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ABSTRACT  10 
In robust design optimization, statistical moments of performance are widely adopted in formulating 11 
robustness metrics. To address the high computational costs stemming from the many-query nature of such 12 
optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been 13 
developed based on surrogate models. However, existing methods consider random variables as the sole 14 
model input, which excludes, from the application scope, problems that also involve deterministic design 15 
variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology 16 
for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical 17 
moments of performance are developed considering that the Polynomial Chaos Kriging model is established 18 
in the augmented space of the deterministic design and random variables. This is achieved by systematically 19 
decoupling associations with deterministic input from random input, providing effective solutions even 20 
when the orthonormality of the basis function is not applicable in the augmented space. This work also 21 
presents an active-learning framework enabling seamless implementation of various numerical 22 
optimization methods. Several numerical examples and a practical application illustrate the performance 23 
and superiority of the proposed method.  24 
 25 
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1. Introduction 30 
Structural optimization has emerged as a powerful tool for developing optimal design solutions, taking into 31 
account various constraints within the design domain. Besides many successful implementations, it has 32 
been acknowledged that multiple sources of aleatory and epistemic uncertainties are able to influence the 33 
system performance [1]. Therefore, incorporating uncertainties into the design optimization has received 34 
much attention and become a vital branch of structural optimization. Reliability-based design optimization 35 
and robust design optimization are two allied but distinct approaches [2]. The former is concerned with 36 
providing the most desirable design while quantitatively setting constraints for the failure probability [3]. 37 
The latter, on the other hand, typically aims at optimizing the mean response of a system while reducing its 38 
sensitivity in the face of variations [4].  39 

The earliest work for robust design was pioneered by Genichi Taguchi [5]. Subsequently, a number 40 
of studies extended Taguchi’s method (see reviews by Beyer and Sendhoff [6], Zang et al. [7], and Park et 41 
al. [8]). With the developments of computational mechanics and numerical optimization methods, 42 
researchers have also made efforts to take a broader view on robust design [9]. Various formulations have 43 
been present as robustness metrics under optimization frameworks. In general, these measures can be 44 
grouped into the possibilistic type (e.g., fuzzy sets, convex models, information gap methods [10, 11]) and 45 
probabilistic type [4]. The latter, as the primary concern of this work, is well suited when sufficient 46 
information is provided to define the joint probability distribution of random parameters. In such cases, the 47 
mean and variance of structural response are typically consolidated to define the problem. Notably, 48 
compared with deterministic design optimization, a significantly higher computational challenge 49 
intrinsically exists due to the incorporation of uncertainty analysis into the optimization routine. Techniques 50 
grounded in surrogate modeling [12-14], which aim at creating a cheaper-to-evaluate mathematical model 51 
as a substitute for the original computational model, have garnered significant interest for mitigating the 52 
computational challenges in RDO [15, 16]. To fully take advantage of the information from surrogate 53 
models and eliminate the computational burden of uncertainty quantification, a key research direction is 54 
the development of analytical approaches for computing the robustness index. With such analytical 55 
estimation, solving a RDO problem can be as simple as handling a deterministic counterpart. 56 

Surrogate models akin to Polynomial Chaos Expansion (PCE) and Polynomial Dimensional 57 
Decomposition (PDD) typically use a set of orthonormal polynomials to fit the trend of a generic output 58 
function. Taking advantage of the orthonormality feature, Polynomial basis-based models serve as powerful 59 
tools for analytically estimating various properties of the stochastic response. For example, Ren and 60 
Rahman [17] established analytical formulas for the first two statistical moments and first-order derivatives 61 
with respect to a variable using PDD and proposed a sequential gradient-based optimization framework. 62 
Lee and Rahman [18] further developed a generalized PCE model founded on a whitening transformation 63 
algorithm, and therefore random variables obeying dependent distributions can be better handled in their 64 
proposed framework. Chakraborty et al. [19] formulated an analytical expression for estimating robustness 65 
via hybrid Polynomial Correlated Function Expansion. Zhou et al. [20] developed the PC-GK-SBL 66 
surrogate model, which combined polynomial chaos expansion (PCE) and Gaussian kernel (GK) in the 67 
sparse Bayesian learning (SBL) framework. Liu et al. [21] investigated the analytical RDO method based 68 
on PC-GK-SBL, and proposed an active learning function to adaptively refine the training data combining 69 
the nearest distance to existing training samples and the distance to the located optimal solution. 70 

Despite recent advancements in surrogate model-based analytical RDO, critical gaps within 71 
existing methodologies persist and warrant attention. In many practical engineering applications, despite 72 
facing a variety of internal and environmental uncertainties, some design variables should still be regarded 73 
as deterministic. This is either because the corresponding output is intrinsically certain (e.g., the design of 74 
the number of elements and other topological parameters) or because the associated uncertainty can be 75 
confidently eliminated through validation (e.g., the parameters of a damper can be accurately measured 76 
during the manufacturing process in some cases). However, most existing methods assume random 77 
variables as the sole input to the surrogate model and subsequently develop analytical formulas. These 78 
methods therefore struggle with problems that simultaneously incorporate deterministic design variables 79 
and random variables, because the primary assumption for derivation is not founded. Artificially assuming 80 
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the deterministic variables as random inputs by introducing very small coefficients of variation is the 81 
simplest approach to transform the problem. However, this approach may not be appropriate since some 82 
design variables are inherently certain, thus introducing a conceptual inconsistency. Beyond that, treating 83 
such variables as random may considerably affect the efficiency of RDO by incurring additional 84 
computational burdens and introduce errors challenging the ability of RDO in minimizing the cost function 85 
and meeting constraint requirements.  86 

To bridge the gap, this paper introduces a new method for efficient analytical robust design 87 
optimization considering hybrid random and deterministic design variables. The Polynomial Chaos Kriging 88 
(PCK) is used here as the surrogate model. PCK interprets the PCE in the universal Kriging framework to 89 
capture the global trend, making it a suitable choice due to its superior predictive capabilities as evidenced 90 
in [22]. The main contributions of this work are in the following two fronts. First, different from established 91 
methods [17-19, 21], this study proposes analytical solutions for the statistical moments based upon a global 92 
PCK surrogate model that is established on the augmented domain for all deterministic design and random 93 
variables. During the derivation process, this work systematically decouples the parts with deterministic 94 
input from those with random input, therefore yielding effective solutions even when the orthonormality of 95 
basis function is not applicable. Several classical numerical examples and a practical application of robust 96 
tuned mass damper (TMD) design optimization demonstrate the superiority of the proposed method 97 
compared to the state-of-the-art approaches. Additionally, compared with previous work [23], this paper 98 
symmetrically compares the method performance with and without the introduction of PCE trend for 99 
Kriging in RDO. Through investigations, it is evident that the PCK surrogate model generally perform 100 
slightly better than the Kriging surrogate model for solving RDO problems, because of the improvement of 101 
the ability to capture the global trend. 102 

The paper is organized as follows. Section 2 recalls the fundamental theory about robust design 103 
optimization and the PCK surrogate model. Section 3 presents the proposed method, specifically active 104 
learning and PCK-assisted analytical RDO. Section 4 provides numerical and practical examples to 105 
illustrate the performance of the proposed method. Section 5 summarizes the conclusions of this work. 106 
 107 
2. Preliminaries 108 
This section presents an overview of robust design optimization including a typical formulation of RDO 109 
problems. This is followed by an introduction to Kriging and PCK surrogate models.  110 
 111 
2.1 Robust Design Optimization 112 
As an important branch of structural optimization, RDO aims at optimizing the design scheme while 113 
maintaining the objective or feasibility robustness. Let 𝒅 denote the design variables of optimization, which 114 
consists of two parts, i.e., 𝒅𝑑 , the deterministic design variables, and 𝒅𝜇 , the mean value of some random 115 
variables. Let 𝝃 denote the vector of random variables. The variance-based robust design optimization can 116 
be formulated as: 117 

min
(𝒅)

𝑜𝑏𝑗(𝒅𝑑 , 𝝃) 

𝑠. 𝑡. : 

{
 
 

 
 𝑐𝑜𝑛𝑖(𝒅𝑑 , 𝝃) ≤ 0, 𝑖 = 1,2,… , 𝑛 

𝒅 = [𝒅𝑑 , 𝒅𝜇]

𝝃~𝑓(𝝃|𝒅𝜇)

𝒅𝑙 ≤ 𝒅 ≤ 𝒅𝑢

  
(1) 

where 𝑜𝑏𝑗(∙)  denotes the objective function, 𝑐𝑜𝑛𝑖(∙)  denotes the constraint function ( 𝑖 = 1,2, … , 𝑛 ), 118 
𝑓(𝝃|𝒅𝜇) denotes the distribution of 𝝃 given 𝒅𝜇 , and  𝒅𝑙  and 𝒅𝑢 denote the upper and lower bounds for the 119 
design variables, respectively. The weighted sum of the expected value and standard deviation of a 120 
performance function has been typically adopted to describe 𝑜𝑏𝑗(∙) and 𝑐𝑜𝑛𝑖(∙), e.g.,  𝛼𝐸𝔼[𝑔(𝒅𝑑, 𝝃)] +121 
𝛼𝑠𝕊[𝑔(𝒅𝑑 , 𝝃)] where 𝑔(∙) denotes the performance function, 𝛼𝐸  and 𝛼𝑠 denote the weight factors. In some 122 
works, this problem is presented as a dual-objective optimization problem [24, 25]; however, due to space 123 
limit, the rest of this paper only focuses on the single-objective optimization as presented in Eq. (1). 124 
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 125 
2.2 Kriging   126 
Kriging, developed by Krige [26] and Matheron [27], aims to predict the response of a function, based on 127 
the assumption that the function of interest is a realization of a stochastic Gaussian process. Let 𝑔̂ denote 128 
the predictor of Kriging and 𝒙 denote the vector of input; the predicted value of a point can be written as: 129 

𝑔̂(𝒙) = 𝐹(𝒙) + 𝑧(𝒙) (2) 
where 𝐹(𝒙)  is the regression part which can be expressed based on the regression model 𝒇(𝒙)  and 130 
regression parameters 𝜷, and 𝑧(𝒙) is a stationary Gaussian random process.  131 
When defining the covariance between the outputs of two points (𝒙 and 𝒙′) based on the distance, for a 132 
𝑑𝑖𝑚 dimensional problem, a typical Gaussian correlation model is: 133 

𝑅(𝜽,𝒙, 𝒙′) =∏𝑟(𝜃𝑘 , 𝑥𝑘 , 𝑥𝑘
′ )

𝑑𝑖𝑚

𝑘=1

=∏exp [−
1

2
(
𝑥𝑘 − 𝑥𝑘

′

𝜃𝑘
)

2

]

𝑑𝑖𝑚

𝑘=1

 (3) 

Subsequently, the mean and variance of 𝑔̂(𝒙) can be expressed as [28]:  134 
𝜇𝐾(𝒙) = 𝒇(𝒙)

𝑇𝜷∗ + 𝒓𝑇𝑹−1(𝒀𝑚 − 𝒇(𝑿𝑚)𝜷
∗) (4) 

𝜎𝐾
2(𝒙) = 𝜎2(1 + 𝒖𝑻(𝒇(𝑿𝑚)

𝑇𝑹𝒇(𝑿𝑚))
−1𝒖− 𝒓𝑇𝑹−1𝒓) (5) 

where 𝑹 is the correlation matrix with 𝑅𝑖𝑗 = 𝑅(𝜽,𝒙(𝑖),𝒙(𝑗)), and 𝒓 = {𝑅(𝜽, 𝒙(1), 𝒙), ⋯ , 𝑅(𝜽,𝒙(𝑚), 𝒙)}. 𝜽 is 135 
a vector of hyper-parameters that can be determined by the maximum likelihood estimation [29]. 𝜷∗ 136 
denotes the generalized least-squares estimate. 137 
 138 
2.3 PC-Kriging 139 
Considering a vector 𝒙  describing the input variable, Polynomial Chaos Expansions (PCE) [30] 140 
approximates the original performance function 𝑔(𝒙) by a sum of orthonormal polynomials: 141 

𝑔̂(𝒙) =∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜

 (6) 
where Ψ𝛼(∙) denotes the multivariate orthonormal polynomials, 𝒸𝛼 denotes the corresponding coefficient, 142 
𝛼  denotes the index of the order of polynomials, and 𝒜  denotes the set of polynomials selected for 143 
approximating 𝑔(∙) [31, 32]. As noticed, compared to traditional regression models such as linear or 144 
quadratic regressions, PCE shows better flexibility and performance in capturing the global trend of a 145 
function. Therefore, some researchers proposed the PC-Kriging (or called PCK in the rest of this paper) to 146 
take advantage of not only the global regression capability of PCE but also the interpolation and uncertainty 147 
quantification capabilities of Kriging  [22].  148 
 Let 𝒙 also denote the vector of input variables. The prediction of PCK can be formulated as: 149 

𝑔̂(𝒙) =∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜

+ 𝑧(𝒙) (7) 
Compared with Eq. (2) the main difference lies in the introduction of the PCE as the global trend of the 150 
surrogate model. And therefore, the same correlation model, such as the Gaussian model of Eq. (3) and the 151 
corresponding hyperparameter 𝜽 can be used to characterize the Gaussian random process 𝑧(𝒙).  152 
  153 
3. Methodology: Active-learning PCK-assisted RDO 154 
For a robust design optimization problem, as was explained in Section 2.1, the objective function (𝑜𝑏𝑗(∙)) 155 
or the constraint function (𝑐𝑜𝑛(∙)) can be formulated as 𝛼𝐸𝔼[𝑔(𝒙)] + 𝛼𝑠𝕊[𝑔(𝒙)], where 𝑔(∙) denotes the 156 
performance function and 𝛼𝐸  and 𝛼𝑠  denote the weight factors. When both the deterministic design 157 
variables and random variables are considered as input, it is noticed that 𝒙 = [𝒅𝑑 , 𝝃]. Therefore, with the 158 
application of surrogate model, i.e., 𝑔̂(∙)  as a substitute for the original function 𝑔(∙) , the statistical 159 
properties can be estimated by simulation methods, such as MCS. However, the nested structure of 160 
uncertainty quantification and optimization still challenges the solving procedure because numerous 161 
evaluations of the robustness metric can be required in the optimization routine. Motivated by using 162 
analytical solutions to fundamentally address this challenge and the genuine need to simultaneously 163 
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incorporate random and deterministic design variables, this work proposes new analytical solutions based 164 
on the PCK surrogate model in the rest of this section. Several remarks such as the strategy for dealing with 165 
difference correction models or distributions are also provided at the end of this section.   166 
 167 
3.1 Analytical solution of the expectation of PCK 168 
Let us consider 𝑔(𝒙) as the objective of the RDO problem, where 𝒙 denotes the input variables. As noticed, 169 
when the surrogate model is built on the augmented domain, the set of input variables can be presented as 170 
𝒙 = [𝒅𝑑 , 𝝃]. Let 𝑑𝑖𝑚𝜉  denote the dimension of the input variable 𝝃 with 𝝃 = {𝜉1, ⋯ , 𝜉𝑑𝑖𝑚𝜉

}, and 𝑑𝑖𝑚𝑑 171 
denote the dimension of the input variable 𝒅𝑑  with 𝒅𝑑 = {𝑑𝑑,1,⋯ , 𝑑𝑑,𝑑𝑖𝑚𝑑

}. The dimension of the input of 172 
PCK is therefore 𝑑𝑖𝑚 = 𝑑𝑖𝑚𝜉 + 𝑑𝑖𝑚𝑑. 173 
 With optimized hyperparameters 𝜽∗ = (𝜽𝑑

∗ , 𝜽𝜉
∗) , 𝜽𝑑

∗ = { 𝜃𝑑,1
∗ ⋯ ,𝜃𝑑,𝑑𝑖𝑚𝑑

∗ } , 𝜽𝜉
∗ =174 

{ 𝜃𝜉,1
∗ ⋯ ,𝜃𝜉,𝑑𝑖𝑚𝜉

∗ } and the optimized coefficients of PCE denoted by 𝒜∗, the prediction of a PCK can be 175 
recast as: 176 

𝑔̂(𝒙) =∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

+ 𝒓𝑇𝑹−1(𝒀𝑚 − 𝐹(𝑿𝑚)) (8) 
Let 𝛄∗ denote 𝑹−1(𝒀 − 𝐹(𝑿𝑚)). Note that 𝐹(𝑿𝑚) is denoted by the PCE of Eq. (6), and 𝑹 is the matrix 177 
with 𝑅𝑖𝑗 = 𝑅(𝜽∗ , 𝒙, 𝒙(𝑖)) . 𝑹−1 , 𝒀  and𝐹(𝑿𝑚)  are independent of the input 𝒙 . Considering that 𝛄∗ =178 
[γ𝑖
∗, … , γ𝑚

∗ ]T where 𝑚 denotes the number of training samples of PCK, Eq. (8) can be recast as: 179 
𝑔̂(𝒙) =∑ 𝒸𝛼Ψ𝛼(𝒙)

𝛼∈𝒜∗
+∑ γ𝑖

∗𝑅(𝜽∗ , 𝒙, 𝒙(𝑖))
𝑚

𝑖=1
 (9) 

where 𝑿𝑚 = {𝒙(1),⋯ , 𝒙(𝑚)} denotes the database of the training samples. With input 𝒙 consisting of  𝒅𝑑  180 
and 𝝃, Eq. (9) can be further expanded to: 181 

                  𝑔̂(𝒙) =∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

+∑ [γ𝑖
∗∏ 𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑖)
)

𝑑𝑖𝑚𝑑

𝑗=1
∏ 𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)

𝑑𝑖𝑚𝜉  

𝑘=1
]

𝑚

𝑖=1
 (10) 

Thus, the expectation for 𝑔̂(𝒙) can be formulated as: 182 
𝔼[𝑔̂(𝒙)] = 𝔼 [∑ 𝒸𝛼Ψ𝛼(𝒙)

𝛼∈𝒜∗
+∑ γ𝑖

∗𝑅(𝜽, 𝒙, 𝒙(𝑖))
𝑚

𝑖=1
] 

= 𝔼 [∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

] +∑ (γ𝑖
∗ ∙∏ 𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑖)
)

𝑑𝑖𝑚𝑑

𝑗=1
∙ 𝔼 [∏ 𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)

𝑑𝑖𝑚𝜉 

𝑘=1
])

𝑚

𝑖=1
 

(11) 

For the first part of Eq. (11), i.e., 𝔼[∑ 𝒸𝛼Ψ𝛼(𝒙)𝛼∈𝒜∗ ], it worth noticing that due to deterministic design 183 
variable 𝒅𝑑  is also considered as input, 𝔼[∑ 𝒸𝛼Ψ𝛼(𝒙)𝛼∈𝒜 ] ≠ 𝒸0 that is only correct when 𝒙 consists of all 184 
random variables and corresponding polynomial basis functions are adopted. Herein, let Ψ𝛼(𝒙) =185 
∏ 𝜓𝛼(𝑑𝑑,𝑗)
𝑑𝑖𝑚𝑑 
𝑗=1 ∙ ∏ 𝜓𝛼(𝜉𝑘)

𝑑𝑖𝑚𝜉 

𝑘=1  generally denote the multi-variant polynomial that is the product of 186 
polynomial basis in each dimension. With independent input variables, the above equation can be 187 
reformulated as: 188 

𝔼 [∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

] =∑ (𝒸𝛼 ∙∏ 𝜓𝛼(𝑑𝑑,𝑗)
𝑑𝑖𝑚𝑑 

𝑗=1
∙∏ 𝔼[𝜓𝛼(𝜉𝑘)]

𝑑𝑖𝑚𝜉 

𝑘=1
)

𝛼∈𝒜∗
 (12) 

Furthermore, it is noticed that: 189 

𝔼[𝜓𝛼(𝜉𝑘)] = ∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝜓𝛼(𝜉𝑘)d𝜉𝑘 (13) 

For the second part of Eq. (11), when the separated Gaussian correlation model as shown by Eq. 190 
(3) is adopted, and random variables are independent,  𝔼 [∏ 𝑟(𝜃𝜉,𝑘

∗ , 𝜉
𝑘
, 𝜉
𝑘
(𝑖))

𝑑𝑖𝑚𝜉 

𝑘=1
] can be formulated as: 191 

        𝔼 [∏ 𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)

𝑑𝑖𝑚𝜉 

𝑘=1
] =∏ 𝔼(exp [−

1

2
(
𝜉𝑘 − 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )

2

])
𝑑𝑖𝑚𝜉 

𝑘=1
 (14) 
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For a single component of the above equation, the expectation can be calculated as: 192 

𝔼(exp [−
1

2
(
𝜉𝑘 − 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )

2

]) = ∫√2𝜋𝜃𝜉,𝑘
∗ ∙ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘  (15) 

 193 
Therefore, combing Eqs. (11)-(15), the expected value of the prediction of PCK can be efficiently 194 
determined. Notably, the analytical solution for some parts of the equations depends on the distribution of 195 
random variables. For a comprehensive understanding, the formulas for the expectation when random 196 
variables follow Gaussian distributions are provided in Appendix A, and those for uniform distributions 197 
provided in Appendix B. 198 
 199 
3.2 Analytical solution of the variance of PCK 200 
This section focuses on the analytical solution for the variance of the PCK prediction. The variance of the 201 
stochastic output based on a PCK surrogate model can be formulated as: 202 

       var(𝑔̂(𝒙)) = 𝔼[𝑔̂(𝒙)2] − 𝔼[𝑔̂(𝒙)]2 (16) 

As the formula for determining 𝔼[𝑔̂(𝒙)] has been provided in the previous section, 𝔼[𝑔̂(𝒙)]2 can be easily 203 
calculated. The rest of this section focuses on the computation of 𝔼[𝑔̂(𝒙)2]. 204 

 𝔼[𝑔̂(𝒙)2] =  𝔼 [(∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

+∑ γ𝑖
∗𝑅(𝜽,𝒙, 𝒙(𝑖))

𝑚

𝑖=1
)
2

] 

= 𝔼([∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

]
2

) + 2 × 𝔼[∑ ∑ γ𝑖
∗𝒸𝛼Ψ𝛼(𝒙)

𝛼∈𝒜∗
𝑅(𝜽, 𝒙, 𝒙(𝑖))

𝑚

𝑖=1
] + 𝔼 ([∑ γ𝑖

∗𝑅(𝜽, 𝒙, 𝒙(𝑖))
𝑚

𝑖=1
]
2

) 
(17) 

For the first part of Eq. (17), it is worth noticing that due to the introduction of deterministic design variables, 205 
𝔼[(∑ 𝒸𝛼Ψ𝛼(𝒙)𝛼∈𝒜 )2] ≠ ∑ 𝒸𝛼

2
𝛼∈𝒜 . With independent variables, it can be formulated as: 206 

𝔼([∑ 𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

]
2

) 

=∑ ∑ (𝒸𝛼𝒸𝜗 ∙∏ 𝜓𝛼(𝑑𝑑,𝑗)𝜓𝜗(𝑑𝑑,𝑗)
𝑑𝑖𝑚𝑑 

𝑗=1
∙∏ 𝔼[𝜓𝛼(𝜉𝑘)𝜓𝜗(𝜉𝑘)]

𝑑𝑖𝑚𝜉 

𝑘=1
)

𝜗∈𝒜∗𝛼∈𝒜∗
 

(18) 

Then, 𝔼[𝜓𝛼(𝜉(𝑘))𝜓𝜗(𝜉(𝑘))] can be obtained as: 207 

𝔼[𝜓𝛼(𝜉𝑘)𝜓𝜗(𝜉𝑘)] = ∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝜓𝛼(𝜉𝑘) ∙ 𝜓𝜗(𝜉𝑘)d𝜉𝑘 (19) 

 208 
For the second part of Eq. (17), ∑ ∑ γ𝑖

∗𝒸𝛼Ψ𝛼(𝒙)𝛼∈𝒜∗ 𝑅(𝜽, 𝒙,𝒙(𝑖))𝑚
𝑖=1  can be formulated as: 209 

𝔼 [∑ ∑ γ𝑖
∗𝒸𝛼Ψ𝛼(𝒙)

𝛼∈𝒜∗
𝑅(𝜽, 𝒙,𝒙(𝑖))

𝑚

𝑖=1
]

= 𝔼(∑ ∑ 𝒸𝛼Ψ𝛼(𝒙) [γ𝑖
∗∏ 𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑖)
)

𝑑𝑖𝑚𝑑

𝑗=1
∏ 𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)

𝑑𝑖𝑚𝜉 

𝑘=1
]

𝛼∈𝒜∗

𝑚

𝑖=1
) 

(20) 

Let Ψ𝛼(𝒙) = ∏ 𝜓𝛼(𝑑𝑑,𝑗)
𝑑𝑖𝑚𝑑 
𝑗=1 ∙ ∏ 𝜓𝛼(𝜉𝑘)

𝑑𝑖𝑚𝜉 

𝑘=1  generally denote the multi-variant polynomial that is the 210 
product of the polynomial basis in each dimension. Subsequently, the above equation can be reformulated 211 
as: 212 
𝔼 [∑ ∑ γ𝑖

∗𝒸𝛼Ψ𝛼(𝒙)
𝛼∈𝒜∗

𝑅(𝜽,𝒙, 𝒙(𝑖))
𝑚

𝑖=1
] 

=∑ ∑ (γ𝑖
∗𝒸𝛼 ∙∏ 𝜓𝛼(𝑑𝑑,𝑗)𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑖)
)

𝑑𝑖𝑚𝑑

𝑗=1
∙ 𝔼 [∏ 𝜓𝛼(𝜉𝑘)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)

𝑑𝑖𝑚𝜉 

𝑘=1
])

𝛼∈𝒜∗

𝑚

𝑖=1
 

(21) 

Let us also consider that the separated Gaussian correlation model is applied, and the random variables are 213 
independent. It is therefore 𝔼 [∏ 𝜓𝛼(𝜉𝑘)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)

𝑑𝑖𝑚𝜉 

𝑘=1 ] = ∏ 𝔼[𝜓𝛼(𝜉𝑘)𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)]

𝑑𝑖𝑚𝜉 

𝑘=1  which can be 214 
recast as: 215 
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𝔼[𝜓𝛼(𝜉𝑘)𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)] = √2𝜋𝜃𝜉,𝑘

∗ ∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝜓𝛼(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘 (22) 

 216 
For the third part of Eq. (17), 𝔼([∑ γ𝑖

∗𝑅(𝜽,𝒙,𝒙(𝑖))𝑚
𝑖=1 ]

2
) can be recast as: 217 

𝔼([∑ γ𝑖
∗𝑅(𝜽, 𝒙, 𝒙(𝑖))

𝑚

𝑖=1
]
2

) 

= 𝔼[∑ ∑ (γ𝑖
∗γ𝑘
∗ ∙∏ [𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑖)
)𝑟(𝜃𝑑,𝑗

∗ , 𝑑𝑑,𝑗 , 𝑑𝑑,𝑗
(𝑡)
)]

𝑑𝑖𝑚𝑑

𝑗=1
∙∏ [𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)]

𝑑𝑖𝑚𝜉

𝑘=1
)

𝑚

𝑡=1

𝑚

𝑖=1
] 

(23) 

Let 𝜒𝑖,𝑡  denote  γ𝑖∗γ𝑡∗  ∏ [𝑟(𝜃𝑑,𝑗
∗ , 𝑑𝑑,𝑗, 𝑑𝑑,𝑗

(𝑖))𝑟(𝜃𝑑,𝑗
∗ , 𝑑𝑑,𝑗, 𝑑𝑑,𝑗

(𝑡))]
𝑑𝑖𝑚𝑑
𝑗=1  that is deterministic given 𝑖, 𝑡 . The above 218 

equation can be simplified as: 219 

𝔼([∑ γ𝑖
∗𝑅(𝜽, 𝒙, 𝒙(𝑖))

𝑚

𝑖=1
]
2

) =∑ ∑ (𝜒𝑖,𝑡 ∙ 𝔼 [∏ 𝑟 (𝜃𝜉,𝑘
∗ , 𝜉𝑘, 𝜉𝑘

(𝑖))𝑟 (𝜃𝜉,𝑘
∗ , 𝜉𝑘, 𝜉𝑘

(𝑡))
𝑑𝑖𝑚𝜉 

𝑘=1
])

𝑚

𝑡=1

𝑚

𝑖=1
 (24) 

With the same assumption that the probability density functions for the random variables are independent 220 
and the Gaussian correlation model is adopted, 𝔼 [∏ 𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)

𝑑𝑖𝑚𝜉

𝑘=1 ] 221 

= ∏ 𝔼[𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)]

𝑑𝑖𝑚𝜉 

𝑘=1 , where: 222 
𝔼[𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)] 

= 2𝜋(𝜃𝜉,𝑘
∗ )

2
∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑡)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘  

(25) 

 Therefore, combining the above equations, var(𝑔̂(𝒙)) can be efficiently obtained based on the 223 
distribution of random variables, together with the standard deviation of the performance function 224 

𝕊[𝑔̂(𝒙)] = √var(𝑔̂(𝒙)). For the full analytical solutions, readers are referred to Appendix A and B for 225 

Gaussian and uniform distributions, respectively. For the integrity of this work, the authors make some 226 
remarks as follows, to further discuss the advantages of this analytical robustness formula and the 227 
assumptions made during the derivation. 228 

  229 
Remark 1: On the distribution of the random variables and the correlation model 230 
This section discusses the main assumptions made for the derivation of the analytical formula of 231 

the robustness index, i.e., the expectation and standard deviation of 𝑔̂(∙), as well as the way to release those 232 
assumptions. A key assumption is that the random variables are independent and the random variables 𝝃 233 
follow certain types of distributions (Gaussian or uniform distributions). For other cases, probabilistic 234 
transformation strategies can be adopted to smooth the performance function and to facilitate the calculation 235 
of the statistics. Another assumption is that the separated Gaussian correlation model is adopted for the 236 
PCK surrogate model. Because the separated Gaussian correlation model is the most popular one and due 237 
to the limit on paper length, this work does not present the full analytical formulations for other types of 238 
correlation models. Future works can expand upon this by reformulating Eq. (13), Eq. (22) and Eq. (25). 239 

 240 
Remark 2: On the difference between PCK and Kriging 241 
The main difference between the PCK and the Kriging surrogate model lies in the establishment of 242 

the trend function, i.e., 𝐹(𝒙) in Eq. (1) designed as 𝒇(𝒙)𝑇𝜷 or ∑ 𝒸𝛼Ψ𝛼(𝒙)𝛼∈𝒜 . Taking advantage of the 243 
ability to capture the global trend of the function, PCK provides a group of optimized basis functions. In 244 
comparison, Kriging requires that the user define the type of global trend function before the 245 
implementation of the surrogate model. Despite this difference, the above derivations in Section 3.1 and 246 
3.2 can be extended to Kriging [23]. On the other hand, as PCK provides better ability to capture the global 247 
trend of the function, PCK is seen to provide slightly better performance when estimating the statistical 248 
moments than Kriging for the same training dataset. This is validated by the comparison in Appendix D for 249 
the performance of PCK and ordinary Kriging for five classical numerical examples.  250 
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 251 
Remark 3: On the objective of analytical robustness formula 252 
To further highlight the motivation behind this work, Appendix E compares the computational cost 253 

of estimating the statistical moments using both MCS and the formulated analytical equations. It is evident 254 
that the proposed analytical formulas are significantly faster than repeated sampling, offering nearly 100 255 
times improvement in cost for some cases. Considering that global search optimization methods, such as 256 
evolutionary algorithms, are applied for global searching or improved handling of problems with discrete 257 
design variables, the proposed analytical formula prove immensely beneficial as numerous evaluations of 258 
the robustness index might be needed during the optimization loop. Additionally, when viewed as a specific 259 
interpretation of Kriging, it is evident that estimating the statistical moments of PCK is more costly than 260 
Kriging, for both analytical estimation and MCS approaches.  This is mainly because the trend function of 261 
a PCK surrogate model is inherently not simpler than that of an ordinary Kriging. 262 

 263 
Remark 4: On the deterministic design variables 264 
As one of the primary motivations of this work, this remark presents the main difference due to the 265 

introduction of deterministic design variables. Notably, for problems without deterministic design variables, 266 
the above equations can be simplified by removing all terms associated with 𝑑 (see Eqs. (11), (18), (21) 267 
and (23)). The simplified equations are consistent with the previous work [20], despite the difference 268 
between the adopted surrogate models.  269 

 270 
Remark 5: About the scaling 271 
It is worthy to note that in order to guarantee the numerical stability, an auxiliary space can be 272 

introduced by scaling the input variables, i.e., 𝒙 → 𝒖 by: 273 

𝑢𝑗 =
𝑥𝑗 − 𝜇(𝑥𝑗)

𝜎(𝑥𝑗)
 𝑗 = 1,2,… , 𝑑𝑖𝑚 (26) 

In this case, the optimized correlation parameter 𝜽∗ is based on the auxiliary space, and therefore scaling 274 
of the training data is needed when calculating the statistics. Let 𝑿𝑚 = {𝒙(1),⋯ , 𝒙(𝑚)} denote the training 275 
samples in the original space and 𝑼𝑚 = {𝒖(1),⋯ , 𝒖(𝑚)} denotes the training samples in the auxiliary space. 276 
It is 𝒙(𝑖) = [𝝃(𝑖), 𝒅𝑑

(𝑖)]  and 𝒖(𝑖) = [𝒖𝜉
(𝑖) , 𝒖𝑑𝑑

(𝑖)]  ( 𝑖 = 1,2,⋯ ,𝑚 ). The parameters and bounds for the 277 
distributions of random variables can also be scaled. The formulated analytical expressions are still feasible 278 
in the auxiliary space after scaling. 279 
  280 
3.3 The proposed framework 281 
It is worth noticing that when taking advantage of the proposed analytical formula to express robustness 282 
index, it is still vital to establish an accurate mapping from the input to output space, i.e., guaranteeing the 283 
accuracy of the surrogate model especially in the region of interest. To this end, following the well-known 284 
concept of active learning, a generalized framework for efficient PCK-assisted robust design optimization 285 
is presented in this section. Fig. 1 illustrates the flowchart of the proposed method.  286 
 287 
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 288 
Fig. 1  Flowchart of the proposed RDO framework 289 

 290 
 As noticed, the proposed method mainly consists of three stages. The first step is named as 291 
Initialization Stage. In this stage, based on the robust design optimization problem, the associated design 292 
variables, random variables and the probabilistic model should be established. The formulation of the RDO 293 
problem should be set up as indicated in Eq. (1). For performance functions involving complex 294 
computational models, an initial design of experiments should be determined, and the performance models 295 
are accordingly evaluated. Techniques such as Latin hypercube sampling can be used to generate initial 296 
training samples.  297 

Subsequently, the framework enters the next stage: Optimization Stage. The PCK surrogate model 298 
is firstly established in the augmented space, i.e., 𝒅𝑑 × 𝝃. Then, based on the proposed analytical formula 299 
of robustness in Section 3.2 and Section 3.3, the objective and constraint functions are analytically 300 
expressed. Based on the feature of the problem, such as discrete or continuous optimization, single-modal 301 
and multi-modal optimization, the numerical optimization method is selected. The RDO problem is 302 
subsequently solved with the current surrogate model. Three criteria are adopted in this paper to guarantee 303 
the accuracy of the final solution. First, the number of implementations of an optimization algorithm must 304 
be larger than Ψ𝑛 . Furthermore, let Ψ𝑚𝑠𝑒  denote the threshold for the mean squared error. The mean value 305 
for the mean squared error (𝜎𝐾/𝜇𝐾) of local samples should be smaller than Ψ𝑚𝑠𝑒  to guarantee the accuracy 306 
of the surrogate model in the local region. Also, the change of the optimal solution in the current iteration 307 
and the last iteration should be smaller than the threshold ΨΔ to ensure the robustness of the solution. If all 308 
criteria are satisfied, the method ends and the optimal solution is provided. Otherwise, the method enters 309 
the third stage for the refinement of the surrogate model. 310 
 The third stage of the proposed method is the Refinement Stage of the surrogate model. A group 311 
of realizations are firstly sampled centered on the optimal solution from Stage Two. This work adopts the 312 
original distribution of random variables to general samples, i.e., implementing the MCS. Then, the 313 
probability density of the sample and the uncertainty level of the prediction are combined as the learning 314 
function to select the next training sample, e.g., 𝐿𝐹(𝒙) = 𝑃𝐷𝐹(𝒙) ∙ 𝜎𝐾(𝒙). The sample that maximizes the 315 
learning function is selected and evaluated on the original function. After refinement of the training 316 
database, the method goes back to the second stage for the next implementation of optimization. 317 
 318 
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4. Numerical Examples 319 
In this section, the proposed method is carefully investigated on several numerical examples and a practical 320 
engineering application about TMD design optimization. Multiple other surrogate-based methods are 321 
compared to indicate the superiority of the proposed method. For a fair comparison, these methods are 322 
implemented 10 times independently. The results are then compared, either by using their average or by 323 
focusing on those with median performance in discrete problems. The UQLab toolbox (version 2.0.0) is 324 
adopted for the establishment of the surrogate models, e.g., PCK, Kriging and etc. Either a Gaussian or 325 
uniform distribution is defined to cover the design space of a design or random variable, thus facilitating 326 
the establishment of a PCK model in the toolbox. Hybrid Genetic Algorithm (HGA) is selected as the 327 
method for training PCK and Kriging [28]. All numerical experiments are implemented based on a 328 
computer with AMD Ryzen 5900HX CPU, RAM 32 GB. 329 
 330 
4.1 Example one 331 
The first example is a two-dimensional numerical problem, named 2D Haupt function [21]. Two 332 
independent random variables are considered in this example. The mean values of the random variables are 333 
taken as the design variables with standard deviation of 0.2. 334 

min
(𝒅𝜇)

𝜇𝑔 + 𝜎𝑔 

𝑤ℎ𝑒𝑟𝑒: 

{
 
 

 
 
𝑔(𝝃) = 𝜉1 sin(4𝜉1) + 1.1𝜉2 sin(2𝜉2)

𝜉𝑖~𝒩(𝑑𝜇,𝑖 , 0.2
2), 𝑖 = 1,2

0 ≤ 𝑑𝜇,𝑖 ≤ 4, 𝑖 = 1,2

𝒅𝜇 = [𝑑𝜇,1, 𝑑𝜇,2]

  
(27) 

As this example is a multimodal optimization problem, a heuristics optimization method, called the 335 
improved (𝜇+𝜆) differential evolution (IDE) [33], is applied to search for the best solution. Table 1 336 
compares the results from the proposed method and several other techniques, including relevance vector 337 
machine (RVM), radial basis function (RBF), artificial neural network (ANN), sparse polynomial chaos 338 
expansion based on the least angle regression (PCE-LAR), Kriging with passive learning, Kriging with 339 
Expected Improvement (EI) learning function and Kriging with Mean Squared Error (MSE) learning 340 
function [21]. As the PCK can be considered as a specific interpretation of Kriging, in this context, the 341 
ordinary Kriging-based proposed framework is also compared here to illustrate the influence of the 342 
surrogate model. From the presented results, it can be observed that: 343 

• The use of surrogate models, such as ANN, RBF or Kriging, can significantly reduce the calls to 344 
the performance function when solving this RDO problem; however, the direct application of these 345 
techniques may not guarantee that a true global optimal solution is found. The maximum relative error 346 
incurred by the surrogate model, such as RBF, can be as large as 122%. On the other hand, after adaptive 347 
refining the surrogate model, such as Kriging-EI and Kriging-MSE, the methods can yield much better 348 
solutions, and the proposed method generally achieves the best performance.  349 

• The ‘No’ or ‘Yes’ is indicated in the last column of Table 1 to distinguish the methods with 350 
analytical solutions from the methods with Monte Carlo Simulation to assess the robustness index. 351 
Because the evaluations of robustness index are required many times in the optimization routine, surrogate 352 
model-based methods still suffer from the nested loop of optimization and uncertainty quantification with 353 
the lack of analytical solutions. For instance, taking into account 950 evaluations of robustness index as 354 
counted by the optimization with crude MCS, considerable computational time is required to solve this 355 
two-dimensional problem even with surrogate models. In comparison, the proposed surrogate model-356 
based analytical method consumes only tens of seconds to accurately finish the whole computation; the 357 
computational efficiency can be boosted over 100 times. The advantage of developing analytical robust 358 
optimization can be therefore clearly shown by the avoidance of such tremendous computational cost.  359 

 360 
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(a) the establishment of the PCK model (b) the performance of the proposed method 

with PCK and Ordinary Kriging 
Fig. 2  The establishment of the surrogate model and comparison of results 

 361 
Table 1 Comparison of the results from the proposed and other methods for Example One.  362 

Method Optimal Solution a Objective  ∆𝑜𝑏𝑗(%) Sample Size Analytical 
Solution 

MCS (2.7489, 2.4369) -3.4548 - 107×950 b No 
RVM c (2.4225, 2.4100) -1.5399 55.42 32 No 
ANN c (1.7615, 2.2991) -0.4049 88.27 32 No 
RBF c (1.4696, 1.5311) 0.7726 122.36 32 No 

PCE-LAR c (2.4215, 2.4338) -1.5369 55.51 32 No 
Kriging c (2.2714, 2.4123) -0.6384 81.51 32 No 

Kriging-EI c (2.7632, 2.4255) -3.4474 0.23 24+4.4 No 
Kriging-MSE c (2.7563, 2.4119) -3.4483 0.18 24+23.6 No 
PC-GK-SBL c (2.5921, 2.4374) -2.8215 18.29 32 Yes 
PC-GK-SBL- 

RLGE c (2.7491, 2.4373) -3.4543 0.01 31.1 Yes 

Proposed method- 
Ordinary Kriging (2.7473, 2.4273) -3.4547 ≈0 30.3 Yes 

Proposed method- 
PCK (2.7486, 2.4360) -3.4544 0.01 30.3 Yes 

 363 
• Compared with the existing surrogate model-based analytical RDO method [21], i.e., PC-GK-SBL  364 

with passive learning or PC-GK-SBL with RLGE learning function, the proposed method can achieve 365 
slightly better performance regarding the accuracy and efficiency of analysis. The PCK-based proposed 366 
method requires only 30.3 calls of the performance function on average, showing a relative error of nearly 367 
zero. Fig. 2 (a) shows the sequential sampling for the training database of PCK. The proposed method can 368 
accurately locate the true global optimum and converge to the optimum through adaptive refinements 369 
around the global optimal solution. When the Ordinary Kriging is adopted with the proposed analytical 370 
formula of robustness and active-learning framework, the performance is still good on average, however 371 
as Fig. 2 (b) shows, the PCK-based proposed method can perform slightly more stable compared with the 372 
Kriging-based approach. This is consistent with the aforementioned investigation in Appendix D. 373 

 374 

 
a the results are averaged over 10 independent runs.  
b the sample size for MCS indicates (the number of realizations to estimate the statistics) × (the number of evaluations 
of the robustness index during the optimization loop). 
c [21] is referred to obtain the performance for the other surrogate model-based methods. 
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4.2 Example two 375 
The second example consists of a revised robust design optimization problem for a truss structure, shown 376 
by Fig. 3 [17]. Three independent random variables are involved in this problem, i.e., the mass density 𝜉1, 377 
the applied external loading 𝜉2 , and the material yield (tensile) strength 𝜉3 . Two deterministic design 378 
variables are considered, i.e., the cross-section area 𝑑1 and the half of the distance between the two bottom 379 
nodes 𝑑2. To highlight the features of the proposed method, 𝑑1 is modeled as a discrete design variable 380 
with the candidate set of {10,11,⋯ ,20}(unit: cm2). The heuristics constrained optimization method, called 381 
the improved (𝜇+𝜆) constrained differential evolution (ICDE) [33], is applied in this example. Table 2 382 
presents the distribution for the above random variables. Two constraints regarding the maximum stresses 383 
for the bars are considered. The robust design optimization problem is formulated as: 384 
 385 

min
(𝒅𝑑)

0.05𝜇𝑔0 + 0.25𝜎𝑔0  

𝑠. 𝑡.: {
𝑐1(𝒅𝑑 , 𝝃) = 3𝜎𝑔1 − 𝜇𝑔1 ≤ 0

𝑐2(𝒅𝑑 , 𝝃) = 3𝜎𝑔2 − 𝜇𝑔2 ≤ 0
 

𝑤ℎ𝑒𝑟𝑒: 

{
 
 
 
 
 

 
 
 
 
 𝑔0(𝒅𝑑 , 𝝃) = 𝜉1𝑑1√1 + 𝑑2

2

𝑔1(𝒅𝑑 , 𝝃) = 1 −
5𝜉2√1 + 𝑑2

2

√65𝜉3
(
8

𝑑1
+

1

𝑑1𝑑2
)

𝑔2(𝒅𝑑, 𝝃) = 1 −
5𝜉2√1+ 𝑑2

2

√65𝜉3
(
8

𝑑1
−

1

𝑑1𝑑2
)

𝑑1 ∈ {10,11,⋯ ,20} (unit: cm
2)

0.1 ≤ 𝑑2 ≤ 1.6 (unit:m)
𝒅𝑑 = [𝑑1, 𝑑2]

  

(28) 

 386 

 387 
Fig. 3  The truss structure of Example two 388 

 389 
 390 
Table 2 The design variables and distribution of random variables of Example Two. 391 
Variables Distribution Mean SD Unit 
Cross-sectional area (𝑑1) Deterministic  𝑑1 — cm2 
Half-horizontal span (𝑑2) Deterministic 𝑑2 — m 
Mass density (𝜉1) Beta 10,000 2,000 kg/m3 
Load (𝜉2) Gumbel 800 200 kN 
Yield strength (𝜉3) Lognormal 1,050 250 MPa 

 392 



13 
 

Table 3 Comparison of the results from the proposed and other methods for Example Two.  393 

Method Optimal 
Solution a Objective ∆𝑜𝑏𝑗(%) 

Constraint1
-𝑐1 

Constraint2
-𝑐2 Sample Size Analytical 

Solution 

MCS (12.00, 
0.312) 1.257 — ≈0 -0.572 105×785 b No 

SVR (13.00, 
0.334) 1.368 8.83% -0.086 -0.584 128 No 

RBFNN (10.00, 
0.104) 1.003 20.21% 0.819 -0.996 128 No 

PCE-LAR (16.00, 
0.102) 1.606 27.76% 0.144 -0.997 128 No 

Ordinary 
Kriging 

(13.00, 
0.429) 1.303 3.66% -0.040 -0.473 128 No 

Proposed 
method- 
Ordinary 
Kriging 

(12.00, 
0.332) 1.265 0.64% -0.012 -0.552 88.5 Yes 

Proposed 
method- 

PCK 

(12.00, 
0.329) 1.261 0.32% -0.007 -0.554 87.5 Yes 

 394 
 395 

 396 
Fig. 4  The comparison of results for Example two 397 

 398 
Table 3 compares the results from the proposed method, and from multiple other surrogate models, 399 

including support vector regression (SVR), radial basis function neural network (RBFNN), sparse 400 
polynomial chaos expansion based on the least angle regression (PCE-LAR), and ordinary Kriging [28]. 401 
Fig. 4 depicts the boxplots that compares the performance of these methods, and it was noticed that: 402 

• As illustrated in Fig. 4, among the techniques used for comparison, SVR generally delivers the best 403 
performance with all solutions falling into the feasible domain. RNFNN exhibits the worst performance, 404 
characterized by considerable fluctuations in the results obtained, and the median performance solutions 405 
from both RBFNN and PCE are infeasible designs with respect to the first constraint function. The 406 

 
a the median performance solution is compared, and the averaged required sample is compared. 
b the sample size for MCS indicates (the number of realizations to estimate the statistics) × (the number of evaluations 
of the robustness index during the optimization loop).   
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performance of the proposed method is the best among all approaches. The required calls for the proposed 407 
methods with ordinary Kriging and PCK are very similar (88.5 verse 87.5). Compared with MCS, the 408 
relative error from the proposed method with PCK is only 0.32%, while the one for the proposed method 409 
with ordinary Kriging is relatively larger (0.6%). For the discrete design variable, i.e., the cross section of 410 
the trusses, the PCK-based proposed method yields an accurate result of 12 cm2 for all independent runs, 411 
while that for Kriging-based proposed method can result in a section design of 11 cm2 occasionally. 412 
Therefore, as also illustrated in Fig. 4, the performance of the PCK-based proposed method is more stable 413 
for the investigated truss problem. The results also confirm the enhancement achieved through the 414 
incorporation of the PCE trend into the Kriging surrogate model. 415 

• The proposed method remains the capability of providing analytical solution of robustness index 416 
for the example with both deterministic design variables and random variables. The existing method, i.e., 417 
the PC-GK-SBL investigated in the last example, fails to provide the analytical solutions, because this 418 
method does not consider the involvement of deterministic design variables during the derivation, and 419 
therefore, the PC-GK-SBL is not compared in this example. This demonstrates the contribution of the 420 
proposed method with respect to extending the applicable scope of the analytical RDO methodology. 421 
Artificially introducing uncertainties into deterministic design variables can address challenges associated 422 
with hybrid random and deterministic variables; however, this approach may also introduce additional 423 
errors. For example, if considering that both the cross-sectional area and half-horizontal span follow 424 
lognormal distributions with a coefficient of variation of 0.05, the optimal design changes to (12, 0.331), 425 
representing approximately a 6% deviation in the span arrangement. Thus, it is vital to properly define 426 
the distribution parameters when treating deterministic variables as random.   427 

 428 
4.3 Example three  429 
The third example involves the robust topology design of a frame structure with element members 430 
considering the variations in the external loading [34, 35]. The topological design involves the definition 431 
of the number of active members and the corresponding sizes. The RDO problem is formulated as: 432 

min
(𝒅)

𝔼[𝑔𝑦(𝒅,𝝃)] + 6𝕊[𝑔𝑦(𝒅, 𝝃)] 

𝑤ℎ𝑒𝑟𝑒: 

{
 
 

 
 ∑ 𝑙𝑖𝑑𝑖

10

𝑖=1
≤  5.43 (unit: cm2)

𝝃 = [𝜉𝐹,𝑣, 𝜉𝐹,ℎ]
𝒅 = [𝑑1, 𝑑2,⋯ , 𝑑6]

  
(29) 

 433 
where 𝑔𝑦(∙) is defined as the weighted sum of displacements along the external forces, with weight factors 434 
of five for the vertical displacement and one for the horizontal displacement. Fig. 5 depicts the layout of 435 
the frame structure and the numbering of its elements. 𝜉𝐹,ℎ and 𝜉𝐹,𝑣 denote random variables for the load 436 
magnitudes applied in the horizontal and vertical directions, respectively. 𝜉𝐹,𝑣  and 𝜉𝐹,ℎ  are assumed to 437 
follow Gumbel distributions; the mean values for both are 100 kN, while their coefficients of variation are 438 
0.2 and 0.02, respectively. The elastic modulus is considered as 100 GPa. Therefore, the objective is to 439 
optimize the frame design to design to ensure structural compliance, taking into account variations in the 440 
external loading and constraint on the material consumption. To find the optimum topology, each design 441 
variable 𝑑𝑖, representing the section areas for the corresponding frame members, can be selected from a 442 
discrete set. Zero is adopted to encode the inactivity of a member, i.e., 𝑑𝑖 ∈ {0,1,2,⋯ ,10} (𝑢𝑛𝑖𝑡: cm2). With 443 
introduction of the structural symmetry, total six design variables are considered in this problem.  444 
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  445 
Fig. 5  The frame structure of Example three 446 

 447 
The ICDE optimization method is also applied in this example to find the global optimal solution with 448 
discrete design variables. Table 4 compares the results from the proposed method, and from multiple other 449 
techniques, including SVR, RBFNN, PCE-LAR, and ordinary Kriging. Fig. 6 (a) depicts the optimum 450 
structural topology by the proposed method, and Fig. 6 (b) shows the boxplot for the performance of these 451 
methods. From the results, it can be noticed that: 452 

• For multiple surrogate models employing passive learning with 128 training samples, the SVR 453 
method can generally facilitate the determination of the optimal structural topology, namely, for elements 454 
#1 and #5. However, the selection of element sizes is typically inconsistent with the solution determined 455 
by MCS. As shown in Fig. 6(b), the results from SVR exhibit certain discrepancies when compared with 456 
the true optimal solution. Moreover, with methods like ordinary Kriging, PCE and RBFNN, the 457 
determined topology can occasionally significantly differ from the optimal one. For example, RBFNN 458 
determined a result of (3,0,1,2,0,1) in one analysis. Thus, these methods are prone to incurring larger 459 
errors in this topology design problem. 460 

 461 
Table 4 Comparison of the results from the proposed and other methods for Example Three.  462 

Method Optimal Solution a Objective 
(mm) 

∆𝑜𝑏𝑗(%) Sample 
Size 

Analytical 
Solution 

MCS (9, 0, 0, 0, 3, 0) 4.34 — 104×5580 b No 
SVR (6, 0, 0, 0, 4, 0) 4.75 9.45 128 No 

RBFNN (3, 0, 1, 2, 0, 1) 792.49 >100 128 No 
PCE-LAR (10, 1, 0, 0, 2, 0) 4.95 14.06 128 No 

Ordinary Kriging (10, 1, 0, 1, 1, 0) 7.20 65.90 128 No 
Proposed method- 
Ordinary Kriging (9, 0, 0, 0, 3, 0) 4.34 0 82.7 Yes 

Proposed method- 
PCK (9, 0, 0, 0, 3, 0) 4.34 0 85.4 Yes 

 463 
• On the other hand, the proposed method is the only technique that retains the capability to provide 464 

an analytical solution for robustness. It is worth noting that due to the involvement of the topological 465 
design variable, i.e., the inactivity of a member encoded by ‘0’, artificially introducing uncertainty around 466 

 
a the median performance solution is compared, and the averaged required sample is compared. 
b the sample size for MCS indicates (the number of realizations to estimate the statistics) × (the number of evaluations 
of the robustness index during the optimization loop). 
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a deterministic design is not often feasible, given the convergence issues with FEM analysis and the 467 
discrete nature of topological design. Thus, this application further emphasizes the primary concern and 468 
motivation of this work. The proposed method, employing a PCK surrogate model, achieves the best 469 
performance among all investigated methods. As depicted in Fig. 6(b), with an average of 85.4 runs of 470 
the performance function, the proposed method with PCK can typically accurately find the true optimal 471 
design. In comparison, the proposed method using ordinary Kriging requires 82.7 runs on average and 472 
occasionally results in a sub-optimal design. Therefore, as demonstrated in this example, the integration 473 
of the PCE trend in the metamodel contributes to the accuracy and robustness of the method's performance, 474 
even in RDO problem involving topological design.  475 

 476 

 
 

(a) the optimum topology  (b) the comparison of results from different methods 
Fig. 6  The optimum design for Example three 477 

 478 
 479 
4.4 Example four 480 
The last example of this paper focuses on the application of the proposed methodology on the robust design 481 
optimization of a tuned mass damper (TMD) for a footbridge, which is a cable-supported bridge with a span 482 
arrangement of 11 m+48 m+11 m. The steel girder has an asymmetric section design with a height of 2 m, 483 
and the pylon is designed as a concrete-filled steel tube column with a 0.9 m diameter. The backstay-cable 484 
is fixed on the top of the pylon. The details about the bridge design can refer to [36]. Fig. 7 (a) illustrates 485 
the layout the bridge, and Fig. 7 (b) presents the design scheme of the section.  486 
 487 

  
(a) the layout of the bridge (unit: mm) (b) the design of the cross section (unit: mm) 

Fig. 7  The cable-supported footbridge 488 
 489 

Pedestrian-induced vibrations have caused serious challenges for bridge safety in many 490 
applications. The walking load incurred by a single pedestrian is modeled by the sum of multiple harmonic 491 
components written as a Fourier series. Moreover, referring to the existing work [37], a uniform distribution 492 
is adopted to model the walking load incurred by a group of pedestrians on the bridge. The equivalent 493 
uniformly distributed walking load can be therefore formulated as: 494 
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𝑞𝑒𝑞 =
𝑁𝑒𝑞
𝑆
𝛼𝑒,ℎ𝐺𝜓(𝑓ℎ) (30) 

where 𝑆 denotes the surface of the bridge deck, 𝑁𝑒𝑞  is the equivalent number of perfectly synchronized 495 
pedestrians (𝑁𝑒𝑞  can be calculated as 1.85√𝑁, where 𝑁 denotes the number of pedestrians on the bridge 496 
based on the given pedestrian density [38, 39]), 𝜓(𝑓ℎ)  denotes the reduction factor considering the 497 
possibility of the step frequency equaling the natural frequency 𝑓ℎ of the bridge, and 𝛼𝑒,ℎ is the dynamic 498 
loading factor of the ℎ𝑡ℎ  harmonic of the load in direction of 𝑒 (vertical direction or horizontal direction).  499 

Imposing the equivalent uniformly distributed load on the bridge and assuming that the mode ℎ 500 
dominates the response of the bridge, the projection of the load on the mode ℎ can be calculated as: 501 

𝐹ℎ = 𝑞𝑒𝑞∑ 𝑎𝑒𝑓𝑓,𝑘|𝜙ℎ,𝑘|
𝑛𝑒𝑓𝑓

𝑘=1
 (31) 

where 𝑛𝑒𝑓𝑓  denotes the number of nodes of the bridge deck area, 𝑎𝑒𝑓𝑓 denotes the vector of the bridge deck 502 
area (∑ 𝑎𝑒𝑓𝑓

𝑛𝑒𝑓𝑓
𝑘=1 = 𝑆), and  𝜙ℎ denotes the vector for the mass-normalized modal displacement of mode ℎ. 503 

Then, the maximum acceleration of the bridge can be calculated through dynamic analysis. Considering the 504 
design scheme of the background bridge, a finite element model is established to determine the dynamic 505 
parameters of the bridge, as Fig. 8 shows. The natural frequency for the first bending mode of the bridge is 506 
2.0 Hz which falls in the sensitive range for the pedestrian-induced excitations. Therefore, it is considered 507 
that this mode dominates the vibration of the footbridge. Based on the dynamic analysis, it is noticed that 508 
the maximum acceleration can be larger than 6 m/s2 that is considered as unacceptable for the serviceability 509 
of footbridges [38, 39]. Thus, this example considers the robust design of a TMD as a strategy to mitigate 510 
bridge responses. In this problem, the TMD is designed to be placed at the location of maximum vertical 511 
displacement in the dominant bending mode, as illustrated in Fig. 8. 512 
 513 

 
Fig. 8  The dynamics parameter and analysis of the bridge: 514 
the first bending mode (unit: cm) and the location the TMD 515 

 516 
When a TMD is introduced as an energy absorber in the bridge system, the following coupling 517 

equation can be formulated to describe the response of the system, considering also the mode ℎ of the 518 
footbridge: 519 

𝑴𝒖̈(𝑡) + 𝑪𝒖̇(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡) (32) 

where  𝑴 = [
𝑚ℎ 0
0 𝑚𝑑

], 𝑪 = [𝑐ℎ + 𝑐𝑑 −𝑐𝑑
−𝑐𝑑 𝑐𝑑

] , 𝑲 = [𝑘ℎ + 𝑘𝑑 −𝑘𝑑
−𝑘𝑑 𝑘𝑑

], 𝑭(𝑡) = [𝑝(𝑡)
0
] and 𝒖(𝑡) = [

𝑢ℎ
𝑢𝑑
]. 𝑚ℎ , 𝑘ℎ 520 

and 𝑐ℎ denote the equivalent modal mass, stiffness and damping to unitize max|𝜙ℎ|, respectively. 𝑚𝑑, 𝑐𝑑 521 
and 𝑘𝑑  represent the mass, damping and stiffness of the TMD device, respectively. 𝑝(𝑡) denotes the force 522 
generated by the pedestrian walk, which is formulated as: 523 

𝑝(𝑡) = 𝑝𝑠cos (2𝜋𝑓𝑠)  (33) 

0   3.2   6.4   9.6   12.9   16.1  19.3  22.5  25.7  28.9 

TMD  
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where 𝑓𝑠  denotes the step frequency that is considered as 𝑓ℎ  in the above equations, 𝑝𝑠  represents the 524 

ground reaction force that is considered as 
𝑁𝑒𝑞𝛼𝑒,ℎ𝐺

𝑆
∑

𝑎𝑒𝑓𝑓,𝑘|𝜙ℎ,𝑘|

max|𝜙ℎ|

𝑛𝑒𝑓𝑓
𝑘=1 .  525 

  Considering various sources of uncertainties, such as the bridge natural frequency, damping ratio 526 
and the frequency of pedestrian excitations, that could influence the bridge state and the external loading, 527 
this paper formulates the TMD design as a robust optimization problem, to minimize the weight of the 528 
TMD while maintaining the feasibility robustness in an uncertain environment. The problem for robust 529 
TMD design of the cable-supported bridge is formulated as: 530 

min
(𝒅)

𝑚𝑑 

𝑠. 𝑡.: 

{
 
 

 
 𝔼[𝑢̈ℎ,𝑚𝑎𝑥(𝒅𝑑 , 𝝃)] + 3𝕊[𝑢̈ℎ,𝑚𝑎𝑥(𝒅𝑑, 𝝃)]  ≤ 0.75

𝒅𝑑 = (𝑚𝑑 , 𝑐𝑑 , 𝑘𝑑)
𝝃 = [𝜉𝑐 , 𝜉𝑓 , 𝜉𝑤]

0.01 ≤ 𝑚𝑑/𝑚ℎ ≤ 0.11

  
(34) 

where 𝒅𝑑  denotes the vector of deterministic design variables, i.e., the mass 𝑚𝑑, stiffness 𝑐𝑑 and damping 531 
𝑘𝑑  of the TMD (the cost of the TMD typically depends on its mass and therefore 𝑚𝑑  is taken as the 532 
objective of optimization). 𝝃 denotes the vector of random variables, including the modal damping for the 533 
first bending mode of the bridge (𝜉𝑐), the natural frequency for the first bending mode of the bridge (𝜉𝑓) 534 
and the frequency for the walking loading (𝜉𝑤). Table 5 lists the assumed distribution of random variables.  535 
 536 
Table 5 The distribution of random variables of Example Four. 537 

Variables Distribution Mean SD Unit 
Modal damping (𝜉𝑐) Uniform 0.4 0.115 % 

Natural frequency for the 
first bending mode (𝜉𝑓) Uniform 2.0 0.115 Hz 

Frequency of the walking 
loading (𝜉𝑤) Normal 2.0 0.2 Hz 

 538 
 The proposed method is applied to solve this robust TMD design optimization problem. Some other 539 
surrogate model-based approaches, such as the PCE-LAR, SVR [28] and RBFNN [40], are compared to 540 
illustrate the advantages of the proposed method. To facilitate the determination of the optimal TMD 541 
parameters, based on the suggestion from [41], the optimal stiffness and damping are determined based on 542 
the design of mass, therefore the dimension of the design variables can be reduced. Table 6 illustrates the 543 
results from different methodologies. It is noticed that the PCE-LAR, SVR and RBFNN all fail to provide 544 
acceptable solutions in this example of TMD design optimization. An obvious discrepancy for the 545 
feasibility robustness index, defined by 𝔼(𝑢̈ℎ,𝑚𝑎𝑥) + 3𝕊(𝑢̈ℎ,𝑚𝑎𝑥), can be observed for these methods. For 546 
instance, the SVR-based RDO can yield a relative error of nearly 59%. In comparison, the proposed 547 
methods with PCK and ordinary Kriging both yield much more accurate results for the TMD design.  The 548 
relative error for the feasibility robustness from the PCK-based analytical RDO method is only 1% with 549 
75.2 calls of the performance function on average, while the relative error from the ordinary Kriging-based 550 
approach is slightly larger (2%) with 68.5 calls of the performance function. Therefore, the proposed 551 
analytical robust design optimization method provides the best performance among all considered 552 
approaches. Furthermore, because the characteristics, e.g., mass, stiffness and damping, of a TMD are 553 
typically very preciously validated by experiments before the product launch, this example considers these 554 
parameters as deterministic design variables while taking into account some other essential uncertainty 555 
sources, such as the bridge modal frequency, damping and the external loading. The proposed method is 556 
the only approach that can provide analytical solution of robustness in such application background. This 557 
further validates the contribution of proposed method for extending the application scope of surrogate 558 
model-based analytical RDO to various practical engineering problems.   559 
 560 
 561 
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Table 6 Comparison of the results from the proposed and other methods for Example Four.  562 

Method Optimal 𝑚𝑡 
(kg)a 

𝔼(𝑢̈ℎ,𝑚𝑎𝑥) +

3𝕊(𝑢̈ℎ,𝑚𝑎𝑥)
 a 

|∆𝑐𝑜𝑛|(%) 
Sample 

Size 
Analytical 
Solution 

MCS 3522.38 0.750 — 104×770 b No 
RBFNN 2565.57 0.969 29.24 78 No 

SVR 1528.44 1.192 58.94 78 No 
PCE-LAR 1217.12 1.278 70.39 78 No 

Ordinary Kriging 2142.83 1.049 39.92 78 No 
The proposed method-

Ordinary Kriging 3660.29 0.735 2.01 68.5 Yes 

The proposed method-
PCK 3593.31 0.743 0.99 75.2 Yes 

 563 
5. Conclusion 564 
As an important branch of structural optimization, robust design optimization aims at optimizing the 565 
structural design while maintaining objective or feasibility robustness. Surrogate model-based analytical 566 
robust design optimization opens up a promising avenue to not only reduce the calls of complex 567 
computational models by establishing substitutes but also eliminate the repeated sampling estimation for 568 
statistical moments during the optimization routine. Motivated by extending the applicable scope of existing 569 
analytical method to handle both deterministic and random variables, this paper proposed a Polynomial 570 
Chaos Kriging-based methodology for efficient analytical robust design optimization. This work derived 571 
the analytical formulas of the statistical moments based on the underlying assumption of PCK surrogate 572 
model established on the augmented space. A symmetric investigation was carried out for uniform and 573 
Gaussian distributions. The paper also presented an active-learning framework consisting of three stages of 574 
initialization, optimization and refinement. Different types of numerical optimization methods, such as 575 
gradient-based methods or evolutionary methods, can be seamlessly implemented in the framework in 576 
tandem with the adaptively established surrogate model and the proposed analytical robustness formulas.  577 

Several classical numerical examples demonstrated that the proposed analytical formula can be 578 
much more efficient compared with simulation methods. Three numerical examples and a practical 579 
application assessed the performance of the proposed method. It was noticed that the proposed method can 580 
well handle different types of problems (multimodal problems, or discrete problems). Furthermore, the 581 
PCK surrogate model generally performed slightly better than the Kriging surrogate model, possibly 582 
because of the improvement of the ability to capture the global trend.  583 

The paper is concluded by discussing some limitations and possible extensions of the proposed 584 
RDO method. This work adopts the PC-Kriging, which introduces the PCE into the interpolation-type 585 
Kriging, as the surrogate model. Compared with the traditional sparse PCE, PCK improves the 586 
approximation ability to capture local variations of responses; however, PCK also suffers from the 587 
computational burden for inversion of the covariance matrix. Therefore, the proposed method is not suitable 588 
for very high-dimensional problems. Future works will investigate incorporation of dimension reduction 589 
techniques into the proposed framework. As reduction of the design space also alleviates the computational 590 
burden of model training, an adaptive decomposition framework could be investigated to enhance the 591 
method’s performance. 592 
 593 

 
a 𝔼(𝑢̈ℎ,𝑚𝑎𝑥) + 3𝕊(𝑢̈ℎ,𝑚𝑎𝑥)  is the average value over 10 independent runs. 
b the sample size for MCS indicates (the number of realizations to estimate the statistics) × (the number of evaluations 
of the robustness index during the optimization loop).   



20 
 

CRediT authorship contribution statement 594 
Chaolin Song: Conceptualization, Methodology, Formal Analysis, Writing - original draft. Abdollah 595 
Shafieezadeh: Conceptualization, Supervision, Methodology, Writing - review & editing. Rucheng Xiao: 596 
Conceptualization, Supervision. Bin Sun: Conceptualization, Writing - review & editing.  597 
 598 
Acknowledgements 599 
The authors appreciate the financial support from the National Natural Science Foundation of China 600 
(52308196), and the U.S. National Science Foundation (NSF) through awards CMMI-2000156. The first 601 
author would like to thank the support from the Postdoctoral Fellowship Program of CPSF under Grant 602 
Number GZB20230528 and 2023M742664. The opinions and statements do not necessarily represent those 603 
of the sponsors. In addition, the authors would like to express their gratitude to the Research Division on 604 
Structural Health Monitoring and Vibration Control, Department of Bridge Engineering, Tongji University 605 
and Mr. Zuqian Jiang, for the information about the bridge and the help in the modeling. 606 
 607 
Appendix A 608 
In this Appendix, following the derivations in Section 3.1 and 3.2, the statistical moments estimated by 609 
PCK with 𝝃 following independent Gaussian distribution is provided. It is noticed that the distribution of 610 
random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment, and influences 611 
Eq. (19), Eq. (22) and Eq. (25) when computing the second moment.  612 

For an arbitrary univariate orthogonal polynomial, the function, i.e., 𝜓
𝛼
(𝜉

𝑘
),  can be typically 613 

expressed as the consolidation of several power functions. For instance, a second-order probabilistic 614 
Hermite polynomial is expressed as 𝜓

𝛼=2
(𝜉

𝑘
) = √2[𝑏𝒽=2(𝜉𝑘) − 𝑏𝒽=0(𝜉𝑘)]/2. When the random variable 615 

𝜉𝑘  follow Gaussian distribution 𝒩[𝜉𝑘|𝜇𝑘, (𝜎𝑘)2] where 𝑘 = 1,⋯ , 𝑑𝑖𝑚𝜉  denotes the dimension number, 616 
and let 𝑏𝒽(𝑥) = 𝑥𝒽  denote an 𝒽-order function. It is noticed that the following equation can be obtained: 617 

𝔼[𝑏𝒽(𝜉𝑘)] = ∫𝑏𝒽(𝜉𝑘) ∙ 𝑓(𝜉𝑘|𝒅𝜇) d𝜉𝑘 = ∫𝑏𝒽(𝜉𝑘) ∙ 𝒩[𝜉𝑘|𝜇𝑘, (𝜎𝑘)
2]d𝜉𝑘 (A.1) 

The following recursion table can be then obtained.  618 
 619 
Table A.1. The analytical formula of integral with Gaussian distribution 620 

Integration Function Analytical Expression 

∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=0(𝜉𝑘)d𝜉𝑘 1 

∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=1(𝜉𝑘)d𝜉𝑘 𝜇𝑘 

⋮ ⋮ 

∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛(𝜉𝑘)d𝜉𝑘 
(𝜎𝑘)

2(𝑛 − 1)∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛−2(𝜉𝑘)d𝜉𝑘 

+𝜇𝑘∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛−1(𝜉𝑘)d𝜉𝑘 

 621 
Thus, Eq. (13), Eq. (19) can be efficiently analytically determined based on the optimized 622 

coefficients and corresponding order of the polynomial basis functions. (Note that the raw moments of 623 
some distributions have been discussed in the literature [42]; the above formulas are not all new.)   624 

 625 
For Eq. (15), when random variables are assumed to follow independent Gaussian distributions, 626 

referring to Appendix C, the following equation can be recast: 627 

𝔼(exp [−
1

2
(
𝜉𝑘 − 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )

2

]) = ∫√2𝜋𝜃𝜉,𝑘
∗ ∙ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖), (𝜃𝜉,𝑘
∗ )

2
] d𝜉𝑘 (A.2) 
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= ∫√2𝜋𝜃𝜉,𝑘
∗ ∙ 𝒩[𝜉𝑘|𝜇𝑘, (𝜎𝑘)

2] ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖), (𝜃𝜉,𝑘

∗ )
2
] d𝜉𝑘 

= √2𝜋𝜃𝜉,𝑘
∗ ∙ 𝑠𝑛1 

where 𝑠𝑛1 can be determined by: 628 

𝑠𝑛1 =
1

√2𝜋 [(𝜎𝑘)2 + (𝜃𝜉,𝑘
∗ )

2
]

exp [−
(𝜉𝑘
(𝑖) − 𝜇𝑘)

2

2 [(𝜎𝑘)2 + (𝜃𝜉,𝑘
∗ )

2
]
] (A.3) 

 Therefore, Eq. (15) can be efficiently analytically determined. 629 
 630 
 Furthermore, Eq. (22) can be recast as:  631 

𝔼[𝜓𝛼(𝜉𝑘)𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)] = √2𝜋𝜃𝜉,𝑘

∗ ∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝜓𝛼(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖), (𝜃𝜉,𝑘

∗ )
2
] d𝜉𝑘 

= √2𝜋𝜃𝜉,𝑘
∗ ∫𝜓𝛼(𝜉𝑘) ∙ 𝒩[𝜉𝑘|𝜇𝑘, (𝜎𝑘)

2] ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖), (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘 

= √2𝜋𝜃𝜉,𝑘
∗ 𝑠𝑛1∫𝜓𝛼(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑛1)
, (𝜎𝑘

(𝑛1)
)
2
]d𝜉𝑘 

(A.4) 

where 𝜉𝑘
(𝑛1) and 𝜎𝑘

(𝑛1) can be determined by: 632 

𝜉𝑘
(𝑛1)

=
𝜉𝑘
(𝑖)(𝜎𝑘)

2 + 𝜇𝑘(𝜃𝜉,𝑘
∗ )

2

(𝜎𝑘)2 + (𝜃𝜉,𝑘
∗ )

2  (A.5) 

𝜎𝑘
(𝑛1)

= √
(𝜎𝑘)2(𝜃𝜉,𝑘

∗ )
2

(𝜎𝑘)2 + (𝜃𝜉,𝑘
∗ )

2 (A.6) 

Subsequently, the Table A.1 can be applied again based on the optimized coefficients and 633 
corresponding order of the polynomial basis functions to analytically calculate Eq. (22). 634 
 635 

For the last part required when calculating the second moment of statistics, Eq. (25) can be 636 
formulated as: 637 
𝔼[𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)] = ∫2𝜋(𝜃𝜉,𝑘

∗ )
2
∙ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑡)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘 

= ∫2𝜋(𝜃𝜉,𝑘
∗ )

2
∙ 𝒩[𝜉𝑘|𝜇𝑘 , (𝜎𝑘)

2] ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑡)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘 

= ∫2𝜋(𝜃𝜉,𝑘
∗ )

2
∙ 𝑠𝑛1 ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑛1)
, (𝜎𝑘

(𝑛1)
)
2
] ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑡)
, (𝜃𝜉,𝑘

∗ )
2
] d𝜉𝑘 

= ∫2𝜋(𝜃𝜉,𝑘
∗ )

2
∙ 𝑠𝑛1 ∙ 𝑠𝑛2 ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑛2)
, (𝜎𝑘

(𝑛2)
)
2
] d𝜉𝑘 = 2𝜋(𝜃𝜉,𝑘

∗ )
2
∙ 𝑠𝑛1 ∙ 𝑠𝑛2 

(A.7) 

where 𝑠𝑛2, 𝜉𝑛2𝑘  and 𝜎𝑛2𝑘  can be similarly determined referring to Appendix C. 638 

𝑠𝑛2 =
1

√2𝜋 [(𝜎𝑘
(𝑛1)

)
2
+ (𝜃𝜉,𝑘

∗ )
2
]

exp [−
(𝜉𝑘

(𝑡)
− 𝜉𝑘

(𝑛1)
)
2

2 [(𝜎𝑘
(𝑛1)

)
2
+ (𝜃𝜉,𝑘

∗ )
2
]
] (A.8) 

𝜉𝑘
(𝑛2)

=
𝜉𝑘
(𝑡)
(𝜎𝑘

(𝑛1)
)
2
+ 𝜉𝑘

(𝑛1)
(𝜃𝜉,𝑘

∗ )
2

(𝜎𝑘
(𝑛1)

)
2
+ (𝜃𝜉,𝑘

∗ )
2

 (A.9) 

𝜎𝑘
(𝑛2)

= √
(𝜎𝑘

(𝑛1)
)
2
(𝜃𝜉,𝑘

∗ )
2

(𝜎𝑘
(𝑛1)

)
2
+ (𝜃𝜉,𝑘

∗ )
2
 (A.10) 

 639 
Based on the above formula and Table A.1, the integrals required in the formulas of the statistical 640 

moments have also been analytically expressed for the case of independent Gaussian distributions.  641 
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 642 
Appendix B 643 
In this Appendix, the statistical moments estimated by PCK with 𝝃  following independent uniform 644 
distribution is provided. Throughout this section, it is generally assumed that a random variable 𝜉

𝑘
 follows 645 

a uniform distribution between [𝜉𝑘
(𝑢)
, 𝜉𝑘
(𝑙)
] ([𝜉𝑘

(𝑢)
, 𝜉𝑘
(𝑙)
] can depend on 𝒅𝜇). As a reminder, note that the 646 

distribution of random variables mainly influences Eq. (13) and Eq. (15) when computing the first moment, 647 
and influences Eq. (19), Eq. (22) and Eq. (25) when computing the second moment. 648 
 649 

Following the assumption in the above derivations, Let 𝑏𝒽(𝑥) = 𝑥𝒽  denote an 𝒽 order function. 650 
For these conditions, the following equation can be obtained: 651 

∫ 𝑓(𝜉
𝑘
|𝒅𝜇) ∙ 𝑏𝒽(𝜉𝑘)d𝜉𝑘 =

1

𝜉
𝑘
(𝑢) − 𝜉

𝑘
(𝑙)

1

𝒽 + 1
[(𝜉

𝑘
(𝑢))

ℎ+1
− (𝜉

𝑘
(𝑙))

ℎ+1
] (B.1) 

The integral required in Eq. (13) and (19) can be therefore analytically calculated combining the integrals 652 
for all 𝑏𝒽(𝑥) components that are determined based on the type and degree of the polynomial basis.  653 

 654 
Additionally, with the uniform distribution, Eq. (15) can be recast as: 655 

      𝔼(exp [−
1

2
(
𝜉𝑘 − 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )

2

]) =
√2𝜋𝜃𝜉,𝑘

∗

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙)
∫ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉
𝑘
(𝑙)

 

     =
√2𝜋𝜃𝜉,𝑘

∗

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙) [Φ(
𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )− Φ(

𝜉𝑘
(𝑙)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )] 

(B.2) 

where Φ(∙) denotes the Gaussian cumulative density function. 656 
 657 
For the analytical formula of Eq. (22), the following relationship can be observed: 658 

∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘 =

1

√2𝜋𝜃𝜉,𝑘
∗

1

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙)∫ (𝜉𝑘)
𝒽 ∙ exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ] d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 (B.3) 

  659 

∫ (𝜉𝑘)
𝒽 ∙ exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

= (𝜃𝜉,𝑘
∗ )

2
∫ (𝜉𝑘)

𝒽−1 ∙
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)

(𝜃𝜉,𝑘
∗ )

2 ∙ exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ] d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

+ 𝜉𝑘
(𝑖)
∫ (𝜉𝑘)

𝒽−1 ∙ exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ] d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

= (𝜃𝜉,𝑘
∗ )

2
∫ (𝜉𝑘)

𝒽−1d(−exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ])
𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

+ 𝜉𝑘
(𝑖)
∫ (𝜉𝑘)

𝒽−1 ∙ exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ] d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

(B.4) 

The method of integration by parts is applied herein: 660 

∫ (𝜉
𝑘
)
𝒽−1

d(−exp [−
(𝜉

𝑘
− 𝜉

𝑘
(𝑖))

2

2(𝜃𝜉,𝑘
∗ )

2 ])
𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

= ∫ exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]d((𝜉𝑘)
𝒽−1)

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

− [(𝜉𝑘)
𝒽−1 ∙ exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]]

𝜉𝑘
(𝑙)

𝜉𝑘
(𝑢)

 

(B.5) 
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= (𝒽 − 1)∫ (𝜉𝑘)
𝒽−2 ∙ exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉
𝑘
(𝑙)

− [(𝜉𝑘)
𝒽−1 ∙ exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]]

𝜉𝑘
(𝑙)

𝜉𝑘
(𝑢)

 

Based on these derivations, Table B.1 presents the analytical solutions of the integral terms that appear in 661 
Eq. (22). 662 
 663 
Table B.1. The analytical formula of integral with uniform distribution 664 

Integration Function Analytical Expression 

∫ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=0(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 
1

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙) [Φ(
𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )− Φ(

𝜉𝑘
(𝑙)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )] 

∫ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=1(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

𝜉𝑘
(𝑖)

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙) [Φ(
𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )− Φ(

𝜉𝑘
(𝑙)
− 𝜉𝑘

(𝑖)

𝜃𝜉,𝑘
∗ )] 

−
1

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙)

𝜃𝜉,𝑘
∗

√2𝜋
[exp [−

(𝜉𝑘 − 𝜉𝑘
(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]]

𝜉𝑘
(𝑙)

𝜉𝑘
(𝑢)

 

⋮ ⋮ 

∫ 𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘
(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉𝑘
(𝑙)

 

(𝜃𝜉,𝑘
∗ )

2
(𝒽 − 1)∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛−2(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] d𝜉𝑘  

+𝜉𝑘
(𝑖)∫𝑓(𝜉𝑘|𝒅𝜇) ∙ 𝑏𝒽=𝑛−1(𝜉𝑘) ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘  

−
1

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙)

𝜃𝜉,𝑘
∗

√2𝜋
[(𝜉𝑘)

𝑛−1 ∙ exp [−
(𝜉𝑘 − 𝜉𝑘

(𝑖)
)
2

2(𝜃𝜉,𝑘
∗ )

2 ]]

𝜉𝑘
(𝑙)

𝜉𝑘
(𝑢)

 

 665 
Furthermore, for Eq. (25), When the random variable 𝜉𝑘 follows a uniform distribution between 666 

[𝜉𝑘
(𝑢)
, 𝜉𝑘
(𝑙)
], and the above equation can be recast as: 667 

𝔼[𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)] =

2𝜋(𝜃𝜉,𝑘
∗ )

2

𝜉𝑘
(𝑢)
− 𝜉𝑘

(𝑙)
∫ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑖)
, (𝜃𝜉,𝑘

∗ )
2
] ∙ 𝒩 [𝜉𝑘|𝜉𝑘

(𝑡)
, (𝜃𝜉,𝑘

∗ )
2
]d𝜉𝑘

𝜉𝑘
(𝑢)

𝜉
𝑘
(𝑙)

 (B.6) 

 Referring to Appendix C again, the product of two normal distribution also follows a normal 668 
distribution. The following equations can be obtained: 669 

𝜇
𝑢,𝑘
=
𝜉
𝑘
(𝑖) + 𝜉

𝑘
(𝑡)

2
 (B.7) 

𝜎𝑢,𝑘 =
√(𝜃𝜉,𝑘

∗ )
2

2
 (B.8) 

𝑠𝑢1 =
1

√4𝜋(𝜃𝜉,𝑘
∗ )

2

exp [−
(𝜉

𝑘
(𝑡) − 𝜉

𝑘
(𝑖))

2

4(𝜃𝜉,𝑘
∗ )

2 ] (B.9) 

𝔼[𝑟(𝜃𝜉,𝑘
∗ , 𝜉𝑘 , 𝜉𝑘

(𝑖)
)𝑟(𝜃𝜉,𝑘

∗ , 𝜉𝑘 , 𝜉𝑘
(𝑡)
)] =

2𝜋(𝜃𝜉,𝑘
∗ )

2

𝜉
𝑘
(𝑢)
− 𝜉

𝑘
(𝑙)
𝑠𝑢1 [Φ(

𝜉𝑘
(𝑢)
− 𝜇𝑢,𝑘
𝜎𝑢,𝑘

) −Φ(
𝜉𝑘
(𝑙)
− 𝜇𝑢,𝑘
𝜎𝑢,𝑘

)] (B.10) 

 670 
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Based on the above formulas and Table B.1, the integrals required in the formulas of the statistical 671 
moments have also been analytically expressed for the case of independent uniform distributions.  672 

 673 
Appendix C 674 
Let 𝒩(𝜉|𝜉𝑎 , 𝜃𝑎

2) denote a Gaussian probability density function with mean of 𝜉𝑎 and standard deviation 675 
of 𝜃𝑎 ; 𝒩(𝜉|𝜉𝑏 , 𝜃𝑏

2)  denotes a Gaussian probability density function with mean of 𝜉𝑏  and standard 676 

deviation of 𝜃𝑏 . Let 𝜉𝑛 =
𝜉𝑏𝜃𝑎

2+𝜉𝑎𝜃𝑏
2

𝜃𝑎
2+𝜃𝑏

2  and 𝜃𝑛 = √
𝜃𝑎

2𝜃𝑏
2

𝜃𝑎
2+𝜃𝑏

2 . It has been proven that the product of 677 

𝒩(𝜉|𝜉𝑎 , 𝜃𝑎
2) and 𝒩(𝜉|𝜉𝑏 , 𝜃𝑏

2) follows a scaled Gaussian distribution: 678 

𝒩(𝜉|𝜉𝑎 , 𝜃𝑎
2) ∙ 𝒩(𝜉|𝜉𝑏 , 𝜃𝑏

2) = 𝑠𝑔 ∙ 𝒩(𝜉|𝜉𝑛, 𝜃𝑛
2) (C.1) 

where 𝑠𝑔 denotes the scaled factor that can be formulated as: 679 

𝑠𝑔 =
1

√2𝜋(𝜃𝑎
2 + 𝜃𝑏

2)

exp [−
(𝜉𝑎 − 𝜉𝑏)

2

2(𝜃𝑎
2 + 𝜃𝑏

2)
] (C.2) 

 680 
Appendix D 681 
To validate the accuracy of the analytical formula for obtaining the statistics of the performance function 682 
and to compare the PCK and Kriging surrogate model, five examples are investigated here. The analytical 683 
expressions derived in Section 3.1 and 3.2 are applied. For a fair comparison, 20 independent runs are 684 
executed for obtaining the mean relative error of the estimations. The UQLab toolbox (version 2.0.0) is 685 
adopted for creating the surrogate model where HGA is selected as the optimization method for both 686 
ordinary Kriging and PCK. 687 
 The first example is the so-called Ishigami function with three uniformly distributed random 688 
variables as the inputs. The function has the following form: 689 

𝑔1 = sin(𝜉1) + 7 sin
2 (𝜉2) + 0.1𝑥3

4 sin(𝜉1) (D.1) 

where 𝜉𝑖~𝒰(1,2), 𝑖 = 1,2,3. Fig. D.1 shows the analytical prediction of the statistics of the output for 690 
different number of training samples from 32 to 128. The training samples are uniformly generated from 691 
the sampling space 𝒰(−𝜋, 𝜋) for each dimension. 692 

  
(a) Relative error for estimating the mean by PCK (b) Relative error for estimating the mean by ordinary 

Kriging 
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(c) Relative error for estimating SD by PCK (d) Relative error for estimating SD by ordinary 

Kriging 
Fig. D.1 Function One:  Relative error for estimating the first two moments by PCK and ordinary Kriging. 

 693 
Function two is the so-called Rosenbrock function with two uniformly distributed random variables 694 

as the input. The function reads: 695 

𝑔2 = 100(𝜉2 − 𝜉1
2)2 + (1 − 𝜉1)

2 (D.2) 

where 𝜉1~𝒰(1,2) and 𝜉2~𝒰(0,1). Fig. D.2 shows the analytical prediction of the statistics of the output 696 
for different numbers of training samples ranging from 16 to 64. The training samples are uniformly 697 
generated from the sample space 𝒰(−2,2) for each dimension. 698 
 699 

  
(a) Relative error for estimating the mean by PCK (b) Relative error for estimating the mean by 

ordinary Kriging 

  
(c) Relative error for estimating SD by PCK (d) Relative error for estimating SD by ordinary 

Kriging 
Fig. D.2 Function Two:  Relative error for estimating the first two moments by PCK and ordinary 

Kriging. 
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 700 
Function three is the modified Sobol function with four uniformly distributed random variables as 701 

the input. The function reads: 702 

𝑔3 =∏
|4𝜉𝑖 − 2| + 𝑐𝑖

1 + 𝑐𝑖

4

𝑖=1
 (D.3) 

where 𝜉𝑖~𝒰(0,1), 𝑖 = 1,2,3,4, 𝑐 = (1,2,5,10).  Fig. D.3 shows the analytical prediction of the statistics of 703 
the output, by changing the number of training samples from 32 to 256. The training samples are uniformly 704 
generated from the sampling space 𝒰(0,1) for each dimension. 705 
 706 

  
(a) Relative error for estimating the mean by PCK (b) Relative error for estimating the mean by 

ordinary Kriging 

  
(c) Relative error for estimating SD by PCK (d) Relative error for estimating SD by ordinary 

Kriging 
Fig. D.3 Function Three:  Relative error for estimating the first two moments by PCK and ordinary 

Kriging. 
 707 

Function four is a four-dimensional function with four normally distributed random variables as 708 
the input. The function reads: 709 

𝑔4 = 2/3exp(𝜉1
2 + 𝜉2

2) + 𝜉4 cos(𝜉3) + 𝜉3 (D.4) 

where 𝜉𝑖~𝒩(0.1, 0.12), 𝑖 = 1,2,3,4. Fig. D.4 shows the analytical prediction of the statistics of the 710 
output, by changing the number of training samples from 32 to 128. The training samples are uniformly 711 
generated from the sampling space 𝒰(−1,1) for each dimension. 712 
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(a) Relative error for estimating the mean by PCK (b) Relative error for estimating the mean by 

ordinary Kriging 

  
(c) Relative error for estimating SD by PCK (d) Relative error for estimating SD by ordinary 

Kriging 
Fig. D.4 Function Four:  Relative error for estimating the first two moments by PCK and ordinary 

Kriging. 
 713 

Function five is a two-dimensional function with two normally distributed random variables as the 714 
input. The function reads: 715 

𝑔5 = 𝜉1 + 5 sin(𝜉1) + 0.1𝜉1𝜉2
2 (D.5) 

where 𝜉𝑖~𝒩(1,1), 𝑖 = 1,2.  Fig. D.5 shows the analytical prediction of the statistics of the output, 716 
by changing the number of training samples from 16 to 64. The training samples are uniformly generated 717 
from the sampling space 𝒰(−10,10) for each dimension. 718 

  
(a) Relative error for estimating the mean by PCK (b) Relative error for estimating the mean by 

ordinary Kriging 
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(c) Relative error for estimating SD by PCK (d) Relative error for estimating SD by ordinary 
Kriging 

Fig. D.5 Function Five:  Relative error for estimating the first two moments by PCK and ordinary 
Kriging. 

 719 
Appendix E 720 
To highlight the motivation for formulating the analytical expression for robustness index, this appendix 721 
further compares the computational burden for calculating the analytical equations and implementing MCS. 722 
The same functions presented in Appendix A are selected for investigation. The results are averaged on 20 723 
runs. The UQLab toolbox (version 2.0.0) is adopted for the establishment of the surrogate model; HGA is 724 
selected as the optimization method for both ordinary Kriging and PCK. As an established surrogate model 725 
can be used multiple times during the optimization loop, this appendix therefore does not include the 726 
computational burden for training the surrogate model, and only compares the consumed computational 727 
time for evaluating the first and second statistical moments.  728 
 729 

  
(a) Function One (b) Function Two 

  
(c) Function Three (d) Function Four 
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(e) Function Five 

Fig. E.1 Comparison between the computational burdens for estimating the first two moments by 
analytical equations and MCS.  
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