
Citation: Alalhareth, F.K.; Gupta, M.;

Kojouharov, H.V.; Roy, S. Second-

Order Modified Nonstandard Explicit

Euler and Explicit Runge–Kutta

Methods for n-Dimensional

Autonomous Differential Equations.

Computation 2024, 12, 183.

https://doi.org/10.3390/

computation12090183

Academic Editors: Endre Kovács,

Denis Butusov and Valerii Ostrovskii

Received: 26 July 2024

Revised: 28 August 2024

Accepted: 6 September 2024

Published: 9 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Second-Order Modified Nonstandard Explicit Euler and Explicit
Runge–Kutta Methods for n-Dimensional Autonomous
Differential Equations
Fawaz K. Alalhareth 1,† , Madhu Gupta 2,† , Hristo V. Kojouharov 3,*,† and Souvik Roy 3,†

1 Department of Mathematics, College of Arts and Sciences, Najran University, Najran 55461, Saudi Arabia;
fkalalhareth@nu.edu.sa

2 Department of Computing and Data Science, Flame University, Pune 412115, India;
madhu.gupta@flame.edu.in

3 Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019, USA;
souvik.roy@uta.edu

* Correspondence: hristo@uta.edu
† These authors contributed equally to this work.

Abstract: Nonstandard finite-difference (NSFD) methods, pioneered by R. E. Mickens, offer accurate
and efficient solutions to various differential equation models in science and engineering. NSFD
methods avoid numerical instabilities for large time steps, while numerically preserving important
properties of exact solutions. However, most NSFD methods are only first-order accurate. This
paper introduces two new classes of explicit second-order modified NSFD methods for solving
n-dimensional autonomous dynamical systems. These explicit methods extend previous work by
incorporating novel denominator functions to ensure both elementary stability and second-order
accuracy. This paper also provides a detailed mathematical analysis and validates the methods
through numerical simulations on various biological systems.

Keywords: nonstandard; finite difference; elementary stable; second order; NSFD; dynamical systems
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1. Introduction

Dynamical systems are important in many disciplines, including biology, economics,
engineering, and chemistry. Because the majority of dynamical systems cannot be solved
analytically, numerical methods are typically used to approximate their solutions. However,
the stability properties of the corresponding numerical solutions are typically strongly
dependent on the computational step size, particularly when standard numerical methods
such as the explicit Euler and Runge–Kutta methods are used. R.E. Mickens [1] pioneered
the use of nonstandard finite-difference (NSFD) methods to overcome this dependency
while numerically preserving important properties of exact solutions. Since then, NSFD
methods have been developed and applied to a wide range of scientific and engineering
problems. Notably, NSFD methods have been constructed for numerically solving problems
in ecology [2–8] and epidemiology [9–22], for solving biochemical systems [23,24], and
general productive-destructive systems [25,26], to name a few. For a detailed review of
various NSFD methods, we refer the reader to [27–29]. In particular, several classes of
NSFD methods have been developed based on standard theta methods and standard two-
stage explicit Runge–Kutta (ERK2) methods [18,30–32]. However, these methods, while
preserving the local dynamical properties of solutions near equilibrium points, are only
first-order accurate. There exist some higher-order nonstandard numerical methods, such
as those presented in [23,25]; however, their elementary stability property has not yet
been established analytically. In [14], the proposed class of NSFD methods is elementary
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stable but is second-order accurate only for a very specific choice of parameters. In [33], a
second-order nonstandard method based on the Runge–Kutta methods is presented, but
the proposed elementary stable nonstandard explicit Euler’s method is only of first-order
accuracy. Recently, modified nonstandard theta and Runge–Kutta methods [34,35] that are
not only elementary stable but also second-order accurate have been presented. But, those
methods were only developed for one-dimensional autonomous dynamical systems.

This paper contributes to the field of NSFD methods by presenting two novel general-
ized versions of the NSFD explict Euler and NSFD explicit Runge–Kutta methods, which
are not only elementary stable but also second-order accurate, with the order of accuracy of
the underlying numerical method being improved in the case of the explicit Euler method.
Here, previous theoretical results are extended, and new explicit second-order modified
NSFD methods for solving n-dimensional autonomous dynamical systems are designed.
The extensions are based on the use of novel denominator functions that account for both
the elementary stability and the increased accuracy of the numerical methods. The modified
NSFD methods are applied for solving a forest biomass model, an epidemiological model,
and a predator–prey model. The numerical simulation results demonstrate the superior
performance of the proposed new NSFD methods.

This paper is structured as follows. The new explicit second-order modified NSFD
methods are constructed and analyzed in Section 2. Applications to two classical mathe-
matical biology models are presented in Section 3 to numerically validate the theoretical
results. In Section 4, some concluding remarks are made and future research directions
are outlined.

2. Main Results

An n-dimensional autonomous differential equation can be written as

x⃗ ′(t) = f⃗ (x⃗); x⃗(t0) = x⃗0, (1)

where x⃗ represents the vector function [x1(t), . . . , xn(t)]T , xi : [t0, T) → R, f⃗ = [ f1, . . . , fn]T

∈ C2(Rn;Rn) is differentiable, x⃗0 ∈ Rn. It is assumed that System (1) has a finite number of
only hyperbolic equilibria. For NSFD methods in the case of systems with non-hyperbolic
equilibria, see [36–38].

Definition 1. Let x⃗ ∗ be an equilibrium of System (1), J(x⃗ ∗) =
(

∂ fi
∂xj

(x⃗ ∗)
)

1≤i,j≤n
be the Jacobian

of System (1) at x⃗ ∗, with σ(J(x⃗ ∗)) denoting the spectrum of J(x⃗ ∗). An equilibrium x⃗ ∗ of System
(1) is called linearly stable if Re(λ) < 0 for λ ∈ σ(J(x⃗ ∗)), and linearly unstable if Re(λ) > 0 for
some λ ∈ σ(J(x⃗ ∗)).

A general finite-difference method which approximates the solution of System (1) on
the interval [t0, T] can be written as

Di,h(x⃗ k) = Fi,h( fi; x⃗ k), k = 0, . . . , Nt, (2)

where Di,h(x⃗ k) ≈ x′i
∣∣∣
t=tk

, Fi,h( fi; x⃗ k) ≈ fi(x⃗), x⃗ k ≈ x⃗(tk), tk = t0 + kh, k = 0, . . . , Nt,

i = 1, . . . , n, with mesh size h > 0.
The modified NSFD numerical methods discussed in this paper satisfy the two main

properties of NSFD methods, as formalized by Anguelov and Lubuma in [30] (see [32,39]),
which are that the denominator function φi(h), i = 1, 2, . . . , n, from the discretization of the

derivative, i.e., Di,h(x⃗ k) =
xk+1

i − xk
i

φi(h)
, is a non-negative function of the form φi(h) = h +

O(h2), and the right-hand side function is discretized using multiple steps, i.e., Fi,h( f⃗ ; x⃗ k) =
gi(x⃗ k, x⃗ k+1, h), where gi(x⃗ k, x⃗ k+1, h) is a multi-step approximation of the i component of
the right-hand side of System (1).
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Definition 2 ([30,32,39]). A finite-difference method is elementary stable if, for any value of the
step size h, its only fixed points x⃗ ∗ are the same as the equilibria of Equation (1) and the local
stability properties of each x⃗ ∗ are the same for both the differential equation and the discrete method.

2.1. General Second-Order Modified Nonstandard Explicit Euler Method

The new second-order modified nonstandard explicit Euler method is given in the
following theorem:

Theorem 1. Let f⃗ ∈ C2(Rn;Rn) and let φi : R+ ×Rn → R+, for i = 1, . . . , n, which satisfies
the following conditions:

(I)

φi(h, x⃗) =

h +
⟨∇x fi(x⃗), f⃗ (x⃗)⟩

fi(x⃗)
h2

2
+O(h3), fi(x⃗) ̸= 0

h, fi(x⃗) = 0
,

for all 1 ≤ i ≤ n.

(II) 0 < φi(h, x⃗) <
2|Re(λi)|

|λi|2
, for all hyperbolic equilibria x⃗ ∗ of Equation (1) with h > 0 and

for all x⃗ ∈ Rn.

Then, the modified nonstandard explicit Euler method

xk+1
i − xk

i
φi(h, x⃗ k)

= fi

(
x⃗ k
)

(3)

i = 1, . . . , n, for approximating the solution of Equation (1), is both second-order accurate and
elementary stable.

Proof. The second-order accuracy of the modified nonstandard explicit Euler method (3)
is proven using the Taylor series expansion about tk, which yields

1. If fi(x⃗k) ̸= 0, then

xi(tk+1)−
[

xi(tk) + φi(h, x⃗(tk)) fi(x⃗(tk))

]
=

[
xi(tk) + hx′i(tk) +

h2

2
x′′(tk) +O(h3)

]
−
[

xi(tk) + φi(h, x⃗(tk)) fi(x⃗(tk))

]
= hx′i(tk) +

h2

2
x′′i (tk)− φi(h, x⃗(tk)) fi(x⃗(tk)) +O(h3)

= h fi(x⃗(tk)) +
h2

2
⟨∇x fi(x⃗(tk)), f⃗ (x⃗(tk))⟩ − h fi(x⃗(tk))−

h2

2
⟨∇x fi(x⃗(tk)), f⃗ (x⃗(tk))⟩+O(h3)

= O(h3).

2. If fi(x⃗k) = 0, then the numerical method (3) reduces to xk+1
i = xk

i , which represents
an exact scheme for solving Equation (1) at t = tk.

Therefore, the numerical method (3) is of second-order accuracy.
To prove the elementary stability of the NSFD method (3), we assume that System (1)

has a finite number of only hyperbolic equilibria.
First, we need to show that the fixed points of Scheme (3) are equilbrium points to

System (1) and vise versa. Suppose that x⃗ ∗ is a fixed point of Scheme (3). Then,

x ∗
i = x ∗

i + φi(h, x⃗ ∗) fi(x⃗ ∗),

for all i = 1, . . . , n, this clearly implies fi(x⃗ ∗) = 0, i.e., x⃗ ∗ is an equilibrium point to System
(1). If x⃗ ∗ is an equilibrium point to System (1), then fi(x⃗ ∗) = 0, and we need to show that

x ∗
i = x ∗

i + φi(h, x⃗ ∗) fi(x⃗ ∗), (4)
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and Equation (4) clearly holds.
Next, let x⃗ ∗ be a hyperbolic equilibrium of System (1) and J = J(x∗) be the Jacobian

matrix evaluated at x⃗ ∗ with eigenvalues λ1, λ2, . . . , λn. The corresponding linear system
can then be given as follows:

x⃗ ′ = Jx⃗. (5)

If Λ is a Jordan form of J, then J = S−1ΛS, where S is a non-singular complex n × n
matrix. In general, Λ has the following bi-diagonal form:

λ1 α1
λ2 α2

. . . . . .
λn−1 αn−1

λn

,

where λi ∈ σ(J), i = 1, 2, . . . n, and αi = {0, 1}. Therefore, the linear system can be written
as x⃗ ′ = S−1ΛS x⃗, and the change of variables y⃗ = Sx⃗ yields the following new system:

y⃗ ′ = Λy⃗. (6)

Applying the numerical method (3) on the above system results in the following:

yk+1
1 − yk

1
φ1(h, y⃗ k)
yk+1

2 − yk
2

φ2(h, y⃗ k)
...

yk+1
n − yk

n
φn(h, y⃗ k)


= Λ


yk

1
yk

2
...

yk
n

 (7)

and, equivalently, the following vector formulation:

y⃗ k+1 = (I + VΛ)⃗y k, (8)

where V is the diagonal matrix:

V =


φ1(h, y⃗ k)

φ2(h, y⃗ k)
. . .

φn−1(h, y⃗ k)
φn(h, y⃗ k)

.

Note that the matrix (I + VΛ) is upper triangular and its eigenvalues are given by
µi(h, y⃗ k) = 1 + λi φi(h, y⃗ k), where λi ∈ σ(J), i = 1, 2, . . . , n. Observe that x⃗ ∗ being a stable
fixed point of System (8) is equivalent to∣∣∣ 1 + λi φi(h, y⃗ k)

∣∣∣ < 1, (9)

and therefore
|1 + φi(h, y⃗ k)Re(λi) + φi(h, y⃗ k) Im(λi)|2 < 1.
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From here, since φi(h, y⃗ k) > 0, a straightforward algebraic manipulation shows that
Inequality (9) is equivalent to

φi(h, y⃗ k) <
−2 Re(λi)

|λi|2
. (10)

Note that Condition (II) implies

0 < φi(h, y⃗ k) <
2|Re(λi)|

|λi|2
.

If x⃗ ∗ is a locally stable equilibrium, then |Re(λi)| = −Re(λi). Thus, from the above
inequality, it can be seen that Inequality (10) holds. Hence, x⃗ ∗ is a stable fixed point. On
the other hand, if x⃗ ∗ is an unstable equilibrium, then there is j0 ∈ {1, . . . , n}, such that
Re(λj0) > 0. This implies

φj0(h, y⃗ k) > 0 >
−2 Re(λj0)

|λj0 |2
,

since φj0(h, y⃗ k) > 0. Therefore, Inequality (10) is strictly not satisfied when x⃗ ∗ is an unstable
equilibrium. As a result, x⃗ ∗ is an unstable fixed point. Therefore, the numerical scheme (3)
is elementary stable.

Lemma 1. If fi(x⃗) ̸= 0, ϕi1 : R+ → R+ and ϕi2 : R → R+ satisfy the following conditions:

(a) 0 < ϕi1(h) < 1, for all h > 0, and ϕi1(h) = h − h2

2
+O(h3).

(b) 0 < ϕi2(h) < M, for all h ∈ R and some M > 0, and ϕi2(h) = 1 + h +O(h3).

Then, the functions

φi(h, x⃗) =
ϕi1(αh)

α
ϕi2

(
α − qi(x⃗)

2
h
)

, i = 1, . . . , n,

with α >
M
2

maxΩ
|λ|2

|Re(λ)| , where Ω =
⋃

x⃗ ∗∈Γ σ(J(x⃗ ∗)) and Γ denotes the set of all equilibria of

System (1) and qi(x⃗) = −⟨∇x fi(x⃗), f⃗ (x⃗)⟩
fi(x⃗)

, satisfy the conditions (I) and (I I) of Theorem (1).

Proof. Notice that

ϕi1(αh)
α

= h − αh2

2
+O(h3), and

ϕi2

(
α − qi(x⃗)

2
h
)
= 1 +

α − qi(x⃗)
2

h +O(h3).

Therefore,

φi(h, x⃗) = h +
⟨∇x fi(x⃗), f⃗ (x⃗)⟩

fi(x⃗)
h2

2
+O(h3),

which proves Condition (I). Next, since 0 < ϕi1(h) < 1 and 0 < ϕi2(h) < M, then one can
easily see that

0 <
ϕi1(αh)

α
ϕi2

(
α − qi(x⃗)

2
h
)
<

M
α

<
2|Re(λi)|
|λi|2

,

Therefore, Condition (II) is also satisfied.

Remark 1. There exists a variety of functions ϕi1 and ϕi2 that satisfy the conditions of Lemma 1.
One such set of functions is ϕi1(h) = 1 − e−h and ϕi2(h) = 1 + tanh(h), which can be used to
construct the denominator functions φi(h, x⃗) in Theorem 1.
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Remark 2. The modified nonstandard implicit one-stage theta method

xk+1
i − xk

i
φi(h, x⃗ k)

= fi

(
θx⃗ k+1 + (1 − θ)x⃗ k

)
(11)

and the modified nonstandard implicit two-stage theta method

xk+1
i − xk

i
φi(h, x⃗ k)

= θ fi(x⃗ k+1) + (1 − θ) fi(x⃗ k), (12)

i = 1, . . . , n, where θ ∈ (0, 1], for approximating the solution of Equation (1), are also both
second-order accurate and elementary stable. Here, f⃗ ∈ C2(Rn;Rn) and φi : R+ ×Rn → R+, for
i = 1, . . . , n, satisfies the following conditions:

(I)

φi(h, x⃗) =

h + (1 − 2θ)
⟨∇x fi(x⃗), f⃗ (x⃗)⟩

fi(x⃗)
h2

2
+O(h3), fi(x⃗) ̸= 0

h, fi(x⃗) = 0
,

for all 1 ≤ i ≤ n.

(II) 0 < φi(h, x⃗) <
2|Re(λi)|

|2θ − 1||λi|2
, 0 < θ ≤ 1, θ ̸= 1

2 , for all hyperbolic equilibria x⃗ ∗ of Equation

(1) with h > 0 and for all x⃗ ∈ Rn,

2.2. General Second-Order Modified Nonstandard ERK2 Method

The following result holds for the new modified nonstandard two-stage ERK2 method:

Theorem 2. Let f⃗ = [ f1, . . . , fn] ∈ C2(Rn;Rn) and let φ : R+ → R+ satisfy the following
conditions:

(I) φ(h) = h +O(h3),

(II) 0 < φ(h) <
1
q

, for all λ ∈ Ω, where q > maxΩ
|λ|2

2|Re(λ)| , Ω =
⋃

x⃗ ∗∈Γ σ(J(x⃗ ∗)) and Γ

denotes the set of all hyperbolic equilibria x⃗ ∗ of System (1).

Then, the modified nonstandard two-stage ERK2 method for approximating the solution of Equation
(1)

xk+1
i = xk

i + φ(h)
{
(1 − ω) fi(x⃗ k) + ω fi

(
x⃗ k +

1
2ω

f⃗ (x⃗ k)φ(h)
)}

, 0 < ω ≤ 1, (13)

i = 1, . . . , n, is of second-order accuracy and preserves the local stability property of each x⃗ ∗,
provided the method does not introduce additional fixed points other than those of Equation (1).
Furthermore, when Equation (1) is conservative, then Method (13) is also conservative.
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Proof. The second-order accuracy of the modified nonstandard two-stage ERK2 method
(13) is proven using the Taylor series expansion about tk, which yields

xi(tk+1)−
[

xi(tk) + φ(h)
{
(1 − ω) fi(x⃗(tk)) + ω fi

(
x⃗(tk) +

1
2ω

f⃗ (x⃗(tk))φ(h)
)}]

=

[
xi(tk) + hx′i(tk) +

h2

2
x′′i (tk) +O(h3)

]
−
[

xi(tk) + φ(h)

{
(1 − ω) fi(x⃗(tk))

+ ω

(
fi(x⃗(tk)) +

1
2ω

n

∑
j=1

φ(h) fi(x⃗(tk))
∂ fi
∂xj

(x⃗(tk)) +O(h2)

)}]

= xi(tk) + h fi(x⃗tk ) +
h2

2

n

∑
j=1

∂ fi
∂xj

(x⃗(tk)) fi(x⃗(tk))−
[

xi(tk) + φ(h)

{
(1 − ω) fi(x⃗(tk))

+ ω

(
fi(x⃗(tk)) +

1
2ω

φ(h)
n

∑
j=1

fi(x⃗(tk))
∂ fi
∂xj

(x⃗(tk)) +O(h3)

)}]

= (h − φ(h)) fi(x⃗(tk)) +

(
h2

2
− φ2(h)

2

) n

∑
j=1

∂ fi
∂xj

(x⃗(tk)) fi(x⃗(tk)) +O(h3) = O(h3),

which implies the second-order accuracy of the numerical method (13).
To prove the elementary stability of the NSFD method (13), we assume that System

(1) has a finite number of only hyperbolic equilibria. Let x⃗ ∗ be an hyperbolic equilibrium
of System (1) and J be the Jacobian matrix evaluated at x⃗ ∗ with eigenvalues λ1, λ2, . . . , λn.
Let Λ be a Jordan form of J, given as follows:

λ1 α1
λ2 α2

. . . . . .
λn−1 αn−1

λn


where λi ∈ σ(J), i = 1, 2, . . . n, and αi = {0, 1}. Then, we have J = S−1ΛS. Using a similar
argument as in the proof of Theorem 1, the numerical method (13) can be applied to

y⃗ ′ = Λy⃗, (14)

where y⃗ = Sx⃗. This yields

y⃗ k+1 = y⃗ k + φ(h)
{
(1 − ω)Λy⃗ k + ωΛ

(
y⃗ k +

1
2ω

Λy⃗ k φ(h)
)}

,

which results in

y⃗ k+1 =

[
I + φ(h)(1 − ω)Λ + ωφ(h)Λ

(
1 +

1
2ω

φ(h)Λ
)]

y⃗ k

=

[
I + φ(h)(1 − ω)Λ + ωφ(h)Λ +

1
2

φ2(h)Λ2
]

y⃗ k

=

[
I + φ(h)Λ +

1
2

φ2(h)Λ2
]

y⃗ k.

The eigenvalues of I + φ(h)Λ + 1
2 φ2(h)Λ2 are given as

µi(h) = 1 + φ(h)λi +
1
2

λ2
i φ2(h).
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Therefore, showing that x⃗ ∗ is a stable equilibrium is equivalent to showing that
|µi(h)| < 1 for all i = 1, · · · , n, i.e.,

|1 + φ(h)λi +
1
2

λ2
i φ2(h)| < 1. (15)

Inequality (15) corresponds to(
1 + φ(h)Re(λi) +

φ2(h)
2

{
[Re(λi)]

2 − [Im(λi)]
2
})2

+ φ2(h)(Im(λi))
2(1 + Re(λi)φ(h))2 < 1,

which is equivalent to

1
4
|λi|4 φ3(h) + Re(λi)|λi|2 φ2(h) + 2|λi|2 φ(h) + 2 Re(λi) < 0.

Denote ri(t) = 1
4 |λi|4t3 + Re(λi)|λi|2t2 + 2|λi|2t + 2 Re(λi). Thus, Inequality (15) is

equivalent to ri(φ(h)) < 0 for each λi, where i = 1, 2, . . . , n. Similarly, to show that x⃗ ∗

is an unstable equilibrium point is equivalent to showing that there exists an i, such that
ri(φ(h)) > 0. The rest of the proof follows from [32].

Finally, the conservative property of the modified nonstandard two-stage ERK2
method (13) is proven. For this purpose, we assume that Equation (1) is conservative.
First, observe that the denominator function φ(h) is independent of x and is thus the
same for each component i = 1, . . . , n, of the numerical method. Next, summing over all
i = 1, . . . , n yields the following:

n

∑
i=1

xk+1
i =

n

∑
i=1

xk
i + φ(h)

{
(1 − ω)

n

∑
i=1

fi(x⃗ k) + ω
n

∑
i=1

fi

(
x⃗ k +

1
2ω

f⃗ (x⃗ k)φ(h)
)}

and, therefore,
n

∑
i=1

xk+1
i =

n

∑
i=1

xk
i ,

since ∑n
i=1 fi(x⃗ k) = ∑n

i=1 fi

(
x⃗ k +

1
2ω

f⃗ (x⃗ k)φ⃗(h)
)
= 0.

Remark 3. All equilibria of System (1) are also fixed points of Method (13), since fi(x⃗ ∗) = 0
implies that

(1 − ω) fi(x⃗ ∗) + ω fi

(
x⃗ ∗ +

1
2ω

f⃗ (x⃗ ∗)φ(h)
)
= (1 − ω) fi(x⃗ ∗) + ω fi(x⃗ ∗) = fi(x⃗ ∗) = 0

for i = 1, . . . , n and x⃗ ∗ ∈ Rn; however, the vice versa is not necessarily always true. When all fixed
points of Method (13) are also the equilibria of System (1), then Method (13) is elementary stable.

Remark 4. There exists a variety of functions φ(h) which satisfy the conditions of above Theorem 2,
ensuring a second-order accurate and elementary stable method (13). One such denominator function

is φ(h) =
tanh(qh)

q
, where q > maxΩ

|λ|2
2|Re(λ)| .

Remark 5. When analytical computations of the steady states and spectra of the Jacobian matrix for
System (1) are difficult, numerical computations can be performed using any standard root-finding
algorithms and power methods. Because those computations need to be carried out only once,
at the beginning of the numerical implementation, they do not considerably increase the overall
computational cost of the NSFD methods.
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3. Numerical Simulations

In this section, the performance of the proposed new explicit second-order modified
NSFD methods is illustrated. The modified NSFD explicit Euler (modified NSFD EE)
method (12) and the modified nonstandard two-stage ERK2 method (13), with ω = 1/2,
are chosen. Furthermore, the two-stage modified nonstandard ERK2 method (13) with
ω = 1/2 is henceforth referred to as the modified NSFD ERK2 method. The modified
NSFD methods are compared to other standard and nonstandard finite-difference methods
for solving three specific biological systems.

For the numerical test cases, we consider a class of linear and nonlinear autonomous
ODE systems. The linear system has an exact solution that enables us to compare the
accuracy and performance of our proposed methods with other NSFD and non-NSFD
methods. The nonlinear systems are used to demonstrate the performance of our proposed
methods on general classes of autonomous ODEs.

In Test Case 1, we consider the following forest biomass model, presented in [40]:

x′(t) = −x(t) + 3y(t)

y′(t) = −3y(t) + 5z(t)

z′(t) = −5z(t),

(16)

where x(t) represents the biomass decayed into humus, y(t) the biomass of dead trees,
and z(t) the biomass of living trees. The initial data are x(0) = 0, y(0) = 0, and z(0) = z0,
which assumes that there are no dead trees and no humus at t = 0. The exact solution of
the above system is given by

x(t) =
15
8
(e−t − 2e−3t + e−5t)z0

y(t) =
5
2
(e−3t − e−5t)z0

z(t) = e−5tz0

(17)

We compare our modified NSFD EE and modified NSFD ERK2 methods with the
NSFD EE and NSFD ERK2 methods [32], the NSFD θ = θ̂ = 1

2 and NSFD θ = 0, θ̂ = 1
methods [10,14], the NSFD separate method ([40], Equation (23)), and the explicit Runge–
Kutta methods of order four (RK4) [41], applied to Model (16). Figure 1a shows that all
methods are working quite well for small values of the time step, particularly for h = 0.1.
It is also evident from Figure 1b, which shows the absolute error of all the methods, that
the first-order methods have larger errors as compared to the second- and fourth-order
methods. Figure 1c shows a comparison of the numerical methods for solving Model (16)
using a large step size h = 0.569, where we see that RK4 becomes unstable while the other
nonstandard methods are converging to the solution even for large values of h. Finally,
Figure 1d shows the order plots of all the numerical methods. A comparison of the l∞

errors at the final time T = 10 and convergence rates for the numerical solution obtained
with various NSFD methods is presented in Table 1. We define the l∞ error as

E(h) = ∥xh − x∥∞,

where
∥y∥∞ = max

k=0,··· ,Nt
|yk|

represents the discrete l∞ norm of the vector y, and x represents the exact solution of
Equation (1). The errors are calculated by using the exact solution given in Equation (17).
We observe from Table 1 that the solutions obtained using the modified NSFD EE and
modified NSFD ERK2 methods converge to the exact solution with rate 2, which also
validates our theoretical results and the observations made in Figure 1.
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In Test Case 2, the conservative MSEIR epidemiological model in [10,14] is considered,
with the notation x⃗ = (x1, x2, x3, x4, x5) = (m, s, e, i, r):

dx1

dt
= d(x3 + x4 + x5)− δx1,

dx2

dt
= −βx2x4 + δx1,

dx3

dt
= βx2x4 − (ϵ + d)x3,

dx4

dt
= ϵx3 − (γ + d)x4,

dx5

dt
= γx4 − dx5.

(18)

The following initial conditions x1(0) = 0.1, x2(0) = 0.05, x3(0) = 0.05, x4(0) =
0.1, x5(0) = 0.7 and parameter values d = 1/(40 × 365), β = 0.14, γ = 1/7, δ = 1/180, ϵ =
1/14 are used in numerical simulations.

The novel nonstandard denominator functions φi for the modified NSFD EE method
are selected using Remark 1, as follows:

φi(h, x⃗) =
(

1 − exp(−αh)
α

)(
1 + tanh

(
α − qi(x⃗)

2
h
))

,

for i = 1, . . . , 5. Here, the parameters qi are given according to Lemma 1:

qi = −

(
f1

∂ fi
x1

+ f2
∂ fi
∂x2

+ f3
∂ fi
∂x3

+ f4
∂ fi
∂x4

+ f5
∂ fi
∂x5

)
fi

,

i = 1, . . . , 5, where

f1(x⃗) = d(x3 + x4 + x5)− δx1

f2(x⃗) = −βx2x4 + δx1

f3(x⃗) = βx2x4 − (ϵ + d)x3

f4(x⃗) = ϵx3 − (γ + d)x4

f5(x⃗) = γx4 − dx5.

The Jacobian matrix has the following form:
−δ 0 d d d
δ −βx4 0 −βx2 0
0 βx4 −(ϵ + d) βx2 0
0 0 ϵ −(γ + d) 0
0 0 0 γ −d

.

and the eigenvalues evaluated at the epidemic equilibrium are λ1 = −0.214422, λ2 =
−0.00555541, λ3 = −0.000300252, λ4 = 0.000232743 and λ5 = 1.95907 × 10−18. Accord-
ingly, the value α = 0.3 > 0.214422 = max

{
|λi |2

|Re(λi)|
: i = 1, . . . , 5

}
was used in the denomi-

nator function of the modified NSFD EE method. For the modified NSFD ERK2 method,

the denominator function is chosen as φ(h) =
tanh(qh)

q
, with q = 0.25 > 0.107211 =

max
{

|λi |2
2|Re(λi)|

: i = 1, . . . , 5
}

.
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Figure 1. Test Case 1: Comparison of the modified NSFD EE and modified NSFD ERK2 methods to
the NSFD EE, NSFD ERK2, NSFD θ = θ̂ = 1

2 , NSFD θ = 0, θ̂ = 1, NSFD separate, and RK4 methods,
applied to Model (16), using step size h = 0.1 (a,b) and stepsize h = 0.569 (c). The order plots for all
eight methods are shown in (d). For illustration purposes, only plots of the biomass that has decayed
into humus are shown.

Table 1. Test Case 1: Discrete l∞ error (top) and the rates of convergence (bottom) of the new modified
NSFD EE and NSFD ERK2 methods, and the NSFD EE, NSFD ERK2, NSFD θ = θ̂ = 1

2 , NSFD
θ = 0, θ̂ = 1, NSFD separate, and RK4 methods for solving System (16).

h Modified
NSFD EE

Modified
NSFD
ERK2

NSFD EE NSFD
ERK2

NSFD
θ = θ̂ = 1

2

NSFD
θ = 0, θ̂ = 1

NSFD
Separate RK4

5.00 × 10−1 5.16 × 10−1 8.38 × 10−1 6.39 × 10−1 5.06 × 10−1 4.54 × 10−1 1.26 × 100 2.76 × 100 4.39 × 1011

2.50 × 10−1 4.54 × 10−1 3.81 × 10−1 4.60 × 10−1 3.89 × 10−1 2.36 × 10−1 4.90 × 10−1 1.02 × 100 8.74 × 10−1

1.25 × 10−1 2.26 × 10−1 1.10 × 10−1 2.60 × 10−1 2.43 × 10−1 8.01 × 10−2 2.26 × 10−1 4.40 × 10−1 3.27 × 10−2

6.25 × 10−2 8.09 × 10−2 2.61 × 10−2 1.33 × 10−1 1.35 × 10−1 2.18 × 10−2 8.40 × 10−2 1.97 × 10−1 1.14 × 10−3

3.12 × 10−2 2.43 × 10−2 5.27 × 10−3 6.71 × 10−2 7.08 × 10−2 5.58 × 10−3 4.13 × 10−2 9.24 × 10−2 5.66 × 10−5

1.56 × 10−2 6.83 × 10−3 1.33 × 10−3 3.35 × 10−2 3.61 × 10−2 1.40 × 10−3 2.05 × 10−2 4.48 × 10−2 3.06 × 10−6

7.81 × 10−3 1.83 × 10−3 3.35 × 10−4 1.67 × 10−2 1.82 × 10−2 3.51 × 10−4 1.02 × 10−2 2.20 × 10−2 1.78 × 10−7

3.90 × 10−3 4.78 × 10−4 8.38 × 10−5 8.35 × 10−3 9.13 × 10−3 8.79 × 10−5 5.09 × 10−3 1.09 × 10−2 1.07 × 10−8

Rate 1.93 1.99 0.99 1.00 1.99 1.00 1.01 4.05

In Figure 2a, the two new modified nonstandard methods are compared with two
of the nonstandard numerical methods presented in [14]. Note that the method in [14]
for θ = 0, θ̂ = 1 is an explicit NSFD method, but with a different approximation of the
nonlinear right-hand side terms and a denominator function φ(h) = (1 − exp(−Qh))/Q,
where Q = max{δ, ϵ+ d, γ+ d, β}. Also, the method in [14] for θ = θ̂ = 1

2 is a second-order

NSFD method with a denominator function φ(h) =
tanh(Qh)

Q
, where Q = 1

2 max{δ, ϵ +

d, γ + d, β}. In Figure 2a, these two numerical methods are denoted by NSFD θ = 0, θ̂ = 1
and NSFD θ = θ̂ = 1

2 , respectively. In the figure, it can be seen that the behavior of the
numerical solutions from the modified NSFD EE and the modified NSFD ERK2 methods is
superior to those produced by the NSFD methods in [14]. In addition, the absolute error
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plots of the modified NSFD EE and the modified NSFD ERK2 methods are presented for
h = 1 in Figure 2b. The absolute errors are calculated by using the numerical solution
obtained on the finest grid as a benchmark. As can be seen in Figure 2b, the error in the
numerical solution from the modified NSFD ERK2 method is less than the error from the
modified NSFD EE method.
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Figure 2. Test Case 2: Comparison of the modified NSFD EE and the modified NSFD ERK2 methods
to other numerical methods, applied to Model (18), using step size h = 0.5. For illustration purposes,
only the infected population plots are shown.

Next, a comparison of the l∞ errors at the final time T = 120 and convergence rates
for the numerical solution obtained with various NSFD methods is presented in Table 2.
The errors are calculated by using the numerical solution obtained on the finest grid as
a benchmark. We observe from Table 2 that the solutions obtained using the modified
NSFD EE and modified NSFD ERK2 methods again converge to the exact solution with
rate 2, even for a nonlinear system, which also validates our theoretical results and the
observations made in Figure 2.

Table 2. Test Case 2: Discrete l∞ error (top) and the rates of convergence (bottom) of the new modified
NSFD EE and NSFD ERK2 methods for solving System (18).

h Modified NSFD EE Modified NSFD ERK2

1.00 × 100 1.73 × 10−1 5.32 × 10−2

5.00 × 10−1 1.61 × 10−1 3.13 × 10−2

2.50 × 10−1 1.36 × 10−1 1.22 × 10−2

1.25 × 10−1 9.09 × 10−2 3.56 × 10−3

6.25 × 10−2 4.02 × 10−2 9.34 × 10−4

3.12 × 10−2 1.26 × 10−2 2.39 × 10−4

1.56 × 10−2 3.41 × 10−3 6.14 × 10−5

7.81 × 10−3 8.96 × 10−4 1.61 × 10−5

Rate 1.93 1.93

In Test Case 3, the predator–prey system with a Beddington–DeAngelis functional
response in [32] is considered, with the notation x⃗ = (x1, x2) = (x, y):

dx1

dt
= x1 −

Ax1x2

1 + x1 + x2
,

dx2

dt
=

Ex1x2

1 + x1 + x2
− Dx2,

(19)

where x1 and x2 represent the prey and predator population sizes, respectively. Pa-
rameter values A = 6.0, D = 5.0, and E = 7.5 are used in the numerical simulations.
Stability analysis of System (19) reveals that there exist two equilibria [32]: (0, 0) and
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(
AD

AE − E − AD
,

E
AE − E − AD

)
= (4, 1). The eigenvalues of the Jacobian matrix eval-

uated at (0, 0) are λ1 = 1 and λ2 = −5, while the eigenvalues evaluated at (4, 1) are
λ3,4 = − 1

12 ± i
√

119
12 , with |λ3,4| = 0.9129. Therefore, the coexistence equilibrium (4, 1) is

globally asymptotically stable in the interior of the first quadrant, while (0, 0) is unstable.
The novel nonstandard denominator functions φi for the modified NSFD EE method

are selected using Remark 1, as follows:

φi(h, x⃗) =
(

1 − exp(−αh)
α

)(
1 + tanh

(
α − qi(x⃗)

2
h
))

,

for i = 1, 2, using

qi(x⃗) = −

(
f1(x1, x2)

∂ fi
∂x1

+ f2(x1, x2)
∂ fi
∂x2

)
fi(x1, x2)

,

where f1(x1, x2) = x1 −
Ax1x2

1 + x1 + x2
and f2(x1, x2) =

Ex1x2

1 + x1 + x2
− Dx2, and α = 10.1 >

maxΩ
|λ|2

|Re(λ)| . For the modified NSFD ERK2 method, the denominator function is chosen

as φ(h) =
tanh(qh)

q
, with q = 5.1 > maxΩ

|λ|2
2|Re(λ)| , where Ω =

⋃
x⃗ ∗∈Γ σ(J(x⃗ ∗)), and Γ

denotes the set of all hyperbolic equilibria x⃗ ∗ of System (1).
Figure 3 compares the modified NSFD EE method with the NSFD EE method for

h = 0.02. As can be seen in Figure 3a–c, there is a slight horizontal shift in both components
of the numerical solution from the first-order NSFD EE method, while the numerical
solution from the modified NSFD EE method converges much more accurately to the exact
solution. In addition, absolute error plots, using the numerical solution on the finest grid as
a benchmark, are presented in Figure 3d, where the new modified NSFD EE method clearly
outperforms the NSFD EE method. A similar comparison of the numerical methods is
presented in Figure 4, where the second-order modified NSFD ERK2 method outperforms
the first-order NSFD ERK2 method for h = 0.05.

Next, we compare the execution time and the computational cost for the presented
explicit second-order modified NSFD methods, modified NSFD explicit Euler and modified
NSFD ERK2 methods, with the implicit Rosenbrock23 method or order 2 [42], the Magnus
exponential integrator of order 2 [43], and the MATLAB® built-in adaptive time-stepping
solvers ode23s (based on the modified Rosenbrock formula of order 2), ode23, ode15s, and
ode23t, with MATLAB’s default absolute tolerance of 1.00 × 10−6 and relative tolerance of
1.00 × 10−3 [44]. The simulations were performed using MATLAB R2022a on a MacBook
Pro (13-inch Apple M1, Apple, Tokyo, Japan) with MacOS 14.4.1(23E224), 8 cores, and
16 Gb RAM; the results are displayed in Table 3. The execution time for each numerical
method was calculated using MATLAB’s tic and toc functions to measure the elapsed
time in seconds, while the computational cost coefficient was calculated as the ratio of
the elapsed times for the numerical method to our corresponding explicit second-order
modified NSFD method. There are alternative approaches of estimating the computational
cost of the various methods used; nevertheless, our approach accurately reflects the relative
performance of these methods. As can be seen in the table, our second-order modified
NSFD ERK2 method is the most efficient integrator within this group of numerical methods,
followed closely by our second-order modified NSFD explicit Euler method and MATLAB’s
ode23 solver. This is in contrast with the other numerical integrators, particularly the
Magnus exponential integrator and MATLAB’s ode23s solver, whose computational cost
is the highest of all the methods considered. It is also important to note that the modified
NSFD ERK2 method is more computationally efficient than the modified NSFD EE method.
This is because the denominator function φ(h) in the modified NSFD ERK2 method is the
same for all solution components and does not change over time (Theorem 2), whereas
the denominator function φi(h, x⃗ k) in the modified NSFD EE method (Theorem 1) must be
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re-calculated for each solution component i and at every time step, making it the preferred
modified NSFD method in Test Case 3.
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Figure 3. Test Case 3: Comparison of the modified NSFD EE method to the NSFD EE method, applied
to Model (19), using h = 0.02.
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Figure 4. Test Case 3: Comparison of the modified NSFD ERK2 method to the NSFD ERK2 method,
applied to Model (19), using h = 0.05.
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Table 3. Comparison of the execution times, which was calculated using MATLAB’s tic and toc
functions to measure the elapsed time in seconds, as well as the computational cost coefficients, which
were calculated as the ratio of the elapsed times for the numerical method to our corresponding
explicit second-order modified NSFD method, for each of the considered numerical methods.

Modified
NSFD EE

Modified
NSFD
ERK2

MATLAB®

ode23s
MATLAB®

ode23
MATLAB®

ode15s
MATLAB®

ode23t
Rosenbrock Magnus

Execution time 2.32 × 10−2 6.53 × 10−3 7.22 × 10−2 1.77 × 10−2 4.58 × 10−2 4.93 × 10−2 9.85 × 10−2 4.20 × 10−1

computational
cost
coefficient

Modified
NSFD EE

1.00 0.28 3.11 0.76 1.97 2.13 4.24 18.1
Modified
NSFD ERK2

3.55 1.00 11.05 2.71 7.01 7.54 15.08 64.31

4. Conclusions

In this paper, two new classes of second-order modified nonstandard explicit Euler
and explicit Runge–Kutta methods for multi-dimensional autonomous dynamical systems
were presented and analyzed. The fundamental idea underlying the numerical methods’
development is the use of a novel modified nonstandard denominator function in the
discretization of the derivative. In the case of the modified NSFD explicit Euler method, the
denominator function is a product of two special functions. One of the functions satisfies
the methods’ second-order accuracy property, while the other function satisfies the stability
criteria of Theorem 1. For the modified nonstandard explicit Runge–Kutta method, a single
denominator function suffices to satisfy both the elementary stability and second-order
accuracy properties. Examples of denominator functions were presented that also serve as
instructions for choosing generic ones. Next, the proposed modified nonstandard methods
were applied to solve a biomass system, an MSEIR system, and a predator–prey system
with a Beddington–DeAngelis functional response. The results obtained using the new
numerical methods were compared to existing standard and nonstandard finite-difference
methods, and it was observed that the new explicit modified NSFD methods demonstrate
high accuracy and desirable stability properties, while still being computationally efficient
and easy to implement.
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