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ABSTRACT

ARTICLE HISTORY

Eddy-covariance (EC) flux measurements in Indianapolis were used to quantify the impact of
the COVID-19 lockdown on CO and CO, emissions from a highway and a suburban neigh-
borhood. CO, fluxes were measured for 6 weeks pre-lockdown (January 22, 2020-March 3,
2020) and during lockdown (March 25, 2020- May 5, 2020) using EC instrumentation at
41 m AGL. Fossil fuel CO, emissions (CO.ff) were estimated by calculating eddy diffusivity to
obtain CO flux and then scaling by the CO:CO,ff emissions ratio (Rco). Flux measurements
segregated by wind direction were compared to hourly emissions from the 2020 Hestia
inventory model. The lockdown CO,ff average weekday emissions from the highway esti-
mated by EC decreased by 51.5+10.9% (11.2+2.2umol m™2 s~') compared to pre-lock-
down, similar to Hestia's estimate 56+7% (12+1pumol m~2 s7'). The EC measurements
detected a significant (2.2+0.7 pmol m~2 s~') but smaller magnitude decrease in CO,ff emis-
sions from the suburban neighborhood. The daily cycles of CO.,ff emissions were signifi-
cantly correlated with Hestia estimates from the highway but not from the suburbs. This
study demonstrates that EC flux towers and high-resolution inventory models in regions
with mixed and spatially heterogeneous sources can quantify abrupt changes in sector- and
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source-specific CO, fluxes.

Introduction

Measurement strategies that can accurately quan-
tify changes in anthropogenic emissions are needed
to evaluate efforts to curb greenhouse gas emis-
sions. The lockdowns enacted due to the outbreak
of the COVID-19 (Coronavirus disease 2019) pan-
demic provide an opportunity to test strategies for
monitoring changes in emissions, since vehicle traf-
fic and its associated emissions dropped signifi-
cantly during the pandemic [1-3]. Other emissions
sectors, such as industry, power production, and
public buildings also decreased their daily global
CO, emissions according to one inventory study,
while daily global residential emissions went up
slightly [4]. Fossil fuel-sourced CO,
(referred to henceforth as CO.ff emissions) as well
pollutant

emissions

as other emissions have been

demonstrated to have decreased during pandemic-
related lockdowns [4-6]. Studies of primary air pol-
lutants found that government lockdown orders
catalyzed significant decreases in carbon monoxide,
nitrogen oxides, and particulate matter [7,8].

A limited number of studies have used atmos-
pheric data to quantify changes in emissions due
to COVID-19 restrictions. One study used satellite
data from the GEOS/OCO-2 atmospheric carbon
monitoring system to analyze the CO, emission
patterns of various countries during 2020 [9]. The
results showed increases and decreases in average
country-wide emissions that agreed loosely with
inventory data and the slackening and tightening
of COVID restrictions [9]. The study was significant
because it demonstrated how inventory data and
atmospheric data could be used to conclude how
COVID-19 affected emissions and gauge the
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accuracy of both monitoring systems. Some urban-
scale greenhouse gas (GHG) measurement net-
works have demonstrated city-level emissions
changes due to COVID-19 restrictions [7,8]. The Air
Quality Monitoring Network of the Santiago
Metropolitan Area measured concentrations of
NO,, CO, O3, and other pollutants [7]; particulate
matter data collected by the local environmental
protection agency of Milan was used to monitor
COVID-related changes in emissions of CgHg, CO,
SO,, and others [8]. To observe changes in emis-
sions caused by the COVID-19 lockdown in six
North American cities (Boston, Indianapolis, Los
Angeles, Salt Lake City, Toronto, and the
Baltimore/D.C. metro area), six different metrics
were used: amplitude of the diurnal cycle, vertical
gradients, enhancements above the background,
temporal variances, and enhancement of the
CO,:CH4 ratio [10]. This study’s goal is to build on
the successes of these previous studies by using
EC measurements to better quantify COVID-19
emissions reductions at a smaller scale.

EC flux measurements, the primary measure-
ment method for this research paper, effectively
monitor CO, fluxes at high spatial and temporal
resolution in natural and urbanized environments
[11,12]. EC flux measurement towers monitor all
CO, emissions sources and sinks within its foot-
print, making it an ideal tool for monitoring emis-
sions in specific regions of interest. The strategy
has been deployed in many cities for various pur-
poses such as testing the accuracy of other urban-
scale measurement methods or comparing with
local activity data to determine dominant sources
and sinks in the area [13-15].

EC towers yield data that can be combined with
other measurements to better quantify human
emissions. For instance, one can use EC measure-
ments along with trace gases to disaggregate CO,
sources. A study in Tokyo, Japan used O, and CO,
mole fractions, and an inventory model in tandem
with CO, flux measurements to estimate daily
cycles for emissions from gas fuels, liquid fuels,
and human respiration [16]. They observed 0,:CO,
ratios, and since these ratios are different for gas
and liquid fuels, they could use these ratios and
inventory data for source attribution [16]. Our
study builds on previous EC studies like the ones
in London and Tokyo [16] by using molar concen-
tration measurements above and below the flux
measurement device to disaggregate CO, meas-
urements into their fossil fuel and biogenic
components.

EC has been helpful in examining the impact of
COVID-19 restrictions on CO, emissions. EC meas-
urements have shown that CO, flux in Yoyogi, a
residential area in Tokyo, Japan, dropped by about
20% in April and May of 2020 when the Japanese
government encouraged everyone to stay at home
reducing public activities [17]. A study in Vienna,
Austria, with EC measurements 144m AGL from
2018 to 2020 found that weekly mean CO, fluxes
for north-westerly winds during the city’s 2020
lockdown were 64% lower than corresponding
means in 2019, a greater reduction than was
observed when wind blew from less urbanized
directions [18]. A network of European urban EC
measurements of total CO, flux observed large
emissions reductions in most cities that were a
function of the severity of COVID-19 restrictions
imposed [19]. These restrictions included closing
schools and businesses, banning of social gather-
ings, and stay-at-home orders [19]. Dividing tower
footprints into different sections by wind direction
and identifying the dominant emission sources
and sinks in each section provided insight into
how different emissions sectors were affected [19].
Non-residential areas experienced the greatest
emissions reductions during lockdowns [19].

A combination of flux footprint analyses and
multi-gas tracers can further improve our ability to
identify flux patterns, sources, and sinks in hetero-
geneous urban settings. Wu et al. presented a
method for decomposing the anthropogenic and
biogenic fluxes using CO:CO,ff emissions ratios
(Rco) and segregating the fluxes in space using flux
footprints [20]. Measurements of CO and '*CO, can
be used to quantify a region’s Rco, as was done for
Indianapolis [21]. With this ratio, CO and CO, gradi-
ent measurements, and EC measurements of the
total CO, flux, one can separate the biogenic and
CO,ff contributions from the total flux. This study
uses this approach to study the impact of COVID-19
restrictions on CO,ff emissions.

The goal of this study was to use EC CO, flux
and CO, and CO mole fraction measurements to
quantify the change in emissions from fossil fuel
sources that occurred due to the COVID-19 lock-
down in Indianapolis, Indiana. The hypothesis
tested was that CO.ff emissions from traffic
dropped significantly during Indianapolis’ pan-
demic-induced lockdown. It was also predicted
that the reduction in CO,ff emissions would be
evident in the disaggregated EC fluxes and the
Hestia emissions inventory. Another objective was
to search for evidence of a change in Reo during



lockdown since traffic and other sources of CO,ff
were likely affected by the lockdown. The emis-
sions changes from the pandemic lockdown pro-
vide an opportunity to test our ability to quantify
emissions changes that might take place as pur-
poseful emissions management policies and tech-
nologies are implemented and to establish
methodologies that can be deployed to study
urban metabolism at neighborhood resolution.

Materials and methods
Locations and methods for data acquisition

The EC measurement site used for this research is
AmeriFlux site US-INg in the INFLUX mole fraction
monitoring network [22,23]. Its position in a
medium-sized city during the COVID-19 lockdown
provided an excellent opportunity to determine
our ability to extract source-specific emissions
changes using the multi-gas flux tower method-
ology previously demonstrated at INFLUX [24]. The
ongoing Indianapolis Flux Experiment (INFLUX) has
applied several methods of monitoring CO, emis-
sions in an urban environment useful for monitor-
ing events such as COVID-19-induced lockdowns
[20]. These methods include airborne [25] and
tower-based [26] measurements of GHGs. All tow-
ers continuously measure CO, mole fractions, some
also measure CH, and CO, and a subset of the tow-
ers measure at 2 to 4 different altitudes [23,27].
The observations used for this experiment were
obtained from US-INg, located approximately
175m to the west of a highway (Figure 1). US-
INg's CO, flux measuring equipment was added in
April of 2019. Traffic on the highway, a primary

CARBON MANAGEMENT . 3

arterial encircling the city of Indianapolis, was
expected to be a primary source of anthropogenic
GHG emissions within the flux footprint of the
tower. To the west of US-INg is a suburban neigh-
borhood dominated by houses with an average
height of 5m and vegetation in the form of
deciduous trees with an average height of 6m. To
the east, towards the highway, there is little vege-
tation and few buildings. The average building
height from the east is 6 m. Characteristics of US-
INg such as building and vegetation height and
landcover type/percentage are listed in Table 1.
LiDAR data from the Marion County 2016 LiDAR
project were used to estimate these roughness ele-
ments [28]. A cavity ring-down spectrometer
(Picarro, Inc, model G2401) at the base of the
tower measured the mole fractions of CO, and CO
in air drawn down in sampling tubes from 21 and
58 m AGL and calibrated to the WMO X2007 and
X2014A scales respectively [27]. Mole fraction data,
collected at 2-sec temporal resolution,
reported as hourly means [27]. Compatibility of the
INFLUX network was assessed via co-located NOAA
flask systems and round-robin type testing using
NOAA-calibrated tanks, indicating compatibility of
0.18 ppm CO, and 6 ppb CO [21]. EC flux measure-
ments were collected at 41 m AGL using an open
path CO,/H,O flux sensor (Licor, Inc, model
LI7500A) and a sonic anemometer (Gill Instruments
Limited, WindMaster 3D). Fluxes were calculated
with the EddyPro software package [29]. We
selected a 30-min averaging period and used a
block-averaging detrend [30,31], then aligned the
x-axis with the mean streamline using a double
rotation [31,32]. The Webb, Pearman, and Leuning

were

Figure 1. Image of US-INg’s location relative to the highway to the east and the Forest and suburban neighborhood to
the west. The image also includes an approximation of the tower’s footprint during daylight and nighttime hours, made

using Kljun et al. footprint model [43].
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Table 1. Characteristics Of US-INg. The domain covers 2 square kilometers centered around US-INg, divided into

Eastern and Western halves.

Population density Local climate Avg building Avg vegetation Displacement Building cover Vegetation cover
(people mi*) [50] zone [51] height (m) height (m) height (m) (%) [52] (%) [52]
West 2,000-5,000 6 5 6 2.0 1 22
East 2,000-6,500 E 6 5 1.0 12 12

density correction was applied to CO, fluxes meas-
ured by the open path sensors [33,34], and the
methods of Vickers and Mahrt were used to des-
pike the high frequency data before computation
[35]. The half-hourly measurements of flux, wind
direction, and wind speed collected at 41 m AGL
were averaged in 1-h blocks to compare them
with the hourly mole fraction data from 21 and
58 m AGL.

The contribution of storage to the total CO, flux
was estimated using

F storage —

ergdz 0
Mair

where Oc¢ is the change in molar concentration
(either CO or CO;) between the following and pre-
vious hour, 0t is the time elapsed between those
two measurements (7200s) and zr is the height of
the EC measurement, in this case 41 m AGL [36].
This estimate assumes that the molar concentra-
tion measured at 21 m AGL represents the column
average from the ground to the EC flux inlet. The
resulting kinematic flux (ppm m s~') was con-
verted to pmol m~2 s for CO, and nmol m™2 s~
for CO by multiplying by air density (p) in unites of
kg m~> measured at 41 m AGL and dividing by an
air molar mass (M,;,) of 28.96kg kmol™', then
finally multiplying by a factor of 1000 to convert
kmol to mol.

Extreme values were screened from the flux
record. CO, turbulent fluxes outside the range of
—20 to 200 umol m™2 s, latent heat flux outside
the range of —50 to 500W m™2 or sensible heat
flux below —200W m™2 were removed. These val-
ues, likely caused by either sensor malfunctions
(e.g. moisture on the sensors) or a lack of station-
ary turbulence during the period of the flux calcu-
lation, were considered unreasonable given the
location of the tower and the time of year.
Measurements when friction velocity measured by
the sonic anemometer was 0.15m s™' or less were
excluded as well, since analyses of fluxes sug-
gested that weak mixing below this threshold
value led to decoupling of the turbulent flux at
41 m from the surface. Decoupling can lead to
smaller flux magnitudes [15]. Weekend hours were
also removed since human activity such as vehicle
use differs greatly between weekends and

weekdays and would be affected differently by
lockdown measures.

Flux measurements were separated into two sec-
tors based on wind direction: easterly winds
(0°—180°) and westerly winds (180°—360°), referred
to from here on as the east sector and the west sec-
tor. Flux measurements were further segregated
into two time periods, pre-lockdown and lockdown.
The lockdown period (March 25-May 5) captured six
full weeks of decreased activity according to Google
Mobility data, which reports the percent reduction
in Google users’ trips to various categories of loca-
tions such as workplaces and public transit stations
compared to a 5-week period at the beginning of
the year [1]. The beginning of the lockdown period
coincides with the first full day of COVID restrictions
including a state-wide stay-at-home order enacted
by the Indiana Governor [37]. January 22-March 3
was a full 6-week period before the activity levels
began to drop, ending three days before the first
confirmed case of COVID-19 in Indiana was
announced [1,37]. The period in between had a
sharp decrease in activity that did not level out until
the beginning of the selected lockdown period
(Figure 2); hence, it was excluded from our analysis
[1]. Activity levels slowly increased over the 6-week
lockdown but were still well below pre-lockdown
activity levels by the end of the period [1].
According to the Oxford COVID-19 Government
Response Tracker Stringency Index, which scored
government responses to COVID-19 based on crite-
ria such as school/workplace closures, stay-at-home
orders, etc, the state of Indiana had a weighted
average score of 3.7 during the pre-lockdown period
and a score of 65.2 during the lockdown period [38].

Disaggregating CO, flux into CO,ff and CO,bio

To disaggregate the EC flux measurements into fossil
fuel emissions and biological emissions (e.g. plant life
and human respiration), it was necessary to select an
appropriate Rco value. The year-round, city-wide aver-
age of Rco in Indianapolis has been found to be
approximately 8 ppb ppm™' using '*CO, flask meas-
urements with CO in-situ observations [21]. This pro-
vides a baseline value of Rco for flux disaggregation.
However, this value may have changed since 2014. It
is also possible that the Rco for the flux footprint
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Figure 2. Average percent reductions in google mobility data relative to baseline levels in Marion County, Indiana, sepa-
rated into categories based on the type of destination of the user [1]. Blue circles represent reduction in trips to places of
work, red vertical lines represent mobility reduction to users’ homes, pink crosses represent mobility reduction to public
transit stations like bus stops and metro platforms, the black stars represent mobility reduction to restaurants, shops, the-
aters, etc., and the green diamonds represent mobility reduction to grocery stores, pharmacies, specialty food stores, etc
[1]. The baseline level is the median value from the period between January 3 and February 6 for each day of the week
[1]. The tick marks on the x-axis show the end of the pre-lockdown period (March 3), the beginning of the lockdown
period (March 25), and the ending of the lockdown period (May 5).

around US-INg from February to April is different
from the city-wide year-round average Rco.

Data collected from easterly winds were used to
test for variations in the local Rco value during the
pre-lockdown and lockdown periods of 2020. We
assume in this analysis that the fluxes from the east
are dominated by fossil fuel emissions and that bio-
logical fluxes are negligible. Vertical differences in
mole fractions of CO (ACO) and CO, (ACO,) between
21 and 58m AGL were examined when the wind
blew from the east and good quality EC flux data
were present. A linear regression for ACO, versus
ACO was performed and the resulting slope was
used to estimate the local R¢g value [39]. The linear fit
used a 500-iteration Monte Carlo method to perform
a Deming fit, thus accounting for uncertainty in the
CO and CO, molar fractions [39]. This method yields a
slightly different result every time, so it was repeated
100 times to get a range of likely estimates for Rco
and Rco uncertainties. To determine if Rco changed
due to COVID-19's impacts on traffic, this analysis was
performed on ACO, and ACO data during the pre-
lockdown and lockdown period, with these analyses
broken down further into daylight hours (8am —
5 pm) and nighttime hours (6 pm-7am).

This approach for estimating Rco assumes that
CO, fluxes from the eastern sector are entirely due
to fossil fuel emissions. This is not entirely true

since there is some vegetation and human respir-
ation. There are certainly biological CO, fluxes to
the west of the tower. The R¢p value from Turnbull
et al. (2014) [21], 8ppb ppm™' was used in flux
disaggregation since that value was found through
CO, analysis which requires no assumptions
about the biological CO, fluxes, while the estimate
of Rco using molar fractions from US-INg was con-
ducted as a means of observing relative changes
in Rco due to the lockdown and gauging if the
city-wide average Rco from Turnbull et al. applies
to the area directly around US-INg.

The next step of the analysis was to isolate
CO,ff fluxes from the total CO, flux. This may not
have been essential when winds were blowing
from the east due to the expected dominance of
fossil fuel sources in that direction, but this was
essential for the west sector where the urban for-
est lay. We used the method described in Wu et al.
to estimate CO,ff emissions [20]. Using an ana-
logue of Fick’s First Law of Diffusivity,
Feo,
VCO,
we used the CO, mole fraction vertical gradient (V
CO,) and the measured CO, total turbulent flux
(Fcop) measured by US-INg to compute the eddy
diffusivity (K) each hour [20]. Eddy diffusivities of

(2)
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absolute values greater than 5000pumol m™

s~ 'ppm~" were deemed unrealistic and discarded.
The median and standard deviation (o) of K for the
pre-lockdown and lockdown periods were calcu-
lated, and K values 3.5¢6 from the K median were
additionally removed as outliers. The eddy diffusiv-
ity and the CO vertical gradient were combined to
estimate the CO turbulent flux, Fco, via

Fco = —KVCO. (3)

Rco (8ppb ppm™') was then used to estimate
the turbulent COff flux (Fcoaf),

Feo
Rco”

Feo, it = (4)

Applying the Rco to the estimated CO storage
was used to estimate CO,ff storage which was
added to the turbulent flux to yield total CO,ff
emissions. Biological CO, fluxes were estimated by
taking the difference between the total CO, flux
and the total CO,ff emissions. After disaggregation,
the median and standard deviation of COff emis-
sions for both periods were calculated. The
remaining outliers, values more than 3.5¢ from the
median CO-ff value, were removed from the ana-
lysis. These extreme values occurred when the ver-
tical difference in CO, mole fraction approached
zero, and the decomposition Equation (2) became
unstable. This analysis was performed for the east
sector to analyze highway (US Interstate 495) and
commercial development emissions and the west
sector to analyze emissions from the urban forest
and the neighborhood beyond.

Analysis of results and comparison to Hestia

Average CO, CO,, and CO,ff fluxes for each hour of
the day were calculated for the pre-lockdown
period (January 22-March 3) and the lockdown
period (March 25-May 5), and the estimated
uncertainty was the standard error of each aver-
age. CO,, CO, and CO,ff flux averages for the
whole period were estimated by taking the aver-
age of the 24-hourly averages for each period;
this way, the average values are not biased
towards hours of the day with more datapoints.
Uncertainty was estimated by propagating hourly
average errors. The lockdown average was sub-
tracted from the pre-lockdown average for each
sector to estimate the magnitude of the changes
in flux and percent change. Uncertainty in the
changes in flux magnitude and percent was found
by propagating the standard error of each average
using the additive formula for magnitude and

multiplication formula for percent change. To
evaluate the importance of the Rco value to the
calculated flux averages, the disaggregation pro-
cess was repeated numerous times using a range
of Reo values, 6 ppb ppm™' to 8 ppb ppm™' value.

The tower-based results were then compared to
the Hestia bottom-up emissions data product for
Indianapolis. The inventory model Hestia was
developed for Indianapolis to provide a high spa-
tial and temporal resolution CO,ff emissions prod-
uct that is complementary to atmospheric flux
quantification methods [26]. Hestia quantifies car-
bon emissions at the building/street scale by col-
lecting and merging various data sets, including
direct flux measurements, fuel statistics, building
attributes, and traffic monitoring [40]. The individ-
ual sectors described by Hestia are Onroad,
Commercial, Residential,  Airport,  Electricity
Production, Rail, and Nonroad [40]. Version 3.2
Beta of Hestia was used to model emissions in
Indianapolis in 2020 at 20m x 20m resolution
over a 4km x 4km domain centered around
US-INg [40,41,42].

US-INg’'s flux footprint, the region that the
tower monitors, changes depending on atmos-
pheric conditions so for an accurate comparison
between Hestia data and US-INg data, it is impor-
tant to account for changes over time in the flux
footprint. Hourly averaged measurements of wind
speed, friction velocity, Obukhov length (L), wind
direction, and the standard deviation of lateral
velocity fluctuations at US-INg and hourly bound-
ary layer height from ERA5 reanalysis were used
to estimate the flux footprint model at 2 m spatial
resolution for each hour [43,44]. The displacement
height (z4) and roughness length (z) were esti-
mated during neutral conditions (|z,/L| <0.1) by
fitting measured windspeeds to the logarithmic
wind profile [45]. We separate wind directions
into 10° bins and then use a Nelder-Mead algo-
rithm to estimate zy and zy by minimizing the
residual sum of squares between windspeed
observations and the logarithmic wind profile
[46]. The final values of displacement height, used
in the footprint analysis, were 2m from the west
of the tower (180°-360°) when winds blew over
the urban forest and 1 m from the east (0°—180°)
when winds blew over the highway. Values for z,
were roughly consistent with wind directions
(0.11m) but not used in the footprint analysis
since the footprint model can use mean wind
speed instead which was being actively measured
by US-INg.



Hestia and the flux measurements were com-
pared using these flux footprints. Hestia emission
estimates were weighted by the flux footprints to
estimate the CO,ff emissions that were observed at
the tower. The 2 m resolution flux footprints output
by the model needed to be re-gridded for the bor-
ders to match those of the Hestia cells because the
borders of Hestia grid cells lie in the middle of the
footprint grid cells. To do this, the cells were dupli-
cated in the x and y direction, which can be done
because the cell values represent a weighting per
area, resulting in a 1 m-by-1m grid. Then, each foot-
print (f) cell was multiplied by the corresponding
Hestia emissions cell and the product cells were
summed together, resulting in the total turbulent
flux (Fy) as described by Wu et al. [20]:

R
Fu=">_ Qu(Xiyi)f(xi,yi)oxdy (5)
p
where Qp represents the Hestia emissions for the
given hour and R is the flux footprint domain. The
resulting Fy was used for the eddy covariance to
inventory comparison.

These footprint-matched hourly Hestia estimates
were broken up into period and wind direction in
the same fashion as the EC flux measurements, and
hours that were removed from US-INg analysis
were also removed from Hestia analysis to ensure
that the same hours were being compared
between the two datasets. Then hourly weekday
averages and averages for the whole pre-lockdown
and lockdown period were calculated using the
same methods used for the US-INg data. Standard
errors are estimated similarly, representing uncer-
tainty introduced by the footprint calculations.

Results
Emissions reductions by wind sector

Fluxes from the west are relatively small given the
lack of large anthropogenic sources and the gener-
ally dormant state of the biosphere at this time, but
changes in fluxes with time can be detected. In the
lockdown period for the west sector, the total CO,
flux's positive morning peak is smaller and earlier
than the pre-lockdown period (5 am LST vs. 8 am
LST) and hourly averages are consistently negative
for part of the afternoon, suggesting net photosyn-
thetic uptake (Figure 3(a)). Average weekday hourly
CO.ff emissions during pre-lockdown and lockdown
are small (between —7 and 8pmol m™2 s™') and
appear to oscillate around zero, likely showing the
limits of our measurement precision for 1.5 months

CARBON MANAGEMENT . 7

of observations from one wind sector (Figure 3(d)).
Hourly CO fluxes are lower during lockdown for
most daytime hours (Figure 3(b)), yielding small
decreases in CO2ff emissions for most hours
(Figure 3(c)).

Comparison between the pre-lockdown and
lockdown average emissions found some reduction
in total CO, (3.8+0.6umol m™2 s™', 71.3+13.1%)
and CO,ff emissions (2.2+0.7pumol m™2 s/,
79.1+27.8%) between the two periods (Table 2). A
two-sample t-test between pre-lockdown hourly
CO,ff fluxes and lockdown hourly CO.ff fluxes indi-
cated a significant reduction in the average using
the p < 0.05 threshold. There is some reduction in
average CO, fluxes from biological sources
(CO5bio) west of US-INg (1.6+0.3umol m™2 s,
61.4£30.4%) (Table 2), likely due to the increase in
photosynthetic uptake in the day during the lock-
down period (Figure 3(d)).

Total CO, fluxes (Figure 3(e)) are highly corre-
lated with CO fluxes (Figure 3(f)) showing the
dominance of CO,ff emission (Figure 3(g)) from
this wind direction. Average hourly total CO, fluxes
from the east sector dropped during the COVID-19
lockdown (Figure 3(e)). Disaggregation into fossil-
fuel and non-fossil fuel sources makes the cause of
the decrease in total CO, flux clear—the average
hourly CO and CO,ff emissions both decreased
between the pre-lockdown and lockdown periods
(Figures 3(f and g)), while the biological fluxes
show no clear daily pattern and often are not sig-
nificantly different from zero (Figure 3(h)). There
are a few odd positive spikes in CO,bio that occur
at the same hour as negative CO,ff hourly aver-
ages; since the latter is physically impossible and
therefore a product of sampling error, the positive
CO,bio spikes must be as well.

In the east sector, there is a decrease in average
total CO, (123+1.9umol m™2 s, 47.5+8.0%)
between pre-lockdown and lockdown which is
almost entirely due to a large reduction in CO.ff
emissions (11.2+2.2pmol m™2 s~', 51.5+10.9%)
during the lockdown (Table 2). A two-sample t-test
indicated that the change in CO,ff emissions was
statistically significant. There is no significant
reduction in CO, bio fluxes in the east sector
(Table 2).

Comparing sectors vyields plausible results.
Average total CO, fluxes, CO,ff emissions and
emissions reductions are higher in the east sec-
tor than in the west (Table 2). Percent reductions
in CO,ff emissions are higher in the western sec-
tor, but the magnitude is small and the
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Figure 3. Average hourly weekday emissions observed when winds coming from the west sector (a-d) and the east sector
(e-h). The pre-lockdown fluxes are in red and lockdown period fluxes are in blue. The Rco used to extrapolate from CO to
CO,ff for the data in these graphs is the value from Turnbull et al. [21]. Error bars represent standard error.

uncertainty is much larger as a fraction of the
total signal. Biological CO, fluxes are small in
both sectors. Biological flux estimates from the
west show photosynthetic activity, while no dis-
cernable biological patterns are evident in the
eastern sector. This result is consistent with the

initial hypothesis that this sector is dominated
by CO,ff emissions.

The relatively large standard errors for some of
these results are largely due to the scarcity of data.
For the pre-lockdown period, 9.4% of hours were
lost due to instrument failure, 0.6% of data were



Table 2. Reductions in average fluxes from pre-lockdown to lockdown (A umol m™
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2 s7") and percent reductions shown

in parentheses (A%). Percent reduction is defined here as 100*|(pre-lockdown average - lockdown average)/pre-lock-
down average|. Average fluxes are computed by averaging the average hourly fluxes of each period. An Rco value of
8 ppb ppm™" was used for flux disaggregation [21]. Uncertainties are standard errors of the mean values.

Emissions source

Avg. westerly reductions A pmol CO, m™2 s™' (A%)

Avg. Easterly Reductions A pumol CO, m™2 s~ (A%)

Total CO, 3.8+0.6 (71.3+13.1%)
COff 2.2+0.7 (79.1 £27.8%)
CO,bio 1.6£0.7 (63.0 +30.7%)
Hestia (CO,ff) 4.4%0.3 (63 +4%)

12.3+1.9 (47.5£8.0%)

11.2£2.2 (51.5+10.9%)
1.1£1.6 (26.2 +38.8%)
12+1 (56 £7%)

25
[ Prefockdow n East
[ Lockdow n East
[ Prelockdow n West
I L ockdow n West
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T T T
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Figure 4. Bar graph representing the number of datapoints used to calculate the average emissions for each hour of the
weekday in each period (pre-lockdown and lockdown) and sector (east and west).

removed by EddyPro, 7.4% of data were removed
for low turbulence, and 5.7% of data were
removed due to an extreme CO, flux, latent heat
flux, or sensible heat flux value. For the lockdown
period, 0.2% of hours were removed by EddyPro,
12.7% were removed for low turbulence, and 2.6%
were removed for an extreme value. Following fil-
tering and analysis, the east sector CO,ff pre-lock-
down period had an average of N=6.6
measurements taken for each hour of the day, and
the lockdown period had an average of N=28.0
measurements taken for each hour. In the west
sector, pre-lockdown had an average of N=8.6
measurements and lockdown had an average of
N =14.8 measurements. The hourly distribution of
these data points can be seen in Figure 4. The
error bars in Figure 3 represent standard error, so
they are based on the number of data points each
hour. In Figure 3(g) (east sector), the average
hourly CO,ff emission uncertainty for pre-lock-
down is = 45.0% and lockdown is = 69.5%. In
Figure 3(c) (west sector), the average hourly CO,ff
emission uncertainty for pre-lockdown is + 98.7%
and lockdown is + 141.3%. Uncertainties in the
daily mean fluxes are considerably smaller, making
it easier to detect significant emissions changes

(Table 2) even for this limited duration, two wind-
sector data set.

Hestia inventory model comparison with eddy
covariance flux measurements

Hestia estimates also indicate a decrease in fossil
fuel emissions during Indianapolis’ COVID-19 lock-
down. The average daily cycles in the west sector
(Figure 5(a)) and the east sector (Figure 5(b)) are
noticeably shorter during the lockdown. Both sec-
tors have rush hour peaks indicative of the influ-
ence of traffic emissions, although those of the
west sector are much less pronounced (Figure 5).
According to Hestia, the average CO,ff emission to
the east dropped by 12+ 1 pmol m™ s~ (56 + 7%)
and to the west it dropped by 4.4+0.3 umol m™
s7' (63+4%) (Table 3). When breaking down
Hestia estimates by source, one can see that
onroad and commercial sources are the most
prevalent sources east of the tower and the most
affected by the lockdown (Table 3). Onroad emis-
sions in the direction of the highway dropped by
5.4+0.5umol m™2 s™' between pre-lockdown and
lockdown, while residential dropped by
0.23+0.02umol m™2 s~'. Residential emissions,
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Table 3. Reductions for the major individual sources that contribute to the Hestia emissions

estimate. Absolute reductions in pmol m™ s

2 -1

Uncertainties represent standard error.

, percent reduction shown in parentheses.

Emissions source

West A pmol CO, m™2 s™" (A%)

East A umol CO, m™2 s™' (A%)

Hestia (Onroad)
Hestia (Commercial)
Hestia (Residential)
Hestia (Nonroad)

0.64+0.07 (41 +5%)
0.72+0.06 (80 +9%)
3.1£0.2 (74 +£7%)
—0.074£0.003 (—26 + 1%)

54+0.5 (42 = 4%)
6.9+1.0 (84+16%)
0.23£0.02 (64 £ 6%)
—0.12£0.03 (—21£5%)

Table 4. Correlations between average daily cycles from
US-INg results and Hestia results. Correlation is significant
if p <0.05.

r p
CO,ff vs Hestia (East, pre-lockdown) 0.73 44x107°
CO,ff vs Hestia (East, lockdown) 0.59 0.0024
CO,ff vs Hestia (West, pre-lockdown) 0.29 0.17
CO,ff vs Hestia (West, lockdown) -0.10 0.64

much greater to the west, also drop during the
lockdown period, likely due to increased tempera-
tures limiting the need for home heating (Table 3).
Emissions from nonroad sources such as lawn-
mowers, golf carts, construction equipment, etc.
were low in Hestia to the east and west of US-INg
(Table 2). Unlike the other sources, they increased
slightly during lockdown, though not enough to
offset the other sources’ reductions.

Hestia shows similar daily emissions cycles to
those observed using the tower-based EC flux data,
especially to the east. There is statistically significant
correlation between CO.ff average hourly emissions
and Hestia emissions in the east sector for the pre-
lockdown (r=0.73, p=44x10"") and lockdown
period (r=0.59, p=0.0024), although it is less sig-
nificant during the lockdown period (Table 4).
Correlation is not significant to the west for pre-lock-
down (r=0.29, p=0.17) and lockdown (r=-0.10,
p=0.64), but the correlation is still higher before
lockdown than during (Table 4).

The reductions shown in Table 3 for Hestia are
remarkably similar, easily within the standard error
of the measurements, for CO,ff emissions from the
east sector. Hestia suggests this reduction is due
to roughly equivalent reductions in onroad and
commercial sector emissions (Table 3). Hestia pre-
dicts a larger magnitude of COff emission reduc-
tion from the western sector than is suggested by
the disaggregated EC flux measurements, but the
magnitude of the difference is small, and the per-
centage reductions in both products are indistin-
guishable given the uncertainty in the flux
measurements (Table 3). Overall, both methods of
quantifying CO.ff emissions tell a similar story of
large emissions reductions during the COVID-19
lockdown, similar reduction amounts and greater
magnitude reductions in the east sector.

Evaluation of potential fluctuations in Rco

The vertical differences in CO and CO, do not sug-
gest significant local differences from the city-wide
values in Rco, and do not show any clear changes
from the pre-lockdown to the lockdown period.
The Rco values from the eastern sector show no
significant change over time. For pre-lockdown the
median Rco is 7.4 ppb ppm™' and the median Rco
uncertainty (o) is 1.5ppb ppm™'. For lockdown,
the median Rco is 7.1 ppb ppm™~' and the median



uncertainty (a) is 1.5 ppb ppm™'. Neither value dif-
fers significantly from the 8 ppb ppm™' value for
the whole city [21]. Breaking the data into day and
night conditions yields an unusual change, but the
significance is questionable. During the pre-lock-
down period, daylight Rco had a median value of
7.6 ppb ppm~' and a median ¢ of 2.4 ppb ppm™'
while nighttime Rco had a median value of 7.5 ppb
ppm~" and a median ¢ of 2.0 ppb ppm™'. During
the lockdown period, median daylight Rco was
6.3ppb ppm~' (median ¢=2.4ppb ppm™'), and
median nighttime Rco was 8.4 ppb ppm™' (median
c=2.1ppb ppm™'). So, during the pre-lockdown
period, Rco did not vary much between night and
day but during the lockdown period, there was
more differentiation between night and day Rco.
This day-to-night change is the opposite of what
might be expected due to increased biological
activity and may be an artifact from limited
sampling.

The CO.ff flux results of the east and west sec-
tors also did not change significantly when using
different values of R¢o in the disaggregation calcu-
lation. Rco only influences the flux partitioning, not
the variability in time, so the correlation with
Hestia is not influenced by the Rco values used.
Percent reductions between pre-lockdown and
lockdown average emissions did not change for
Rco values between 6ppb ppm™' and 8ppb
ppm~', so long as the pre-lockdown and lockdown
periods used the same Rco value. The magnitude
of estimated CO,ff emissions does change with
the Rco value (Figure 6). Changing the Rco value
of one period but not the other does affect the
percent reduction. Fixing Rco at 6.0 ppb ppm™"' for
pre-lockdown and cycling from 6.0 to 8.0 ppb
ppm~" for lockdown the percent reduction in
CO,ff emissions to the east changed from 51.5%
to 63.7%.

Discussion

Source disaggregated EC flux measurements indi-
cate a drop in fossil fuel emissions during the
COVID-19 lockdown like those estimated by the
Hestia inventory model. The reduction was greater
in the east sector than the west sector according
to the EC flux measurements and Hestia, which is
unsurprising given the location of the highway to
the east and a suburban forest and neighborhood
to the west. The Hestia sector breakdown in
Table 3 shows that the reduction in the East sector
was mostly due to reductions in traffic and
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standard error.

commercial emissions. Since Google mobility data
show reductions in mobility during the lockdown
period, Hestia's traffic sector uses local traffic data
for sub-annual scaling, and these reductions coin-
cide with high Oxford Stringency ratings, likely,
this reduction in emissions to the East observed by
Hestia and US-INg is due to the COVID-19 lock-
[1,38]. Sub-annual commercial
patterns in Hestia are scaled using temperature
data, so changes in commercial emissions between
pre-lockdown and lockdown are not due to lock-
down measures. However, it is possible that
commercial emissions did not change appreciably
due to COVID-19 since commercial buildings likely
still used climate control, electricity, etc., during
the lockdown. If the Hestia sectoral breakdown is
accurate, roughly half the reduction in emissions
during lockdown was due to COVID-19 lockdown
effects on human activity.

According to temperature data from the
National Weather Service collected at the
Indianapolis International Airport (about 6 km from
US-INg), temperature patterns in 2020 were close
to normal [47]. This is important to remember
when considering emissions sources such as the
commercial sector that depend on temperature
data. The residential sector of Hestia, whose sub-
annual patterns are also dependent on tempera-
ture data, reported reductions in emissions in both
directions, especially the west (Table 3). Since the
Hestia sector analysis shows that the residential
sector’s reductions were dominant to the West, it
is likely that reductions observed by US-INg and
Hestia in CO,ff emissions are attributable to rising
springtime temperatures as heating requirements
are reduced.

down emission
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Hestia and EC analyses of the percentage reduc-
tion in CO.ff emissions match from both wind
directions within the levels of uncertainty esti-
mated by the EC fluxes (Table 3). The magnitude
of CO,ff emissions reductions estimated by EC
fluxes are lower from the west than in Hestia
(Table 3). This could be the result of issues with
the EC fluxes, Hestia, or both, but the emissions
reductions magnitudes are small in both products.
Google mobility data reported an increase in users
going to their residence during the lockdown,
which one might expect to result in an increase in
residential emissions [1]. This change would not be
apparent in Hestia's estimates, but it is possible
that it was measured by US-INg which could
explain why US-INg reports a less severe drop in
CO,ff emissions than Hestia (Table 3). The magni-
tude of emission reductions from the east agrees
remarkably well (Table 3).

Our EC flux analyses, while limited by sampling
time (about six weeks from each period), divided
among two different environments (highway-
dominated eastern and suburban/forested western
sectors), and complicated by fossil/biogenic CO,
flux disaggregation, are still able to identify impor-
tant changes in emissions from each of the wind
sectors. The pre-lockdown correlations between
the daily cycle of CO.ff emissions from Hestia and
EC flux results demonstrates the ability of the flux
disaggregation method even when limited by the
relatively small number of hours with winds from
the eastern sector, and the need to segregate
modest CO,ff emissions from the biological fluxes
from the western sector. The loss of correlation
during the lockdown is reasonable since the ampli-
tude of the daily cycle of CO,ff emissions is greatly
suppressed. Lower correlations in the west sector
are understandable for the same reason.

The EC analyses for this case are small enough
to detect the changes in CO,ff emissions caused
by the pandemic. The noise levels, however, are
significant (Figure 3) due to the limited number of
data points available when limiting the sampling
time to only 6 weeks and breaking the data down
by wind direction. The fluxes from the west are
further limited by some uncertainty in Ro and
the need for significant flux disaggregation, as
opposed to the eastern sector which is dominated
by fossil emissions. The uncertainties in our hourly
(Figure 3) and period-average (Table 2) EC fluxes
provide insight into our overall ability to quantify
emissions changes using source-disaggregated EC
methods.

There were other results that suggested this
research was approaching its limits, such as the
large hourly CO,bio results east of US-INg (Figure
3(h)). Since the hourly averages were fluctuating
around 0 and had no recognizable biological pat-
tern, it seems likely that these results are from vari-
ation in the CO,ff estimates. The negative hourly
averages occasionally present in the CO and CO,ff
daily cycles (Figure 3(b, ¢, f, and g)) are also unreal-
istic and probably a result of error in the disaggre-
gation analysis, introduced by negative eddy
diffusivity (K) values. Negative K values do not
make physical sense but filtering out negative K
values resulting from instrumental noise would
mean leaving positive K values from instrumental
noise in, thus biassing the results. The negative
hourly average emissions in the CO,ff results are
always smaller than the estimated uncertainty, so
they are not significantly different from 0 and
should not be over-interpreted.

The findings of this study agree with those from
other studies that COVID-19 lockdown measures
lead to a decrease in anthropogenic CO, emissions
[2-6,9,10,18,19,48,49]. This study and others show
that EC is particularly useful for looking at how
specific regions and emissions sectors were
affected by COVID-19 lockdowns. US-INg and
Hestia results indicated that emissions reductions
varied depending on the region and its associated
emissions sectors. The EC study in Vienna, Austria
only found reductions in 2020 compared to previ-
ous years in the mean CO, flux consistently greater
than the standard error to the northwest of the
tower where it is more populous and urbanized
[18]. To the southeast of the EC tower, the city was
less urbanized and had a non-significant emissions
reduction in 2020 compared to 2018 and 2019
[18]. This is reminiscent of the current result that
the more urbanized east sector showed larger
reductions in magnitude. (Figure 3). Our study also
suggested that the less urbanized area was less
sensitive to COVID-19 restrictions, since Hestia
sector analysis showed that emissions changes to
the west due to COVID-19 restrictions may be
negligible compared to seasonal changes.

Differences in space and time in Rco greater
than uncertainty were not detected using the ver-
tical differences in CO and CO, mole fractions. This
is surprising given the large changes in emissions
that occurred during the lockdown. The uncer-
tainty in derived Rco, however, was large. In add-
ition, both traffic (@ high Rco source) and
commercial (low Rco source) CO-ff emissions



decreased based on Hestia’s partitioning, so Rco of
the mixture of sources that are detected in the
atmosphere may have remained approximately
constant.

Conclusions

Three months of source- and sector-disaggregated
EC flux measurements from a single tower clearly
captured a rapid change in CO, CO, and COff
emissions caused by the COVID-19 lockdown in two
adjacent but contrasting neighborhoods of
Indianapolis. Hestia, a research-grade inventory
model for CO.ff emissions, predicted a similar
reduction in emissions. The close agreement
between EC estimates of CO,ff emissions and
Hestia, and the relatively small uncertainty in the
EC-based estimate suggests high confidence in
both estimates of the drop in CO,ff emissions that
resulted during the COVID-19 lockdown in a high-
way-dominated neighborhood of Indianapolis.
Emissions reductions from the western, suburban
region, were much smaller in magnitude and more
uncertain as a fraction of the total drop, but both
Hestia and the disaggregated EC results showed a
small but significant drop in CO,ff emissions from
that neighborhood. Emissions sector analysis of
Hestia suggests that reductions to the east are likely
in large part due to mobility restrictions during the
COVID-19 pandemic, but reductions to the west
may be a result of typical seasonal weather patterns
reducing the need for home climate control.

Future research in this vein would benefit from a
more precise method of determining Rco at the
scales measured by EC flux systems. Disaggregation
of fossil and biological flux is critical to analyzing
spatial and temporal patterns of CO,ff emissions in
urban settings, and CO:CO,ff ratios are a powerful
tool for disaggregation. This ability to disaggregate
will also support studies of urban ecosystem.

An increasing body of evidence is showing that
EC measurement systems enable precise monitoring
of urban greenhouse gas emissions. These measure-
ment systems should be developed in parallel with
the development of urban emissions models whose
spatial and temporal resolutions are well-matched
to the resolution of EC flux measurements. EC flux
measurements can complement both research-
grade emission models and operational inventories
created by municipalities for emissions reporting.
The combination of high-resolution measurements
and models will enable an increasingly precise and
accurate understanding of urban metabolism, and
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improved ability to monitor and predict the impacts
of greenhouse gas emissions mitigation measures.
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