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Abstract—Unmanned aerial vehicles (UAVs), known as drones,

have gained significant popularity across various military, civil-

ian, and commercial applications. Given the fact that many

UAV operations rely on the Global Positioning System (GPS),

they inevitably become susceptible to GPS spoofing attacks. In

recent years, AI-enabled detection approaches toward UAV GPS

spoofing attacks have increasingly received research attention.

Therefore, it is crucial to have a systematical understanding of

GPS spoofing attacks and collect a comprehensive and quality

data set in the construction of effective AI-enabled detection.

This paper aims to collect a large dataset of UAV flights under

normal and attack scenarios and design an effective detection

approach for stealthy UAV GPS spoofing attacks using onboard

sensors and machine learning. 30 different features from 4

onboard UAV sensors are extracted in constructing effective AI

models. On top of that, we examined different deep learning

and machine learning models by fusing important features from

our analysis. Our evaluation results in different flight scenarios

demonstrated the effectiveness of our proposed approach, in

which a high detection accuracy up to 98.7% and a fast detection

time of 0.5 second can be achieved using the XGBoost model.

Index Terms—UAV security, GPS spoofing, stealthy attack,

machine learning, AI-enabled detection, onboard sensors

I. INTRODUCTION

Motivated by the advantages of UAVs in terms of high
mobility, ease of deployment, and rich sensing capabilities [1],
[2], the adoption of UAVs has become increasingly prevalent
in various military missions, civil industries, and personal use,
such as real-time monitoring, search-and-rescue operations,
wireless coverage, remote sensing, delivery services, security,
and surveillance [1]. Although UAV applications provide many
benefits, it also faces various security risks, among which
GPS spoofing attacks [3] have a significant impact as most
UAVs rely on GPS signals for positioning and navigation. For
example, an attacker can spoof a GPS signal by transmitting a
high power signal using HackRF which overwrites the original
one. Through GPS spoofing, an attacker could hijack an UAV
and deviate it from its intended flight trajectory.

To detect and mitigate GPS spoofing attacks against UAVs,
machine and deep learning based approaches have become a
prevalent trend with the rapid development of AI technologies
in both algorithms and hardware [4]–[7]. These approaches
typically train a model to predict if the received GPS signal is
normal or not. Although these approaches have demonstrated
their effectiveness in the detection of simple GPS spoofing
attacks, e.g., injecting random GPS values, sophisticated at-

tackers can still bypass the detection with strategic stealthy
attacks [8], [9]. Specifically, attackers can continuously intro-
duce a small amount of attacking values, which is not sensitive
enough to trigger the abnormal alarm but gradually affect the
position of UAVs by confusing the UAVs to mistakenly apply
their built-in position adjustment [10].

This paper investigates the detection of stealthy UAV GPS
spoofing attacks by leveraging onboard UAV sensor data using
a sensor-fusion approach. Sensor-fusion is advantageous over
a single sensor based approach as it increases the redundancy
and robustness of the system but also provides complementary
information that helps identify anomalies or discrepancies
between sensor readings. This paper analyzes 30 features from
4 onboard sensors that are typically available on most UAVs to
obtain a better understanding of their contribution towards the
detection of stealthy GPS spoofing attacks. We then evaluate
the identified sensor features with different machine learning
and deep learning models to detect stealthy UAV GPS spoofing
attacks. Our results demonstrated that the integration of sensor-
fusion and XGBoost machine learning model achieves the best
performance in different flight scenarios. The contributions of
this paper are as follows:

• This paper systematically investigates the UAV stealthy
GPS spoofing attack in a PX4-based simulation platform
and collects a large dataset of UAV flights under both
attack and non-attack scenarios from multiple onboard
sensors in a time synchronized manner.

• This paper proposes an effective detection system that
employs machine learning models, i.e., XGBoost on the
30 features extracted from 4 onboard UAV sensors. The
proposed system can achieve a high detection accuracy
of 98.7% on common UAV flights and a fast detection
time of 0.5 second on low-frequency 5 hz sensor data.

• This paper evaluates 30 features and multiple machine
learning and deep learning models on their effectiveness
of detecting stealthy GPS spoofing attacks. This paper
also evaluates the impact of time windows, flight plans
and choice of sensors on the detection accuracy.

The rest of the paper is structured as follows: We review and
discuss related work in Section II. In Section III, we present
the construction and methodology of the detection system. We
evaluate the performance of the detection system in Section
IV, and we conclude the paper in Section V.
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TABLE I
COMPARISON OF EXISTING WORKS USING ONBOARD SENSORS

Paper Type # Sample Public Attack Sensor Used # Features ML Models Accuracy Detection Type
[11] Simulation - N Simple IMU, GPS, B, M 8 LSTM 78% Flight Path Prediction
[12] Simulation 40,000 N Simple GPS only 3 Linear Regression N/A Flight Path Prediction
[13] Physical - N Simple IMU, GPS N/A Math Equation 100% Spoofing Detection
[4] Physical 33,000 N Simple IMU, GPS N/A XGBoost 96.3% Spoofing Detection
[6] Physical 5,303 R Simple IMU, GPS, B, M 45 RF + XGBoost 99.7% Spoofing Detection

[14] Physical 10,296 R Simple IMU, GPS, B, M 12 XGBoost 97.7% Spoofing Detection
[15] Physical 33,056 N Simple GPS only 3 1DCNN F1: 99% Spoofing Detection
[16] Physical - N Advanced GPS only 6 Statistical Model 90% Spoofing Detection
[17] Physical 7,699 N Simple IMU, GPS, B, M 36 CNN-LSTM 99.4% Spoofing Detection

Ours1 Simulation 187,388 Y Advanced IMU, GPS, B, M 30 XGBoost 98.7% Spoofing Detection

II. RELATED WORKS

In this section, we will examine previous research studies
and their proposed methods for detecting GPS spoofing. With
the increasing prevalence of UAVs, there is a need for reliable
security in UAV operations. Researchers have employed a
variety of strategies to address this attack [4], [6], [11]–[17].

Many typical ML and non-ML based solutions can be cat-
egorized into two types of methods, i.e, flight path prediction,
and spoofing classification. Flight path prediction attempts to
model the drone’s in-air trajectory and determine if the drone
is flying in the correct direction, or if the drone is in the right
position. Spoofing classification attempts to find anomalies and
patterns in attacked flight scenarios. In this work, we focus on
spoofing detection using UAV onboard sensor data.

Table I offers a brief summary of existing research endeav-
ors, characterizing their proposed methodologies and respec-
tive outcomes. Within the “Public” column, designations such
as ‘Y’ signifies availability, ‘N’ denotes unavailability, and ‘R’
indicates available upon request for the data. In the “Attack”
column, the descriptor ‘simple’ signifies a limited exploration
of GPS spoofing attacks, whereas ‘advanced’ denotes a more
stealthy and sophisticated attempt at GPS spoofing. Addition-
ally, in the “Sensor Used” column, ‘B’ designates the usage of
barometer sensor, and ‘M’ refers to magnetometer sensor.

Spoofing detection approaches [4], [6], [13]–[17] typically
collect data from one or multiple onboard sensors. They
analyze the sensor outputs, extract useful features and perform
classification based on machine learning models. For instance,
Z. Feng et al. [4] utilized IMU, i.e., accelerometer and
gyroscope, and GPS signal, to determine if the UAV is under
attack. Typically machine learning is adopted to monitor the
flight status of UAVs. Many studies have achieved very good
results utilizing sensor data-based approaches. Several studies
have achieved great success with machine learning models like
XGBoost, and LSTM. However, a notable limitation is the
absence of a publicly available, comprehensive, and extensive
data set. The effectiveness of these approaches relies heavily
on the quality and comprehensiveness of the data set. The data
set should contain quality normal and attack data. Additionally,
the GPS spoofing attack has not been thoroughly investigated.
Many studies conduct GPS spoofing attacks by injecting white

1https://github.com/anthony-finn/UAV-GPS-Spoofing-Dataset

noise signal data, or random GPS messages to a UAV. Many
research works fail to create an attack that can slowly drift a
UAV to a different location without being detected by existing
countermeasures such as Extended Kalman Filter (EKF).

EKF is a state estimator that analyzes sensor outputs and
offers estimates for various state parameters of a UAV, encom-
passing rotation, velocity, position, sensor biases, and magnetic
field components. The UAV’s state is forward propagated,
generating new predictions based on previous states [18]. If the
output of one or multiple sensors deviates far from a predicted
value, then EKF will notify UAV about the abnormality.

Flight path prediction [11], [12], while valuable for cer-
tain applications, is inherently ill-suited as a mechanism for
detecting GPS spoofing due to its limitations in its non-
linear forecasting capabilities. It is challenging to accurately
anticipate a drone’s trajectory solely based on historical data
or pre-established patterns. Furthermore, unforeseen environ-
mental factors, such as erratic wind conditions, introduce
additional unpredictability, rendering flight path prediction
methodologies ineffective in capturing the nuances of a drone’s
movement under variable circumstances. Consequently, re-
liance on flight path prediction for GPS spoofing detection
proves inadequate, emphasizing the need for more robust and
adaptive countermeasures.

III. METHODOLOGY

Fig. 1. Overview of Detection Pipeline

In this section, we present the details of our GPS spoofing
detection methodology. Fig. 1 illustrates an overview of the
detection pipeline, encompassing four main stages: (1) the
construction of plugins and GPS spoofing attacks in the PX4
and Gazebo based simulation environment; (2) the collection
of data from four sensors in both normal and attack scenarios;
(3) the extraction of effective features; and (4) the selection of
machine learning models and the detection of new flight data.
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Fig. 2. Stealthy GPS spoofing attack studied in this work

A. GPS Spoofing Attack

The objective of the UAV is to fly from its starting position
to a designated target destination. As the UAV reaches position
p0, an attacker launches GPS spoofing on the UAV. The
attacker intends to deviate the UAV from its planned flight
trajectory while preventing the UAV from detecting the attack.
A sophisticated attacker can achieve this by incrementally off-
setting the UAV’s reported GPS position. The attacker adjusts
the offset according to the UAV’s sampled velocity. The � in
the illustration is the maximum latitude and longitude offset
in radians which is increased slowly towards the maximum to
avoid detection from the detection system. Fig.2 illustrates the
simple idea behind our GPS hijacking spoofing attack. The red
line shows the spoofed GPS position, while the blue line shows
the ground-truth position of the UAV. The UAV’s spoofed
GPS location is at the target location, while the UAV’s actual
location is not. Detecting the attack is challenging as the linear
movement of the GPS position can be attributed to various
external factors, such as wind or GPS inaccuracies, making it
difficult to distinguish the attack from other influences.

To launch a sophisticated attack, we compute the 2D latitude
longitude GPS heading vector from the position difference
over a sample time; this measurement is the sampled velocity.
To calculate the heading vector, we extract the north and east
components of the sample velocity and normalize it to get
the direction vector

�
ve vn

�
. For instance, to initiate a GPS

spoofing attack with a displacement of �o radians from the
starting position and a rotation of ✓ radians counterclockwise
from the heading vector, the following formula is used:

�o ·

cos(✓) �sin(✓)
sin(✓) cos(✓)

� 
ve
vn

�
=


olat
olong

�

The resulting vector is the modified offsets for both latitude
(olat) and longitude (olong) directions. To maintain the spoofed
GPS offset position during the attack, we use the sampled
heading vector to compensate for any changes in the UAV’s
direction of movement. Otherwise, the attack could be detected
easily. The latitude and longitude directions have distinct
scales, and their offsets vary. Although the formula does not
account for this scale, it becomes insignificant when the delta
offset is minimal. Fig. 3 shows the idea of the offset calculation
in both longitude and latitude directions.

Fig. 3. Latitude and longitude offset calculation visualization

When running our attack program gps_spoofer, attack-
ers need to provide the offset and degree variables,
where the offset is the total amount of latitude or longitude
radians to offset the GPS position, and the degree is the
direction to offset the GPS position in. We reset the offset
before starting an attack to prevent large jumps in the GPS
position information. The earlier matrix multiplication formula
provides the olat and olong variables in the attack program. The
attack program also has a small increment variable defined
where it determines the offset increment each time the GPS
signal is received. With a faster GPS update frequency, the
offset increment must be set to a smaller value to avoid state
estimate based detections such as EKF.

B. Multi-Sensor Data Collection and Labeling

Fig. 4. Example of two generated flight plans

To collect both normal and attacked UAV sensor data,
we leverage our UAV cybersecurity simulation platform [19],
which is based on QGroundControl [20], PX4-SITL [21], and
Gazebo-Classic [22]. We study three flight trajectories: moving
in straight, curved, or random paths. To generate data for
attacked and non-attacked flights, we developed a program to
create flight plans and upload them through QGroundControl
utilizing MAVSDK [23] and running them utilizing the PX4-
SITL Gazebo-Classic simulation platform. Fig. 4 depicts two
sample flight plans generated from the program used in
this study. The upper image illustrates a straight flight plan,
whereas the lower image illustrates a curved flight trajectory.
The random flight trajectory is a combination of both curved
and straight flight plans. We developed an extension to the
GPS plugin provided by the Gazebo platform that implements
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the attack strategy presented in section III-A. We create two
attack samples and one non-attack sample for each flight plan.
Each attack is launched perpendicular to the UAV’s heading
angle. Overall we have 360 flights collected that encompass
hours of flight time.

When capturing time-series data from UAV sensors, we
segment the data into smaller time intervals or windows.
There is a correlation between detection time and the length
of a window. Longer time windows require more data, thus
potentially slowing down the real-time detection time. The
model will be more complex, making it potentially challenging
for machine learning to discern the relationships between the
data points. Conversely, shorter time windows demand fewer
data points and improve the real-time detection time but may
introduce more false positives or negatives due to a lack of
data. We select 0.5 seconds as the time window to handle the
data set as this time window provides a balance between real-
time detection speed and complexity. Table II provides the
distribution of normal and attacked data, showing 85,045 nor-
mal windows and 102,343 attacked windows, totaling 187,388
windows in our collected dataset.

TABLE II
FLIGHT PLAN DATA COMPOSITION (0.5S AS WINDOW SIZE)

Flight Plan
Number of Windows

Normal Attacked Total
Straight 7,048 11,569 18,617
Curved 30,655 73,052 103,707
Random 47,342 17,722 65,064

Total 85,045 102,343 187,388

To label a window as normal or attacked, we analyze
the distribution of data points contained within the window.
Specifically, if T% or more of the data points within the
window indicate attacked, the window is labeled as attacked.
A large T can lead to missed detections as an attack may
have a short duration. Setting a small value for T can result in
higher false positives since it will inevitably label some normal
data as attacked. The value of T depends on the frequency of a
UAV’s sensors. A sensor with a faster frequency collects more
data points per second. Since we select 5 Hz as the sampling
frequency and 0.5 seconds as the time window, there are about
2 data points within each window. In this case, the value of
T does not make much difference in the performance of our
detection system. We select 50% for the value of T.

C. Feature Extraction

This section primarily examines the relationship among
the data collected from the GPS, IMU, magnetometer and
barometer sensors to select them as features. By transforming
raw sensor data into a condensed and representative feature set,
machine learning models can achieve enhanced performance
and improved accuracy in learning the relationships between
these features. For example, many features, such as velocity or
acceleration, can be calculated from a combination of sensor
outputs. There are a total of 30 features extracted from sensors.

From the GPS receiver, we collect the raw UAV position
information, which is a 3D vector containing the UAV latitude,
longitude, and altitude. To better detect the stealthy GPS
spoofing attack, we calculate and extract the changes in
latitude and longitude, denoted as �lat and �long. These two
features significantly contribute to the enhanced performance
of our model as they effectively capture the impact of this
spoofing attack. We also extract the velocity feature, calculated
using WGS84 geodesic distance [24], from the GPS receiver.
The IMU consists of two sensors: the gyroscope and the ac-
celerometer. Gyroscope captures two types of data: orientation,
which pertains to the UAV’s rotational position, and angular
velocity, which measures the rotation rate. The accelerometer
provides information on the linear velocity and acceleration of
the UAV. From the gyroscope, we also extract the yaw, pitch,
and roll angles from the orientation quaternion as follows:

Yaw, = arctan2(2 ⇤ (gy ⇤ gw + gx ⇤ gy),�1 + 2 ⇤ (g2w + g2x))

Pitch, ✓ = arcsin(2 ⇤ (gy ⇤ gw � gz ⇤ gx))
Roll, ; = arctan2(2 ⇤ (gz ⇤ gy + gw ⇤ gx), 1� 2 ⇤ (g2x + g2y))

the symbols gx, gy , gz , and gw are the respective x, y, z, and
w of the orientation quaternion. From the accelerometer, we
calculate and extract the pitch and roll angles as follows:

Pitch, ✓ = arcsin(ax/g)

Roll, ; = arctan2(ay, az)

where ax, ay , and az are the respective x, y, and z components
of the acceleration, and g is the gravitational constant. The
yaw, pitch, and roll angles provide valuable information about
the UAV’s attitude or the direction the UAV is facing. The
yaw angle represents the rotational movement around the yaw
axis, which aligns with the left or right direction relative to the
direction of the UAV’s movement. The pitch angle represents
the rotational movement around the pitch axis, which aligns
with the forward or backward tilt. The roll angle represents
the rotational movement around the roll axis, which aligns
perpendicular to the longitudinal axis of the UAV. Extracting
the yaw, pitch and roll from different sensors will help alleviate
the impact from the sensor inaccuracies. The magnetometer
and barometer sensors provide the magnetic field strength and
air pressure, respectively, which are also useful information in
helping identify the deviation of the UAV flight path change.

D. Model Selection

We examine various machine and deep learning models,
including XGBoost, Gradient-boosting decision trees (GBDT),
Long-Short Term Memory (LSTM) [25], Bidirectional-LSTM
(Bi-LSTM), and Recurrent Neural Network (RNN). XGBoost
is selected as it has demonstrated success in previous research
on GPS spoofing, further corroborated by our study. In addi-
tion, we explore LSTM and RNN-based deep learning models
due to their capability to capture temporal dependencies and
recall past information. These models are widely employed
when dealing with time-series data.
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Fig. 5. ROC curves for different models, different time windows and different flight plans

The data set was divided into three parts using a 60-20-20
split, where 60% of the data was allocated for training, 20%
for validation, and 20% for testing. We evaluate the models
on the testing data. LSTM and RNN-based deep learning
models require the data to be normalized to combat the
vanishing or exploding gradient problem. Therefore, we apply
multiple normalization techniques, such as min-max scaling
and quartile range scaling, to the data set. We trained the mod-
els for 50 epochs. Gradient boosting models can effectively
utilize raw sensor values without data normalization. The
max depth of the gradient boosting models was 100, and the
evaluation metric was the area under the ROC curve (AUC).
The boosting process involved 1,000 rounds, but early stopping
was triggered after 50 rounds. After conducting evaluations
of these models, we have decided to adopt XGBoost as our
chosen model due to its superior performance compared to the
other models. The evaluation results are detailed in section IV.

IV. EVALUATION

In this section, we present the evaluation results of our
proposed sensor-based detection for UAV stealthy GPS spoof-
ing. We use receiver operating characteristic (ROC) curve to
visually present our detection performance. The ROC curve
shows the tradeoff between the true-positive rate (TPR) and
the false-positive rate (FPR) by the area under the ROC curve
(AUC). Our detection system is a binary classifier that classi-
fies whether a sequence of UAV sensor data is normal or there
is an attack. A perfect classifier would have a TPR of 1.0 and
an FPR of 0.0. TPR = TP

TP+FN measures a model’s ability
to correctly classify an attack. FPR = FP

FP+TN measures a
model’s performance in incorrectly classifying normal data as
attack. The goal is to maximize TPR and minimize FPR.

A. Evaluation Results

In our evaluation, we apply several machine learning algo-
rithms to our data set, including XGBoost, GBDT, LSTM, Bi-
LSTM, and RNN. We aim to select the best-performing model
that can effectively identify an attack while maintaining a low
false positive rate. In addition, we assess the impact of differ-
ent time windows on the detection performance. Furthermore,
our evaluation encompasses the model performance analysis
under different flight plans and different onboard sensors.

We first evaluate the performance of the five different ma-
chine and deep learning models under the most representative
straight and curved flight plans, and present their performance
in Fig. 5 where XGBoost gradient boosting model significantly
outperforms others, achieving the best AUC of 0.98716 in
detecting attacks using the default parameters. Thus, we have
chosen XGBoost as the model for our detection system and
used it for other evaluations. Table III provides additional
performance metrics for each model. Precision (P) = TP

TP+FP
measures the percentage of correct positive classifications.
Recall (R) = TP

TP+FN measures the proportion of true positive
classifications out of the actual positive instances. Accuracy
(Acc) = TP+TN

TP+TN+FP+FN measures the percentage of correct
classifications. F1 Score (F1) = 2TP

2TP+FP+FN measures the
harmonic mean of precision and recall. False Positive Rate
(FPR) = FP

FP+TN measures the proportion of incorrectly
classified positives out of all the true negatives. False Negative
Rate (FNR) = FN

FN+TP measures the proportion of incorrectly
classified negatives out of all the true positives. In our exper-
iment, since EKF is not able to detect any of our performed
stealthy GPS spoofing attack, both TP and FP are 0. The reason
EKF accuracy is not 0 is because there are normal data in our
collected dataset where EKF will also treat them as normal.

TABLE III
PERFORMANCE OF MACHINE LEARNING MODELS AND EKF

Performance Metric

Model P R Acc F1 FPR FNR
BiLSTM 0.852 0.910 0.828 0.880 0.357 0.090
GBDT 0.762 0.957 0.764 0.849 0.665 0.043
LSTM 0.852 0.916 0.832 0.883 0.360 0.084
RNN 0.834 0.895 0.804 0.863 0.403 0.105

XGBoost 0.949 0.967 0.941 0.958 0.118 0.033
EKF N/A 0 0.308 0 0 1

Next, we examine the effects of various time windows on
the ROC-AUC performance of our chosen model. We consider
only the straight and curved flight plans in this evaluation.
We test time windows ranging from 0.5 seconds to 5 seconds.
Fig. 5 illustrates the AUC values. The 0.5-second time window
performed the best with AUC = 0.98716, and the 1-second
time window performed similarly well at AUC = 0.98682.
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The 1-second time window could be a viable choice for the
model. However, a shorter time window allows faster detection
times. As a result, we select 0.5 second as the time window.

TABLE IV
FLIGHT SCENARIO PERFORMANCE METRICS

Performance Metric

Scenario P R Acc F1 FPR FNR
Straight 0.993 0.986 0.987 0.989 0.012 0.014
Curved 0.947 0.964 0.937 0.955 0.127 0.036

Combined (S+C) 0.949 0.967 0.941 0.958 0.118 0.033
Random 0.800 0.708 0.871 0.751 0.067 0.292

All (S+C+R) 0.918 0.912 0.907 0.915 0.099 0.088

Now, we assess the performance of our detection system
across the three distinct flight plans with the selected XGBoost
model. Fig. 5 illustrates the ROC curve of each flight scenario.
The XGBoost model accurately classifies straight flight plan
scenarios, where the UAV follows a predictable motion. The
straight flight plan is the most common flight scenario, and
the model’s performance is exceptional, achieving an AUC of
0.99873 and an accuracy of 0.987 shown in Table IV. The FPR
and FNR are very low, demonstrating that the detection system
is secure and has good usability. The performance slightly
diminishes in the case of the combined flight plans, resulting
in a lower AUC of 0.97255. Even though the performance
drops in the more complex flight scenarios, good accuracies
are still obtained with our proposed approach. Fig. 6 shows the
performance of each onboard sensor in detecting the stealthy
GPS spoofing attack, where we can clearly see that GPS and
IMU are the most effective onboard sensors.

Fig. 6. Performance of each onboard sensor using XGBoost model

V. CONCLUSION

This paper presents a UAV GPS spoofing attack detection
system that utilizes the XGBoost algorithm in order to classify
normal and attacked UAV sensor data. We collect simulated
UAV flight and sensor data through our PX4 and Gazebo
based simulation platform, and it is the largest dataset available
focusing on UAV stealthy GPS spoofing attack and onboard
sensor data-based detection. We examine the impact of differ-
ent machine learning models, time windows, and flight plans,
and identify the best-performing model in all studied scenarios.

With the best model, our detection system could achieve a very
high accuracy of 98.7% in the most common flight scenario.
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