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ABSTRACT

In robust design optimization, statistical moments of performance are widely adopted in formulating
robustness metrics. To address the high computational costs stemming from the many-query nature of such
optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been
developed based on surrogate models. However, existing methods consider random variables as the sole
model input, which excludes, from the application scope, problems that also involve deterministic design
variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology
for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical
moments of performance are developed considering that the Polynomial Chaos Kriging model is established
in the augmented space of the deterministic design and random variables. This is achieved by systematically
decoupling associations with deterministic input from random input, providing effective solutions even
when the orthonormality of the basis function is not applicable in the augmented space. This work also
presents an active-learning framework enabling seamless implementation of wvarious numerical
optimization methods. Several numerical examples and a practical application illustrate the performance
and superiority of the proposed method.

Key words: Robust design optimization, Polynomial Chaos Kriging, analytical formula, robustness index,
hybrid random and deterministic design variables
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1. Introduction

Structural optimization has emerged as a powerful tool for developing optimal design solutions, taking into
account various constraints within the design domain. Besides many successful implementations, it has
been acknowledged that multiple sources of aleatory and epistemic uncertainties are able to influence the
system performance [1]. Therefore, incorporating uncertainties into the design optimization has received
much attention and become a vital branch of structural optimization. Reliability-based design optimization
and robust design optimization are two allied but distinct approaches [2]. The former is concerned with
providing the most desirable design while quantitatively setting constraints for the failure probability [3].
The latter, on the other hand, typically aims at optimizing the mean response of a system while reducing its
sensitivity in the face of variations [4].

The earliest work for robust design was pioneered by Genichi Taguchi [5]. Subsequently, a number
of studies extended Taguchi’s method (see reviews by Beyer and Sendhoff [6], Zang et al. [7], and Park et
al. [8]). With the developments of computational mechanics and numerical optimization methods,
researchers have also made efforts to take a broader view on robust design [9]. Various formulations have
been present as robustness metrics under optimization frameworks. In general, these measures can be
grouped into the possibilistic type (e.g., fuzzy sets, convex models, information gap methods [10, 11]) and
probabilistic type [4]. The latter, as the primary concern of this work, is well suited when sufficient
information is provided to define the joint probability distribution of random parameters. In such cases, the
mean and variance of structural response are typically consolidated to define the problem. Notably,
compared with deterministic design optimization, a significantly higher computational challenge
intrinsically exists due to the incorporation of uncertainty analysis into the optimization routine. Techniques
grounded in surrogate modeling [12-14], which aim at creating a cheaper-to-evaluate mathematical model
as a substitute for the original computational model, have garnered significant interest for mitigating the
computational challenges in RDO [15, 16]. To fully take advantage of the information from surrogate
models and eliminate the computational burden of uncertainty quantification, a key research direction is
the development of analytical approaches for computing the robustness index. With such analytical
estimation, solving a RDO problem can be as simple as handling a deterministic counterpart.

Surrogate models akin to Polynomial Chaos Expansion (PCE) and Polynomial Dimensional
Decomposition (PDD) typically use a set of orthonormal polynomials to fit the trend of a generic output
function. Taking advantage of the orthonormality feature, Polynomial basis-based models serve as powerful
tools for analytically estimating various properties of the stochastic response. For example, Ren and
Rahman [17] established analytical formulas for the first two statistical moments and first-order derivatives
with respect to a variable using PDD and proposed a sequential gradient-based optimization framework.
Lee and Rahman [18] further developed a generalized PCE model founded on a whitening transformation
algorithm, and therefore random variables obeying dependent distributions can be better handled in their
proposed framework. Chakraborty et al. [19] formulated an analytical expression for estimating robustness
via hybrid Polynomial Correlated Function Expansion. Zhou et al. [20] developed the PC-GK-SBL
surrogate model, which combined polynomial chaos expansion (PCE) and Gaussian kernel (GK) in the
sparse Bayesian learning (SBL) framework. Liu et al. [21] investigated the analytical RDO method based
on PC-GK-SBL, and proposed an active learning function to adaptively refine the training data combining
the nearest distance to existing training samples and the distance to the located optimal solution.

Despite recent advancements in surrogate model-based analytical RDO, critical gaps within
existing methodologies persist and warrant attention. In many practical engineering applications, despite
facing a variety of internal and environmental uncertainties, some design variables should still be regarded
as deterministic. This is either because the corresponding output is intrinsically certain (e.g., the design of
the number of elements and other topological parameters) or because the associated uncertainty can be
confidently eliminated through validation (e.g., the parameters of a damper can be accurately measured
during the manufacturing process in some cases). However, most existing methods assume random
variables as the sole input to the surrogate model and subsequently develop analytical formulas. These
methods therefore struggle with problems that simultaneously incorporate deterministic design variables
and random variables, because the primary assumption for derivation is not founded. Artificially assuming
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the deterministic variables as random inputs by introducing very small coefficients of variation is the
simplest approach to transform the problem. However, this approach may not be appropriate since some
design variables are inherently certain, thus introducing a conceptual inconsistency. Beyond that, treating
such variables as random may considerably affect the efficiency of RDO by incurring additional
computational burdens and introduce errors challenging the ability of RDO in minimizing the cost function
and meeting constraint requirements.

To bridge the gap, this paper introduces a new method for efficient analytical robust design
optimization considering hybrid random and deterministic design variables. The Polynomial Chaos Kriging
(PCK) is used here as the surrogate model. PCK interprets the PCE in the universal Kriging framework to
capture the global trend, making it a suitable choice due to its superior predictive capabilities as evidenced
in [22]. The main contributions of this work are in the following two fronts. First, different from established
methods [17-19, 21], this study proposes analytical solutions for the statistical moments based upon a global
PCK surrogate model that is established on the augmented domain for all deterministic design and random
variables. During the derivation process, this work systematically decouples the parts with deterministic
input from those with random input, therefore yielding effective solutions even when the orthonormality of
basis function is not applicable. Several classical numerical examples and a practical application of robust
tuned mass damper (TMD) design optimization demonstrate the superiority of the proposed method
compared to the state-of-the-art approaches. Additionally, compared with previous work [23], this paper
symmetrically compares the method performance with and without the introduction of PCE trend for
Kriging in RDO. Through investigations, it is evident that the PCK surrogate model generally perform
slightly better than the Kriging surrogate model for solving RDO problems, because of the improvement of
the ability to capture the global trend.

The paper is organized as follows. Section 2 recalls the fundamental theory about robust design
optimization and the PCK surrogate model. Section 3 presents the proposed method, specifically active
learning and PCK-assisted analytical RDO. Section 4 provides numerical and practical examples to
illustrate the performance of the proposed method. Section 5 summarizes the conclusions of this work.

2. Preliminaries
This section presents an overview of robust design optimization including a typical formulation of RDO
problems. This is followed by an introduction to Kriging and PCK surrogate models.

2.1 Robust Design Optimization

As an important branch of structural optimization, RDO aims at optimizing the design scheme while
maintaining the objective or feasibility robustness. Let d denote the design variables of optimization, which
consists of two parts, i.e., d4, the deterministic design variables, and d,,, the mean value of some random
variables. Let & denote the vector of random variables. The variance-based robust design optimization can
be formulated as:

rngM(dwf)
(coni(dd,f) <0,i=12,..,n

| d=[dgd,] (1)
iy E~f(£|d,)
l d<d<d,

where obj(+) denotes the objective function, con;(-) denotes the constraint function (i = 1,2,...,n),
f(§ld,) denotes the distribution of § given d,;, and d,; and d,, denote the upper and lower bounds for the
design variables, respectively. The weighted sum of the expected value and standard deviation of a
performance function has been typically adopted to describe obj(+) and con;(), e.g., agE[g(dy, &)] +
asS[g(dy, §)] where g(-) denotes the performance function, az and ag denote the weight factors. In some
works, this problem is presented as a dual-objective optimization problem [24, 25]; however, due to space
limit, the rest of this paper only focuses on the single-objective optimization as presented in Eq. (1).
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2.2 Kriging

Kriging, developed by Krige [26] and Matheron [27], aims to predict the response of a function, based on
the assumption that the function of interest is a realization of a stochastic Gaussian process. Let § denote
the predictor of Kriging and x denote the vector of input; the predicted value of a point can be written as:

g(x) = F(x) + z(x) ()
where F(x) is the regression part which can be expressed based on the regression model f(x) and
regression parameters 8, and z(x) is a stationary Gaussian random process.

When defining the covariance between the outputs of two points (x and x") based on the distance, for a
dim dimensional problem, a typical Gaussian correlation model is:

dim dim
xk - xk
R(0,x,x") = 7Ok, Xp, Xp) = exp [—— l 3)
[ [
Subsequently, the mean and variance of §(x) can be expressed as [28]:
e (xX) = f) B+ 1R (Y — f(Xm)B") 4)
og(x) = > (L + u" (f (X)) "RF (X)) 'u—1"R7'7) (5)

where R is the correlation matrix with R;; = R(0,x?,x9), and r = {R(8,xM, x), -, R(8,x™, x)}. 0 is
a vector of hyper-parameters that can be determined by the maximum likelihood estimation [29]. B*
denotes the generalized least-squares estimate.

2.3 PC-Kriging
Considering a vector x describing the input variable, Polynomial Chaos Expansions (PCE) [30]
approximates the original performance function g(x) by a sum of orthonormal polynomials:

9@ =) c¥a® (6)

ae

where W, (-) denotes the multivariate orthonormal polynomials, ¢, denotes the corresponding coefficient,
a denotes the index of the order of polynomials, and A denotes the set of polynomials selected for
approximating g(-) [31, 32]. As noticed, compared to traditional regression models such as linear or
quadratic regressions, PCE shows better flexibility and performance in capturing the global trend of a
function. Therefore, some researchers proposed the PC-Kriging (or called PCK in the rest of this paper) to
take advantage of not only the global regression capability of PCE but also the interpolation and uncertainty
quantification capabilities of Kriging [22].
Let x also denote the vector of input variables. The prediction of PCK can be formulated as:

§@) =) e +2() (M
ae
Compared with Eq. (2) the main difference lies in the introduction of the PCE as the global trend of the

surrogate model. And therefore, the same correlation model, such as the Gaussian model of Eq. (3) and the
corresponding hyperparameter @ can be used to characterize the Gaussian random process z(x).

3. Methodology: Active-learning PCK-assisted RDO

For a robust design optimization problem, as was explained in Section 2.1, the objective function (0bj())
or the constraint function (con(-)) can be formulated as azE[g(x)] + a;S[g(x)], where g(-) denotes the
performance function and ay and ag denote the weight factors. When both the deterministic design
variables and random variables are considered as input, it is noticed that x = [d, ]. Therefore, with the
application of surrogate model, i.e., §(-) as a substitute for the original function g(-), the statistical
properties can be estimated by simulation methods, such as MCS. However, the nested structure of
uncertainty quantification and optimization still challenges the solving procedure because numerous
evaluations of the robustness metric can be required in the optimization routine. Motivated by using
analytical solutions to fundamentally address this challenge and the genuine need to simultaneously
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incorporate random and deterministic design variables, this work proposes new analytical solutions based
on the PCK surrogate model in the rest of this section. Several remarks such as the strategy for dealing with
difference correction models or distributions are also provided at the end of this section.

3.1 Analytical solution of the expectation of PCK
Let us consider g(x) as the objective of the RDO problem, where x denotes the input variables. As noticed,
when the surrogate model is built on the augmented domain, the set of input variables can be presented as

x = [dg,§]. Let dimg denote the dimension of the input variable § with § = {51, “',fdims}, and dimy,
denote the dimension of the input variable d; with d; = {dd,1: o, dg aim d}. The dimension of the input of
PCK is therefore dim = dimg + dimy.
With  optimized hyperparameters 60" = (0:},0;) . 0;={6;, ---,Gé_dimd} , 0=
{ 01, ngdimg} and the optimized coefficients of PCE denoted by A*, the prediction of a PCK can be
recast as:
GO =) W)+ TR W= F(Xy) (8)
aEA
Let y* denote R™1(Y — F (Xm)) Note that F(X,,,) is denoted by the PCE of Eq. (6), and R is the matrix
with R;j = R(6",x,x). R™*, Y and F(X,,) are independent of the input x. Considering that y* =
[Yi, ., Vin]T where m denotes the number of training samples of PCK, Eq. (8) can be recast as:
m
i = * * ®
§@ =) ¥t ) ViR(Oxx0) ©)
where X,,, = {x(l), - x(m)} denotes the database of the training samples. With input x consisting of dg
and &, Eq. (9) can be further expanded to:

R m ) dimg . ) dimg i (i)
gx) = Z cqWa(X) + Z [ : 1_[ (0,7 da,j dq;) 1_[ (0810 €€ )] (10)
aEA* i=1 j=1 k=1

Thus, the expectation for §(x) can be formulated as:

E[g(x)] =E [Z ca¥a(®) + Zm YiR(6,x, x("))]

_]E[Zae co a(x)] z 1(yl nd: r(83,dajd) - ]E“_[k:lf (6100 ,Ez))> (11)

For the first part of Eq. (11), i.e., E[Dqe.q* ca P (X)], it worth noticing that due to deterministic design
variable d is also considered as input, E[Y. e ¢o W (X)] # c( that is only correct when x consists of all
random variables and corresponding polynomial basis functions are adopted. Herein, let W, (x) =

dlmd ll)a(dd 1) ]‘[dlmf l/Ja(Ek) generally denote the multi-variant polynomial that is the product of

polynomlal basis in each dimension. With independent input variables, the above equation can be
reformulated as:

E[Zaeﬂfa“’a(")]=zaw (Cﬂjm Va(das)- ]_[ wa(fk)]) (12)

Furthermore, it is noticed that:

Ele(€0)] = f F(Eldy) - P (€0)dE, (13)

For the second part of Eq. (11), when the separated Gaussian correlation model as shown by Eq.

(3) is adopted, and random variables are independent, E [H K= 15 (9 gk é (’))] can be formulated as:

dimg . ; dimg 3 _f(‘) 2
IE[H r(eg,k,sk,sy)]:ﬂk:l 1E<exp [7( T ) D (14)
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For a single component of the above equation, the expectation can be calculated as:

_ s(0\? )
E(“"[_%(ﬁ S ) D [ Vam0;,- f(6eldn) - v [6ule, (03] a6 (15)

0z «

Therefore, combing Eqs. (11)-(15), the expected value of the prediction of PCK can be efficiently
determined. Notably, the analytical solution for some parts of the equations depends on the distribution of
random variables. For a comprehensive understanding, the formulas for the expectation when random
variables follow Gaussian distributions are provided in Appendix A, and those for uniform distributions
provided in Appendix B.

3.2 Analytical solution of the variance of PCK
This section focuses on the analytical solution for the variance of the PCK prediction. The variance of the
stochastic output based on a PCK surrogate model can be formulated as:

var(g(x)) = E[g(x)*] — E[g(x)]? (16)

As the formula for determining E[§(x)] has been provided in the previous section, E[§(x)]? can be easily
calculated. The rest of this section focuses on the computation of E[g(x)?].

E[g(x)*] = E [(Zaeﬂ*c“q}“(x) + Z;y; R(6,x, x(i)))z]
=F ([Zueﬂfa‘ya(x)m +2xE [Z:Zamv?ca%(x) R(6,x, x@)] +E ([zzly;R(e, X, x(i))]2>

For the first part of Eq. (17), it is worth noticing that due to the introduction of deterministic design variables,
E[(Zoeqca¥,(2))?] # Ygen cq?. With independent variables, it can be formulated as:

{5 ool

(17)

dim (18)
S (cacﬁ [ 1. vuldayywo(any): [T e, (f,a])
Then, E[1)4(£%)1h5(£%)] can be obtained as:
Bl o (601 = [ F(Eeldi) - a6 o (19)

For the second part of Eq. (17), X7 Ywea* YicaPe (X) R(0, x, xP) can be formulated as:

E [Z 12 Yl icaWo (x)R(O x, x(l))]
=FE (21 12(1&/1 cqWy (%) [YL Hdil T(Qd],dd ],déli) 1_[ r(gfk'fk:flgl))])

Let W, (x) = dlmd wa(dd J) ]_[dlmE Wy (f k) generally denote the multi-variant polynomial that is the

product of the polynomlal basis in each dimension. Subsequently, the above equation can be reformulated
as:

m
E [Z Z YicaWo(X)R(0,x, x(i))]
i=14md e A*
m . dimg . ) dimg . B
= Z Z (Yi Ca” 1_[ lpa(dd,j)r(ed,j'dd,j' dd,j) "E [1_[ lpa(fk)r(gf,k'fk;fk )D
i=1 AEA* j=1 k=1

Let us also consider that the separated Gaussian correlation model is applied, and the random variables are

independent. It is therefore E []'[k 15 Ve (507 (62 k,g'k,f,gl))] ]'[dlmf E[ta (§i)7(07 1 Ek,f,gi))] which can be
recast as:

21
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E[the (6107 (8 10 61 657)] = V216;, f F(&ldy) e (G - N [&lel, (651)°] déi (22)

For the third part of Eq. (17), E ([Zl 1ViR(8,x,xD)] ) can be recast as:

E <[Zi YiR(8,x, x(i))r)

i dimg . ; .
) IE[ZL 12 <YlYR 1_[ [r(gdf da.j» d())r(gdl daj» d(t)' ]H [r(eek'fk»fxg))T(ka'fkrgzit))]ﬂ

Let x;¢ denote y;y; [] dlmd[r(ed i da ],d(l)) (63, dq J,d(t )] that is deterministic given i,t. The above
equation can be simplified as:

5([Y virera] )= 3" 3" (e B[ (Ot ) (o)) 09

With the same assumption that the probability density functions for the random variables are independent
and the Gaussian correlation model is adopted, E [H:Z’f (05 10 &6 )r (07 40 € ,(f))]
= Hdlmf E[r(6¢ . &k i))r(egk, fk,f,gt))], where:

E[r(6;, 0y JACHRY flgt))]

= 21(0;,)° f FGEld) -V 616, (02:)°] - [e16”, (65)° | déi

Therefore, combining the above equations, Var(g (x)) can be efficiently obtained based on the
distribution of random variables, together with the standard deviation of the performance function

S[gx)] = /Var(ﬁ (x)). For the full analytical solutions, readers are referred to Appendix A and B for

Gaussian and uniform distributions, respectively. For the integrity of this work, the authors make some
remarks as follows, to further discuss the advantages of this analytical robustness formula and the
assumptions made during the derivation.

(23)

(25)

Remark 1: On the distribution of the random variables and the correlation model

This section discusses the main assumptions made for the derivation of the analytical formula of
the robustness index, i.e., the expectation and standard deviation of §(-), as well as the way to release those
assumptions. A key assumption is that the random variables are independent and the random variables §
follow certain types of distributions (Gaussian or uniform distributions). For other cases, probabilistic
transformation strategies can be adopted to smooth the performance function and to facilitate the calculation
of the statistics. Another assumption is that the separated Gaussian correlation model is adopted for the
PCK surrogate model. Because the separated Gaussian correlation model is the most popular one and due
to the limit on paper length, this work does not present the full analytical formulations for other types of
correlation models. Future works can expand upon this by reformulating Eq. (13), Eq. (22) and Eq. (25).

Remark 2: On the difference between PCK and Kriging

The main difference between the PCK and the Kriging surrogate model lies in the establishment of
the trend function, i.e., F(x) in Eq. (1) designed as f(x)"B or Yqe4 ca W, (x). Taking advantage of the
ability to capture the global trend of the function, PCK provides a group of optimized basis functions. In
comparison, Kriging requires that the user define the type of global trend function before the
implementation of the surrogate model. Despite this difference, the above derivations in Section 3.1 and
3.2 can be extended to Kriging [23]. On the other hand, as PCK provides better ability to capture the global
trend of the function, PCK is seen to provide slightly better performance when estimating the statistical
moments than Kriging for the same training dataset. This is validated by the comparison in Appendix D for
the performance of PCK and ordinary Kriging for five classical numerical examples.
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Remark 3: On the objective of analytical robustness formula

To further highlight the motivation behind this work, Appendix E compares the computational cost
of estimating the statistical moments using both MCS and the formulated analytical equations. It is evident
that the proposed analytical formulas are significantly faster than repeated sampling, offering nearly 100
times improvement in cost for some cases. Considering that global search optimization methods, such as
evolutionary algorithms, are applied for global searching or improved handling of problems with discrete
design variables, the proposed analytical formula prove immensely beneficial as numerous evaluations of
the robustness index might be needed during the optimization loop. Additionally, when viewed as a specific
interpretation of Kriging, it is evident that estimating the statistical moments of PCK is more costly than
Kriging, for both analytical estimation and MCS approaches. This is mainly because the trend function of
a PCK surrogate model is inherently not simpler than that of an ordinary Kriging.

Remark 4: On the deterministic design variables

As one of the primary motivations of this work, this remark presents the main difference due to the
introduction of deterministic design variables. Notably, for problems without deterministic design variables,
the above equations can be simplified by removing all terms associated with d (see Egs. (11), (18), (21)
and (23)). The simplified equations are consistent with the previous work [20], despite the difference
between the adopted surrogate models.

Remark 5: About the scaling
It is worthy to note that in order to guarantee the numerical stability, an auxiliary space can be
introduced by scaling the input variables, i.e., x = u by:
xj — p(x;5)
a(x;)
In this case, the optimized correlation parameter 8 is based on the auxiliary space, and therefore scaling
of the training data is needed when calculating the statistics. Let X, = {x(l), SN x(m)} denote the training

u = j=12,..,dim (26)

samples in the original space and U,,, = {u(l), e, u(m)} denotes the training samples in the auxiliary space.
It is x® = [E("),dg)] and u® = [ug),ug;] (i=12,---,m). The parameters and bounds for the

distributions of random variables can also be scaled. The formulated analytical expressions are still feasible
in the auxiliary space after scaling.

3.3 The proposed framework

It is worth noticing that when taking advantage of the proposed analytical formula to express robustness
index, it is still vital to establish an accurate mapping from the input to output space, i.e., guaranteeing the
accuracy of the surrogate model especially in the region of interest. To this end, following the well-known
concept of active learning, a generalized framework for efficient PCK-assisted robust design optimization
is presented in this section. Fig. 1 illustrates the flowchart of the proposed method.
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Fig. 1 Flowchart of the proposed RDO framework

As noticed, the proposed method mainly consists of three stages. The first step is named as
Initialization Stage. In this stage, based on the robust design optimization problem, the associated design
variables, random variables and the probabilistic model should be established. The formulation of the RDO
problem should be set up as indicated in Eq. (1). For performance functions involving complex
computational models, an initial design of experiments should be determined, and the performance models
are accordingly evaluated. Techniques such as Latin hypercube sampling can be used to generate initial
training samples.

Subsequently, the framework enters the next stage: Optimization Stage. The PCK surrogate model
is firstly established in the augmented space, i.e., dg X €. Then, based on the proposed analytical formula
of robustness in Section 3.2 and Section 3.3, the objective and constraint functions are analytically
expressed. Based on the feature of the problem, such as discrete or continuous optimization, single-modal
and multi-modal optimization, the numerical optimization method is selected. The RDO problem is
subsequently solved with the current surrogate model. Three criteria are adopted in this paper to guarantee
the accuracy of the final solution. First, the number of implementations of an optimization algorithm must
be larger than ¥,,. Furthermore, let ¥,,,5, denote the threshold for the mean squared error. The mean value
for the mean squared error (o /g ) of local samples should be smaller than W¥,,,, to guarantee the accuracy
of the surrogate model in the local region. Also, the change of the optimal solution in the current iteration
and the last iteration should be smaller than the threshold W, to ensure the robustness of the solution. If all
criteria are satisfied, the method ends and the optimal solution is provided. Otherwise, the method enters
the third stage for the refinement of the surrogate model.

The third stage of the proposed method is the Refinement Stage of the surrogate model. A group
of realizations are firstly sampled centered on the optimal solution from Stage Two. This work adopts the
original distribution of random variables to general samples, i.e., implementing the MCS. Then, the
probability density of the sample and the uncertainty level of the prediction are combined as the learning
function to select the next training sample, e.g., LF (x) = PDF (x) - g (x). The sample that maximizes the
learning function is selected and evaluated on the original function. After refinement of the training
database, the method goes back to the second stage for the next implementation of optimization.
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4. Numerical Examples

In this section, the proposed method is carefully investigated on several numerical examples and a practical
engineering application about TMD design optimization. Multiple other surrogate-based methods are
compared to indicate the superiority of the proposed method. For a fair comparison, these methods are
implemented 10 times independently. The results are then compared, either by using their average or by
focusing on those with median performance in discrete problems. The UQLab toolbox (version 2.0.0) is
adopted for the establishment of the surrogate models, e.g., PCK, Kriging and etc. Either a Gaussian or
uniform distribution is defined to cover the design space of a design or random variable, thus facilitating
the establishment of a PCK model in the toolbox. Hybrid Genetic Algorithm (HGA) is selected as the
method for training PCK and Kriging [28]. All numerical experiments are implemented based on a
computer with AMD Ryzen 5900HX CPU, RAM 32 GB.

4.1 Example one
The first example is a two-dimensional numerical problem, named 2D Haupt function [21]. Two
independent random variables are considered in this example. The mean values of the random variables are
taken as the design variables with standard deviation of 0.2.

g o %
(g(f) = §ysin(4$;) + 1.1&;, sin(2§3)

&~N(dy;,0.22),i =12 (27)

0<d,; <4i=12
k d, = [du.l'du.z]

As this example is a multimodal optimization problem, a heuristics optimization method, called the
improved (u+A4) differential evolution (IDE) [33], is applied to search for the best solution. Table 1
compares the results from the proposed method and several other techniques, including relevance vector
machine (RVM), radial basis function (RBF), artificial neural network (ANN), sparse polynomial chaos
expansion based on the least angle regression (PCE-LAR), Kriging with passive learning, Kriging with
Expected Improvement (EI) learning function and Kriging with Mean Squared Error (MSE) learning
function [21]. As the PCK can be considered as a specific interpretation of Kriging, in this context, the
ordinary Kriging-based proposed framework is also compared here to illustrate the influence of the
surrogate model. From the presented results, it can be observed that:

e The use of surrogate models, such as ANN, RBF or Kriging, can significantly reduce the calls to
the performance function when solving this RDO problem; however, the direct application of these
techniques may not guarantee that a true global optimal solution is found. The maximum relative error
incurred by the surrogate model, such as RBF, can be as large as 122%. On the other hand, after adaptive
refining the surrogate model, such as Kriging-EI and Kriging-MSE, the methods can yield much better
solutions, and the proposed method generally achieves the best performance.

e The ‘No’ or ‘Yes’ is indicated in the last column of Table 1 to distinguish the methods with
analytical solutions from the methods with Monte Carlo Simulation to assess the robustness index.
Because the evaluations of robustness index are required many times in the optimization routine, surrogate
model-based methods still suffer from the nested loop of optimization and uncertainty quantification with
the lack of analytical solutions. For instance, taking into account 950 evaluations of robustness index as
counted by the optimization with crude MCS, considerable computational time is required to solve this
two-dimensional problem even with surrogate models. In comparison, the proposed surrogate model-
based analytical method consumes only tens of seconds to accurately finish the whole computation; the
computational efficiency can be boosted over 100 times. The advantage of developing analytical robust
optimization can be therefore clearly shown by the avoidance of such tremendous computational cost.

where:

10
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(a) the establishment of the PCK model (b) the performance of the proposed method

with PCK and Ordinary Kriging
Fig. 2 The establishment of the surrogate model and comparison of results

Table 1 Comparison of the results from the proposed and other methods for Example One.

Method Optimal Solution 2 Objective Aoy (%) Sample Size Analytical
Solution
MCS (2.7489, 2.4369) -3.4548 - 107x950 ® No
RVM ¢ (2.4225,2.4100) -1.5399 55.42 32 No
ANN ¢© (1.7615, 2.2991) -0.4049 88.27 32 No
RBF © (1.4696, 1.5311) 0.7726 122.36 32 No
PCE-LAR ° (2.4215, 2.4338) -1.5369 55.51 32 No
Kriging © (2.2714, 2.4123) -0.6384 81.51 32 No
Kriging-EI © (2.7632, 2.4255) -3.4474 0.23 24+4.4 No
Kriging-MSE °© (2.7563,2.4119) -3.44383 0.18 24+23.6 No
PC-GK-SBL ° (2.5921, 2.4374) -2.8215 18.29 32 Yes
PC-GK-SBL-
RLGE © (2.7491, 2.4373) -3.4543 0.01 31.1 Yes
Proposed method- N
Ordinary Kriging (2.7473, 2.4273) -3.4547 =0 30.3 Yes
P“’poslfggeth"d' (2.7486, 2.4360) -3.4544 0.01 303 Yes

e Compared with the existing surrogate model-based analytical RDO method [21], i.e., PC-GK-SBL
with passive learning or PC-GK-SBL with RLGE learning function, the proposed method can achieve
slightly better performance regarding the accuracy and efficiency of analysis. The PCK-based proposed
method requires only 30.3 calls of the performance function on average, showing a relative error of nearly
zero. Fig. 2 (a) shows the sequential sampling for the training database of PCK. The proposed method can
accurately locate the true global optimum and converge to the optimum through adaptive refinements
around the global optimal solution. When the Ordinary Kriging is adopted with the proposed analytical
formula of robustness and active-learning framework, the performance is still good on average, however
as Fig. 2 (b) shows, the PCK-based proposed method can perform slightly more stable compared with the
Kriging-based approach. This is consistent with the aforementioned investigation in Appendix D.

® the results are averaged over 10 independent runs.

® the sample size for MCS indicates (the number of realizations to estimate the statistics) X (the number of evaluations
of the robustness index during the optimization loop).

¢[21] is referred to obtain the performance for the other surrogate model-based methods.
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4.2 Example two

The second example consists of a revised robust design optimization problem for a truss structure, shown
by Fig. 3 [17]. Three independent random variables are involved in this problem, i.e., the mass density &;,
the applied external loading &,, and the material yield (tensile) strength 5. Two deterministic design
variables are considered, i.¢., the cross-section area d; and the half of the distance between the two bottom
nodes d,. To highlight the features of the proposed method, d4 is modeled as a discrete design variable
with the candidate set of {10,11, ---,20}(unit: cm?). The heuristics constrained optimization method, called
the improved (u+A) constrained differential evolution (ICDE) [33], is applied in this example. Table 2
presents the distribution for the above random variables. Two constraints regarding the maximum stresses
for the bars are considered. The robust design optimization problem is formulated as:

r(rl}ir)l 0.05p4, + 0.250,,
d
c1(dg,§) = 3Ug1 —Ug, = 0

S.t.:
{cz(dd,f) =30y, —HUg, <0
9o(dg,§) = &1dy ’1 +d3

SEZW(B 1 )

d;,§=1- —
g1(dg,§) \/6_553 d, " did,
where: < @)= 1 5¢, [1+d_§(8 1 )
Gelas) = T eee, \dy did,

d; € {10,11,-+,20} (unit: cm?)
0.1 <d; < 1.6 (unit: m)
dg = [d,,d,]

externel force &,

Fig. 3 The truss structure of Example two

Table 2 The design variables and distribution of random variables of Example Two.

(28)

Variables Distribution Mean SD Unit
Cross-sectional area (d;)  Deterministic dq — cm?
Half-horizontal span (d,) Deterministic d, — m
Mass density (&;) Beta 10,000 2,000 kg/m?
Load (&;) Gumbel 800 200 kN
Yield strength (&5) Lognormal 1,050 250 MPa

12
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Table 3 Comparison of the results from the proposed and other methods for Example Two.

Optimal o o Constraint] ~ Constraint2 : Analytical
Method o} ion«  Objective Ao, (%) -¢4 -Cy Sample Size Solution
(12.00, 5 b
MCS 0312) 1.257 — ~0 -0.572 10°x785 No
SVR (01_3,'304% 1.368 8.83% -0.086 -0.584 128 No
(10.00, .
RBFNN o0 1.003  20.21% 0.819 -0.996 128 No
PCE-LAR (01?'(;)20)’ 1.606  27.76%  0.144 -0.997 128 No
nggi‘"gy (olifg)’ 1.303 3.66% -0.040 -0.473 128 No
Proposed
(‘;ﬁlﬁ; (()1§'3020)’ 1.265 0.64% 0.012 -0.552 88.5 Yes
Kriging
Proposed (12.00
method- 0 3'29)’ 1.261 0.32% -0.007 -0.554 87.5 Yes
PCK .
Al
fu)) 2.5
= e Tl
o D = I =5
, — L

Fig. 4 The comparison of results for Example two

Proposed Proposed gyr  RBFNN

PCK Kriging

PCE Kriging

Table 3 compares the results from the proposed method, and from multiple other surrogate models,
including support vector regression (SVR), radial basis function neural network (RBFNN), sparse
polynomial chaos expansion based on the least angle regression (PCE-LAR), and ordinary Kriging [28].
Fig. 4 depicts the boxplots that compares the performance of these methods, and it was noticed that:

e Asillustrated in Fig. 4, among the techniques used for comparison, SVR generally delivers the best
performance with all solutions falling into the feasible domain. RNFNN exhibits the worst performance,
characterized by considerable fluctuations in the results obtained, and the median performance solutions
from both RBFNN and PCE are infeasible designs with respect to the first constraint function. The

2 the median performance solution is compared, and the averaged required sample is compared.
® the sample size for MCS indicates (the number of realizations to estimate the statistics) X (the number of evaluations

of the robustness index during the optimization loop).
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performance of the proposed method is the best among all approaches. The required calls for the proposed
methods with ordinary Kriging and PCK are very similar (88.5 verse 87.5). Compared with MCS, the
relative error from the proposed method with PCK is only 0.32%, while the one for the proposed method
with ordinary Kriging is relatively larger (0.6%). For the discrete design variable, i.e., the cross section of
the trusses, the PCK-based proposed method yields an accurate result of 12 cm? for all independent runs,
while that for Kriging-based proposed method can result in a section design of 11 cm? occasionally.
Therefore, as also illustrated in Fig. 4, the performance of the PCK-based proposed method is more stable
for the investigated truss problem. The results also confirm the enhancement achieved through the
incorporation of the PCE trend into the Kriging surrogate model.

e The proposed method remains the capability of providing analytical solution of robustness index
for the example with both deterministic design variables and random variables. The existing method, i.e.,
the PC-GK-SBL investigated in the last example, fails to provide the analytical solutions, because this
method does not consider the involvement of deterministic design variables during the derivation, and
therefore, the PC-GK-SBL is not compared in this example. This demonstrates the contribution of the
proposed method with respect to extending the applicable scope of the analytical RDO methodology.
Artificially introducing uncertainties into deterministic design variables can address challenges associated
with hybrid random and deterministic variables; however, this approach may also introduce additional
errors. For example, if considering that both the cross-sectional area and half-horizontal span follow
lognormal distributions with a coefficient of variation of 0.05, the optimal design changes to (12, 0.331),
representing approximately a 6% deviation in the span arrangement. Thus, it is vital to properly define
the distribution parameters when treating deterministic variables as random.

4.3 Example three

The third example involves the robust topology design of a frame structure with element members
considering the variations in the external loading [34, 35]. The topological design involves the definition
of the number of active members and the corresponding sizes. The RDO problem is formulated as:

min E[g, (d,8)] + 6S[g, (e, 9]

10
Z' lid; < 5.43 (unit: cm?) (29)
where =1

= [SCF,W SCF,h]
l d= [dlrdzv"'1d6]

where g,, () is defined as the weighted sum of displacements along the external forces, with weight factors
of five for the vertical displacement and one for the horizontal displacement. Fig. 5 depicts the layout of
the frame structure and the numbering of its elements. ¢z j, and g, denote random variables for the load
magnitudes applied in the horizontal and vertical directions, respectively. g ,, and g j, are assumed to
follow Gumbel distributions; the mean values for both are 100 kN, while their coefficients of variation are
0.2 and 0.02, respectively. The elastic modulus is considered as 100 GPa. Therefore, the objective is to
optimize the frame design to design to ensure structural compliance, taking into account variations in the
external loading and constraint on the material consumption. To find the optimum topology, each design
variable d;, representing the section areas for the corresponding frame members, can be selected from a
discrete set. Zero is adopted to encode the inactivity of a member, i.e., d; € {0,1,2,+,10} (unit: cm?). With
introduction of the structural symmetry, total six design variables are considered in this problem.

14
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Fig. 5 The frame structure of Example three

The ICDE optimization method is also applied in this example to find the global optimal solution with
discrete design variables. Table 4 compares the results from the proposed method, and from multiple other
techniques, including SVR, RBFNN, PCE-LAR, and ordinary Kriging. Fig. 6 (a) depicts the optimum
structural topology by the proposed method, and Fig. 6 (b) shows the boxplot for the performance of these
methods. From the results, it can be noticed that:

e For multiple surrogate models employing passive learning with 128 training samples, the SVR
method can generally facilitate the determination of the optimal structural topology, namely, for elements
#1 and #5. However, the selection of element sizes is typically inconsistent with the solution determined
by MCS. As shown in Fig. 6(b), the results from SVR exhibit certain discrepancies when compared with
the true optimal solution. Moreover, with methods like ordinary Kriging, PCE and RBFNN, the
determined topology can occasionally significantly differ from the optimal one. For example, RBFNN
determined a result of (3,0,1,2,0,1) in one analysis. Thus, these methods are prone to incurring larger
errors in this topology design problem.

Table 4 Comparison of the results from the proposed and other methods for Example Three.

Method Optimal Solution*® Objective  A,pj(%)  Sample Analytical
(mm) Size Solution

MCS (9,0,0,0,3,0) 4.34 — 10x5580° No

SVR (6,0,0,0,4,0) 4.75 9.45 128 No

RBFNN (3,0,1,2,0,1) 792.49 >100 128 No

PCE-LAR (10,1,0,0,2,0) 4.95 14.06 128 No

Ordinary Kriging (10,1,0,1,1,0) 7.20 65.90 128 No
Proposed method-

Ordinary Kriging (9,0,0,0,3,0) 4.34 0 82.7 Yes
Proposed method-

PCK (9,0,0,0,3,0) 4.34 0 85.4 Yes

e On the other hand, the proposed method is the only technique that retains the capability to provide
an analytical solution for robustness. It is worth noting that due to the involvement of the topological
design variable, i.e., the inactivity of a member encoded by ‘0’, artificially introducing uncertainty around

2 the median performance solution is compared, and the averaged required sample is compared.
® the sample size for MCS indicates (the number of realizations to estimate the statistics) X (the number of evaluations
of the robustness index during the optimization loop).

15



467
468
469
470
471
472
473
474
475
476

477
478
479
480
481
482
483
484
485
486
487

488
489
490
491
492
493
494

a deterministic design is not often feasible, given the convergence issues with FEM analysis and the
discrete nature of topological design. Thus, this application further emphasizes the primary concern and
motivation of this work. The proposed method, employing a PCK surrogate model, achieves the best
performance among all investigated methods. As depicted in Fig. 6(b), with an average of 85.4 runs of
the performance function, the proposed method with PCK can typically accurately find the true optimal
design. In comparison, the proposed method using ordinary Kriging requires 82.7 runs on average and
occasionally results in a sub-optimal design. Therefore, as demonstrated in this example, the integration
of the PCE trend in the metamodel contributes to the accuracy and robustness of the method's performance,
even in RDO problem involving topological design.

¥« 8§ & |

I %
@)
‘Fh 4
1 ¢,

Objective

€F,1J : Prosused Proposed  gyR Pé‘E Krié_ing
PCK Kriging
(a) the optimum topology (b) the comparison of results from different methods

Fig. 6 The optimum design for Example three

4.4 Example four

The last example of this paper focuses on the application of the proposed methodology on the robust design
optimization of a tuned mass damper (TMD) for a footbridge, which is a cable-supported bridge with a span
arrangement of 11 m+48 m+11 m. The steel girder has an asymmetric section design with a height of 2 m,
and the pylon is designed as a concrete-filled steel tube column with a 0.9 m diameter. The backstay-cable
is fixed on the top of the pylon. The details about the bridge design can refer to [36]. Fig. 7 (a) illustrates
the layout the bridge, and Fig. 7 (b) presents the design scheme of the section.

| 11000 I 48000 11000 : 3000 " 1632 " 6075 "

Walking lane

Walking lane —L1 1
.\
11

Cantilever

Backstay ML
cable ~_/f |,

Cable Girder

l'_':’ Girder
(a) the layout of the bridge (unit: mm) (b) the design of the cross section (unit: mm)
Fig. 7 The cable-supported footbridge

Pedestrian-induced vibrations have caused serious challenges for bridge safety in many
applications. The walking load incurred by a single pedestrian is modeled by the sum of multiple harmonic
components written as a Fourier series. Moreover, referring to the existing work [37], a uniform distribution
is adopted to model the walking load incurred by a group of pedestrians on the bridge. The equivalent
uniformly distributed walking load can be therefore formulated as:
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N,
Geq = Tq Te,n Gy (fh) (30)

where § denotes the surface of the bridge deck, Ne, is the equivalent number of perfectly synchronized

pedestrians (N, can be calculated as 1.85vN, where N denotes the number of pedestrians on the bridge
based on the given pedestrian density [38, 39]), Y (fy,) denotes the reduction factor considering the
possibility of the step frequency equaling the natural frequency f}, of the bridge, and a, j, is the dynamic
loading factor of the h*" harmonic of the load in direction of e (vertical direction or horizontal direction).

Imposing the equivalent uniformly distributed load on the bridge and assuming that the mode h
dominates the response of the bridge, the projection of the load on the mode h can be calculated as:

Ne
Fp = geq Zk_flf Gerfe| Pl (31

where n.rs denotes the number of nodes of the bridge deck area, a. s denotes the vector of the bridge deck
area (Zze:f{ aerr = S),and ¢y, denotes the vector for the mass-normalized modal displacement of mode h.
Then, the maximum acceleration of the bridge can be calculated through dynamic analysis. Considering the
design scheme of the background bridge, a finite element model is established to determine the dynamic
parameters of the bridge, as Fig. 8 shows. The natural frequency for the first bending mode of the bridge is
2.0 Hz which falls in the sensitive range for the pedestrian-induced excitations. Therefore, it is considered
that this mode dominates the vibration of the footbridge. Based on the dynamic analysis, it is noticed that
the maximum acceleration can be larger than 6 m/s* that is considered as unacceptable for the serviceability
of footbridges [38, 39]. Thus, this example considers the robust design of a TMD as a strategy to mitigate
bridge responses. In this problem, the TMD is designed to be placed at the location of maximum vertical
displacement in the dominant bending mode, as illustrated in Fig. 8.

0 32 64 9.6 129 16.1 193 22.5 25.7 289

Fig. 8 The dynamics parameter and analysis of the bridge:
the first bending mode (unit: cm) and the location the TMD

When a TMD is introduced as an energy absorber in the bridge system, the following coupling
equation can be formulated to describe the response of the system, considering also the mode h of the
footbridge:

Mii(t) + Cu(t) + Ku(t) = F(t) (32)
_ mp 0 _ Cp + Cq —Cq4 _ kh + kd _kd _ p(t) _ Up
where M = [ 0 md], C= —c, e ], K= k, k, ], F(t) = [ 0 ] and u(t) = [ud]. my, kp

and ¢, denote the equivalent modal mass, stiffness and damping to unitize max|¢y, |, respectively. my, ¢4
and k, represent the mass, damping and stiffness of the TMD device, respectively. p(t) denotes the force
generated by the pedestrian walk, which is formulated as:

p(t) = pscos (21f;) (33)
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where f; denotes the step frequency that is considered as f; in the above equations, pg represents the
eq@enG wneff Qeffi|Pnkl
S k=1 max|pp|
Considering various sources of uncertainties, such as the bridge natural frequency, damping ratio
and the frequency of pedestrian excitations, that could influence the bridge state and the external loading,
this paper formulates the TMD design as a robust optimization problem, to minimize the weight of the
TMD while maintaining the feasibility robustness in an uncertain environment. The problem for robust
TMD design of the cable-supported bridge is formulated as:

. . . N,
ground reaction force that is considered as

i e
(E[ﬁh,max(dd:f)] + 3S[ah,max(dd: E)] < 0.75
S.t.: dd = (md,Cd, kd) (34)
| £ =[50 6]
\ 0.01 < my/my, < 0.11

where d; denotes the vector of deterministic design variables, i.e., the mass my, stiffness c; and damping
kg4 of the TMD (the cost of the TMD typically depends on its mass and therefore m, is taken as the
objective of optimization). £ denotes the vector of random variables, including the modal damping for the
first bending mode of the bridge (¢.), the natural frequency for the first bending mode of the bridge ()
and the frequency for the walking loading (,,). Table 5 lists the assumed distribution of random variables.

Table 5 The distribution of random variables of Example Four.

Variables Distribution Mean SD Unit
Modal damping () Uniform 0.4 0.115 %
Natural frequency for the Uniform 20 0.115 Hy

first bending mode ()

Frequency of the walking

loading (&) Normal 2.0 0.2 Hz

The proposed method is applied to solve this robust TMD design optimization problem. Some other
surrogate model-based approaches, such as the PCE-LAR, SVR [28] and RBFNN [40], are compared to
illustrate the advantages of the proposed method. To facilitate the determination of the optimal TMD
parameters, based on the suggestion from [41], the optimal stiffness and damping are determined based on
the design of mass, therefore the dimension of the design variables can be reduced. Table 6 illustrates the
results from different methodologies. It is noticed that the PCE-LAR, SVR and RBFNN all fail to provide
acceptable solutions in this example of TMD design optimization. An obvious discrepancy for the
feasibility robustness index, defined by ]E(ilh,max) + 3S(ilh_max), can be observed for these methods. For
instance, the SVR-based RDO can yield a relative error of nearly 59%. In comparison, the proposed
methods with PCK and ordinary Kriging both yield much more accurate results for the TMD design. The
relative error for the feasibility robustness from the PCK-based analytical RDO method is only 1% with
75.2 calls of the performance function on average, while the relative error from the ordinary Kriging-based
approach is slightly larger (2%) with 68.5 calls of the performance function. Therefore, the proposed
analytical robust design optimization method provides the best performance among all considered
approaches. Furthermore, because the characteristics, e.g., mass, stiffness and damping, of a TMD are
typically very preciously validated by experiments before the product launch, this example considers these
parameters as deterministic design variables while taking into account some other essential uncertainty
sources, such as the bridge modal frequency, damping and the external loading. The proposed method is
the only approach that can provide analytical solution of robustness in such application background. This
further validates the contribution of proposed method for extending the application scope of surrogate
model-based analytical RDO to various practical engineering problems.
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Table 6 Comparison of the results from the proposed and other methods for Example Four.
optimal m,  E(inmax) +

Sample Analytical

0

Method (kg)? 3S(iinmax) |Acon (%) Size Solution
MCS 3522.38 0.750 — 10°x770° No
RBENN 2565.57 0.969 29.24 78 No
SVR 1528.44 1.192 58.94 78 No
PCE-LAR 1217.12 1.278 70.39 78 No
Ordinary Kriging 2142.83 1.049 39.92 78 No
The proposed method- ;-0 - 0.735 2.01 68.5 Yes

Ordinary Kriging

The pmpgéelg method- 5595 3 0.743 0.99 75.2 Yes

5. Conclusion
As an important branch of structural optimization, robust design optimization aims at optimizing the
structural design while maintaining objective or feasibility robustness. Surrogate model-based analytical
robust design optimization opens up a promising avenue to not only reduce the calls of complex
computational models by establishing substitutes but also eliminate the repeated sampling estimation for
statistical moments during the optimization routine. Motivated by extending the applicable scope of existing
analytical method to handle both deterministic and random variables, this paper proposed a Polynomial
Chaos Kriging-based methodology for efficient analytical robust design optimization. This work derived
the analytical formulas of the statistical moments based on the underlying assumption of PCK surrogate
model established on the augmented space. A symmetric investigation was carried out for uniform and
Gaussian distributions. The paper also presented an active-learning framework consisting of three stages of
initialization, optimization and refinement. Different types of numerical optimization methods, such as
gradient-based methods or evolutionary methods, can be seamlessly implemented in the framework in
tandem with the adaptively established surrogate model and the proposed analytical robustness formulas.

Several classical numerical examples demonstrated that the proposed analytical formula can be
much more efficient compared with simulation methods. Three numerical examples and a practical
application assessed the performance of the proposed method. It was noticed that the proposed method can
well handle different types of problems (multimodal problems, or discrete problems). Furthermore, the
PCK surrogate model generally performed slightly better than the Kriging surrogate model, possibly
because of the improvement of the ability to capture the global trend.

The paper is concluded by discussing some limitations and possible extensions of the proposed
RDO method. This work adopts the PC-Kriging, which introduces the PCE into the interpolation-type
Kriging, as the surrogate model. Compared with the traditional sparse PCE, PCK improves the
approximation ability to capture local variations of responses; however, PCK also suffers from the
computational burden for inversion of the covariance matrix. Therefore, the proposed method is not suitable
for very high-dimensional problems. Future works will investigate incorporation of dimension reduction
techniques into the proposed framework. As reduction of the design space also alleviates the computational
burden of model training, an adaptive decomposition framework could be investigated to enhance the
method’s performance.

@ E(iinmax ) + 3S(tinmax) is the average value over 10 independent runs.
® the sample size for MCS indicates (the number of realizations to estimate the statistics) X (the number of evaluations
of the robustness index during the optimization loop).
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Appendix A

In this Appendix, following the derivations in Section 3.1 and 3.2, the statistical moments estimated by
PCK with § following independent Gaussian distribution is provided. It is noticed that the distribution of
random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment, and influences
Eq. (19), Eq. (22) and Eq. (25) when computing the second moment.

For an arbitrary univariate orthogonal polynomial, the function, i.e., 1/1a(§ k), can be typically
expressed as the consolidation of several power functions. For instance, a second-order probabilistic
Hermite polynomial is expressed as ¥__, (¢ k) =V2[bp=2 (&) — bp=o(&,)]/2. When the random variable
& follow Gaussian distribution N[, |ux, (0x)?] where k = 1,---, dimg denotes the dimension number,
and let by, (x) = x* denote an A-order function. It is noticed that the following equation can be obtained:

Elba (6] = [ b6 £(5eldy) d6i = [ baid - ¥ [seli (7] (A1)

The following recursion table can be then obtained.

Table A.1. The analytical formula of integral with Gaussian distribution

Integration Function Analytical Expression
| F6ld) - bacatics 1
[ F6d - bum(ds "

@)% (n— 1) f FEld) * baonz (EDdE

f FEld,) - bpon(E)dE,
" f FEd) - baons (E)dE

Thus, Eq. (13), Eq. (19) can be efficiently analytically determined based on the optimized
coefficients and corresponding order of the polynomial basis functions. (Note that the raw moments of
some distributions have been discussed in the literature [42]; the above formulas are not all new.)

For Eq. (15), when random variables are assumed to follow independent Gaussian distributions,
referring to Appendix C, the following equation can be recast:

1 0N i 2
: (exp I_f (fk%kk ) D = [Vam0s,- 6l - [ (01,)7) (A2)
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= [ V2R3 N L6l (0071 3 [gilsl”, (03,)7] a6

= \/z_ﬂgg,k " Sn1
628  where s,,; can be determined by:

. 1 exp l_ G = m)? ] (A3)
nl — £ \2 .
\/27{ [(‘fk)2 + (gg.k)z] 2 [(U")Z + (6% ]
629 Therefore, Eq. (15) can be efficiently analytically determined.
630
631 Furthermore, Eq. (22) can be recast as:
E[a (507 (60 €10 647)] = V216, j F(Eld) e (§) - N [€clE, (854)7] déi
= V2nb;, j Pa ) - NEeltte (071 N |16, (054)° | déi (A4)
n n 2
V20501 [ Wl [elé™, (o) a6
632  where ,Enl) and G}gm) can be determined by:
(n1) _ Szlgi) (0:)% + P‘k(eg,k)z
k - 2  \2 (A-S)
(ox)? + (eg,k)
2(g* )?
5 (@)?( fk) i (A.6)
(ok)? + (eg,k)
633 Subsequently, the Table A.1 can be applied again based on the optimized coefficients and

634  corresponding order of the polynomial basis functions to analytically calculate Eq. (22).

635

636 For the last part required when calculating the second moment of statistics, Eq. (25) can be
637  formulated as:

Bl (00610670 O 060, 66)] = [ 27(030)" - £l [501620,(05,0)°] - 0 [gilel?, (05, e
= f 2m(6)" - N[l (0021 N [6l6”, (654)°] - v [&l€2, (050) 7] dii

(A.7)
2
= f 2(01)" 51 - N [€lel™, () |- v [€le®, (02)° | déie
2
= f 2(610)" 51 Sz - N [&lE0, () | A& = 2m(610)" 51+ 5w
638  where 5,5, &K, and 6%, can be similarly determined referring to Appendix C.
2
L (3 = 6™
Spz = exp|— 2 2 (A.8)
Jenl@y + 6] l 2@ + (6]
2 2
f(t) O'(nl) _}_g(nl) o:
(n2) _ °k ) K (6ix) (A.9)

2
(0™) + (63)°

2 N 2
5 _ (™) (i) (A.10)
2
(0™) + (6,)°

639
640 Based on the above formula and Table A.1, the integrals required in the formulas of the statistical
641  moments have also been analytically expressed for the case of independent Gaussian distributions.
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Appendix B
In this Appendix, the statistical moments estimated by PCK with § following independent uniform
distribution is provided. Throughout this section, it is generally assumed that a random variable ¢, follows

a uniform distribution between [E () U)] ([E,Eu),f ,El)] can depend on d,). As a reminder, note that the

distribution of random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment,
and influences Eq. (19), Eq. (22) and Eq. (25) when computing the second moment.

Following the assumption in the above derivations, Let by (x) = x" denote an 4 order function.
For these conditions, the following equation can be obtained:

f FEdd,) - ba(5,)dg, = £0)" = ()] (B.1)

1
ol

The integral required in Eq. (13) and (19) can be therefore analytically calculated combining the integrals
for all by, (x) components that are determined based on the type and degree of the polynomial basis.

Additionally, with the uniform distribution, Eq. (15) can be recast as:
)
5 _ 5(1) \/2_7.[9; fk l
oo 3 )= o
k

07 g(l) o

5=n* (w) ® ® (©)
_ V2mBgy [(b<k - k>_¢<k _k>l
l * *
Iiu) _ I(() 07 0k

where @(+) denotes the Gaussian cumulative density function.

(B.2)

For the analytical formula of Eq. (22), the following relationship can be observed:

ff(e 1d,) - ba € N [€cle®, (6;,)7] déi = ! ! f’(‘u)(g ) - ex _(&-&" d (B.3)
k n Sk k &k k \/2_71'9;',( s‘,ﬁu) —fﬁo 6,5” k P 2(931{)2 Kk .

f(u) [©)
f o G (et Y
2(6:,.)"
® ® ®
— (p: 2 (f yA-1. (gk fk) (fk fk) dé, + @ (sc A1 (fk fk) dé B.4
(i) L s Gt ey ey | Y
& (& - ér(o) £ (6’ 50))
=(6:.) A-1q| — k + (l) A-1, Sk — Sk d
( f,k) _L(f) (&x) ( exp [ 2(6’5',() ) J. €M) 2(95*’,()2 Sk
The method of integration by parts is applied herein:
(u) (E {(1) 21
(z) (Ek) d(—exp ok ko >
2(0,)°
£ (B.5)

£ (&g (&g 5(”)
=| e d((E)"1) = | @)t - exp | -k
Lzﬁ” l 2(61)° ’ ’ 2(9:)°
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=(h— 1)[: (&)"2 - exp l (gk( ;)) ] o [ l (gk(g ;) ‘
fk &k

661  Based on these derivations, Table B.1 presents the analytical solutions of the integral terms that appear in
662  Eq.(22).

663
664  Table B.1. The analytical formula of integral with uniform distribution
Integration Function Analytical Expression
f(u) ® ) 1 ]Eu) _ ,El) ]El) _ ]El)
o 761D BasolGi)- N |16, (02.4)° | déi @0 [@( o )— <I>< o )l
O o8- E0)_ (80—
£ k K bk bk
FEld) - bass (60 612, (63,0)7] dé * o]
£ 1 O ox (G 8)
(0,0 Ch = 1) [ FE1d) - baen 2~ ¥ [54162°, (05, i
. 460 [ FCEuldy) - bacnos 60 3 [£06 . (03)7] e
l * 2
 F Gl bazn (@) N 816, (054)°] dé £
1 9 n-1, (gk L))
(u) 0 \/_ )
~ 2(6:,)°
665
666 Furthermore, for Eq. (25), When the random variable &, follows a uniform distribution between

667 [f () 3 (Z)] and the above equation can be recast as:

2n(9§k) &

E[r (831§ 60T (05 0 €10 €7)] = @ 0 N [&le®, (05)°] v [0l (050) | d&e - (B.6)

668 Referring to Appendix C agam, the product of two normal distribution also follows a normal
669  distribution. The following equations can be obtained:

f(l) (z)

My =" (B.7)
(eek) (B.8)
(f(f) (l)
su1= 4n(0 [ 4(9“) (B.9)
E[r (8210 €10 €Y (0710610 60)] = Z(u)( L ’;20 Sut cb((u%"") q><’9)%"‘>l (B.10)
K b K
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Based on the above formulas and Table B.1, the integrals required in the formulas of the statistical
moments have also been analytically expressed for the case of independent uniform distributions.

Appendix C

Let vV (f |fa, Qaz) denote a Gaussian probability density function with mean of ¢, and standard deviation

of 8,; NV (E |€ by 9b2) denotes a Gaussian probability density function with mean of &, and standard

§p0a”+Eabp” 8a"6p”
6a2+6p° and 6, 6a°+6p

Haz) and V' (f |<§’ b 9;,2) follows a scaled Gaussian distribution:

deviation of 8. Let &, = 7. It has been proven that the product of

N(¢|¢a
N(ﬂfa' 90.2) ' N(Ekb:gbz) =Sy N(Ekn’ 9112) (Cl)

where Sg denotes the scaled factor that can be formulated as:

—&)° ]

/Zn(a +6,2) [ 207+ 0,7
Appendix D

To validate the accuracy of the analytical formula for obtaining the statistics of the performance function
and to compare the PCK and Kriging surrogate model, five examples are investigated here. The analytical
expressions derived in Section 3.1 and 3.2 are applied. For a fair comparison, 20 independent runs are
executed for obtaining the mean relative error of the estimations. The UQLab toolbox (version 2.0.0) is
adopted for creating the surrogate model where HGA is selected as the optimization method for both
ordinary Kriging and PCK.

The first example is the so-called Ishigami function with three uniformly distributed random
variables as the inputs. The function has the following form:

g1 = sin(&;) + 7sin? (&,) + 0.1x% sin(&;) (D.1)

where §;~U(1,2),i = 1,2,3. Fig. D.1 shows the analytical prediction of the statistics of the output for

different number of training samples from 32 to 128. The training samples are uniformly generated from

the sampling space U(—m, ) for each dimension.
1.0

(C.2)
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0.8 0.8+
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(a) Relative error for estimating the mean by PCK  (b) Relative error for estimating the mean by ordinary
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Fig. D.1 Function One: Relative error for estimating the first two moments by PCK and ordinary Kriging.

Function two is the so-called Rosenbrock function with two uniformly distributed random variables
as the input. The function reads:

02F

Relative Error

(a) Relative error for estimating the mean by PCK

0.2}

Relative Error

(c) Relative error for estimating SD by PCK

Fig. D.2 Function Two: Relative error for estimating the first two moments by PCK and ordinary

g2 = 100($; — Sef)z +(1- '51)2

where §; ~U(1,2) and £,~U(0,1). Fig. D.2 shows the analytical prediction of the statistics of the output
for different numbers of training samples ranging from 16 to 64. The training samples are uniformly
generated from the sample space U(—2,2) for each dimension.
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Function three is the modified Sobol function with four uniformly distributed random variables as

the input. The function reads:

4
o=]]
i=1

|4&; — 2] +¢;

1+Ci

(D.3)

where &;~U(0,1),i = 1,2,3,4, c = (1,2,5,10). Fig. D.3 shows the analytical prediction of the statistics of
the output, by changing the number of training samples from 32 to 256. The training samples are uniformly

generated from the sampling space U(0,1) for each dimension.
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Fig. D.3 Function Three: Relative error for estimating the first two moments by PCK and ordinary

Kriging.

Function four is a four-dimensional function with four normally distributed random variables as
the input. The function reads:
9a = 2/3exp(§F +¢3) + &4c08(&3) + &3

where §,~N(0.1,0.12), i = 1,2,3,4. Fig. D.4 shows the analytical prediction of the statistics of the
output, by changing the number of training samples from 32 to 128. The training samples are uniformly

generated from the sampling space U(—1,1) for each dimension.
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Fig. D.4 Function Four: Relative error for estimating the first two moments by PCK and ordinary

Kriging.

Function five is a two-dimensional function with two normally distributed random variables as the
input. The function reads:

from the sampling space U(—10,10) for each dimension.
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gs = & + 5sin(§y) +0.18,¢2

where §;~N(1,1), i = 1,2. Fig. D.5 shows the analytical prediction of the statistics of the output,
by changing the number of training samples from 16 to 64. The training samples are uniformly generated
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Appendix E
To highlight the motivation for formulating the analytical expression for robustness index, this appendix
further compares the computational burden for calculating the analytical equations and implementing MCS.
The same functions presented in Appendix A are selected for investigation. The results are averaged on 20
runs. The UQLab toolbox (version 2.0.0) is adopted for the establishment of the surrogate model; HGA is
selected as the optimization method for both ordinary Kriging and PCK. As an established surrogate model
can be used multiple times during the optimization loop, this appendix therefore does not include the
computational burden for training the surrogate model, and only compares the consumed computational
time for evaluating the first and second statistical moments.
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