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ABSTRACT 
Eddy-covariance (EC) flux measurements in Indianapolis were used to quantify the impact of 
the COVID-19 lockdown on CO and CO2 emissions from a highway and a suburban neigh
borhood. CO2 fluxes were measured for 6 weeks pre-lockdown (January 22, 2020–March 3, 
2020) and during lockdown (March 25, 2020– May 5, 2020) using EC instrumentation at 
41 m AGL. Fossil fuel CO2 emissions (CO2ff) were estimated by calculating eddy diffusivity to 
obtain CO flux and then scaling by the CO:CO2ff emissions ratio (RCO). Flux measurements 
segregated by wind direction were compared to hourly emissions from the 2020 Hestia 
inventory model. The lockdown CO2ff average weekday emissions from the highway esti
mated by EC decreased by 51.5 ± 10.9% (11.2 ± 2.2 mmol m−2 s−1) compared to pre-lock
down, similar to Hestia’s estimate 56 ± 7% (12 ± 1 mmol m−2 s−1). The EC measurements 
detected a significant (2.2 ± 0.7 mmol m−2 s−1) but smaller magnitude decrease in CO2ff emis
sions from the suburban neighborhood. The daily cycles of CO2ff emissions were signifi
cantly correlated with Hestia estimates from the highway but not from the suburbs. This 
study demonstrates that EC flux towers and high-resolution inventory models in regions 
with mixed and spatially heterogeneous sources can quantify abrupt changes in sector- and 
source-specific CO2 fluxes.
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Introduction

Measurement strategies that can accurately quan
tify changes in anthropogenic emissions are needed 

to evaluate efforts to curb greenhouse gas emis

sions. The lockdowns enacted due to the outbreak 

of the COVID-19 (Coronavirus disease 2019) pan

demic provide an opportunity to test strategies for 
monitoring changes in emissions, since vehicle traf

fic and its associated emissions dropped signifi

cantly during the pandemic [1–3]. Other emissions 

sectors, such as industry, power production, and 

public buildings also decreased their daily global 
CO2 emissions according to one inventory study, 

while daily global residential emissions went up 

slightly [4]. Fossil fuel-sourced CO2 emissions 

(referred to henceforth as CO2ff emissions) as well 
as other pollutant emissions have been 

demonstrated to have decreased during pandemic- 
related lockdowns [4–6]. Studies of primary air pol
lutants found that government lockdown orders 
catalyzed significant decreases in carbon monoxide, 
nitrogen oxides, and particulate matter [7,8].

A limited number of studies have used atmos
pheric data to quantify changes in emissions due 
to COVID-19 restrictions. One study used satellite 
data from the GEOS/OCO-2 atmospheric carbon 
monitoring system to analyze the CO2 emission 
patterns of various countries during 2020 [9]. The 
results showed increases and decreases in average 
country-wide emissions that agreed loosely with 
inventory data and the slackening and tightening 
of COVID restrictions [9]. The study was significant 
because it demonstrated how inventory data and 
atmospheric data could be used to conclude how 
COVID-19 affected emissions and gauge the 
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accuracy of both monitoring systems. Some urban- 
scale greenhouse gas (GHG) measurement net
works have demonstrated city-level emissions 
changes due to COVID-19 restrictions [7,8]. The Air 
Quality Monitoring Network of the Santiago 
Metropolitan Area measured concentrations of 
NOx, CO, O3, and other pollutants [7]; particulate 
matter data collected by the local environmental 
protection agency of Milan was used to monitor 
COVID-related changes in emissions of C6H6, CO, 
SO2, and others [8]. To observe changes in emis
sions caused by the COVID-19 lockdown in six 
North American cities (Boston, Indianapolis, Los 
Angeles, Salt Lake City, Toronto, and the 
Baltimore/D.C. metro area), six different metrics 
were used: amplitude of the diurnal cycle, vertical 
gradients, enhancements above the background, 
temporal variances, and enhancement of the 
CO2:CH4 ratio [10]. This study’s goal is to build on 
the successes of these previous studies by using 
EC measurements to better quantify COVID-19 
emissions reductions at a smaller scale.

EC flux measurements, the primary measure
ment method for this research paper, effectively 
monitor CO2 fluxes at high spatial and temporal 
resolution in natural and urbanized environments 
[11,12]. EC flux measurement towers monitor all 
CO2 emissions sources and sinks within its foot
print, making it an ideal tool for monitoring emis
sions in specific regions of interest. The strategy 
has been deployed in many cities for various pur
poses such as testing the accuracy of other urban- 
scale measurement methods or comparing with 
local activity data to determine dominant sources 
and sinks in the area [13–15].

EC towers yield data that can be combined with 
other measurements to better quantify human 
emissions. For instance, one can use EC measure
ments along with trace gases to disaggregate CO2 

sources. A study in Tokyo, Japan used O2 and CO2 

mole fractions, and an inventory model in tandem 
with CO2 flux measurements to estimate daily 
cycles for emissions from gas fuels, liquid fuels, 
and human respiration [16]. They observed O2:CO2 

ratios, and since these ratios are different for gas 
and liquid fuels, they could use these ratios and 
inventory data for source attribution [16]. Our 
study builds on previous EC studies like the ones 
in London and Tokyo [16] by using molar concen
tration measurements above and below the flux 
measurement device to disaggregate CO2 meas
urements into their fossil fuel and biogenic 
components.

EC has been helpful in examining the impact of 
COVID-19 restrictions on CO2 emissions. EC meas
urements have shown that CO2 flux in Yoyogi, a 
residential area in Tokyo, Japan, dropped by about 
20% in April and May of 2020 when the Japanese 
government encouraged everyone to stay at home 
reducing public activities [17]. A study in Vienna, 
Austria, with EC measurements 144 m AGL from 
2018 to 2020 found that weekly mean CO2 fluxes 
for north-westerly winds during the city’s 2020 
lockdown were 64% lower than corresponding 
means in 2019, a greater reduction than was 
observed when wind blew from less urbanized 
directions [18]. A network of European urban EC 
measurements of total CO2 flux observed large 
emissions reductions in most cities that were a 
function of the severity of COVID-19 restrictions 
imposed [19]. These restrictions included closing 
schools and businesses, banning of social gather
ings, and stay-at-home orders [19]. Dividing tower 
footprints into different sections by wind direction 
and identifying the dominant emission sources 
and sinks in each section provided insight into 
how different emissions sectors were affected [19]. 
Non-residential areas experienced the greatest 
emissions reductions during lockdowns [19].

A combination of flux footprint analyses and 
multi-gas tracers can further improve our ability to 
identify flux patterns, sources, and sinks in hetero
geneous urban settings. Wu et al. presented a 
method for decomposing the anthropogenic and 
biogenic fluxes using CO:CO2ff emissions ratios 
(RCO) and segregating the fluxes in space using flux 
footprints [20]. Measurements of CO and 14CO2 can 
be used to quantify a region’s RCO, as was done for 
Indianapolis [21]. With this ratio, CO and CO2 gradi
ent measurements, and EC measurements of the 
total CO2 flux, one can separate the biogenic and 
CO2ff contributions from the total flux. This study 
uses this approach to study the impact of COVID-19 
restrictions on CO2ff emissions.

The goal of this study was to use EC CO2 flux 
and CO2 and CO mole fraction measurements to 
quantify the change in emissions from fossil fuel 
sources that occurred due to the COVID-19 lock
down in Indianapolis, Indiana. The hypothesis 
tested was that CO2ff emissions from traffic 
dropped significantly during Indianapolis’ pan
demic-induced lockdown. It was also predicted 
that the reduction in CO2ff emissions would be 
evident in the disaggregated EC fluxes and the 
Hestia emissions inventory. Another objective was 
to search for evidence of a change in RCO during 
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lockdown since traffic and other sources of CO2ff 
were likely affected by the lockdown. The emis
sions changes from the pandemic lockdown pro
vide an opportunity to test our ability to quantify 
emissions changes that might take place as pur
poseful emissions management policies and tech
nologies are implemented and to establish 
methodologies that can be deployed to study 
urban metabolism at neighborhood resolution.

Materials and methods

Locations and methods for data acquisition

The EC measurement site used for this research is 
AmeriFlux site US-INg in the INFLUX mole fraction 
monitoring network [22,23]. Its position in a 
medium-sized city during the COVID-19 lockdown 
provided an excellent opportunity to determine 
our ability to extract source-specific emissions 
changes using the multi-gas flux tower method
ology previously demonstrated at INFLUX [24]. The 
ongoing Indianapolis Flux Experiment (INFLUX) has 
applied several methods of monitoring CO2 emis
sions in an urban environment useful for monitor
ing events such as COVID-19-induced lockdowns 
[20]. These methods include airborne [25] and 
tower-based [26] measurements of GHGs. All tow
ers continuously measure CO2 mole fractions, some 
also measure CH4 and CO, and a subset of the tow
ers measure at 2 to 4 different altitudes [23,27].

The observations used for this experiment were 
obtained from US-INg, located approximately 
175 m to the west of a highway (Figure 1). US- 
INg’s CO2 flux measuring equipment was added in 
April of 2019. Traffic on the highway, a primary 

arterial encircling the city of Indianapolis, was 
expected to be a primary source of anthropogenic 
GHG emissions within the flux footprint of the 
tower. To the west of US-INg is a suburban neigh
borhood dominated by houses with an average 
height of 5 m and vegetation in the form of 
deciduous trees with an average height of 6 m. To 
the east, towards the highway, there is little vege
tation and few buildings. The average building 
height from the east is 6 m. Characteristics of US- 
INg such as building and vegetation height and 
landcover type/percentage are listed in Table 1. 
LiDAR data from the Marion County 2016 LiDAR 
project were used to estimate these roughness ele
ments [28]. A cavity ring-down spectrometer 
(Picarro, Inc., model G2401) at the base of the 
tower measured the mole fractions of CO2 and CO 
in air drawn down in sampling tubes from 21 and 
58 m AGL and calibrated to the WMO X2007 and 
X2014A scales respectively [27]. Mole fraction data, 
collected at 2-sec temporal resolution, were 
reported as hourly means [27]. Compatibility of the 
INFLUX network was assessed via co-located NOAA 
flask systems and round-robin type testing using 
NOAA-calibrated tanks, indicating compatibility of 
0.18 ppm CO2 and 6 ppb CO [21]. EC flux measure
ments were collected at 41 m AGL using an open 
path CO2/H2O flux sensor (Licor, Inc., model 
LI7500A) and a sonic anemometer (Gill Instruments 
Limited, WindMaster 3D). Fluxes were calculated 
with the EddyPro software package [29]. We 
selected a 30-min averaging period and used a 
block-averaging detrend [30,31], then aligned the 
x-axis with the mean streamline using a double 
rotation [31,32]. The Webb, Pearman, and Leuning 

Figure 1. Image of US-INg’s location relative to the highway to the east and the Forest and suburban neighborhood to 
the west. The image also includes an approximation of the tower’s footprint during daylight and nighttime hours, made 
using Kljun et al. footprint model [43].
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density correction was applied to CO2 fluxes meas
ured by the open path sensors [33,34], and the 
methods of Vickers and Mahrt were used to des
pike the high frequency data before computation 
[35]. The half-hourly measurements of flux, wind 
direction, and wind speed collected at 41 m AGL 
were averaged in 1-h blocks to compare them 
with the hourly mole fraction data from 21 and 
58 m AGL.

The contribution of storage to the total CO2 flux 
was estimated using

Fstorage ¼
q

Mair

ðZr

0

@c
@t

dz (1) 

where @c is the change in molar concentration 
(either CO or CO2) between the following and pre
vious hour, @t is the time elapsed between those 
two measurements (7200s) and zr is the height of 
the EC measurement, in this case 41 m AGL [36]. 
This estimate assumes that the molar concentra
tion measured at 21 m AGL represents the column 
average from the ground to the EC flux inlet. The 
resulting kinematic flux (ppm m s−1) was con
verted to mmol m−2 s−1 for CO2 and nmol m−2 s−1 

for CO by multiplying by air density (q) in unites of 
kg m−3 measured at 41 m AGL and dividing by an 
air molar mass (Mair) of 28.96 kg kmol−1, then 
finally multiplying by a factor of 1000 to convert 
kmol to mol.

Extreme values were screened from the flux 
record. CO2 turbulent fluxes outside the range of 
−20 to 200 lmol m−2 s−1, latent heat flux outside 
the range of −50 to 500 W m−2, or sensible heat 
flux below −200 W m−2 were removed. These val
ues, likely caused by either sensor malfunctions 
(e.g. moisture on the sensors) or a lack of station
ary turbulence during the period of the flux calcu
lation, were considered unreasonable given the 
location of the tower and the time of year. 
Measurements when friction velocity measured by 
the sonic anemometer was 0.15 m s−1 or less were 
excluded as well, since analyses of fluxes sug
gested that weak mixing below this threshold 
value led to decoupling of the turbulent flux at 
41 m from the surface. Decoupling can lead to 
smaller flux magnitudes [15]. Weekend hours were 
also removed since human activity such as vehicle 
use differs greatly between weekends and 

weekdays and would be affected differently by 
lockdown measures.

Flux measurements were separated into two sec
tors based on wind direction: easterly winds 
(0�−180�) and westerly winds (180�−360�), referred 
to from here on as the east sector and the west sec
tor. Flux measurements were further segregated 
into two time periods, pre-lockdown and lockdown. 
The lockdown period (March 25–May 5) captured six 
full weeks of decreased activity according to Google 
Mobility data, which reports the percent reduction 
in Google users’ trips to various categories of loca
tions such as workplaces and public transit stations 
compared to a 5-week period at the beginning of 
the year [1]. The beginning of the lockdown period 
coincides with the first full day of COVID restrictions 
including a state-wide stay-at-home order enacted 
by the Indiana Governor [37]. January 22–March 3 
was a full 6-week period before the activity levels 
began to drop, ending three days before the first 
confirmed case of COVID-19 in Indiana was 
announced [1,37]. The period in between had a 
sharp decrease in activity that did not level out until 
the beginning of the selected lockdown period 
(Figure 2); hence, it was excluded from our analysis 
[1]. Activity levels slowly increased over the 6-week 
lockdown but were still well below pre-lockdown 
activity levels by the end of the period [1]. 
According to the Oxford COVID-19 Government 
Response Tracker Stringency Index, which scored 
government responses to COVID-19 based on crite
ria such as school/workplace closures, stay-at-home 
orders, etc., the state of Indiana had a weighted 
average score of 3.7 during the pre-lockdown period 
and a score of 65.2 during the lockdown period [38].

Disaggregating CO2 flux into CO2ff and CO2bio

To disaggregate the EC flux measurements into fossil 
fuel emissions and biological emissions (e.g. plant life 
and human respiration), it was necessary to select an 
appropriate RCO value. The year-round, city-wide aver
age of RCO in Indianapolis has been found to be 
approximately 8 ppb ppm−1 using 14CO2 flask meas
urements with CO in-situ observations [21]. This pro
vides a baseline value of RCO for flux disaggregation. 
However, this value may have changed since 2014. It 
is also possible that the RCO for the flux footprint 

Table 1. Characteristics Of US-INg. The domain covers 2 square kilometers centered around US-INg, divided into 
Eastern and Western halves.

Population density  
(people mi-2) [50]

Local climate  
zone [51]

Avg building  
height (m)

Avg vegetation  
height (m)

Displacement  
height (m)

Building cover  
(%) [52]

Vegetation cover  
(%) [52]

West 2,000–5,000 6 5 6 2.0 11 22
East 2,000–6,500 E 6 5 1.0 12 12
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around US-INg from February to April is different 
from the city-wide year-round average RCO.

Data collected from easterly winds were used to 
test for variations in the local RCO value during the 
pre-lockdown and lockdown periods of 2020. We 
assume in this analysis that the fluxes from the east 
are dominated by fossil fuel emissions and that bio
logical fluxes are negligible. Vertical differences in 
mole fractions of CO (DCO) and CO2 (DCO2) between 
21 and 58 m AGL were examined when the wind 
blew from the east and good quality EC flux data 
were present. A linear regression for DCO2 versus 
DCO was performed and the resulting slope was 
used to estimate the local RCO value [39]. The linear fit 
used a 500-iteration Monte Carlo method to perform 
a Deming fit, thus accounting for uncertainty in the 
CO and CO2 molar fractions [39]. This method yields a 
slightly different result every time, so it was repeated 
100 times to get a range of likely estimates for RCO 

and RCO uncertainties. To determine if RCO changed 
due to COVID-19’s impacts on traffic, this analysis was 
performed on DCO2 and DCO data during the pre- 
lockdown and lockdown period, with these analyses 
broken down further into daylight hours (8am − 
5 pm) and nighttime hours (6 pm–7am).

This approach for estimating RCO assumes that 
CO2 fluxes from the eastern sector are entirely due 
to fossil fuel emissions. This is not entirely true 

since there is some vegetation and human respir
ation. There are certainly biological CO2 fluxes to 
the west of the tower. The RCO value from Turnbull 
et al. (2014) [21], 8 ppb ppm−1 was used in flux 
disaggregation since that value was found through 
14CO2 analysis which requires no assumptions 
about the biological CO2 fluxes, while the estimate 
of RCO using molar fractions from US-INg was con
ducted as a means of observing relative changes 
in RCO due to the lockdown and gauging if the 
city-wide average RCO from Turnbull et al. applies 
to the area directly around US-INg.

The next step of the analysis was to isolate 
CO2ff fluxes from the total CO2 flux. This may not 
have been essential when winds were blowing 
from the east due to the expected dominance of 
fossil fuel sources in that direction, but this was 
essential for the west sector where the urban for
est lay. We used the method described in Wu et al. 
to estimate CO2ff emissions [20]. Using an ana
logue of Fick’s First Law of Diffusivity,

K ¼ −
FCO2

rCO2
(2) 

we used the CO2 mole fraction vertical gradient (r
CO2) and the measured CO2 total turbulent flux 
(FCO2) measured by US-INg to compute the eddy 
diffusivity (K) each hour [20]. Eddy diffusivities of 

Figure 2. Average percent reductions in google mobility data relative to baseline levels in Marion County, Indiana, sepa
rated into categories based on the type of destination of the user [1]. Blue circles represent reduction in trips to places of 
work, red vertical lines represent mobility reduction to users’ homes, pink crosses represent mobility reduction to public 
transit stations like bus stops and metro platforms, the black stars represent mobility reduction to restaurants, shops, the
aters, etc., and the green diamonds represent mobility reduction to grocery stores, pharmacies, specialty food stores, etc 
[1]. The baseline level is the median value from the period between January 3 and February 6 for each day of the week 
[1]. The tick marks on the x-axis show the end of the pre-lockdown period (March 3), the beginning of the lockdown 
period (March 25), and the ending of the lockdown period (May 5).
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absolute values greater than 5000 mmol m−1 

s−1 ppm−1 were deemed unrealistic and discarded. 
The median and standard deviation (r) of K for the 
pre-lockdown and lockdown periods were calcu
lated, and K values 3.5r from the K median were 
additionally removed as outliers. The eddy diffusiv
ity and the CO vertical gradient were combined to 
estimate the CO turbulent flux, FCO, via

FCO ¼ −KrCO: (3) 

RCO (8 ppb ppm−1) was then used to estimate 
the turbulent CO2ff flux (FCO2ff),

FCO2ff ¼
FCO

RCO
: (4) 

Applying the RCO to the estimated CO storage 
was used to estimate CO2ff storage which was 
added to the turbulent flux to yield total CO2ff 
emissions. Biological CO2 fluxes were estimated by 
taking the difference between the total CO2 flux 
and the total CO2ff emissions. After disaggregation, 
the median and standard deviation of CO2ff emis
sions for both periods were calculated. The 
remaining outliers, values more than 3.5r from the 
median CO2ff value, were removed from the ana
lysis. These extreme values occurred when the ver
tical difference in CO2 mole fraction approached 
zero, and the decomposition Equation (2) became 
unstable. This analysis was performed for the east 
sector to analyze highway (US Interstate 495) and 
commercial development emissions and the west 
sector to analyze emissions from the urban forest 
and the neighborhood beyond.

Analysis of results and comparison to Hestia

Average CO, CO2, and CO2ff fluxes for each hour of 
the day were calculated for the pre-lockdown 
period (January 22–March 3) and the lockdown 
period (March 25–May 5), and the estimated 
uncertainty was the standard error of each aver
age. CO2, CO, and CO2ff flux averages for the 
whole period were estimated by taking the aver
age of the 24-hourly averages for each period; 
this way, the average values are not biased 
towards hours of the day with more datapoints. 
Uncertainty was estimated by propagating hourly 
average errors. The lockdown average was sub
tracted from the pre-lockdown average for each 
sector to estimate the magnitude of the changes 
in flux and percent change. Uncertainty in the 
changes in flux magnitude and percent was found 
by propagating the standard error of each average 
using the additive formula for magnitude and 

multiplication formula for percent change. To 
evaluate the importance of the RCO value to the 
calculated flux averages, the disaggregation pro
cess was repeated numerous times using a range 
of RCO values, 6 ppb ppm−1 to 8 ppb ppm−1 value.

The tower-based results were then compared to 
the Hestia bottom-up emissions data product for 
Indianapolis. The inventory model Hestia was 
developed for Indianapolis to provide a high spa
tial and temporal resolution CO2ff emissions prod
uct that is complementary to atmospheric flux 
quantification methods [26]. Hestia quantifies car
bon emissions at the building/street scale by col
lecting and merging various data sets, including 
direct flux measurements, fuel statistics, building 
attributes, and traffic monitoring [40]. The individ
ual sectors described by Hestia are Onroad, 
Commercial, Residential, Airport, Electricity 
Production, Rail, and Nonroad [40]. Version 3.2 
Beta of Hestia was used to model emissions in 
Indianapolis in 2020 at 20 m � 20 m resolution 
over a 4 km � 4 km domain centered around 
US-INg [40,41,42].

US-INg’s flux footprint, the region that the 
tower monitors, changes depending on atmos
pheric conditions so for an accurate comparison 
between Hestia data and US-INg data, it is impor
tant to account for changes over time in the flux 
footprint. Hourly averaged measurements of wind 
speed, friction velocity, Obukhov length (L), wind 
direction, and the standard deviation of lateral 
velocity fluctuations at US-INg and hourly bound
ary layer height from ERA5 reanalysis were used 
to estimate the flux footprint model at 2 m spatial 
resolution for each hour [43,44]. The displacement 
height (zd) and roughness length (z0) were esti
mated during neutral conditions (jzr/Lj < 0.1) by 
fitting measured windspeeds to the logarithmic 
wind profile [45]. We separate wind directions 
into 10� bins and then use a Nelder-Mead algo
rithm to estimate zd and z0 by minimizing the 
residual sum of squares between windspeed 
observations and the logarithmic wind profile 
[46]. The final values of displacement height, used 
in the footprint analysis, were 2 m from the west 
of the tower (180�−360�) when winds blew over 
the urban forest and 1 m from the east (0�−180�) 
when winds blew over the highway. Values for z0 

were roughly consistent with wind directions 
(0.11 m) but not used in the footprint analysis 
since the footprint model can use mean wind 
speed instead which was being actively measured 
by US-INg.
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Hestia and the flux measurements were com
pared using these flux footprints. Hestia emission 
estimates were weighted by the flux footprints to 
estimate the CO2ff emissions that were observed at 
the tower. The 2 m resolution flux footprints output 
by the model needed to be re-gridded for the bor
ders to match those of the Hestia cells because the 
borders of Hestia grid cells lie in the middle of the 
footprint grid cells. To do this, the cells were dupli
cated in the x and y direction, which can be done 
because the cell values represent a weighting per 
area, resulting in a 1 m-by-1m grid. Then, each foot
print (f ) cell was multiplied by the corresponding 
Hestia emissions cell and the product cells were 
summed together, resulting in the total turbulent 
flux (FH) as described by Wu et al. [20]:

FH ¼
XR

i¼1

QHðxi, yiÞf ðxi, yiÞdxdy (5) 

where QH represents the Hestia emissions for the 
given hour and R is the flux footprint domain. The 
resulting FH was used for the eddy covariance to 
inventory comparison.

These footprint-matched hourly Hestia estimates 
were broken up into period and wind direction in 
the same fashion as the EC flux measurements, and 
hours that were removed from US-INg analysis 
were also removed from Hestia analysis to ensure 
that the same hours were being compared 
between the two datasets. Then hourly weekday 
averages and averages for the whole pre-lockdown 
and lockdown period were calculated using the 
same methods used for the US-INg data. Standard 
errors are estimated similarly, representing uncer
tainty introduced by the footprint calculations.

Results

Emissions reductions by wind sector

Fluxes from the west are relatively small given the 
lack of large anthropogenic sources and the gener
ally dormant state of the biosphere at this time, but 
changes in fluxes with time can be detected. In the 
lockdown period for the west sector, the total CO2 

flux’s positive morning peak is smaller and earlier 
than the pre-lockdown period (5 am LST vs. 8 am 
LST) and hourly averages are consistently negative 
for part of the afternoon, suggesting net photosyn
thetic uptake (Figure 3(a)). Average weekday hourly 
CO2ff emissions during pre-lockdown and lockdown 
are small (between −7 and 8 mmol m−2 s−1) and 
appear to oscillate around zero, likely showing the 
limits of our measurement precision for 1.5 months 

of observations from one wind sector (Figure 3(d)). 
Hourly CO fluxes are lower during lockdown for 
most daytime hours (Figure 3(b)), yielding small 
decreases in CO2ff emissions for most hours 
(Figure 3(c)).

Comparison between the pre-lockdown and 
lockdown average emissions found some reduction 
in total CO2 (3.8 ± 0.6 mmol m−2 s−1, 71.3 ± 13.1%) 
and CO2ff emissions (2.2 ± 0.7 mmol m−2 s−1, 
79.1 ± 27.8%) between the two periods (Table 2). A 
two-sample t-test between pre-lockdown hourly 
CO2ff fluxes and lockdown hourly CO2ff fluxes indi
cated a significant reduction in the average using 
the p < 0.05 threshold. There is some reduction in 
average CO2 fluxes from biological sources 
(CO2bio) west of US-INg (1.6 ± 0.3 mmol m−2 s−1, 
61.4 ± 30.4%) (Table 2), likely due to the increase in 
photosynthetic uptake in the day during the lock
down period (Figure 3(d)).

Total CO2 fluxes (Figure 3(e)) are highly corre
lated with CO fluxes (Figure 3(f)) showing the 
dominance of CO2ff emission (Figure 3(g)) from 
this wind direction. Average hourly total CO2 fluxes 
from the east sector dropped during the COVID-19 
lockdown (Figure 3(e)). Disaggregation into fossil- 
fuel and non-fossil fuel sources makes the cause of 
the decrease in total CO2 flux clear—the average 
hourly CO and CO2ff emissions both decreased 
between the pre-lockdown and lockdown periods 
(Figures 3(f and g)), while the biological fluxes 
show no clear daily pattern and often are not sig
nificantly different from zero (Figure 3(h)). There 
are a few odd positive spikes in CO2bio that occur 
at the same hour as negative CO2ff hourly aver
ages; since the latter is physically impossible and 
therefore a product of sampling error, the positive 
CO2bio spikes must be as well.

In the east sector, there is a decrease in average 
total CO2 (12.3 ± 1.9 mmol m−2 s−1, 47.5 ± 8.0%) 
between pre-lockdown and lockdown which is 
almost entirely due to a large reduction in CO2ff 
emissions (11.2 ± 2.2 mmol m−2 s−1, 51.5 ± 10.9%) 
during the lockdown (Table 2). A two-sample t-test 
indicated that the change in CO2ff emissions was 
statistically significant. There is no significant 
reduction in CO2 bio fluxes in the east sector 
(Table 2).

Comparing sectors yields plausible results. 
Average total CO2 fluxes, CO2ff emissions and 
emissions reductions are higher in the east sec
tor than in the west (Table 2). Percent reductions 
in CO2ff emissions are higher in the western sec
tor, but the magnitude is small and the 
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uncertainty is much larger as a fraction of the 
total signal. Biological CO2 fluxes are small in 
both sectors. Biological flux estimates from the 
west show photosynthetic activity, while no dis
cernable biological patterns are evident in the 
eastern sector. This result is consistent with the 

initial hypothesis that this sector is dominated 
by CO2ff emissions.

The relatively large standard errors for some of 
these results are largely due to the scarcity of data. 
For the pre-lockdown period, 9.4% of hours were 
lost due to instrument failure, 0.6% of data were 

Figure 3. Average hourly weekday emissions observed when winds coming from the west sector (a–d) and the east sector 
(e–h). The pre-lockdown fluxes are in red and lockdown period fluxes are in blue. The RCO used to extrapolate from CO to 
CO2ff for the data in these graphs is the value from Turnbull et al. [21]. Error bars represent standard error.
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removed by EddyPro, 7.4% of data were removed 
for low turbulence, and 5.7% of data were 
removed due to an extreme CO2 flux, latent heat 
flux, or sensible heat flux value. For the lockdown 
period, 0.2% of hours were removed by EddyPro, 
12.7% were removed for low turbulence, and 2.6% 
were removed for an extreme value. Following fil
tering and analysis, the east sector CO2ff pre-lock
down period had an average of N ¼ 6.6 
measurements taken for each hour of the day, and 
the lockdown period had an average of N ¼ 8.0 
measurements taken for each hour. In the west 
sector, pre-lockdown had an average of N ¼ 8.6 
measurements and lockdown had an average of 
N ¼ 14.8 measurements. The hourly distribution of 
these data points can be seen in Figure 4. The 
error bars in Figure 3 represent standard error, so 
they are based on the number of data points each 
hour. In Figure 3(g) (east sector), the average 
hourly CO2ff emission uncertainty for pre-lock
down is ± 45.0% and lockdown is ± 69.5%. In 
Figure 3(c) (west sector), the average hourly CO2ff 
emission uncertainty for pre-lockdown is ± 98.7% 
and lockdown is ± 141.3%. Uncertainties in the 
daily mean fluxes are considerably smaller, making 
it easier to detect significant emissions changes 

(Table 2) even for this limited duration, two wind- 
sector data set.

Hestia inventory model comparison with eddy 
covariance flux measurements

Hestia estimates also indicate a decrease in fossil 
fuel emissions during Indianapolis’ COVID-19 lock
down. The average daily cycles in the west sector 
(Figure 5(a)) and the east sector (Figure 5(b)) are 
noticeably shorter during the lockdown. Both sec
tors have rush hour peaks indicative of the influ
ence of traffic emissions, although those of the 
west sector are much less pronounced (Figure 5). 
According to Hestia, the average CO2ff emission to 
the east dropped by 12 ± 1 mmol m−2 s−1 (56 ± 7%) 
and to the west it dropped by 4.4 ± 0.3 mmol m−2 

s−1 (63 ± 4%) (Table 3). When breaking down 
Hestia estimates by source, one can see that 
onroad and commercial sources are the most 
prevalent sources east of the tower and the most 
affected by the lockdown (Table 3). Onroad emis
sions in the direction of the highway dropped by 
5.4 ± 0.5 mmol m−2 s−1 between pre-lockdown and 
lockdown, while residential dropped by 
0.23 ± 0.02 mmol m−2 s−1. Residential emissions, 

Table 2. Reductions in average fluxes from pre-lockdown to lockdown (D mmol m−2 s−1) and percent reductions shown 
in parentheses (D%). Percent reduction is defined here as 100�j(pre-lockdown average – lockdown average)/pre-lock
down averagej. Average fluxes are computed by averaging the average hourly fluxes of each period. An RCO value of 
8 ppb ppm−1 was used for flux disaggregation [21]. Uncertainties are standard errors of the mean values.
Emissions source Avg. westerly reductions D mmol CO2 m−2 s−1 (D%) Avg. Easterly Reductions D mmol CO2 m−2 s−1 (D%)

Total CO2 3.8 ± 0.6 (71.3 ± 13.1%) 12.3 ± 1.9 (47.5 ± 8.0%)
CO2ff 2.2 ± 0.7 (79.1 ± 27.8%) 11.2 ± 2.2 (51.5 ± 10.9%)
CO2bio 1.6 ± 0.7 (63.0 ± 30.7%) 1.1 ± 1.6 (26.2 ± 38.8%)
Hestia (CO2ff) 4.4 ± 0.3 (63 ± 4%) 12 ± 1 (56 ± 7%)

Figure 4. Bar graph representing the number of datapoints used to calculate the average emissions for each hour of the 
weekday in each period (pre-lockdown and lockdown) and sector (east and west).
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much greater to the west, also drop during the 
lockdown period, likely due to increased tempera
tures limiting the need for home heating (Table 3). 
Emissions from nonroad sources such as lawn
mowers, golf carts, construction equipment, etc. 
were low in Hestia to the east and west of US-INg 
(Table 2). Unlike the other sources, they increased 
slightly during lockdown, though not enough to 
offset the other sources’ reductions.

Hestia shows similar daily emissions cycles to 
those observed using the tower-based EC flux data, 
especially to the east. There is statistically significant 
correlation between CO2ff average hourly emissions 
and Hestia emissions in the east sector for the pre- 
lockdown (r ¼ 0.73, p ¼ 4.4 � 10−5) and lockdown 
period (r ¼ 0.59, p ¼ 0.0024), although it is less sig
nificant during the lockdown period (Table 4). 
Correlation is not significant to the west for pre-lock
down (r ¼ 0.29, p ¼ 0.17) and lockdown (r ¼ −0.10, 
p ¼ 0.64), but the correlation is still higher before 
lockdown than during (Table 4).

The reductions shown in Table 3 for Hestia are 
remarkably similar, easily within the standard error 
of the measurements, for CO2ff emissions from the 
east sector. Hestia suggests this reduction is due 
to roughly equivalent reductions in onroad and 
commercial sector emissions (Table 3). Hestia pre
dicts a larger magnitude of CO2ff emission reduc
tion from the western sector than is suggested by 
the disaggregated EC flux measurements, but the 
magnitude of the difference is small, and the per
centage reductions in both products are indistin
guishable given the uncertainty in the flux 
measurements (Table 3). Overall, both methods of 
quantifying CO2ff emissions tell a similar story of 
large emissions reductions during the COVID-19 
lockdown, similar reduction amounts and greater 
magnitude reductions in the east sector.

Evaluation of potential fluctuations in RCO

The vertical differences in CO and CO2 do not sug
gest significant local differences from the city-wide 
values in RCO, and do not show any clear changes 
from the pre-lockdown to the lockdown period. 
The RCO values from the eastern sector show no 
significant change over time. For pre-lockdown the 
median RCO is 7.4 ppb ppm−1 and the median RCO 

uncertainty (r) is 1.5 ppb ppm−1. For lockdown, 
the median RCO is 7.1 ppb ppm−1 and the median 

Figure 5. Daily cycles of total CO2 emissions estimated by Hestia from (a) west sector and (b) east sector. Error bars repre
sent standard error.

Table 3. Reductions for the major individual sources that contribute to the Hestia emissions 
estimate. Absolute reductions in mmol m−2 s−1, percent reduction shown in parentheses. 
Uncertainties represent standard error.
Emissions source West D mmol CO2 m−2 s−1 (D%) East D mmol CO2 m−2 s−1 (D%)

Hestia (Onroad) 0.64 ± 0.07 (41 ± 5%) 5.4 ± 0.5 (42 ± 4%)
Hestia (Commercial) 0.72 ± 0.06 (80 ± 9%) 6.9 ± 1.0 (84 ± 16%)
Hestia (Residential) 3.1 ± 0.2 (74 ± 7%) 0.23 ± 0.02 (64 ± 6%)
Hestia (Nonroad) −0.074 ± 0.003 (−26 ± 1%) −0.12 ± 0.03 (−21 ± 5%)

Table 4. Correlations between average daily cycles from 
US-INg results and Hestia results. Correlation is significant 
if p< 0.05.

r p

CO2ff vs Hestia (East, pre-lockdown) 0.73 4.4 � 10−5

CO2ff vs Hestia (East, lockdown) 0.59 0.0024
CO2ff vs Hestia (West, pre-lockdown) 0.29 0.17
CO2ff vs Hestia (West, lockdown) −0.10 0.64
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uncertainty (r) is 1.5 ppb ppm−1. Neither value dif
fers significantly from the 8 ppb ppm−1 value for 
the whole city [21]. Breaking the data into day and 
night conditions yields an unusual change, but the 
significance is questionable. During the pre-lock
down period, daylight RCO had a median value of 
7.6 ppb ppm−1 and a median r of 2.4 ppb ppm−1 

while nighttime RCO had a median value of 7.5 ppb 
ppm−1 and a median r of 2.0 ppb ppm−1. During 
the lockdown period, median daylight RCO was 
6.3 ppb ppm−1 (median r ¼ 2.4 ppb ppm−1), and 
median nighttime RCO was 8.4 ppb ppm−1 (median 
r ¼ 2.1 ppb ppm−1). So, during the pre-lockdown 
period, RCO did not vary much between night and 
day but during the lockdown period, there was 
more differentiation between night and day RCO. 
This day-to-night change is the opposite of what 
might be expected due to increased biological 
activity and may be an artifact from limited 
sampling.

The CO2ff flux results of the east and west sec
tors also did not change significantly when using 
different values of RCO in the disaggregation calcu
lation. RCO only influences the flux partitioning, not 
the variability in time, so the correlation with 
Hestia is not influenced by the RCO values used. 
Percent reductions between pre-lockdown and 
lockdown average emissions did not change for 
RCO values between 6 ppb ppm−1 and 8 ppb 
ppm−1, so long as the pre-lockdown and lockdown 
periods used the same RCO value. The magnitude 
of estimated CO2ff emissions does change with 
the RCO value (Figure 6). Changing the RCO value 
of one period but not the other does affect the 
percent reduction. Fixing RCO at 6.0 ppb ppm−1 for 
pre-lockdown and cycling from 6.0 to 8.0 ppb 
ppm−1 for lockdown the percent reduction in 
CO2ff emissions to the east changed from 51.5% 
to 63.7%.

Discussion

Source disaggregated EC flux measurements indi
cate a drop in fossil fuel emissions during the 
COVID-19 lockdown like those estimated by the 
Hestia inventory model. The reduction was greater 
in the east sector than the west sector according 
to the EC flux measurements and Hestia, which is 
unsurprising given the location of the highway to 
the east and a suburban forest and neighborhood 
to the west. The Hestia sector breakdown in 
Table 3 shows that the reduction in the East sector 
was mostly due to reductions in traffic and 

commercial emissions. Since Google mobility data 
show reductions in mobility during the lockdown 
period, Hestia’s traffic sector uses local traffic data 
for sub-annual scaling, and these reductions coin
cide with high Oxford Stringency ratings, likely, 
this reduction in emissions to the East observed by 
Hestia and US-INg is due to the COVID-19 lock
down [1,38]. Sub-annual commercial emission 
patterns in Hestia are scaled using temperature 
data, so changes in commercial emissions between 
pre-lockdown and lockdown are not due to lock
down measures. However, it is possible that 
commercial emissions did not change appreciably 
due to COVID-19 since commercial buildings likely 
still used climate control, electricity, etc., during 
the lockdown. If the Hestia sectoral breakdown is 
accurate, roughly half the reduction in emissions 
during lockdown was due to COVID-19 lockdown 
effects on human activity.

According to temperature data from the 
National Weather Service collected at the 
Indianapolis International Airport (about 6 km from 
US-INg), temperature patterns in 2020 were close 
to normal [47]. This is important to remember 
when considering emissions sources such as the 
commercial sector that depend on temperature 
data. The residential sector of Hestia, whose sub- 
annual patterns are also dependent on tempera
ture data, reported reductions in emissions in both 
directions, especially the west (Table 3). Since the 
Hestia sector analysis shows that the residential 
sector’s reductions were dominant to the West, it 
is likely that reductions observed by US-INg and 
Hestia in CO2ff emissions are attributable to rising 
springtime temperatures as heating requirements 
are reduced.

Figure 6. Mean CO2ff emissions (excluding weekends) for 
each period in each sector vs. RCO. Error bars represent 
standard error.
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Hestia and EC analyses of the percentage reduc
tion in CO2ff emissions match from both wind 
directions within the levels of uncertainty esti
mated by the EC fluxes (Table 3). The magnitude 
of CO2ff emissions reductions estimated by EC 
fluxes are lower from the west than in Hestia 
(Table 3). This could be the result of issues with 
the EC fluxes, Hestia, or both, but the emissions 
reductions magnitudes are small in both products. 
Google mobility data reported an increase in users 
going to their residence during the lockdown, 
which one might expect to result in an increase in 
residential emissions [1]. This change would not be 
apparent in Hestia’s estimates, but it is possible 
that it was measured by US-INg which could 
explain why US-INg reports a less severe drop in 
CO2ff emissions than Hestia (Table 3). The magni
tude of emission reductions from the east agrees 
remarkably well (Table 3).

Our EC flux analyses, while limited by sampling 
time (about six weeks from each period), divided 
among two different environments (highway- 
dominated eastern and suburban/forested western 
sectors), and complicated by fossil/biogenic CO2 

flux disaggregation, are still able to identify impor
tant changes in emissions from each of the wind 
sectors. The pre-lockdown correlations between 
the daily cycle of CO2ff emissions from Hestia and 
EC flux results demonstrates the ability of the flux 
disaggregation method even when limited by the 
relatively small number of hours with winds from 
the eastern sector, and the need to segregate 
modest CO2ff emissions from the biological fluxes 
from the western sector. The loss of correlation 
during the lockdown is reasonable since the ampli
tude of the daily cycle of CO2ff emissions is greatly 
suppressed. Lower correlations in the west sector 
are understandable for the same reason.

The EC analyses for this case are small enough 
to detect the changes in CO2ff emissions caused 
by the pandemic. The noise levels, however, are 
significant (Figure 3) due to the limited number of 
data points available when limiting the sampling 
time to only 6 weeks and breaking the data down 
by wind direction. The fluxes from the west are 
further limited by some uncertainty in RCO and 
the need for significant flux disaggregation, as 
opposed to the eastern sector which is dominated 
by fossil emissions. The uncertainties in our hourly 
(Figure 3) and period-average (Table 2) EC fluxes 
provide insight into our overall ability to quantify 
emissions changes using source-disaggregated EC 
methods.

There were other results that suggested this 
research was approaching its limits, such as the 
large hourly CO2bio results east of US-INg (Figure 
3(h)). Since the hourly averages were fluctuating 
around 0 and had no recognizable biological pat
tern, it seems likely that these results are from vari
ation in the CO2ff estimates. The negative hourly 
averages occasionally present in the CO and CO2ff 
daily cycles (Figure 3(b, c, f, and g)) are also unreal
istic and probably a result of error in the disaggre
gation analysis, introduced by negative eddy 
diffusivity (K) values. Negative K values do not 
make physical sense but filtering out negative K 
values resulting from instrumental noise would 
mean leaving positive K values from instrumental 
noise in, thus biassing the results. The negative 
hourly average emissions in the CO2ff results are 
always smaller than the estimated uncertainty, so 
they are not significantly different from 0 and 
should not be over-interpreted.

The findings of this study agree with those from 
other studies that COVID-19 lockdown measures 
lead to a decrease in anthropogenic CO2 emissions 
[2–6,9,10,18,19,48,49]. This study and others show 
that EC is particularly useful for looking at how 
specific regions and emissions sectors were 
affected by COVID-19 lockdowns. US-INg and 
Hestia results indicated that emissions reductions 
varied depending on the region and its associated 
emissions sectors. The EC study in Vienna, Austria 
only found reductions in 2020 compared to previ
ous years in the mean CO2 flux consistently greater 
than the standard error to the northwest of the 
tower where it is more populous and urbanized 
[18]. To the southeast of the EC tower, the city was 
less urbanized and had a non-significant emissions 
reduction in 2020 compared to 2018 and 2019 
[18]. This is reminiscent of the current result that 
the more urbanized east sector showed larger 
reductions in magnitude. (Figure 3). Our study also 
suggested that the less urbanized area was less 
sensitive to COVID-19 restrictions, since Hestia 
sector analysis showed that emissions changes to 
the west due to COVID-19 restrictions may be 
negligible compared to seasonal changes.

Differences in space and time in RCO greater 
than uncertainty were not detected using the ver
tical differences in CO and CO2 mole fractions. This 
is surprising given the large changes in emissions 
that occurred during the lockdown. The uncer
tainty in derived RCO, however, was large. In add
ition, both traffic (a high RCO source) and 
commercial (low RCO source) CO2ff emissions 
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decreased based on Hestia’s partitioning, so RCO of 
the mixture of sources that are detected in the 
atmosphere may have remained approximately 
constant.

Conclusions

Three months of source- and sector-disaggregated 
EC flux measurements from a single tower clearly 
captured a rapid change in CO2, CO, and CO2ff 
emissions caused by the COVID-19 lockdown in two 
adjacent but contrasting neighborhoods of 
Indianapolis. Hestia, a research-grade inventory 
model for CO2ff emissions, predicted a similar 
reduction in emissions. The close agreement 
between EC estimates of CO2ff emissions and 
Hestia, and the relatively small uncertainty in the 
EC-based estimate suggests high confidence in 
both estimates of the drop in CO2ff emissions that 
resulted during the COVID-19 lockdown in a high
way-dominated neighborhood of Indianapolis. 
Emissions reductions from the western, suburban 
region, were much smaller in magnitude and more 
uncertain as a fraction of the total drop, but both 
Hestia and the disaggregated EC results showed a 
small but significant drop in CO2ff emissions from 
that neighborhood. Emissions sector analysis of 
Hestia suggests that reductions to the east are likely 
in large part due to mobility restrictions during the 
COVID-19 pandemic, but reductions to the west 
may be a result of typical seasonal weather patterns 
reducing the need for home climate control.

Future research in this vein would benefit from a 
more precise method of determining RCO at the 
scales measured by EC flux systems. Disaggregation 
of fossil and biological flux is critical to analyzing 
spatial and temporal patterns of CO2ff emissions in 
urban settings, and CO:CO2ff ratios are a powerful 
tool for disaggregation. This ability to disaggregate 
will also support studies of urban ecosystem.

An increasing body of evidence is showing that 
EC measurement systems enable precise monitoring 
of urban greenhouse gas emissions. These measure
ment systems should be developed in parallel with 
the development of urban emissions models whose 
spatial and temporal resolutions are well-matched 
to the resolution of EC flux measurements. EC flux 
measurements can complement both research- 
grade emission models and operational inventories 
created by municipalities for emissions reporting. 
The combination of high-resolution measurements 
and models will enable an increasingly precise and 
accurate understanding of urban metabolism, and 

improved ability to monitor and predict the impacts 
of greenhouse gas emissions mitigation measures.
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