoidance of such tremendous computational cost.



(a) the establishment of the PCK model

(b) the performance of the proposed method with PCK and Ordinary Kriging

Fig. 2 The establishment of the surrogate model and comparison of results

361
362

Table 1 Comparison of the results from the proposed and other methods for Example One.

Method	Optimal Solution ^a	Objective	$\Delta_{obj}(\%)$	Sample Size	Analytical Solution
MCS	(2.7489, 2.4369)	-3.4548	-	$10^7 \times 950$ ^b	No
RVM ^c	(2.4225, 2.4100)	-1.5399	55.42	32	No
ANN ^c	(1.7615, 2.2991)	-0.4049	88.27	32	No
RBF ^c	(1.4696, 1.5311)	0.7726	122.36	32	No
PCE-LAR ^c	(2.4215, 2.4338)	-1.5369	55.51	32	No
Kriging ^c	(2.2714, 2.4123)	-0.6384	81.51	32	No
Kriging-EI ^c	(2.7632, 2.4255)	-3.4474	0.23	24+4.4	No
Kriging-MSE ^c	(2.7563, 2.4119)	-3.4483	0.18	24+23.6	No
PC-GK-SBL ^c	(2.5921, 2.4374)	-2.8215	18.29	32	Yes
PC-GK-SBL- RLGE ^c	(2.7491, 2.4373)	-3.4543	0.01	31.1	Yes
Proposed method- Ordinary Kriging	(2.7473, 2.4273)	-3.4547	≈ 0	30.3	Yes
Proposed method- PCK	(2.7486, 2.4360)	-3.4544	0.01	30.3	Yes

363
364
365
366
367
368
369
370
371
372
373
374

- Compared with the existing surrogate model-based analytical RDO method [21], i.e., PC-GK-SBL with passive learning or PC-GK-SBL with RLGE learning function, the proposed method can achieve slightly better performance regarding the accuracy and efficiency of analysis. The PCK-based proposed method requires only 30.3 calls of the performance function on average, showing a relative error of nearly zero. Fig. 2 (a) shows the sequential sampling for the training database of PCK. The proposed method can accurately locate the true global optimum and converge to the optimum through adaptive refinements around the global optimal solution. When the Ordinary Kriging is adopted with the proposed analytical formula of robustness and active-learning framework, the performance is still good on average, however as Fig. 2 (b) shows, the PCK-based proposed method can perform slightly more stable compared with the Kriging-based approach. This is consistent with the aforementioned investigation in Appendix D.

^a the results are averaged over 10 independent runs.

^b the sample size for MCS indicates (the number of realizations to estimate the statistics) \times (the number of evaluations of the robustness index during the optimization loop).

^c [21] is referred to obtain the performance for the other surrogate model-based methods.

375
376
377
378
379
380
381
382
383
384
385

4.2 Example two

The second example consists of a revised robust design optimization problem for a truss structure, shown by Fig. 3 [17]. Three independent random variables are involved in this problem, i.e., the mass density ξ_1 , the applied external loading ξ_2 , and the material yield (tensile) strength ξ_3 . Two deterministic design variables are considered, i.e., the cross-section area d_1 and the half of the distance between the two bottom nodes d_2 . To highlight the features of the proposed method, d_1 is modeled as a discrete design variable with the candidate set of $\{10, 11, \dots, 20\}$ (unit: cm^2). The heuristics constrained optimization method, called the improved $(\mu+\lambda)$ constrained differential evolution (ICDE) [33], is applied in this example. Table 2 presents the distribution for the above random variables. Two constraints regarding the maximum stresses for the bars are considered. The robust design optimization problem is formulated as:

$$\begin{aligned}
 & \min_{(\mathbf{d}_d)} 0.05\mu_{g_0} + 0.25\sigma_{g_0} \\
 & \text{s.t.: } \begin{cases} c_1(\mathbf{d}_d, \xi) = 3\sigma_{g_1} - \mu_{g_1} \leq 0 \\ c_2(\mathbf{d}_d, \xi) = 3\sigma_{g_2} - \mu_{g_2} \leq 0 \end{cases} \\
 & \text{where: } \begin{cases} g_0(\mathbf{d}_d, \xi) = \xi_1 d_1 \sqrt{1 + d_2^2} \\ g_1(\mathbf{d}_d, \xi) = 1 - \frac{5\xi_2 \sqrt{1 + d_2^2}}{\sqrt{65}\xi_3} \left(\frac{8}{d_1} + \frac{1}{d_1 d_2} \right) \\ g_2(\mathbf{d}_d, \xi) = 1 - \frac{5\xi_2 \sqrt{1 + d_2^2}}{\sqrt{65}\xi_3} \left(\frac{8}{d_1} - \frac{1}{d_1 d_2} \right) \\ d_1 \in \{10, 11, \dots, 20\} \text{ (unit: } \text{cm}^2) \\ 0.1 \leq d_2 \leq 1.6 \text{ (unit: m)} \\ \mathbf{d}_d = [d_1, d_2] \end{cases} \quad (28)
 \end{aligned}$$

386

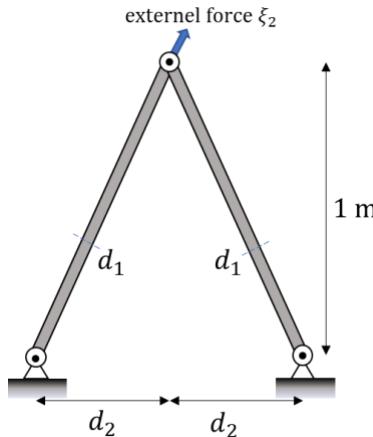


Fig. 3 The truss structure of Example two

387
388
389
390
391

Table 2 The design variables and distribution of random variables of Example Two.

Variables	Distribution	Mean	SD	Unit
Cross-sectional area (d_1)	Deterministic	d_1	—	cm^2
Half-horizontal span (d_2)	Deterministic	d_2	—	m
Mass density (ξ_1)	Beta	10,000	2,000	kg/m^3
Load (ξ_2)	Gumbel	800	200	kN
Yield strength (ξ_3)	Lognormal	1,050	250	MPa

392

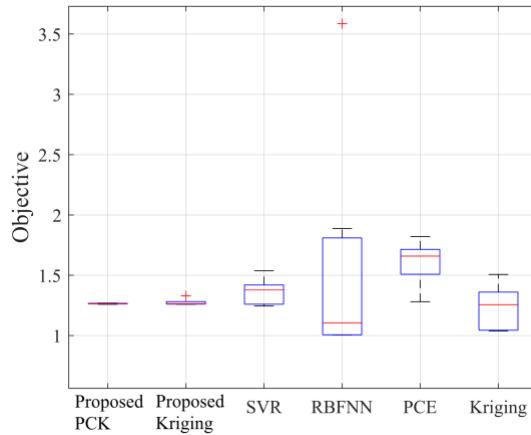
393

Table 3 Comparison of the results from the proposed and other methods for Example Two.

Method	Optimal Solution ^a	Objective	$\Delta_{obj}(\%)$	Constraint1 $-c_1$	Constraint2 $-c_2$	Sample Size	Analytical Solution
MCS	(12.00, 0.312)	1.257	—	≈ 0	-0.572	$10^5 \times 785^b$	No
SVR	(13.00, 0.334)	1.368	8.83%	-0.086	-0.584	128	No
RBFNN	(10.00, 0.104)	1.003	20.21%	0.819	-0.996	128	No
PCE-LAR	(16.00, 0.102)	1.606	27.76%	0.144	-0.997	128	No
Ordinary Kriging	(13.00, 0.429)	1.303	3.66%	-0.040	-0.473	128	No
Proposed method-Ordinary Kriging	(12.00, 0.332)	1.265	0.64%	-0.012	-0.552	88.5	Yes
Proposed method-PCK	(12.00, 0.329)	1.261	0.32%	-0.007	-0.554	87.5	Yes

394

395



396

397

398

399 Table 3 compares the results from the proposed method, and from multiple other surrogate models,
400 including support vector regression (SVR), radial basis function neural network (RBFNN), sparse
401 polynomial chaos expansion based on the least angle regression (PCE-LAR), and ordinary Kriging [28].
402 Fig. 4 depicts the boxplots that compares the performance of these methods, and it was noticed that:

403 • As illustrated in Fig. 4, among the techniques used for comparison, SVR generally delivers the best
404 performance with all solutions falling into the feasible domain. RNFNN exhibits the worst performance,
405 characterized by considerable fluctuations in the results obtained, and the median performance solutions
406 from both RBFNN and PCE are infeasible designs with respect to the first constraint function. The

^a the median performance solution is compared, and the averaged required sample is compared.

^b the sample size for MCS indicates (the number of realizations to estimate the statistics) \times (the number of evaluations of the robustness index during the optimization loop).

407 performance of the proposed method is the best among all approaches. The required calls for the proposed
 408 methods with ordinary Kriging and PCK are very similar (88.5 verse 87.5). Compared with MCS, the
 409 relative error from the proposed method with PCK is only 0.32%, while the one for the proposed method
 410 with ordinary Kriging is relatively larger (0.6%). For the discrete design variable, i.e., the cross section of
 411 the trusses, the PCK-based proposed method yields an accurate result of 12 cm² for all independent runs,
 412 while that for Kriging-based proposed method can result in a section design of 11 cm² occasionally.
 413 Therefore, as also illustrated in Fig. 4, the performance of the PCK-based proposed method is more stable
 414 for the investigated truss problem. The results also confirm the enhancement achieved through the
 415 incorporation of the PCE trend into the Kriging surrogate model.

416 • The proposed method remains the capability of providing analytical solution of robustness index
 417 for the example with both deterministic design variables and random variables. The existing method, i.e.,
 418 the PC-GK-SBL investigated in the last example, fails to provide the analytical solutions, because this
 419 method does not consider the involvement of deterministic design variables during the derivation, and
 420 therefore, the PC-GK-SBL is not compared in this example. This demonstrates the contribution of the
 421 proposed method with respect to extending the applicable scope of the analytical RDO methodology.
 422 Artificially introducing uncertainties into deterministic design variables can address challenges associated
 423 with hybrid random and deterministic variables; however, this approach may also introduce additional
 424 errors. For example, if considering that both the cross-sectional area and half-horizontal span follow
 425 lognormal distributions with a coefficient of variation of 0.05, the optimal design changes to (12, 0.331),
 426 representing approximately a 6% deviation in the span arrangement. Thus, it is vital to properly define
 427 the distribution parameters when treating deterministic variables as random.

429 4.3 Example three

430 The third example involves the robust topology design of a frame structure with element members
 431 considering the variations in the external loading [34, 35]. The topological design involves the definition
 432 of the number of active members and the corresponding sizes. The RDO problem is formulated as:

$$\min_{(\mathbf{d})} \mathbb{E}[g_y(\mathbf{d}, \xi)] + 6\mathbb{S}[g_y(\mathbf{d}, \xi)]$$

where:
$$\begin{cases} \sum_{i=1}^{10} l_i d_i \leq 5.43 \text{ (unit: cm}^2\text{)} \\ \xi = [\xi_{F,v}, \xi_{F,h}] \\ \mathbf{d} = [d_1, d_2, \dots, d_6] \end{cases} \quad (29)$$

433 where $g_y(\cdot)$ is defined as the weighted sum of displacements along the external forces, with weight factors
 434 of five for the vertical displacement and one for the horizontal displacement. Fig. 5 depicts the layout of
 435 the frame structure and the numbering of its elements. $\xi_{F,h}$ and $\xi_{F,v}$ denote random variables for the load
 436 magnitudes applied in the horizontal and vertical directions, respectively. $\xi_{F,v}$ and $\xi_{F,h}$ are assumed to
 437 follow Gumbel distributions; the mean values for both are 100 kN, while their coefficients of variation are
 438 0.2 and 0.02, respectively. The elastic modulus is considered as 100 GPa. Therefore, the objective is to
 439 optimize the frame design to ensure structural compliance, taking into account variations in the
 440 external loading and constraint on the material consumption. To find the optimum topology, each design
 441 variable d_i , representing the section areas for the corresponding frame members, can be selected from a
 442 discrete set. Zero is adopted to encode the inactivity of a member, i.e., $d_i \in \{0, 1, 2, \dots, 10\}$ (unit: cm²). With
 443 introduction of the structural symmetry, total six design variables are considered in this problem.



Fig. 5 The frame structure of Example three

The ICDE optimization method is also applied in this example to find the global optimal solution with discrete design variables. Table 4 compares the results from the proposed method, and from multiple other techniques, including SVR, RBFNN, PCE-LAR, and ordinary Kriging. Fig. 6 (a) depicts the optimum structural topology by the proposed method, and Fig. 6 (b) shows the boxplot for the performance of these methods. From the results, it can be noticed that:

- For multiple surrogate models employing passive learning with 128 training samples, the SVR method can generally facilitate the determination of the optimal structural topology, namely, for elements #1 and #5. However, the selection of element sizes is typically inconsistent with the solution determined by MCS. As shown in Fig. 6(b), the results from SVR exhibit certain discrepancies when compared with the true optimal solution. Moreover, with methods like ordinary Kriging, PCE and RBFNN, the determined topology can occasionally significantly differ from the optimal one. For example, RBFNN determined a result of (3,0,1,2,0,1) in one analysis. Thus, these methods are prone to incurring larger errors in this topology design problem.

Table 4 Comparison of the results from the proposed and other methods for Example Three.

Method	Optimal Solution ^a	Objective (mm)	$\Delta_{obj}(\%)$	Sample Size	Analytical Solution
MCS	(9, 0, 0, 0, 3, 0)	4.34	—	$10^4 \times 5580$ ^b	No
SVR	(6, 0, 0, 0, 4, 0)	4.75	9.45	128	No
RBFNN	(3, 0, 1, 2, 0, 1)	792.49	>100	128	No
PCE-LAR	(10, 1, 0, 0, 2, 0)	4.95	14.06	128	No
Ordinary Kriging	(10, 1, 0, 1, 1, 0)	7.20	65.90	128	No
Proposed method- Ordinary Kriging	(9, 0, 0, 0, 3, 0)	4.34	0	82.7	Yes
Proposed method- PCK	(9, 0, 0, 0, 3, 0)	4.34	0	85.4	Yes

- On the other hand, the proposed method is the only technique that retains the capability to provide an analytical solution for robustness. It is worth noting that due to the involvement of the topological design variable, i.e., the inactivity of a member encoded by '0', artificially introducing uncertainty around

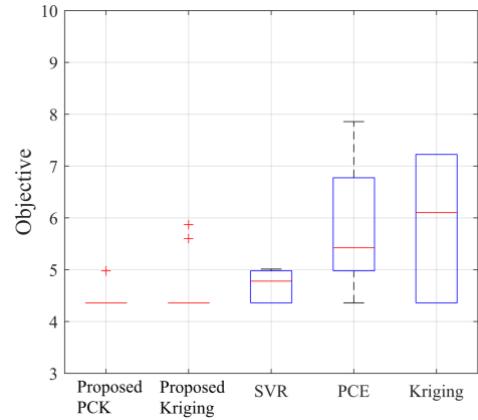
^a the median performance solution is compared, and the averaged required sample is compared.

^b the sample size for MCS indicates (the number of realizations to estimate the statistics) \times (the number of evaluations of the robustness index during the optimization loop).

467 a deterministic design is not often feasible, given the convergence issues with FEM analysis and the
 468 discrete nature of topological design. Thus, this application further emphasizes the primary concern and
 469 motivation of this work. The proposed method, employing a PCK surrogate model, achieves the best
 470 performance among all investigated methods. As depicted in Fig. 6(b), with an average of 85.4 runs of
 471 the performance function, the proposed method with PCK can typically accurately find the true optimal
 472 design. In comparison, the proposed method using ordinary Kriging requires 82.7 runs on average and
 473 occasionally results in a sub-optimal design. Therefore, as demonstrated in this example, the integration
 474 of the PCE trend in the metamodel contributes to the accuracy and robustness of the method's performance,
 475 even in RDO problem involving topological design.
 476



(a) the optimum topology

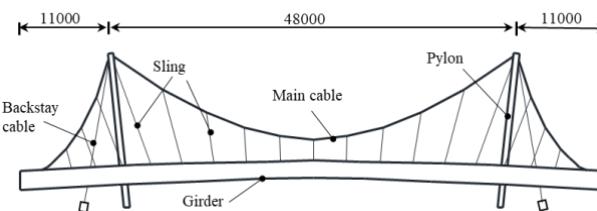


(b) the comparison of results from different methods

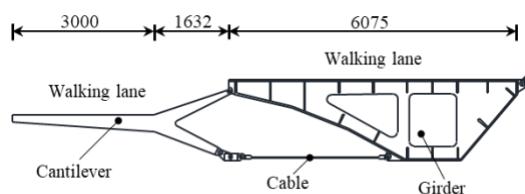
Fig. 6 The optimum design for Example three

4.4 Example four

The last example of this paper focuses on the application of the proposed methodology on the robust design optimization of a tuned mass damper (TMD) for a footbridge, which is a cable-supported bridge with a span arrangement of 11 m+48 m+11 m. The steel girder has an asymmetric section design with a height of 2 m, and the pylon is designed as a concrete-filled steel tube column with a 0.9 m diameter. The backstay-cable is fixed on the top of the pylon. The details about the bridge design can refer to [36]. Fig. 7 (a) illustrates the layout the bridge, and Fig. 7 (b) presents the design scheme of the section.



(a) the layout of the bridge (unit: mm)



(b) the design of the cross section (unit: mm)

Fig. 7 The cable-supported footbridge

Pedestrian-induced vibrations have caused serious challenges for bridge safety in many applications. The walking load incurred by a single pedestrian is modeled by the sum of multiple harmonic components written as a Fourier series. Moreover, referring to the existing work [37], a uniform distribution is adopted to model the walking load incurred by a group of pedestrians on the bridge. The equivalent uniformly distributed walking load can be therefore formulated as:

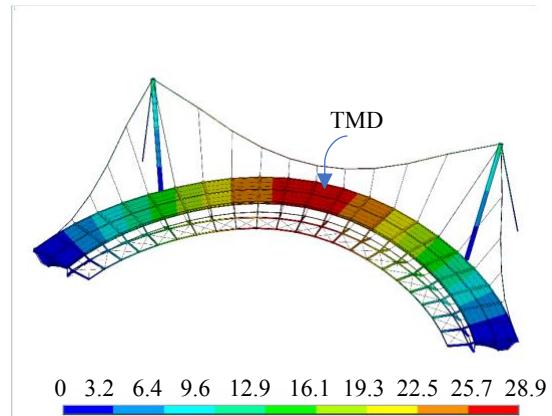
$$q_{eq} = \frac{N_{eq}}{S} \alpha_{e,h} G \psi(f_h) \quad (30)$$

495 where S denotes the surface of the bridge deck, N_{eq} is the equivalent number of perfectly synchronized
496 pedestrians (N_{eq} can be calculated as $1.85\sqrt{N}$, where N denotes the number of pedestrians on the bridge
497 based on the given pedestrian density [38, 39]), $\psi(f_h)$ denotes the reduction factor considering the
498 possibility of the step frequency equaling the natural frequency f_h of the bridge, and $\alpha_{e,h}$ is the dynamic
499 loading factor of the h^{th} harmonic of the load in direction of e (vertical direction or horizontal direction).

500 Imposing the equivalent uniformly distributed load on the bridge and assuming that the mode h
501 dominates the response of the bridge, the projection of the load on the mode h can be calculated as:

$$F_h = q_{eq} \sum_{k=1}^{n_{eff}} a_{eff,k} |\phi_{h,k}| \quad (31)$$

502 where n_{eff} denotes the number of nodes of the bridge deck area, a_{eff} denotes the vector of the bridge deck
503 area ($\sum_{k=1}^{n_{eff}} a_{eff,k} = S$), and ϕ_h denotes the vector for the mass-normalized modal displacement of mode h .
504 Then, the maximum acceleration of the bridge can be calculated through dynamic analysis. Considering the
505 design scheme of the background bridge, a finite element model is established to determine the dynamic
506 parameters of the bridge, as Fig. 8 shows. The natural frequency for the first bending mode of the bridge is
507 2.0 Hz which falls in the sensitive range for the pedestrian-induced excitations. Therefore, it is considered
508 that this mode dominates the vibration of the footbridge. Based on the dynamic analysis, it is noticed that
509 the maximum acceleration can be larger than 6 m/s^2 that is considered as unacceptable for the serviceability
510 of footbridges [38, 39]. Thus, this example considers the robust design of a TMD as a strategy to mitigate
511 bridge responses. In this problem, the TMD is designed to be placed at the location of maximum vertical
512 displacement in the dominant bending mode, as illustrated in Fig. 8.



514 **Fig. 8** The dynamics parameter and analysis of the bridge:
515 the first bending mode (unit: cm) and the location the TMD
516

517 When a TMD is introduced as an energy absorber in the bridge system, the following coupling
518 equation can be formulated to describe the response of the system, considering also the mode h of the
519 footbridge:

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{C}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{F}(t) \quad (32)$$

520 where $\mathbf{M} = \begin{bmatrix} m_h & 0 \\ 0 & m_d \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} c_h + c_d & -c_d \\ -c_d & c_d \end{bmatrix}$, $\mathbf{K} = \begin{bmatrix} k_h + k_d & -k_d \\ -k_d & k_d \end{bmatrix}$, $\mathbf{F}(t) = \begin{bmatrix} p(t) \\ 0 \end{bmatrix}$ and $\mathbf{u}(t) = \begin{bmatrix} u_h \\ u_d \end{bmatrix}$. m_h , k_h
521 and c_h denote the equivalent modal mass, stiffness and damping to unitize $\max|\phi_h|$, respectively. m_d , c_d
522 and k_d represent the mass, damping and stiffness of the TMD device, respectively. $p(t)$ denotes the force
523 generated by the pedestrian walk, which is formulated as:

$$p(t) = p_s \cos(2\pi f_s t) \quad (33)$$

524 where f_s denotes the step frequency that is considered as f_h in the above equations, p_s represents the
 525 ground reaction force that is considered as $\frac{N_{eq}\alpha_{e,h}G}{s} \sum_{k=1}^{n_{eff}} \frac{a_{eff,k}|\phi_{h,k}|}{\max|\phi_h|}$.

526 Considering various sources of uncertainties, such as the bridge natural frequency, damping ratio
 527 and the frequency of pedestrian excitations, that could influence the bridge state and the external loading,
 528 this paper formulates the TMD design as a robust optimization problem, to minimize the weight of the
 529 TMD while maintaining the feasibility robustness in an uncertain environment. The problem for robust
 530 TMD design of the cable-supported bridge is formulated as:

$$\begin{aligned} & \min_{(\mathbf{d})} m_d \\ & \text{s. t.: } \left\{ \begin{array}{l} \mathbb{E}[\ddot{u}_{h,max}(\mathbf{d}_d, \xi)] + 3\mathbb{S}[\ddot{u}_{h,max}(\mathbf{d}_d, \xi)] \leq 0.75 \\ \mathbf{d}_d = (m_d, c_d, k_d) \\ \xi = [\xi_c, \xi_f, \xi_w] \\ 0.01 \leq m_d/m_h \leq 0.11 \end{array} \right. \end{aligned} \quad (34)$$

531 where \mathbf{d}_d denotes the vector of deterministic design variables, i.e., the mass m_d , stiffness c_d and damping
 532 k_d of the TMD (the cost of the TMD typically depends on its mass and therefore m_d is taken as the
 533 objective of optimization). ξ denotes the vector of random variables, including the modal damping for the
 534 first bending mode of the bridge (ξ_c), the natural frequency for the first bending mode of the bridge (ξ_f)
 535 and the frequency for the walking loading (ξ_w). Table 5 lists the assumed distribution of random variables.
 536

537 **Table 5** The distribution of random variables of Example Four.

Variables	Distribution	Mean	SD	Unit
Modal damping (ξ_c)	Uniform	0.4	0.115	%
Natural frequency for the first bending mode (ξ_f)	Uniform	2.0	0.115	Hz
Frequency of the walking loading (ξ_w)	Normal	2.0	0.2	Hz

538 The proposed method is applied to solve this robust TMD design optimization problem. Some other
 539 surrogate model-based approaches, such as the PCE-LAR, SVR [28] and RBFNN [40], are compared to
 540 illustrate the advantages of the proposed method. To facilitate the determination of the optimal TMD
 541 parameters, based on the suggestion from [41], the optimal stiffness and damping are determined based on
 542 the design of mass, therefore the dimension of the design variables can be reduced. Table 6 illustrates the
 543 results from different methodologies. It is noticed that the PCE-LAR, SVR and RBFNN all fail to provide
 544 acceptable solutions in this example of TMD design optimization. An obvious discrepancy for the
 545 feasibility robustness index, defined by $\mathbb{E}(\ddot{u}_{h,max}) + 3\mathbb{S}(\ddot{u}_{h,max})$, can be observed for these methods. For
 546 instance, the SVR-based RDO can yield a relative error of nearly 59%. In comparison, the proposed
 547 methods with PCK and ordinary Kriging both yield much more accurate results for the TMD design. The
 548 relative error for the feasibility robustness from the PCK-based analytical RDO method is only 1% with
 549 75.2 calls of the performance function on average, while the relative error from the ordinary Kriging-based
 550 approach is slightly larger (2%) with 68.5 calls of the performance function. Therefore, the proposed
 551 analytical robust design optimization method provides the best performance among all considered
 552 approaches. Furthermore, because the characteristics, e.g., mass, stiffness and damping, of a TMD are
 553 typically very precisely validated by experiments before the product launch, this example considers these
 554 parameters as deterministic design variables while taking into account some other essential uncertainty
 555 sources, such as the bridge modal frequency, damping and the external loading. The proposed method is
 556 the only approach that can provide analytical solution of robustness in such application background. This
 557 further validates the contribution of proposed method for extending the application scope of surrogate
 558 model-based analytical RDO to various practical engineering problems.
 559

562

Table 6 Comparison of the results from the proposed and other methods for Example Four.

Method	Optimal m_t (kg) ^a	$\mathbb{E}(\ddot{u}_{h,max}) + 3\mathbb{S}(\ddot{u}_{h,max})$ ^a	$ \Delta_{con} $ (%)	Sample Size	Analytical Solution
MCS	3522.38	0.750	—	$10^4 \times 770$ ^b	No
RBFNN	2565.57	0.969	29.24	78	No
SVR	1528.44	1.192	58.94	78	No
PCE-LAR	1217.12	1.278	70.39	78	No
Ordinary Kriging	2142.83	1.049	39.92	78	No
The proposed method- Ordinary Kriging	3660.29	0.735	2.01	68.5	Yes
The proposed method- PCK	3593.31	0.743	0.99	75.2	Yes

563

564

5. Conclusion

565 As an important branch of structural optimization, robust design optimization aims at optimizing the
 566 structural design while maintaining objective or feasibility robustness. Surrogate model-based analytical
 567 robust design optimization opens up a promising avenue to not only reduce the calls of complex
 568 computational models by establishing substitutes but also eliminate the repeated sampling estimation for
 569 statistical moments during the optimization routine. Motivated by extending the applicable scope of existing
 570 analytical method to handle both deterministic and random variables, this paper proposed a Polynomial
 571 Chaos Kriging-based methodology for efficient analytical robust design optimization. This work derived
 572 the analytical formulas of the statistical moments based on the underlying assumption of PCK surrogate
 573 model established on the augmented space. A symmetric investigation was carried out for uniform and
 574 Gaussian distributions. The paper also presented an active-learning framework consisting of three stages of
 575 initialization, optimization and refinement. Different types of numerical optimization methods, such as
 576 gradient-based methods or evolutionary methods, can be seamlessly implemented in the framework in
 577 tandem with the adaptively established surrogate model and the proposed analytical robustness formulas.

578 Several classical numerical examples demonstrated that the proposed analytical formula can be
 579 much more efficient compared with simulation methods. Three numerical examples and a practical
 580 application assessed the performance of the proposed method. It was noticed that the proposed method can
 581 well handle different types of problems (multimodal problems, or discrete problems). Furthermore, the
 582 PCK surrogate model generally performed slightly better than the Kriging surrogate model, possibly
 583 because of the improvement of the ability to capture the global trend.

584 The paper is concluded by discussing some limitations and possible extensions of the proposed
 585 RDO method. This work adopts the PC-Kriging, which introduces the PCE into the interpolation-type
 586 Kriging, as the surrogate model. Compared with the traditional sparse PCE, PCK improves the
 587 approximation ability to capture local variations of responses; however, PCK also suffers from the
 588 computational burden for inversion of the covariance matrix. Therefore, the proposed method is not suitable
 589 for very high-dimensional problems. Future works will investigate incorporation of dimension reduction
 590 techniques into the proposed framework. As reduction of the design space also alleviates the computational
 591 burden of model training, an adaptive decomposition framework could be investigated to enhance the
 592 method's performance.

593

^a $\mathbb{E}(\ddot{u}_{h,max}) + 3\mathbb{S}(\ddot{u}_{h,max})$ is the average value over 10 independent runs.

^b the sample size for MCS indicates (the number of realizations to estimate the statistics) \times (the number of evaluations of the robustness index during the optimization loop).

594 **CRediT authorship contribution statement**

595 **Chaolin Song**: Conceptualization, Methodology, Formal Analysis, Writing - original draft. **Abdollah**

596 **Shafieezadeh**: Conceptualization, Supervision, Methodology, Writing - review & editing. **Rucheng Xiao**:

597 Conceptualization, Supervision. **Bin Sun**: Conceptualization, Writing - review & editing.

598 **Acknowledgements**

600 The authors appreciate the financial support from the National Natural Science Foundation of China
 601 (52308196), and the U.S. National Science Foundation (NSF) through awards CMMI-2000156. The first
 602 author would like to thank the support from the Postdoctoral Fellowship Program of CPSF under Grant
 603 Number GZB20230528 and 2023M742664. The opinions and statements do not necessarily represent those
 604 of the sponsors. In addition, the authors would like to express their gratitude to the Research Division on
 605 Structural Health Monitoring and Vibration Control, Department of Bridge Engineering, Tongji University
 606 and Mr. Zuqian Jiang, for the information about the bridge and the help in the modeling.

607 **Appendix A**

609 In this Appendix, following the derivations in Section 3.1 and 3.2, the statistical moments estimated by
 610 PCK with ξ following independent Gaussian distribution is provided. It is noticed that the distribution of
 611 random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment, and influences
 612 Eq. (19), Eq. (22) and Eq. (25) when computing the second moment.

613 For an arbitrary univariate orthogonal polynomial, the function, i.e., $\psi_\alpha(\xi_k)$, can be typically
 614 expressed as the consolidation of several power functions. For instance, a second-order probabilistic
 615 Hermite polynomial is expressed as $\psi_{\alpha=2}(\xi_k) = \sqrt{2}[b_{\hbar=2}(\xi_k) - b_{\hbar=0}(\xi_k)]/2$. When the random variable
 616 ξ_k follow Gaussian distribution $\mathcal{N}[\xi_k|\mu_k, (\sigma_k)^2]$ where $k = 1, \dots, \dim_\xi$ denotes the dimension number,
 617 and let $b_\hbar(x) = x^\hbar$ denote an \hbar -order function. It is noticed that the following equation can be obtained:

$$\mathbb{E}[b_\hbar(\xi_k)] = \int b_\hbar(\xi_k) \cdot f(\xi_k|\mathbf{d}_\mu) d\xi_k = \int b_\hbar(\xi_k) \cdot \mathcal{N}[\xi_k|\mu_k, (\sigma_k)^2] d\xi_k \quad (A.1)$$

618 The following recursion table can be then obtained.

619 **Table A.1.** The analytical formula of integral with Gaussian distribution

Integration Function	Analytical Expression
$\int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=0}(\xi_k) d\xi_k$	1
$\int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=1}(\xi_k) d\xi_k$	μ_k
\vdots	\vdots
$\int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n}(\xi_k) d\xi_k$	$(\sigma_k)^2(n-1) \int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n-2}(\xi_k) d\xi_k + \mu_k \int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n-1}(\xi_k) d\xi_k$

621
 622 Thus, Eq. (13), Eq. (19) can be efficiently analytically determined based on the optimized
 623 coefficients and corresponding order of the polynomial basis functions. (Note that the raw moments of
 624 some distributions have been discussed in the literature [42]; the above formulas are not all new.)

625
 626 For Eq. (15), when random variables are assumed to follow independent Gaussian distributions,
 627 referring to Appendix C, the following equation can be recast:

$$\mathbb{E}\left(\exp\left[-\frac{1}{2}\left(\frac{\xi_k - \xi_k^{(i)}}{\theta_{\xi,k}^*}\right)^2\right]\right) = \int \sqrt{2\pi} \theta_{\xi,k}^* \cdot f(\xi_k|\mathbf{d}_\mu) \cdot \mathcal{N}\left[\xi_k|\xi_k^{(i)}, (\theta_{\xi,k}^*)^2\right] d\xi_k \quad (A.2)$$

$$\begin{aligned}
&= \int \sqrt{2\pi} \theta_{\xi,k}^* \cdot \mathcal{N}[\xi_k | \mu_k, (\sigma_k)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \sqrt{2\pi} \theta_{\xi,k}^* \cdot s_{n1}
\end{aligned}$$

628 where s_{n1} can be determined by:

$$s_{n1} = \frac{1}{\sqrt{2\pi [(\sigma_k)^2 + (\theta_{\xi,k}^*)^2]}} \exp \left[-\frac{(\xi_k^{(i)} - \mu_k)^2}{2[(\sigma_k)^2 + (\theta_{\xi,k}^*)^2]} \right] \quad (\text{A.3})$$

629 Therefore, Eq. (15) can be efficiently analytically determined.

630

631 Furthermore, Eq. (22) can be recast as:

$$\begin{aligned}
\mathbb{E}[\psi_\alpha(\xi_k) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})] &= \sqrt{2\pi} \theta_{\xi,k}^* \int f(\xi_k | \mathbf{d}_\mu) \cdot \psi_\alpha(\xi_k) \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \sqrt{2\pi} \theta_{\xi,k}^* \int \psi_\alpha(\xi_k) \cdot \mathcal{N}[\xi_k | \mu_k, (\sigma_k)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \sqrt{2\pi} \theta_{\xi,k}^* s_{n1} \int \psi_\alpha(\xi_k) \cdot \mathcal{N}[\xi_k | \xi_k^{(n1)}, (\sigma_k^{(n1)})^2] d\xi_k
\end{aligned} \quad (\text{A.4})$$

632 where $\xi_k^{(n1)}$ and $\sigma_k^{(n1)}$ can be determined by:

$$\xi_k^{(n1)} = \frac{\xi_k^{(i)} (\sigma_k)^2 + \mu_k (\theta_{\xi,k}^*)^2}{(\sigma_k)^2 + (\theta_{\xi,k}^*)^2} \quad (\text{A.5})$$

$$\sigma_k^{(n1)} = \sqrt{\frac{(\sigma_k)^2 (\theta_{\xi,k}^*)^2}{(\sigma_k)^2 + (\theta_{\xi,k}^*)^2}} \quad (\text{A.6})$$

633 Subsequently, the Table A.1 can be applied again based on the optimized coefficients and
634 corresponding order of the polynomial basis functions to analytically calculate Eq. (22).

635

636 For the last part required when calculating the second moment of statistics, Eq. (25) can be
637 formulated as:

$$\begin{aligned}
\mathbb{E}[r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)}) r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})] &= \int 2\pi (\theta_{\xi,k}^*)^2 \cdot f(\xi_k | \mathbf{d}_\mu) \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(t)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \int 2\pi (\theta_{\xi,k}^*)^2 \cdot \mathcal{N}[\xi_k | \mu_k, (\sigma_k)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(t)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \int 2\pi (\theta_{\xi,k}^*)^2 \cdot s_{n1} \cdot \mathcal{N}[\xi_k | \xi_k^{(n1)}, (\sigma_k^{(n1)})^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(t)}, (\theta_{\xi,k}^*)^2] d\xi_k \\
&= \int 2\pi (\theta_{\xi,k}^*)^2 \cdot s_{n1} \cdot s_{n2} \cdot \mathcal{N}[\xi_k | \xi_k^{(n2)}, (\sigma_k^{(n2)})^2] d\xi_k = 2\pi (\theta_{\xi,k}^*)^2 \cdot s_{n1} \cdot s_{n2}
\end{aligned} \quad (\text{A.7})$$

638 where s_{n2} , ξ_{n2}^k and σ_{n2}^k can be similarly determined referring to Appendix C.

$$s_{n2} = \frac{1}{\sqrt{2\pi [(\sigma_k^{(n1)})^2 + (\theta_{\xi,k}^*)^2]}} \exp \left[-\frac{(\xi_k^{(t)} - \xi_k^{(n1)})^2}{2[(\sigma_k^{(n1)})^2 + (\theta_{\xi,k}^*)^2]} \right] \quad (\text{A.8})$$

$$\xi_k^{(n2)} = \frac{\xi_k^{(t)} (\sigma_k^{(n1)})^2 + \xi_k^{(n1)} (\theta_{\xi,k}^*)^2}{(\sigma_k^{(n1)})^2 + (\theta_{\xi,k}^*)^2} \quad (\text{A.9})$$

$$\sigma_k^{(n2)} = \sqrt{\frac{(\sigma_k^{(n1)})^2 (\theta_{\xi,k}^*)^2}{(\sigma_k^{(n1)})^2 + (\theta_{\xi,k}^*)^2}} \quad (\text{A.10})$$

639

640 Based on the above formula and Table A.1, the integrals required in the formulas of the statistical
641 moments have also been analytically expressed for the case of independent Gaussian distributions.

642
643
644
645
646
647
648
649
650
651

Appendix B

In this Appendix, the statistical moments estimated by PCK with ξ following independent uniform distribution is provided. Throughout this section, it is generally assumed that a random variable ξ_k follows a uniform distribution between $[\xi_k^{(u)}, \xi_k^{(l)}]$ ($[\xi_k^{(u)}, \xi_k^{(l)}]$ can depend on \mathbf{d}_μ). As a reminder, note that the distribution of random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment, and influences Eq. (19), Eq. (22) and Eq. (25) when computing the second moment.

Following the assumption in the above derivations, Let $b_h(x) = x^h$ denote an h order function. For these conditions, the following equation can be obtained:

$$\int f(\xi_k | \mathbf{d}_\mu) \cdot b_h(\xi_k) d\xi_k = \frac{1}{\xi_k^{(u)} - \xi_k^{(l)}} \frac{1}{h+1} \left[(\xi_k^{(u)})^{h+1} - (\xi_k^{(l)})^{h+1} \right] \quad (\text{B.1})$$

The integral required in Eq. (13) and (19) can be therefore analytically calculated combining the integrals for all $b_h(x)$ components that are determined based on the type and degree of the polynomial basis.

652
653
654
655

Additionally, with the uniform distribution, Eq. (15) can be recast as:

$$\begin{aligned} \mathbb{E} \left(\exp \left[-\frac{1}{2} \left(\frac{\xi_k - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right)^2 \right] \right) &= \frac{\sqrt{2\pi} \theta_{\xi,k}^*}{\xi_k^{(u)} - \xi_k^{(l)}} \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} \mathcal{N} \left[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2 \right] d\xi_k \\ &= \frac{\sqrt{2\pi} \theta_{\xi,k}^*}{\xi_k^{(u)} - \xi_k^{(l)}} \left[\Phi \left(\frac{\xi_k^{(u)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) - \Phi \left(\frac{\xi_k^{(l)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) \right] \end{aligned} \quad (\text{B.2})$$

656 where $\Phi(\cdot)$ denotes the Gaussian cumulative density function.

657
658

For the analytical formula of Eq. (22), the following relationship can be observed:

$$\int f(\xi_k | \mathbf{d}_\mu) \cdot b_h(\xi_k) \cdot \mathcal{N} \left[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2 \right] d\xi_k = \frac{1}{\sqrt{2\pi} \theta_{\xi,k}^*} \frac{1}{\xi_k^{(u)} - \xi_k^{(l)}} \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^h \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k \quad (\text{B.3})$$

659

$$\begin{aligned} &\int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^h \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k \\ &= (\theta_{\xi,k}^*)^2 \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{h-1} \cdot \frac{(\xi_k - \xi_k^{(i)})}{(\theta_{\xi,k}^*)^2} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k + \xi_k^{(i)} \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{h-1} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k \\ &= (\theta_{\xi,k}^*)^2 \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{h-1} d \left(-\exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right) + \xi_k^{(i)} \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{h-1} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k \end{aligned} \quad (\text{B.4})$$

660

The method of integration by parts is applied herein:

$$\begin{aligned} &\int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{h-1} d \left(-\exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right) \\ &= \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d((\xi_k)^{h-1}) - \left[(\xi_k)^{h-1} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right]_{\xi_k^{(l)}}^{\xi_k^{(u)}} \end{aligned} \quad (\text{B.5})$$

$$= (\hbar - 1) \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} (\xi_k)^{\hbar-2} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] d\xi_k - \left[(\xi_k)^{\hbar-1} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right]_{\xi_k^{(l)}}^{\xi_k^{(u)}}$$

661 Based on these derivations, Table B.1 presents the analytical solutions of the integral terms that appear in
662 Eq. (22).

663
664 **Table B.1.** The analytical formula of integral with uniform distribution

Integration Function	Analytical Expression
$\int_{\xi_k^{(l)}}^{\xi_k^{(u)}} f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=0}(\xi_k) \cdot \mathcal{N}[\xi_k \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k$	$\frac{1}{\xi_k^{(u)} - \xi_k^{(l)}} \left[\Phi \left(\frac{\xi_k^{(u)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) - \Phi \left(\frac{\xi_k^{(l)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) \right]$ $\frac{\xi_k^{(i)}}{\xi_k^{(u)} - \xi_k^{(l)}} \left[\Phi \left(\frac{\xi_k^{(u)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) - \Phi \left(\frac{\xi_k^{(l)} - \xi_k^{(i)}}{\theta_{\xi,k}^*} \right) \right]$
$\int_{\xi_k^{(l)}}^{\xi_k^{(u)}} f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=1}(\xi_k) \cdot \mathcal{N}[\xi_k \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k$	$-\frac{1}{\xi_k^{(u)} - \xi_k^{(l)}} \frac{\theta_{\xi,k}^*}{\sqrt{2\pi}} \left[\exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right]_{\xi_k^{(l)}}^{\xi_k^{(u)}}$ \vdots
$\int_{\xi_k^{(l)}}^{\xi_k^{(u)}} f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n}(\xi_k) \cdot \mathcal{N}[\xi_k \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k$	$(\theta_{\xi,k}^*)^2 (\hbar - 1) \int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n-2}(\xi_k) \cdot \mathcal{N}[\xi_k \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k$ $+ \xi_k^{(i)} \int f(\xi_k \mathbf{d}_\mu) \cdot b_{\hbar=n-1}(\xi_k) \cdot \mathcal{N}[\xi_k \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] d\xi_k$ $- \frac{1}{\xi_k^{(u)} - \xi_k^{(l)}} \frac{\theta_{\xi,k}^*}{\sqrt{2\pi}} \left[(\xi_k)^{n-1} \cdot \exp \left[-\frac{(\xi_k - \xi_k^{(i)})^2}{2(\theta_{\xi,k}^*)^2} \right] \right]_{\xi_k^{(l)}}^{\xi_k^{(u)}}$

665
666 Furthermore, for Eq. (25), When the random variable ξ_k follows a uniform distribution between
667 $[\xi_k^{(u)}, \xi_k^{(l)}]$, and the above equation can be recast as:

$$\mathbb{E}[r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})] = \frac{2\pi(\theta_{\xi,k}^*)^2}{\xi_k^{(u)} - \xi_k^{(l)}} \int_{\xi_k^{(l)}}^{\xi_k^{(u)}} \mathcal{N}[\xi_k | \xi_k^{(i)}, (\theta_{\xi,k}^*)^2] \cdot \mathcal{N}[\xi_k | \xi_k^{(t)}, (\theta_{\xi,k}^*)^2] d\xi_k \quad (\text{B.6})$$

668 Referring to Appendix C again, the product of two normal distribution also follows a normal
669 distribution. The following equations can be obtained:

$$\mu_{u,k} = \frac{\xi_k^{(i)} + \xi_k^{(t)}}{2} \quad (\text{B.7})$$

$$\sigma_{u,k} = \sqrt{\frac{(\theta_{\xi,k}^*)^2}{2}} \quad (\text{B.8})$$

$$s_{u1} = \frac{1}{\sqrt{4\pi(\theta_{\xi,k}^*)^2}} \exp \left[-\frac{(\xi_k^{(t)} - \xi_k^{(i)})^2}{4(\theta_{\xi,k}^*)^2} \right] \quad (\text{B.9})$$

$$\mathbb{E}[r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(i)})r(\theta_{\xi,k}^*, \xi_k, \xi_k^{(t)})] = \frac{2\pi(\theta_{\xi,k}^*)^2}{\xi_k^{(u)} - \xi_k^{(l)}} s_{u1} \left[\Phi \left(\frac{\xi_k^{(u)} - \mu_{u,k}}{\sigma_{u,k}} \right) - \Phi \left(\frac{\xi_k^{(l)} - \mu_{u,k}}{\sigma_{u,k}} \right) \right] \quad (\text{B.10})$$

670

671 Based on the above formulas and Table B.1, the integrals required in the formulas of the statistical
672 moments have also been analytically expressed for the case of independent uniform distributions.
673

674 Appendix C

675 Let $\mathcal{N}(\xi|\xi_a, \theta_a^2)$ denote a Gaussian probability density function with mean of ξ_a and standard deviation
676 of θ_a ; $\mathcal{N}(\xi|\xi_b, \theta_b^2)$ denotes a Gaussian probability density function with mean of ξ_b and standard
677 deviation of θ_b . Let $\xi_n = \frac{\xi_b \theta_a^2 + \xi_a \theta_b^2}{\theta_a^2 + \theta_b^2}$ and $\theta_n = \sqrt{\frac{\theta_a^2 \theta_b^2}{\theta_a^2 + \theta_b^2}}$. It has been proven that the product of
678 $\mathcal{N}(\xi|\xi_a, \theta_a^2)$ and $\mathcal{N}(\xi|\xi_b, \theta_b^2)$ follows a scaled Gaussian distribution:

$$\mathcal{N}(\xi|\xi_a, \theta_a^2) \cdot \mathcal{N}(\xi|\xi_b, \theta_b^2) = s_g \cdot \mathcal{N}(\xi|\xi_n, \theta_n^2) \quad (C.1)$$

679 where s_g denotes the scaled factor that can be formulated as:

$$s_g = \frac{1}{\sqrt{2\pi(\theta_a^2 + \theta_b^2)}} \exp\left[-\frac{(\xi_a - \xi_b)^2}{2(\theta_a^2 + \theta_b^2)}\right] \quad (C.2)$$

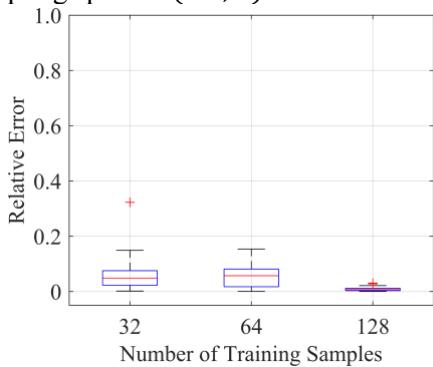
680 Appendix D

681 To validate the accuracy of the analytical formula for obtaining the statistics of the performance function
682 and to compare the PCK and Kriging surrogate model, five examples are investigated here. The analytical
683 expressions derived in Section 3.1 and 3.2 are applied. For a fair comparison, 20 independent runs are
684 executed for obtaining the mean relative error of the estimations. The UQLab toolbox (version 2.0.0) is
685 adopted for creating the surrogate model where HGA is selected as the optimization method for both
686 ordinary Kriging and PCK.

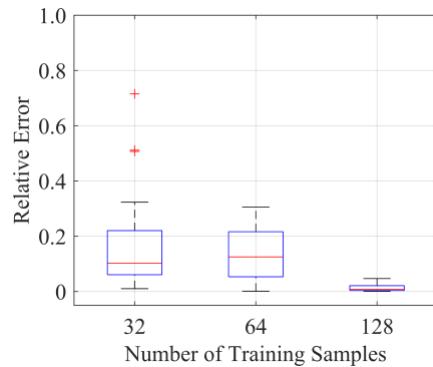
687 The first example is the so-called Ishigami function with three uniformly distributed random
688 variables as the inputs. The function has the following form:

$$g_1 = \sin(\xi_1) + 7 \sin^2(\xi_2) + 0.1 \xi_3^4 \sin(\xi_1) \quad (D.1)$$

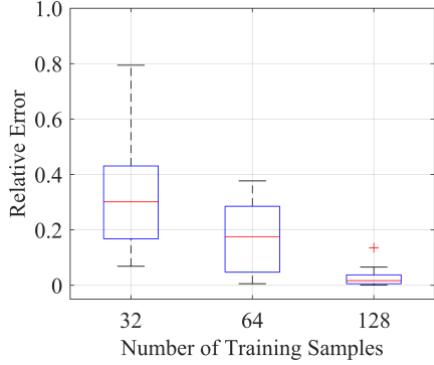
690 where $\xi_i \sim \mathcal{U}(1,2)$, $i = 1,2,3$. Fig. D.1 shows the analytical prediction of the statistics of the output for
691 different number of training samples from 32 to 128. The training samples are uniformly generated from
692 the sampling space $\mathcal{U}(-\pi, \pi)$ for each dimension.



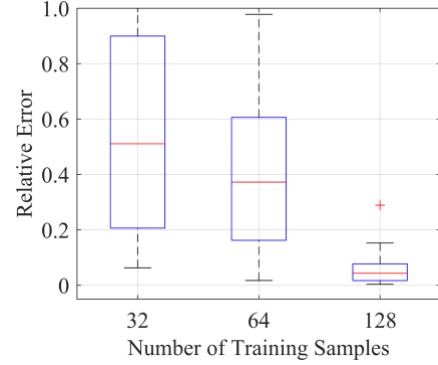
(a) Relative error for estimating the mean by PCK



(b) Relative error for estimating the mean by ordinary Kriging



(c) Relative error for estimating SD by PCK



(d) Relative error for estimating SD by ordinary Kriging

Fig. D.1 Function One: Relative error for estimating the first two moments by PCK and ordinary Kriging.

693

694

695

Function two is the so-called Rosenbrock function with two uniformly distributed random variables as the input. The function reads:

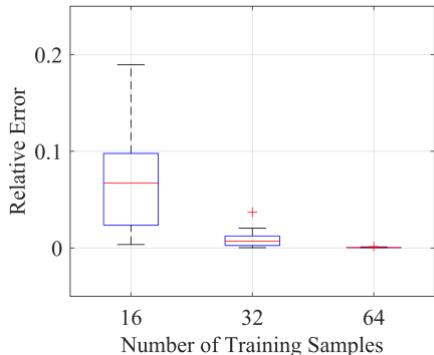
$$g_2 = 100(\xi_2 - \xi_1^2)^2 + (1 - \xi_1)^2 \quad (\text{D.2})$$

696

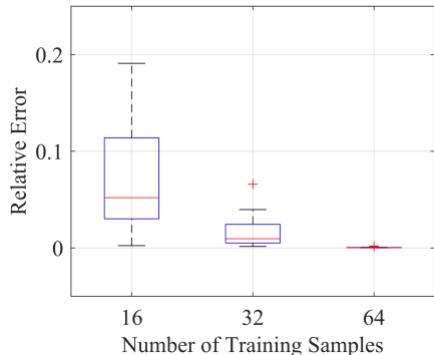
697

698

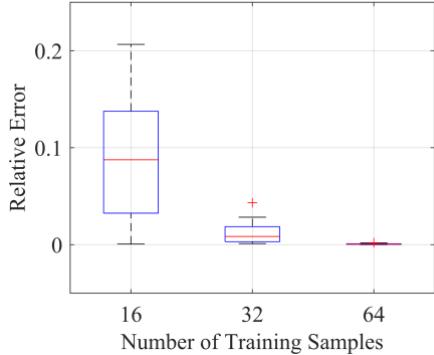
699



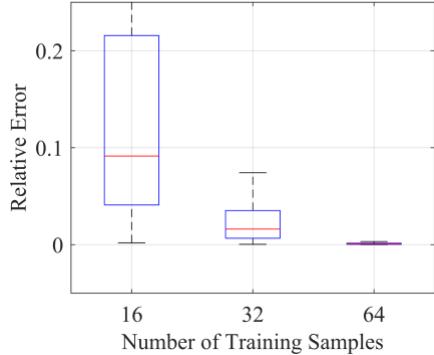
(a) Relative error for estimating the mean by PCK



(b) Relative error for estimating the mean by ordinary Kriging



(c) Relative error for estimating SD by PCK



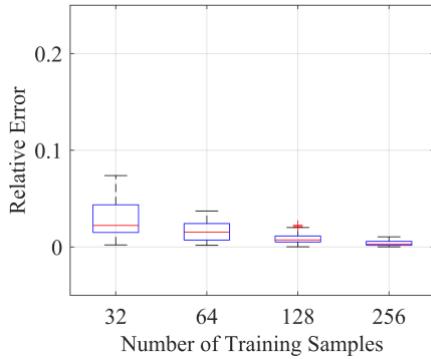
(d) Relative error for estimating SD by ordinary Kriging

Fig. D.2 Function Two: Relative error for estimating the first two moments by PCK and ordinary Kriging.

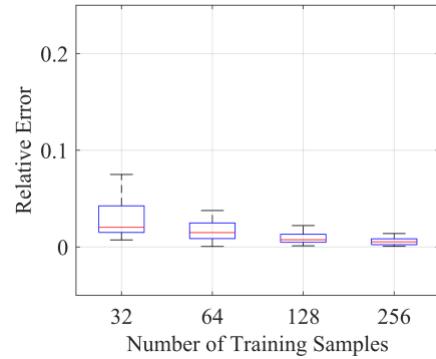
700
701 Function three is the modified Sobol function with four uniformly distributed random variables as
702 the input. The function reads:

$$g_3 = \prod_{i=1}^4 \frac{|4\xi_i - 2| + c_i}{1 + c_i} \quad (D.3)$$

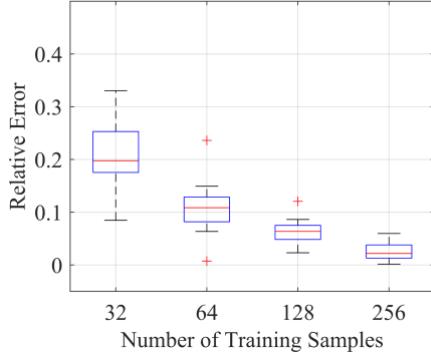
703 where $\xi_i \sim \mathcal{U}(0,1)$, $i = 1,2,3,4$, $c = (1,2,5,10)$. Fig. D.3 shows the analytical prediction of the statistics of
704 the output, by changing the number of training samples from 32 to 256. The training samples are uniformly
705 generated from the sampling space $\mathcal{U}(0,1)$ for each dimension.
706



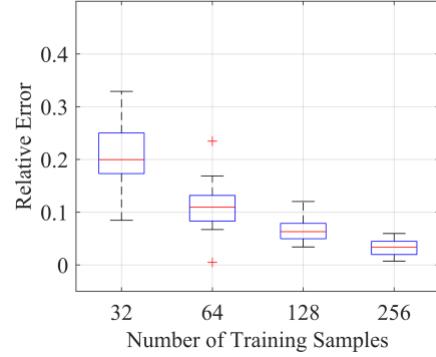
(a) Relative error for estimating the mean by PCK



(b) Relative error for estimating the mean by ordinary Kriging



(c) Relative error for estimating SD by PCK



(d) Relative error for estimating SD by ordinary Kriging

Fig. D.3 Function Three: Relative error for estimating the first two moments by PCK and ordinary Kriging.

707
708 Function four is a four-dimensional function with four normally distributed random variables as
709 the input. The function reads:

$$g_4 = 2/3 \exp(\xi_1^2 + \xi_2^2) + \xi_4 \cos(\xi_3) + \xi_3 \quad (D.4)$$

710 where $\xi_i \sim \mathcal{N}(0.1, 0.1^2)$, $i = 1,2,3,4$. Fig. D.4 shows the analytical prediction of the statistics of the
711 output, by changing the number of training samples from 32 to 128. The training samples are uniformly
712 generated from the sampling space $\mathcal{U}(-1,1)$ for each dimension.

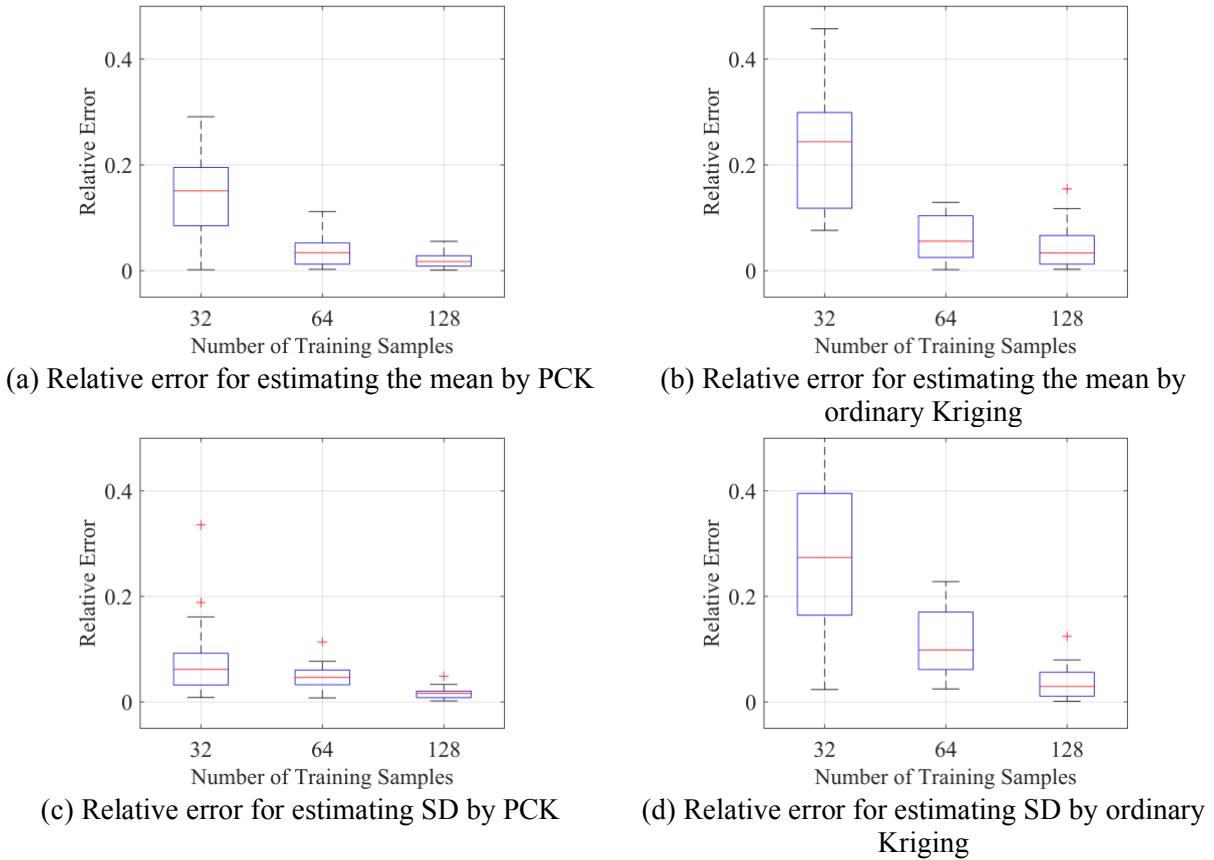
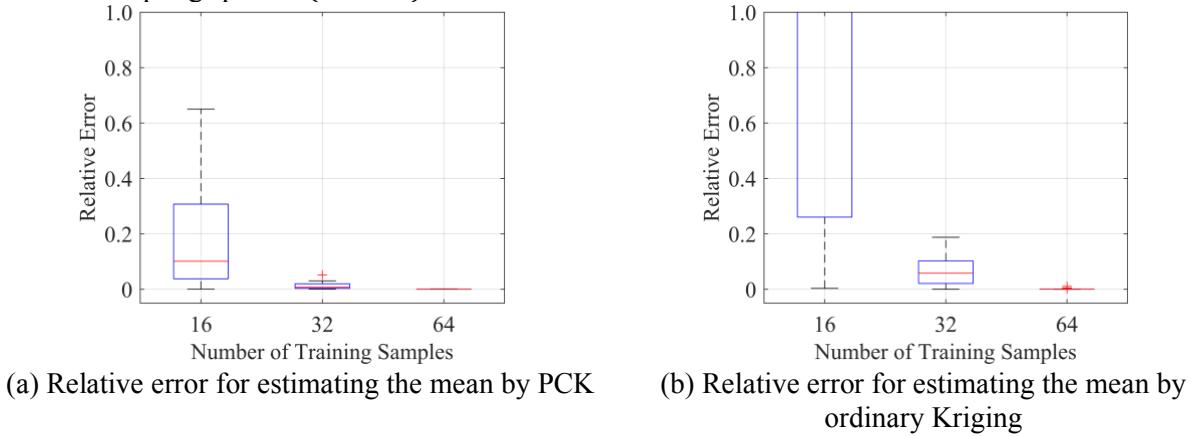


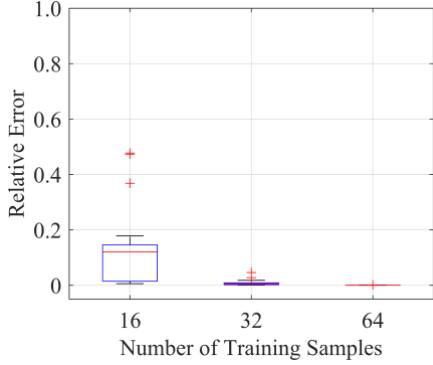
Fig. D.4 Function Four: Relative error for estimating the first two moments by PCK and ordinary Kriging.

713
714 Function five is a two-dimensional function with two normally distributed random variables as the
715 input. The function reads:

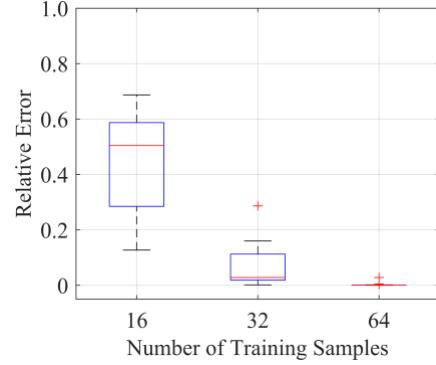
$$g_5 = \xi_1 + 5 \sin(\xi_1) + 0.1 \xi_1 \xi_2^2 \quad (\text{D.5})$$

716 where $\xi_i \sim \mathcal{N}(1,1)$, $i = 1,2$. Fig. D.5 shows the analytical prediction of the statistics of the output,
717 by changing the number of training samples from 16 to 64. The training samples are uniformly generated
718 from the sampling space $\mathcal{U}(-10,10)$ for each dimension.





(c) Relative error for estimating SD by PCK



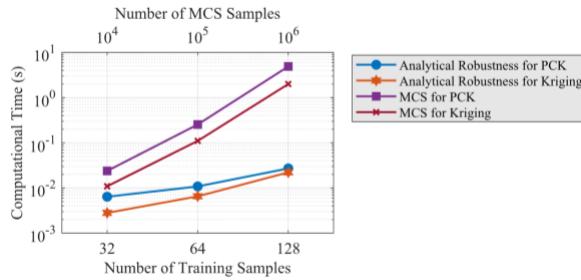
(d) Relative error for estimating SD by ordinary Kriging

Fig. D.5 Function Five: Relative error for estimating the first two moments by PCK and ordinary Kriging.

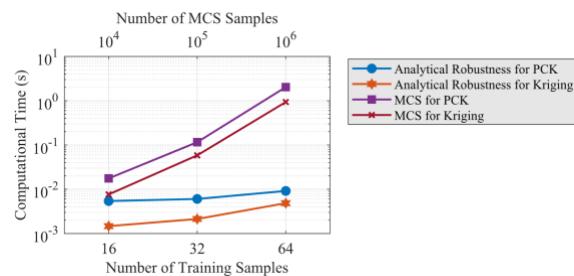
719
720
721
722
723
724
725
726
727
728
729

Appendix E

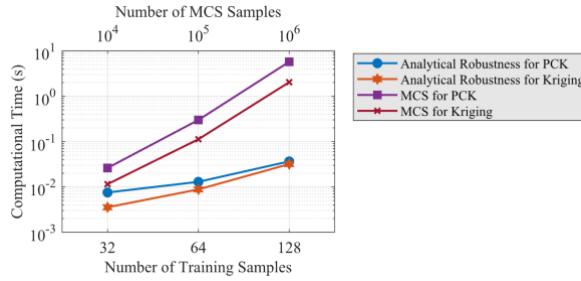
To highlight the motivation for formulating the analytical expression for robustness index, this appendix further compares the computational burden for calculating the analytical equations and implementing MCS. The same functions presented in Appendix A are selected for investigation. The results are averaged on 20 runs. The UQLab toolbox (version 2.0.0) is adopted for the establishment of the surrogate model; HGA is selected as the optimization method for both ordinary Kriging and PCK. As an established surrogate model can be used multiple times during the optimization loop, this appendix therefore does not include the computational burden for training the surrogate model, and only compares the consumed computational time for evaluating the first and second statistical moments.



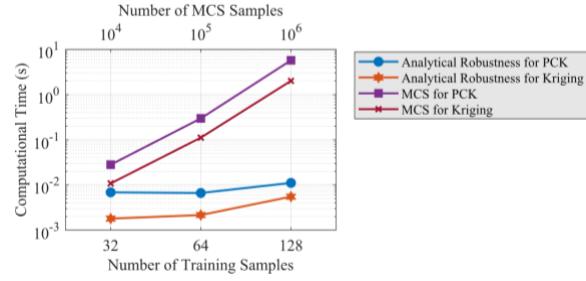
(a) Function One



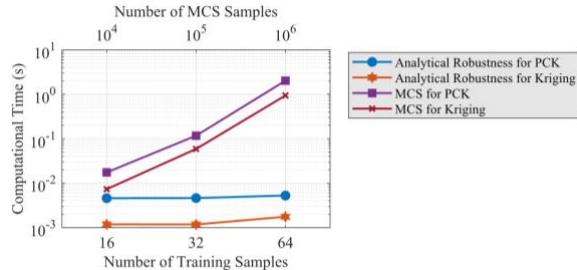
(b) Function Two



(c) Function Three



(d) Function Four



(e) Function Five

Fig. E.1 Comparison between the computational burdens for estimating the first two moments by analytical equations and MCS.

730

731 References

732

- [1] Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? *Structural safety*. 2009;31:105-12.
- [2] Paiva RM, Crawford C, Suleman A. Robust and reliability-based design optimization framework for wing design. *AIAA journal*. 2014;52:711-24.
- [3] Beck AT, de Santana Gomes WJ. A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty. *Probabilistic Engineering Mechanics*. 2012;28:18-29.
- [4] Kanno Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance. *Structural and Multidisciplinary Optimization*. 2020;62:979-1000.
- [5] Taguchi G, Phadke MS. Quality engineering through design optimization. *Quality control, robust design, and the Taguchi method*: Springer; 1989. p. 77-96.
- [6] Beyer H-G, Sendhoff B. Robust optimization—a comprehensive survey. *Computer methods in applied mechanics and engineering*. 2007;196:3190-218.
- [7] Zang C, Friswell M, Mottershead J. A review of robust optimal design and its application in dynamics. *Comput Struct*. 2005;83:315-26.
- [8] Park G-J, Lee T-H, Lee KH, Hwang K-H. Robust design: an overview. *AIAA journal*. 2006;44:181-91.
- [9] Huang B, Du X. Analytical robustness assessment for robust design. *Structural and multidisciplinary optimization*. 2007;34:123-37.
- [10] Li M, Azarm S. Multiobjective collaborative robust optimization with interval uncertainty and interdisciplinarity uncertainty propagation. 2008.
- [11] Roach T, Kapelan Z, Ledbetter R, Ledbetter M. Comparison of robust optimization and info-gap methods for water resource management under deep uncertainty. *Journal of Water Resources Planning and Management*. 2016;142:04016028.
- [12] Song C, Shafieezadeh A, Xiao R. High-dimensional reliability analysis with error-guided active-learning probabilistic support vector machine: Application to wind-reliability analysis of transmission towers. *Journal of Structural Engineering*. 2022;148:04022036.
- [13] Wang J, Sun Z, Cao R. An efficient and robust Kriging-based method for system reliability analysis. *Reliability Engineering & System Safety*. 2021;216:107953.
- [14] Yang M, Zhang D, Jiang C, Han X, Li Q. A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems. *Reliability Engineering & System Safety*. 2021;215:107736.
- [15] Jin R, Chen W, Sudjianto A. Analytical metamodel-based global sensitivity analysis and uncertainty propagation for robust design. *SAE transactions*. 2004;121-8.
- [16] Chatterjee T, Chakraborty S, Chowdhury R. A critical review of surrogate assisted robust design optimization. *Archives of Computational Methods in Engineering*. 2019;26:245-74.
- [17] Ren X, Rahman S. Robust design optimization by polynomial dimensional decomposition. *Structural and Multidisciplinary Optimization*. 2013;48:127-48.
- [18] Lee D, Rahman S. Robust design optimization under dependent random variables by a generalized polynomial chaos expansion. *Structural and Multidisciplinary Optimization*. 2021;63:2425-57.
- [19] Chatterjee T, Chakraborty S, Chowdhury R. Analytical moment based approximation for robust design optimization. *Structural and Multidisciplinary Optimization*. 2018;58:2135-62.

770 [20] Zhou Y, Lu Z, Cheng K. A new surrogate modeling method combining polynomial chaos expansion and
 771 Gaussian kernel in a sparse Bayesian learning framework. International Journal for Numerical Methods in
 772 Engineering. 2019;120:498-516.

773 [21] Liu Y, Zhao G, Li G, He W, Zhong C. Analytical robust design optimization based on a hybrid surrogate
 774 model by combining polynomial chaos expansion and Gaussian kernel. Structural and Multidisciplinary
 775 Optimization. 2022;65:335.

776 [22] Schobi R, Sudret B, Wiart J. Polynomial-chaos-based Kriging. International Journal for Uncertainty
 777 Quantification. 2015;5.

778 [23] Song C, Xiao R, Jiang Z, Sun B. Active-learning Kriging-assisted robust design optimization of tuned mass
 779 dampers: Vibration mitigation of a steel-arch footbridge. Eng Struct. 2024;303:117502.

780 [24] Ribaud M, Blanchet-Scalliet C, Helbert C, Gillot F. Robust optimization: a kriging-based multi-objective
 781 optimization approach. Reliability Engineering & System Safety. 2020;200:106913.

782 [25] Lin P, Zhang L, Tiong RL. Multi-objective robust optimization for enhanced safety in large-diameter tunnel
 783 construction with interactive and explainable AI. Reliability Engineering & System Safety. 2023;234:109172.

784 [26] Krige DG. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of
 785 the Southern African Institute of Mining and Metallurgy. 1951;52:119-39.

786 [27] Matheron G. The intrinsic random functions and their applications. Advances in applied probability.
 787 1973;5:439-68.

788 [28] Marelli S, Sudret B. UQLab: A framework for uncertainty quantification in Matlab. Vulnerability,
 789 uncertainty, and risk: quantification, mitigation, and management2014. p. 2554-63.

790 [29] Lophaven SN, Nielsen HB, Søndergaard J. DACE: a Matlab kriging toolbox: Citeseer; 2002.

791 [30] Xiu D, Karniadakis GE. The Wiener--Askey polynomial chaos for stochastic differential equations. SIAM
 792 journal on scientific computing. 2002;24:619-44.

793 [31] Zhang J, Gong W, Yue X, Shi M, Chen L. Efficient reliability analysis using prediction-oriented active
 794 sparse polynomial chaos expansion. Reliability Engineering & System Safety. 2022;228:108749.

795 [32] Schöbi R, Sudret B. Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using
 796 sparse polynomial chaos expansions. Reliability Engineering & System Safety. 2019;187:129-41.

797 [33] Jia G, Wang Y, Cai Z, Jin Y. An improved $(\mu+\lambda)$ -constrained differential evolution for constrained
 798 optimization. Information Sciences. 2013;222:302-22.

799 [34] Stolpe M. Truss optimization with discrete design variables: a critical review. Structural and
 800 Multidisciplinary Optimization. 2016;53:349-74.

801 [35] Sandgren E, Cameron TM. Robust design optimization of structures through consideration of variation.
 802 Comput Struct. 2002;80:1605-13.

803 [36] Li L. Study on Mechanical Properties of Single Cable Plane Curved Beam Suspension Bridge (In Chinese)
 804 [D]: Nanjing Forestry University; 2017.

805 [37] Lievens K, Lombaert G, De Roeck G, Van den Broeck P. Robust design of a TMD for the vibration
 806 serviceability of a footbridge. Eng Struct. 2016;123:408-18.

807 [38] Heinemeyer C, Feldmann M. European design guide for footbridge vibration. Footbridge vibration design:
 808 CRC Press; 2009. p. 13-30.

809 [39] Ricciardelli F, Demartino C. Design of footbridges against pedestrian-induced vibrations. Journal of Bridge
 810 Engineering. 2016;21:C4015003.

811 [40] Beale MH, Hagan MT, Demuth HB. Neural network toolbox. User's Guide, MathWorks. 2010;2:77-81.

812 [41] Weber F, Feltrin G, Huth O. Guidelines for structural control. Structural Engineering Research Laboratory,
 813 Swiss Federal Laboratories for Material Testing and Research, Dubendorf, Switzerland. 2006;173.

814 [42] Winkelbauer A. Moments and absolute moments of the normal distribution. arXiv preprint arXiv:12094340.
 815 2012.