

1 **Membrane Voltage Dynamics of Parvalbumin Interneurons**

2 **Orchestrated Hippocampal Theta Rhythmicity**

3 **Authors:** Hua-an Tseng^{1*}, Rebecca A. Mount^{1*}, Eric Lowet¹, Howard J. Gritton², Cyrus Cheung¹, Xue

4 Han^{1#}

5 **Affiliations:**

6 ¹ Department of Biomedical Engineering, Boston University; Boston, Massachusetts, USA

7 ² Department of Comparative Biosciences, University of Illinois; Urbana, Illinois, USA

8 * These authors contributed equally to this work

9 # Corresponding author. Email: xuehan@bu.edu

10

11 **Abstract:**

12 Hippocampal network activity at theta frequencies (5-10Hz) is important for behavior. However, it
13 remains unclear how behaviorally-relevant network theta rhythms arise and interact with cellular
14 dynamics to dictate spike timing. We performed membrane voltage (V_m) imaging of individual CA1
15 pyramidal cells and parvalbumin interneurons with simultaneous local field potential (LFP) recordings in
16 mice during locomotion. We found that V_m theta rhythms organize spike timing in both cell types
17 regardless of behavioral conditions, but the V_m of parvalbumin interneurons is better synchronized with
18 LFP. The temporal relationships between spikes and LFP theta reliably reflect the V_m -LFP relationships
19 in parvalbumin cells, but not in pyramidal cells. Thus, cellular theta rhythms broadly organize spike
20 timing in CA1 neurons, and parvalbumin interneurons are critical in coordinating network theta rhythms.

21 **One-Sentence Summary:**

22 Cellular membrane voltage of parvalbumin interneurons organizes spiking and network dynamics in the
23 hippocampus.

24

25

26 **Introduction**

27 Hippocampal rhythmic network activities, captured by local field potential (LFP) oscillations, have been
28 broadly linked to learning and memory (1-4). Additionally, LFP oscillations have been shown to organize
29 spike timing during behavior (2, 5). As spike occurrence is also influenced by cellular biophysical
30 properties, anatomical connectivity patterns, and network states, different neuron subtypes exhibit
31 variable temporal relationships with LFP oscillations. Because the hippocampus displays prominent LFP
32 oscillations in the theta frequency range (5-10 Hz), many studies have characterized how spike timing in
33 different neuron subtypes relate to LFP theta phase (2, 5). Interestingly, CA1 pyramidal cell spiking does
34 not exhibit a consistent temporal relationship to LFP theta phase, likely due to variations in behavioral
35 conditions (1, 6-9). A well-known example is theta phase precession, in which the spiking of a CA1 place
36 cell gradually shifts to earlier phases of LFP theta as the animal traverses the place field of that particular
37 cell (3, 4, 10). In contrast, hippocampal interneurons, particularly parvalbumin-expressing (PV)
38 interneurons, exhibit much more consistent spike-LFP theta phase relationships (11-13). However, the
39 cellular mechanisms linking LFP theta oscillations and spike timing during behavior remain elusive.

40 PV cells play an important role in supporting CA1 LFP theta oscillations. Optogenetic activation or
41 suppression of PV cells respectively enhances or reduces CA1 LFP theta oscillations in hippocampal brain
42 slices (14), and genetically ablating synaptic inhibition onto PV interneurons *in vivo* reduces the CA1 LFP
43 theta oscillation (15). Further, CA1 PV interneurons are the primary target of the GABAergic medial
44 septum, which exhibits theta frequency rhythmic activity (2, 16-20). Thus, PV cells are hypothesized to
45 relay rhythmic septal input, thus entraining downstream neurons, including pyramidal cells and other
46 interneurons, via direct inhibitory synaptic input. Indeed, rhythmic depolarization of GABAergic basket
47 cells and axo-axonic cells (both largely PV cells) at theta frequencies can synchronize both spiking and
48 subthreshold voltage dynamics of CA1 pyramidal cells (21). Similarly, rhythmic optogenetic activation of
49 PV cells at theta frequencies paces pyramidal cell spiking *in vivo* (7). Finally, inhibitory inputs from PV cells

50 can modulate the relationship between pyramidal cell spike timing and LFP theta phase (1, 6). These
51 results support the critical role of PV cells in organizing pyramidal cell spiking to LFP theta phases.

52 Not only are theta oscillations prominent at the network level of the CA1, but intracellular studies have
53 demonstrated that the membrane potential (V_m) of individual hippocampal neurons shows theta
54 rhythmicity as well (22-27). V_m is shaped by both synaptic inputs and the biophysical and morphological
55 properties of the neuron (1, 28). Since spike generation relies on V_m depolarization, V_m oscillations of
56 individual neurons provide a critical cellular link between network LFP oscillations and the spiking output
57 of individual cells within that network. However, due to the technical difficulty of performing intracellular
58 electrophysiological recordings in specific neuron types in behaving mammals, there has been limited *in*
59 *vivo* evidence on how V_m relates to LFP and spike timing (24, 25, 29-33).

60 To investigate how cellular V_m oscillations of individual neurons link LFP theta oscillations and spike
61 timing, we performed *in vivo* voltage imaging of individual CA1 pyramidal cells and PV cells in awake
62 animals during resting and walking. These behavioral states induce different strengths of LFP theta power
63 in the CA1. We targeted CA1 pyramidal and PV interneurons through cell-type-specific expression of
64 SomArchon, a high-performance genetically-encoded voltage sensor that reports V_m at the soma (26, 34).
65 We characterized the relationships between V_m theta oscillations, spike timing, and LFP theta oscillations
66 in PV interneurons versus pyramidal cells during the two locomotor states.

67

68

69

70

71

72 **Results**

73 **Both CaMKII-positive pyramidal cells and PV interneurons exhibit prominent membrane voltage (Vm)**

74 **theta oscillations across behavioral states with low and high LFP theta power**

75 To investigate how membrane potential (Vm) of dorsal CA1 pyramidal cells versus PV-positive
76 interneurons relates to CA1 LFP, we performed simultaneous voltage imaging and LFP recording through
77 a chronically-implanted imaging window above the pyramidal cell layer coupled to an electrode \sim 200 μ m
78 below the imaging area (Figure 1A, E, and F, also see Methods). AAV9-CaMKII-SomArchon-GFP was used
79 to express SomArchon in CaMKII-positive neurons that are primarily pyramidal cells (CaMKII cells; N=31
80 neurons from 4 mice, all with simultaneous LFP). AAV9-FLEX-SomArchon-GFP was used in PV-Cre mice to
81 express SomArchon specifically in PV-positive cells (PV cells; N=48 neurons from 9 mice, 28 cells with
82 simultaneous LFP) (Supplemental Figure 1). During each recording session, SomArchon voltage imaging
83 and LFP recording were performed while mice were resting or walking at a rate of 11.75 cm/s on a
84 motorized treadmill (Figure 1A).

85 Since hippocampal LFP theta oscillations have been broadly documented during locomotion (2, 35-38),
86 we first compared LFP oscillation power between resting and walking and found a significant increase in
87 LFP theta power during walking (Figure 1B-D, N=59 cells, 31 CaMKII cells and 28 PV cells, Wilcoxon signed
88 rank test, $p<0.0001$, resting: 0.29 ± 0.20 , running: 0.55 ± 0.30 , also see Supplemental Figure 2). LFP measures
89 extracellular field potentials around the electrode site, capturing aggregate currents across the somatic,
90 dendritic, and axonal membranes of the local brain area. To examine how these network-level CA1 LFP
91 oscillations relate to cellular-level Vm dynamics in individual CA1 neurons, we recorded somatic
92 transmembrane voltage-dependent SomArchon fluorescence (Vm) with a wide-field microscope at 827Hz.
93 We detected prominent Vm theta oscillations in both CaMKII cells and PV interneurons during both resting
94 and walking (Figure 1G and K, respectively). Despite the increase in LFP theta power during walking,

95 CaMKII Vm theta power decreased during walking compared to resting (Figure 1H and I, N=31 cells,
96 Wilcoxon signed rank test, p=0.0282, resting: 0.22 ± 0.21 , walking: 0.14 ± 0.20) and PV Vm theta power
97 remained constant between the two conditions (Figure 1L and M, N=48 cells, Wilcoxon signed rank test,
98 p=0.2680, resting: 0.23 ± 0.15 , walking: 0.27 ± 0.24). Thus, Vm theta oscillations are prominent cellular
99 features of both CaMKII and PV neurons, and cellular theta oscillation power is not enhanced by walking,
100 unlike network LFP theta power.

101

102 **Spike timing in both CaMKII and PV neurons is organized by Vm theta oscillation phase**

103 Having established that both CaMKII and PV neurons exhibited prominent Vm theta oscillations, we then
104 evaluated how spikes in CaMKII and PV neurons relate to Vm theta oscillations. We first identified spikes
105 in the recorded Vm traces as previously described (see Methods). We found no significant differences in
106 the firing rates of either population between the two behavioral conditions (Figure 1J and N, CaMKII cells:
107 N=31 cells, Wilcoxon signed rank test, p=0.0938, resting: 9.73 ± 8.84 Hz, walking: 7.74 ± 7.76 Hz, PV cells:
108 N=48 cells, Wilcoxon signed rank test, p=0.5485, resting: 9.36 ± 6.48 Hz, walking: 8.54 ± 5.76 Hz).

109 Oscillations can be characterized by the temporal component (oscillation phase) and the amplitude
110 component (oscillation power), and here we first considered phase. Previous intracellular patch clamp
111 recording and voltage imaging studies in CA1 neurons have shown that spikes are generally more phase-
112 locked to Vm theta oscillations than LFP theta oscillations (24-26). However, it is unknown whether spike-
113 Vm theta phase-locking in individual neurons is modulated across behavioral states with enhanced or
114 reduced LFP theta power. We found that most CaMKII and PV cells showed significant spike-Vm theta
115 phase-locking regardless of behavioral condition, with similar fractions of phase-locked cells in each
116 population (CaMKII: Figure 2A, N=31 cells, resting: 77%, walking: 71%, Fisher's exact test, p=0.7723; PV:
117 Figure 2C, N=48 cells, resting: 83%, walking: 81%, Fisher's exact test, p=1.0000). Additionally, the strength

118 of spike-Vm theta phase-locking across neurons was also similar during both resting and walking (CaMKII:
119 Figure 2B, N=31 cells, Wilcoxon signed rank test, $p=0.8909$, resting: 0.37 ± 0.15 , walking: 0.36 ± 0.11 , PV:
120 Figure 2D, N=48 cells, Wilcoxon signed rank test, $p=0.3560$, resting: 0.38 ± 0.13 , walking: 0.36 ± 0.13).
121 In both CaMKII and PV neurons, almost all spikes occurred on the rising phase of the Vm theta cycle,
122 during Vm depolarization, regardless of behavioral condition (CaMKII: Figure 2E and F, PV: Figure 2I and
123 J). For both cell types, over 80% of neurons showed average spike-Vm theta phase-locking on the second
124 half of the rising phase, with spikes occurring just before the peak of Vm theta oscillation (CaMKII: Figure
125 2G and H, PV: Figure 2K and L). These results show that spike timing is consistently coupled to the rising
126 phase of the Vm theta oscillation in both pyramidal cells and PV interneurons, and this phase relationship
127 is insensitive to behavioral conditions. The preferred occurrence of spikes on the rising phase provides
128 direct evidence in behaving animals that spike generation threshold is not restricted to a fixed voltage.
129 Instead, spikes preferentially occur during the monotonic depolarization of the rising phase, rather than
130 the monotonic repolarization of the falling phase, of a Vm theta cycle, consistent with previous studies
131 (39-43).
132

133 **Spike occurrence is associated with prolonged Vm theta cycles and elevated Vm theta power**

134 We next examined how spike occurrence influence Vm theta oscillations. Vm theta power fluctuates
135 during behavior; thus, to probe the relationship between spiking and Vm theta power, we calculated
136 instantaneous theta power for each individual theta cycle and split the cycles into those with high (>0.5)
137 versus low (<0.5) power. In CaMKII cells, high-power Vm theta cycles were associated with higher firing
138 rates than low-power cycles during resting, but not walking (Figure 2M and N, respectively, N=31 cells,
139 Wilcoxon signed rank test, resting $p=7.202e-6$, resting-low power firing rate: $8.54\pm8.79\text{Hz}$, resting-high
140 power firing rate: $12.11\pm9.58\text{Hz}$, walking $p=0.1313$, walking-low power firing rate: $7.72\pm7.62\text{Hz}$, resting-

141 high power firing rate: 8.66 ± 8.74 Hz). In contrast, in PV cells, high-power Vm theta cycles were associated
142 with higher firing rates regardless of behavioral condition (Figure 2S and T, respectively, N=48 cells,
143 Wilcoxon signed rank test, resting p=6.712e-6, resting-low power firing rate: 8.13 ± 6.98 Hz, resting-high
144 power firing rate: 10.89 ± 6.23 Hz, walking p=0.0001, walking-low power firing rate: 7.68 ± 5.80 Hz, resting-
145 high power firing rate: 9.63 ± 6.25 Hz). Overall, these results suggest that PV Vm theta power reliably
146 determines spike generation, whereas the relationship between CaMKII Vm theta power and firing rate is
147 behaviorally modulated.

148 *In vitro* electrophysiology studies have also widely documented that the occurrence of spikes can alter
149 ongoing Vm dynamics by changing voltage-dependent conductance across the soma and dendrites (44-
150 46). For example, spiking in hippocampal pyramidal cells is sometimes followed by prolonged
151 depolarization, known as after-depolarization potential, that can last for tens of milliseconds (47).
152 Therefore, we next explored whether spiking influences the length of Vm theta cycle and the amplitude
153 of Vm theta power. Indeed, we found that Vm theta cycles that included spikes were significantly longer
154 and had higher theta power than cycles without spikes in both cell types, under both behavioral conditions
155 (CaMKII: Figure 2O-R, N=31 cells, Wilcoxon signed rank test, see figure for p-values, PV: Figure 3U-X, N=48
156 cells, Wilcoxon signed rank test, see figure for p-values). Thus, the occurrence of spikes is associated with
157 prolonged Vm theta cycles and elevated Vm power, indicating a close relationship between spikes and
158 Vm theta oscillations regardless of cell type or behaviorally-evoked network state.

159

160 **PV neurons show more consistent spike-LFP theta phase-locking than CaMKII neurons**

161 Like Vm oscillations, LFP oscillations can be described by both phase and power components. We first
162 focused on the relationship between spikes and LFP theta phase. Previous extracellular recording studies
163 demonstrated that CA1 pyramidal cell spiking exhibits diverse temporal relationships to LFP theta phase

164 (1, 3, 4, 6-10). In contrast, spikes in fast-spiking interneurons (putative PV cells) generally occur at a narrow
165 range of LFP theta phase (11, 12). As we detected a prominent increase in LFP theta power during walking
166 (Figure 1), we asked whether spike-LFP phase relationships were modulated by behavioral state, even
167 though the spike-V_m phase relationships we observed were insensitive to behavioral changes. We found
168 that the strength of spike-LFP theta phase-locking significantly increased during walking for both CaMKII
169 and PV populations compared to resting (CaMKII: Figure 3A and B, N=31 cells, Wilcoxon signed rank test,
170 p=0.0057, resting: 0.12±0.09, walking: 0.19±0.12, PV: Figure 3C and D, N=28 cells, Wilcoxon signed rank
171 test, p=0.0006, resting: 0.18±0.07, walking: 0.24±0.11). The fraction of cells that exhibited significant
172 spike-LFP theta phase-locking did not change between behavioral conditions for either cell type (CaMKII:
173 Figure 3A, N=31 cells, resting: 26%, walking: 32%, Fisher's exact test, p=0.7802, PV: Figure 3C, N=28 cells,
174 resting: 57%, walking: 79%, Fisher's exact test, p=0.1516). However, a larger fraction of PV cells exhibited
175 spike-LFP theta phase-locking compared to CaMKII cells during both behavioral conditions (Figure 3A and
176 C, Fisher's exact test, resting: p=0.0185, walking: p=0.0006).

177 To further examine spike-LFP phase relationships at the individual neuron level, we calculated a
178 probability distribution of spikes relative to LFP theta phase for each neuron (Figure 3 E, F, I, and J). Across
179 the entire CaMKII population, the spike-LFP theta phase of individual neurons spread throughout LFP
180 theta phase regardless of behavioral condition (Figure 3G and H), consistent with previous work showing
181 diverse phase-locking of pyramidal cell spiking to LFP theta (1, 6-9). In contrast, spike-LFP phase locking
182 for individual PV cells concentrated around the late rising phase of LFP theta during resting and became
183 more heterogeneous across the entire rising phase during walking (Figure 3K and L). The spike-LFP phase
184 distributions of CaMKII and PV cells were significantly different from one another during both behavioral
185 conditions (Chi-squared test, resting: p<0.0001, walking: p=0.0012).

186 We then investigated the power component of LFP theta relative to spikes, and found that LFP power was
187 not coupled to spike timing under either locomotion condition in either cell type (Supplemental Figure 3).

188 The lack of change in LFP power around spikes is consistent with the idea that there are broad and
189 heterogeneous sources contributing to LFP signal, and thus individual neuron spiking alone is not sufficient
190 to generate significant LFP oscillations in CA1 (5).

191

192 **PV Vm theta oscillations are more synchronized with LFP theta oscillations and the synchronization of**
193 **PV Vm and LFP is accompanied by elevated LFP theta power**

194 Because of the unique relationships observed between spiking and cellular-level Vm theta versus
195 network-level LFP theta oscillations, we next assessed the phase relationship of Vm and LFP. Specifically,
196 we calculated the phase shifts between individual Vm theta cycles and LFP theta cycles. We found that
197 the phase shifts between CaMKII Vm theta and LFP theta were highly diverse, ranging from $-\pi$ to π , during
198 both resting and walking (Figure 4A-D), demonstrating that CaMKII Vm theta is generally not synchronized
199 with LFP theta. In contrast, the phase shifts between PV Vm theta and LFP theta were concentrated
200 around zero regardless of the animal's behavioral state, indicating a high degree of synchronization
201 between PV Vm theta and LFP theta (Figure 4G-I). In both behavioral states, the distributions of Vm-LFP
202 theta phase shifts were significantly different between the CaMKII and PV populations (Chi-squared test,
203 resting: $p=0.0018$, walking: $p=0.0005$), and the temporal deviations between Vm theta and LFP theta were
204 significantly smaller in PV cells than in CaMKII neurons (Supplemental Figure 4, rank sum test, resting:
205 $p=0.0383$, walking: $p=0.0026$). These observations indicate that Vm theta oscillations in PV neurons are
206 more synchronized with LFP theta than those in CaMKII cells, regardless of behavioral condition.

207 Although we recorded only one PV neuron at a time, the tight phase relationship between LFP theta and
208 an individual PV cell's Vm theta (Figure 4G-J) was conserved across recordings, strongly indicating that Vm
209 theta is synchronized amongst the PV population. Since PV cells play an important role in supporting CA1
210 LFP theta oscillations, we hypothesized that when individual PV Vm theta and LFP theta are closer in

211 phase, the PV population is more synchronized, leading to greater LFP theta power. Indeed, we found that
212 when Vm-LFP phase shifts of individual PV neuron were close to zero, LFP theta power was significantly
213 higher, suggesting that PV cell synchronization accompanies stronger LFP theta at the network level
214 (Figure 4K and L). Consistent with the lack of synchronization observed between CaMKII Vm and LFP theta,
215 CaMKII Vm-LFP theta phase shifts had no relationship to LFP theta power (Figure 4E and F). Thus, the
216 consistent phase relationship between LFP theta and PV Vm theta, but not CaMKII Vm theta, indicates a
217 unique association of PV neurons with elevated LFP theta power, and supports the prominent role of PV
218 cells in promoting CA1 LFP theta oscillations.

219

220 **Transient fluctuations of Vm theta power in both cell types are accompanied by corresponding LFP**
221 **power changes during resting but not walking**

222 LFP theta oscillation amplitude can be influenced by many sources, including the synchronization of Vm
223 theta between neurons (Figure 4K and L) and the power of Vm theta in individual neurons. To explore
224 how the power of individual neurons' Vm theta relates to LFP theta power, we aligned LFP theta power
225 to the peak of each Vm theta cycle. During resting, when CaMKII or PV cellular Vm theta power was high
226 (theta cycles with power >0.5), LFP theta and beta power were higher (Supplemental Figure 5A and C,
227 respectively). Similarly, when Vm theta power was low in either cell type (theta cycles with power <-0.5),
228 LFP theta power was correspondingly lower (Supplemental Figure 5B and D, respectively).

229 Interestingly, during walking, even though we detected an overall increase in LFP theta power (Figure 1),
230 the power of individual Vm theta in both CaMKII and PV cells was no longer associated with transient
231 fluctuations in LFP theta power (Supplemental Figure 5E-H). Thus, transient Vm theta power variations in
232 both pyramidal and PV cells were only accompanied by similar LFP theta power fluctuations when animals
233 were resting but not walking, indicating a behavioral state-dependent coupling between Vm theta power

234 and LFP theta power. These results also suggest that somatic V_m theta power of the CA1 neuronal
235 population is a predominant source of LFP theta only when LFP theta is weak.

236

237 **At theta frequency, the PV cell spike-LFP phase relationship captures its underlying V_m -LFP phase**
238 **relationship, whereas the CaMKII cell spike-LFP phase relationship diverges from its V_m -LFP phase**
239 **relationship**

240 Since V_m ultimately determines spike timing in individual neurons, one would expect a cell's spike-LFP
241 temporal relationship to arise from its V_m -LFP temporal relationship. Because extracellular recordings
242 cannot detect V_m , *in vivo* electrophysiology studies are largely limited to observing only the spike-LFP
243 phase relationship during behavior. With our ability to measure V_m , spikes, and LFP simultaneously, we
244 directly examined whether spike-LFP theta phase is a result of V_m -LFP theta coupling. Specifically, we
245 calculated the circular correlation coefficient between the average spike-LFP phase and the average V_m -
246 LFP phase shift of each neuron. As expected, we found that the spike-LFP phases and V_m -LFP phase shifts
247 of individual PV neurons were highly correlated during both resting and walking (Figure 4O and P, circular
248 correlation coefficient, resting: 0.8042, walking: 0.9147). Surprisingly, the spike-LFP phases of individual
249 CaMKII neurons were only loosely correlated with their V_m -LFP phase shifts during both behavioral
250 conditions (Figure 4M and N, N=31 cells, circular correlation coefficient, resting: 0.5313, walking: 0.5257).

251 We then examined the correlation between spike-LFP phase and V_m -LFP phase shift over a wider range
252 of LFP frequencies and found that these correlations are highest at theta frequency in both CaMKII and
253 PV cells regardless of behavioral condition (Supplemental Figure 6). These results provide direct
254 experimental evidence that the spike-LFP phase relationships of individual PV neurons faithfully represent
255 their underlying V_m -LFP relationships at theta frequency, whereas a CaMKII cell's V_m -LFP phase
256 relationship is not necessarily revealed by its spike-LFP phase relationship.

257 **Discussion**

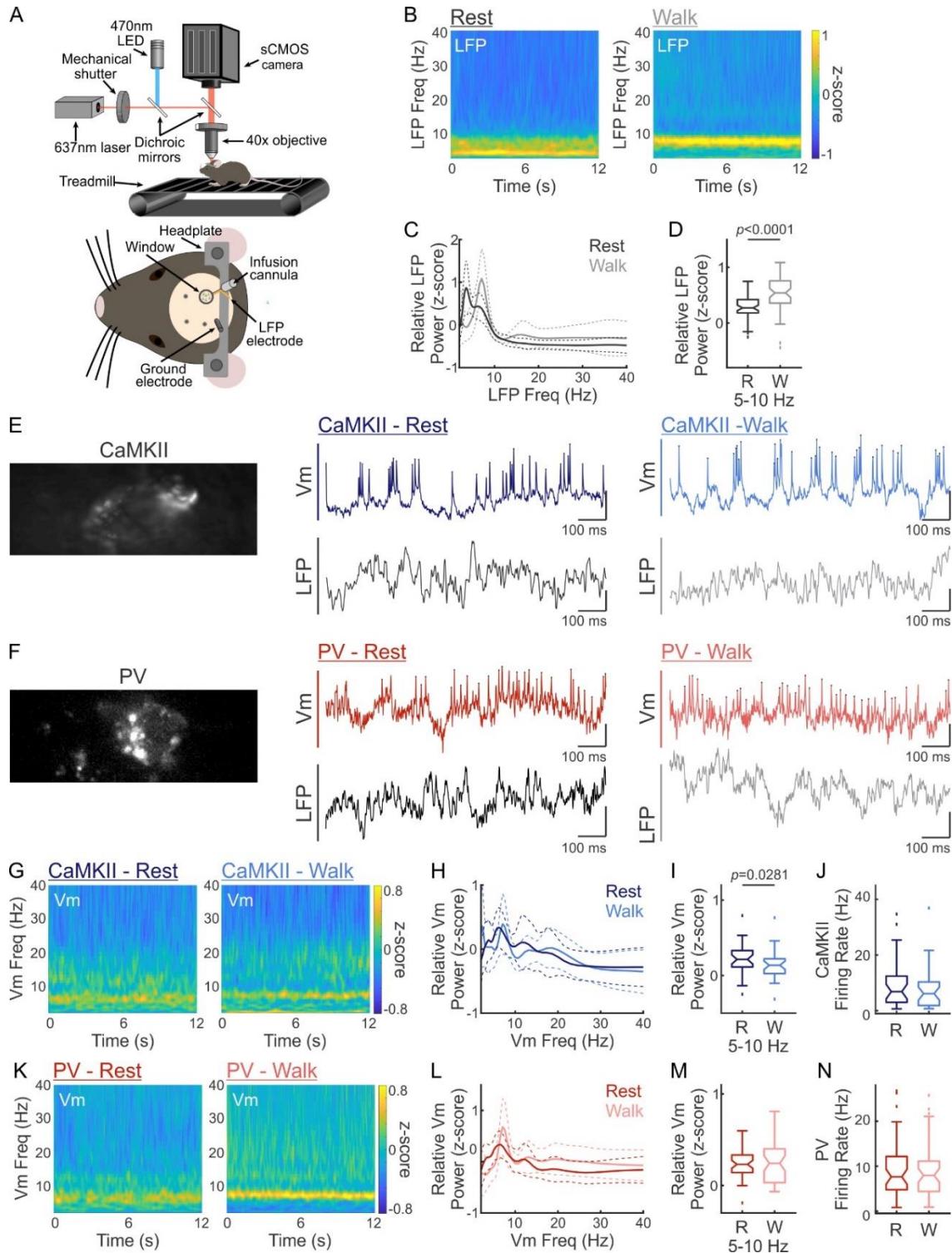
258 LFP oscillations capture rhythmic extracellular potentials and have been broadly linked to behaviors. To
259 understand the cellular mechanisms that support LFP oscillations and organize spike timing, we
260 performed *in vivo* SomArchon voltage imaging of membrane potentials (V_m) from individual CaMKII-
261 positive pyramidal cells or PV-positive interneurons in hippocampal CA1, from mice during resting or
262 walking. We examined the temporal relationships of spikes, V_m oscillations, and simultaneously recorded
263 local field potential (LFP) during various levels of LFP theta oscillations as mice alternated between resting
264 and walking. We present evidence that theta oscillations are a prominent V_m feature in both PV and
265 CaMKII neurons, across behavioral conditions. V_m theta oscillations consistently organize spikes to the
266 rising phase of the V_m theta cycle in both cell types, regardless of the state of LFP theta. Furthermore,
267 spikes and V_m in PV neurons exhibit a tight temporal relationship with CA1 LFP theta phase, supporting
268 the idea that PV cells play a crucial role in promoting hippocampal theta rhythmicity. In contrast, spikes
269 and V_m in CaMKII pyramidal neurons exhibit heterogeneous phase relationships with CA1 LFP theta, in line
270 with the idea that CaMKII neurons encode diverse information regarding ongoing behavior. Together, our
271 study provides direct *in vivo* evidence that although cellular theta rhythmicity organizes temporal spike
272 patterns in both pyramidal cells and PV interneurons, PV interneurons play a more prominent role in
273 coordinating CA1 network LFP theta rhythm.

274 Spike generation requires membrane potential depolarization that reaches action potential threshold.
275 Our results show that spikes preferentially occur on the rising phase of V_m theta, even though the rising
276 and falling phases of a V_m oscillation cycle have similar absolute membrane voltages. This observation
277 confirms that spike threshold is not a fixed value in behaving mice. Instead, transient V_m fluctuations are
278 a critical deterministic criterion for spike generation, as shown in previous work (39-43). Specifically,
279 continued monotonic depolarization (rising phase of V_m) leads to significantly greater probability of spike
280 generation at the same absolute membrane voltage than monotonic repolarization (falling phase of V_m).

281 Additionally, as the large membrane voltage change created by spiking influences voltage-gated ion
282 channels, it is expected that spike occurrence would affect V_m . Indeed, *in vitro* studies have shown that
283 hippocampal pyramidal cell spiking is often followed by an after-depolarization potential that lasts for
284 tens of milliseconds (47). We found that in both pyramidal and PV cells, spiking prolongs V_m theta cycles
285 and elevates V_m theta power regardless of behavioral state, highlighting that V_m oscillations and spikes
286 are irrevocably intertwined. One potential biophysical mechanism for this phenomenon is that once V_m
287 reaches action potential threshold, spike generation provides further V_m depolarization and thus
288 amplifies the V_m theta oscillation. Future studies directly measuring ion channel conductance states will
289 help reveal the causal relationships between subthreshold voltage dynamics and suprathreshold spikes.

290 In accordance with previous studies, we found that spiking in CaMKII pyramidal cells and PV cells occurs
291 at distinct phases of the LFP theta oscillation (11). Specifically, CaMKII spikes occurred indiscriminately
292 across the peak, falling phase, and trough of LFP theta, whereas PV spikes were more concentrated to the
293 rising phase of LFP theta. In the hippocampus, silencing or altering PV activity disturbs the timing of
294 pyramidal cell spiking (6, 7, 15, 21). Each PV neuron often inhibits multiple pyramidal neurons, and
295 pyramidal cell spiking is strongly influenced by rebound depolarization following PV inhibition (7, 21).
296 Thus, our observation that PV spiking often precedes pyramidal cell spiking within an LFP theta cycle
297 suggests that the differences in spike-LFP phase between CaMKII and PV neurons observed here may
298 originate from direct synaptic interactions between these two populations.

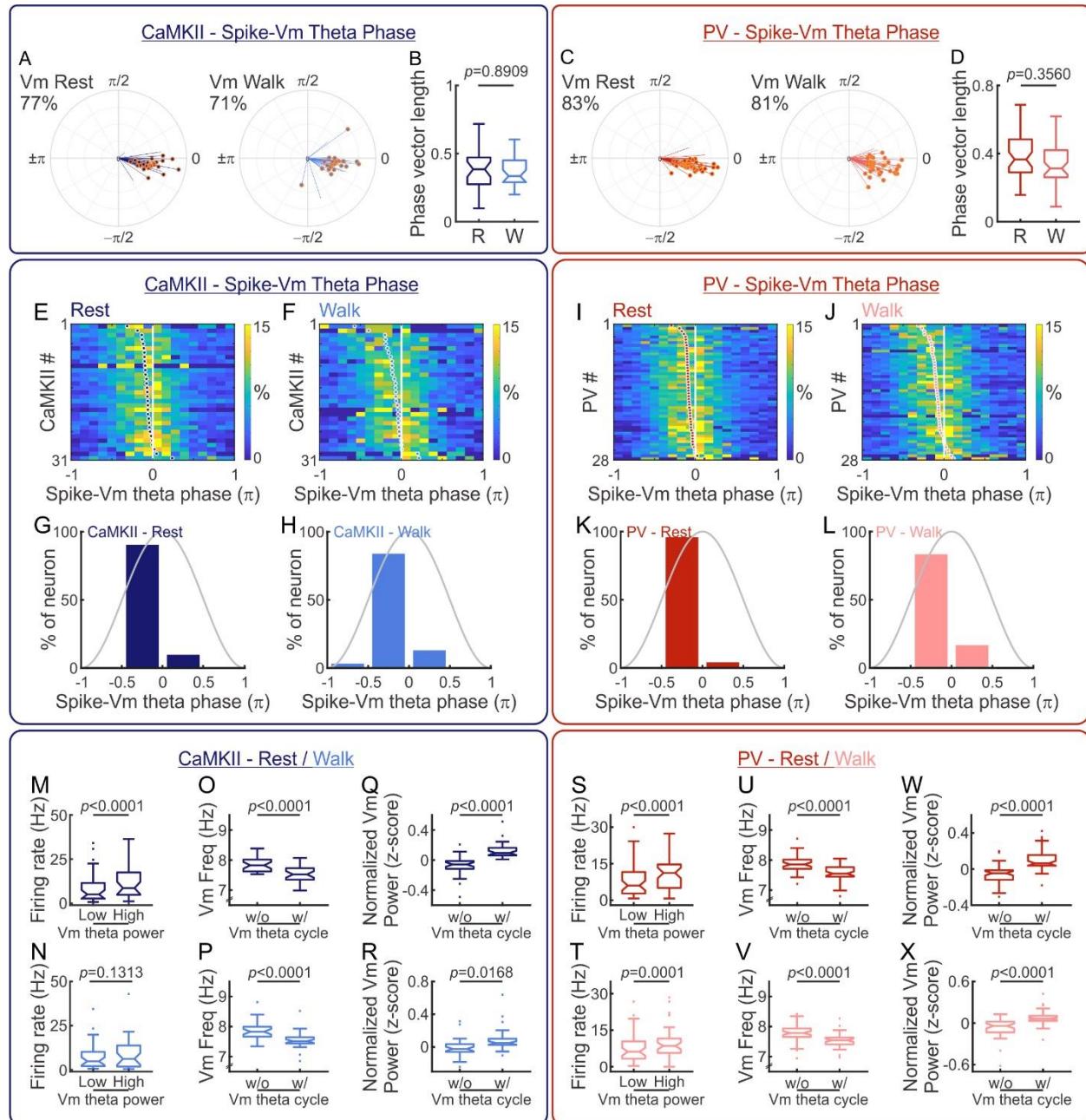
299 Hippocampal LFP theta oscillations capture rhythmic extracellular potential that arises from somatic,
300 dendritic, and axonal V_m fluctuations in individual neurons. These V_m fluctuations are influenced by both
301 rhythmic synaptic inputs to the hippocampus and the intrinsic biophysical properties of individual neurons
302 (5, 35). We found that the V_m of both CaMKII and PV cells exhibits strong theta oscillations, regardless of
303 network LFP theta state. Previous intracellular patch clamp studies and voltage imaging studies have
304 reported prominent V_m theta oscillations in CA1 neurons of animals across anesthetized, quiescent, and


305 active locomotion behavioral conditions (22, 24-27), even though a recent voltage imaging study failed to
306 detect prominent V_m theta in resting mice (27). It is possible that the prominent V_m theta across
307 behavioral states we observed is a result of improved voltage imaging sensitivity via cell type-specific
308 expression of SomArchon, though we cannot rule out other factors such as behavioral state variations.
309 V_m theta oscillations in pyramidal neurons likely originate from both synaptic input and their intrinsic
310 biophysical properties, as they exhibit resonance at theta frequency (48, 49). PV neurons, however, exhibit
311 resonance at gamma frequencies (50); therefore, V_m theta oscillations in PV neurons are likely driven by
312 rhythmic synaptic inputs, such as those from GABAergic neurons in the medial septum (16, 19, 20).
313 PV cells have been shown to powerfully contribute to CA1 theta oscillations in slice and *in vivo* (14, 15).
314 Consistent with these observations, our results show that V_m theta oscillations in PV neurons are better
315 temporally aligned with LFP theta oscillations than V_m theta of CaMKII cells, and higher synchrony
316 between PV V_m theta and LFP theta is associated with higher LFP theta power. Because PV neurons are
317 coupled via gap junctions and they receive theta rhythmic inputs from the GABAergic septum, our
318 observation that PV V_m theta is temporally aligned to LFP theta strongly suggests that V_m oscillations are
319 synchronized across PV neurons (7, 16-20, 51-53). Conversely, V_m theta oscillations in CaMKII neurons
320 show diverse temporal relationships with LFP theta oscillations. Given our finding that CaMKII neurons
321 exhibited out-of-phase theta oscillations with each other as a population, it is likely that somatic V_m theta
322 of pyramidal cells contributes minimally to LFP theta oscillations. An alternate, yet compatible,
323 explanation is that the frequencies of CaMKII neurons' somatic V_m theta oscillations are unstable and
324 therefore result in variable V_m -LFP theta phase shifts. Future studies that simultaneously record multiple
325 CaMKII neurons are necessary to reveal the relationship between the V_m oscillations of individual
326 pyramidal neurons and their combined relationship with bulk LFP oscillations.
327 In our results, transient cycle-by-cycle V_m theta power of both CaMKII and PV cells is correlated to LFP
328 theta power during resting, indicating that in the absence of strong inputs to the CA1, and thus weak or

329 inconsistent LFP theta, the power of individual V_m oscillations is better associated with CA1 LFP
330 oscillations. Intriguingly, during walking, which induced strong LFP theta oscillations, the power of
331 individual V_m theta cycles of both cell types became decoupled from LFP theta power. During locomotion,
332 the CA1 receives strong synaptic inputs from other brain regions, which are best reflected by changes in
333 the dendritic membrane potential of CA1 neurons (35, 54-56). SomArchon is targeted to the cell body and
334 therefore we could only quantify changes in the somatic membrane potential of CA1 neurons, which is
335 likely different from synaptically-driven dendritic membrane potential (1, 57, 58). As such, the behavioral
336 state-dependent decoupling of individual V_m cycle power and LFP power that we observed here likely
337 indicates that during movement, LFP theta is dominated by dendritic membrane potential driven by
338 synaptic inputs to the CA1 rather than the somatic V_m theta oscillations of the local CA1 neuronal
339 population. Future studies that directly measure dendritic membrane potentials will help elucidate how
340 CA1 neurons dynamically transform behaviorally-relevant dendritic inputs to defined spiking output
341 patterns.

342 The observation that spike timing is strongly and consistently phase-locked to V_m theta in both pyramidal
343 and PV neurons predicts that the spike-LFP relationship faithfully reflects the V_m -LFP theta phase
344 relationship in both cell types. In PV neurons, we did indeed observe this expected relationship between
345 spike-LFP theta phase and V_m -LFP theta phase shift. Together with the observation that PV V_m theta is
346 tightly coupled to LFP theta, our results suggest that synchronization of V_m oscillations across the PV
347 population provides each PV cell with a consistent temporal framework that aligns with ongoing LFP theta
348 oscillations. This timing mechanism would allow PV neurons to organize their spike timing relative to LFP
349 theta to pace hippocampal networks. Surprisingly, we only detected this tight temporal relationship
350 between spike-LFP theta phase and V_m -LFP theta phase shift in PV neurons, but not in pyramidal neurons.
351 Thus, the spike-LFP theta phase relationship in pyramidal cells provides little information regarding its
352 underlying V_m -LFP theta phase relationship. One potential explanation is that spike timing in pyramidal

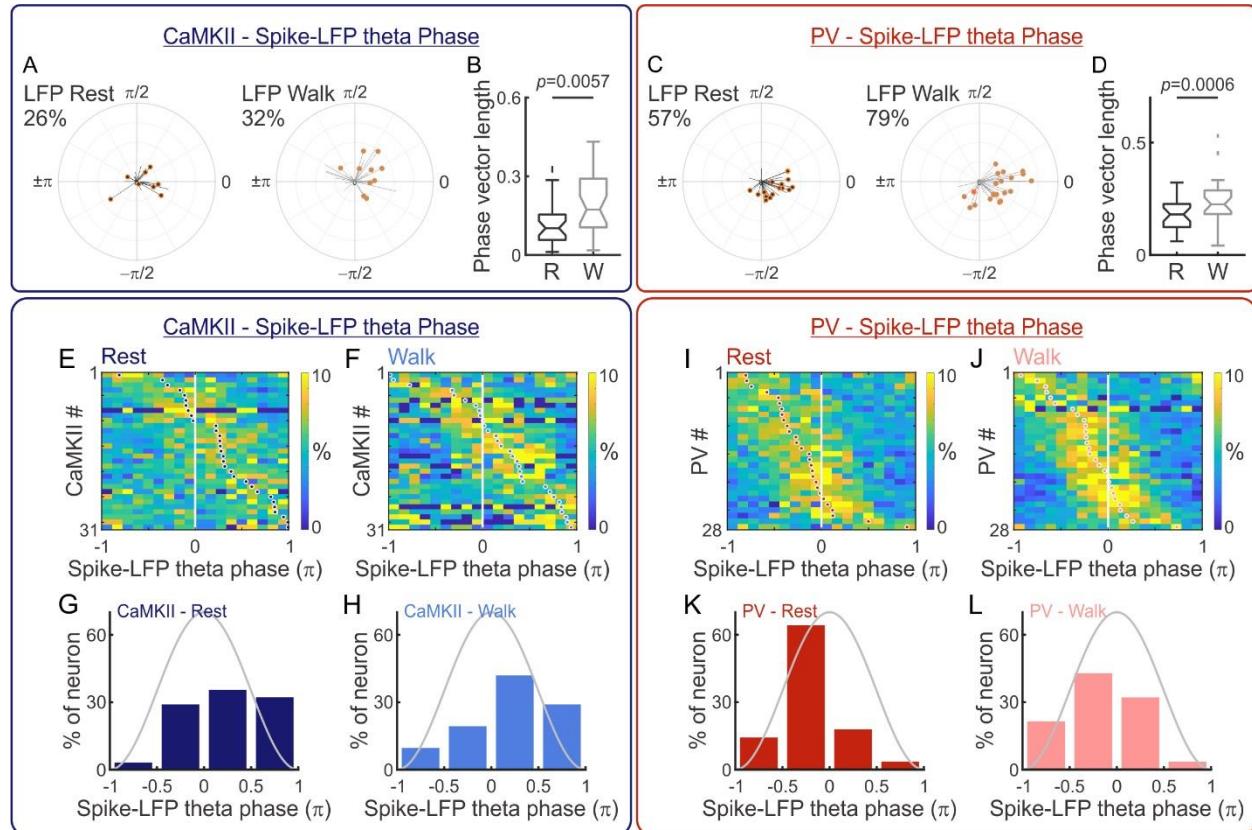
353 neurons is strongly influenced by other factors besides intrinsic V_m theta oscillations, such as rebound
354 depolarization from local PV inhibition or cholinergic inputs from the medial septum (6, 7). However,
355 despite their weak relationship, we also found that correlations of spike-LFP phase and V_m -LFP phase
356 shifts in pyramidal neurons were highest in the theta frequency compared to other frequency bands,
357 indicating that V_m theta oscillations are nonetheless more important than other frequencies in
358 influencing pyramidal cell spike timing.


359

360

361 **Figure 1. Membrane voltage (Vm) dynamics of CaMKII-positive pyramidal neurons and PV-positive**
 362 **interneurons during resting and during locomotion. (A)** Experimental setup (top) and imaging apparatus

363 design (bottom). During imaging, mice alternated between resting and walking. The imaging head implant
364 consists of a glass window coupled to a LFP recording electrode. **(B)** Mean LFP spectrograms from all
365 recordings during resting (left) and walking (right) (N=59 cells). **(C)** LFP power distributions of all recordings
366 during resting (black) and walking (gray) (N=59 cells). **(D)** LFP theta power during resting (black) and
367 walking (gray) (N=59 cells, Wilcoxon signed rank test, p<0.0001, resting: 0.29 ± 0.20 , running: 0.55 ± 0.30).
368 **(E)** Mean SomArchon intensity of an example CaMKII neuron (left), its optically recorded membrane
369 potential (Vm, SomArchon signal), and simultaneously recorded LFP during resting (middle, Vm: dark blue,
370 LFP: black) and running (right, Vm: light blue, LFP: gray). **(F)** Mean SomArchon intensity of an example PV
371 neuron (left), its Vm, and simultaneously recorded LFP during resting (middle, Vm: dark red, LFP: black)
372 and running (right, Vm: light red, LFP: gray). **(G)** Mean Vm spectrograms from all CaMKII neurons during
373 resting (left) and walking (right) (N=31 cells). **(H)** Mean Vm power distributions of the CaMKII population
374 during resting (dark blue) and walking (light blue) (N=31 cells). **(I)** CaMKII Vm theta power during resting
375 (dark blue) and walking (light blue) (N=31 cells, Wilcoxon signed rank test, p=0.0282, resting: 0.22 ± 0.21 ,
376 walking: 0.14 ± 0.20). **(J)** Firing rate of CaMKII cells during resting (dark blue) and walking (light blue) (N=31
377 cells, Wilcoxon signed rank test, p=0.0938, resting: $9.73\pm8.84\text{Hz}$, walking: $7.74\pm7.76\text{Hz}$). **(K)** Mean Vm
378 spectrograms from all PV neurons during resting (left) and walking (right) (N=48 cells). **(L)** Vm power
379 distributions of the PV population during resting (dark red) and walking (light red) (N=48 cells). **(M)** Mean
380 PV Vm theta power during resting (dark red) and walking (light red) (N=48 cells, Wilcoxon signed rank test,
381 p=0.2680, resting: 0.23 ± 0.15 , walking: 0.27 ± 0.24). **(N)** Firing rate of PV cells during resting (dark red) and
382 walking (light red) (N=48 cells, Wilcoxon signed rank test, p=0.5485, resting: $9.36\pm6.48\text{Hz}$, walking:
383 $8.54\pm5.76\text{Hz}$). In power distribution plots, the solid lines and the dashed lines indicate mean and
384 \pm standard deviation, respectively. The power at each time point was normalized by calculating its z-score
385 across all frequencies. In boxplots, notch indicates median, box indicates 25th to 75th percentiles,
386 whiskers indicate the range of non-outliers, and dots indicate outliers.

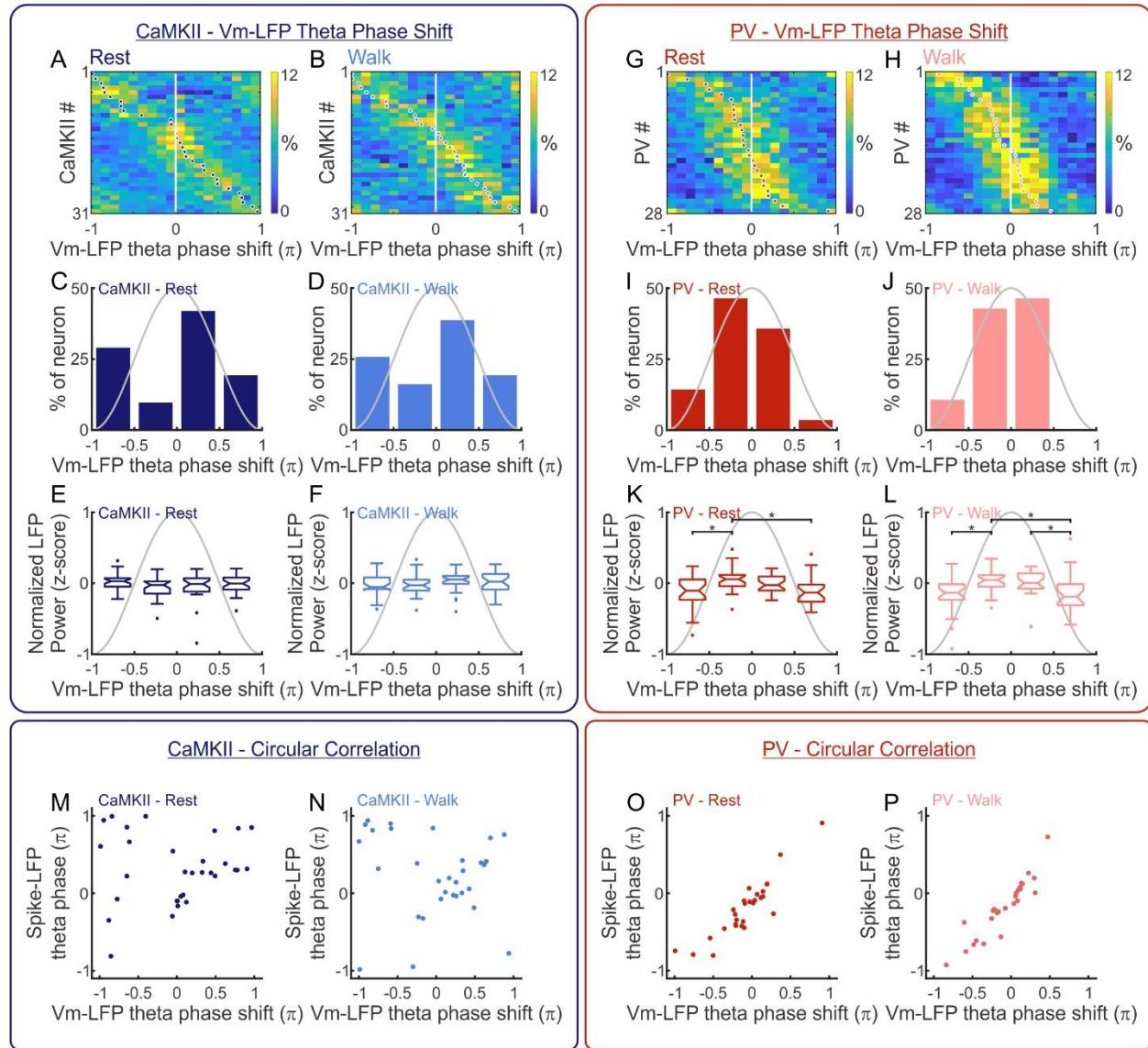

387

388 **Figure 2. Vm theta oscillations organize spike timing in both cell types.** (A) Average spike phase relative
 389 to the Vm theta oscillation of individual CaMKII neurons during resting (left) and walking (right) (N=31
 390 cells). The orange circle at the end of the phase vector indicates significant phase-locking. The number
 391 indicates the percentage of neurons showing significant phase-locking. (B) Amplitude of spike phase-
 392 locking relative to Vm theta oscillation in the CaMKII population during resting (dark blue) and walking

393 (light blue) (N=31, Wilcoxon signed rank test, p=0.8909, resting: 0.37 ± 0.15 , walking: 0.36 ± 0.11). (C)
394 Average spike phase relative to Vm theta oscillation of individual PV neurons during resting (left) and
395 walking (right) (N=48 cells). The orange circle at the end of the phase vector indicates significant phase-
396 locking. The number indicates the percentage of neurons showing significant phase-locking. (D) Amplitude
397 of spike phase-locking relative to Vm theta oscillation in the PV population during resting (dark red) and
398 walking (light red) (N=48, Wilcoxon signed rank test, p=0.3560, resting: 0.38 ± 0.13 , walking: 0.36 ± 0.13). (E)
399 and (F) Distributions of spike phase relative to the Vm theta oscillation for individual CaMKII neurons during
400 resting (E) and walking (F). Each row shows the spike phase distribution of one neuron, and neurons were
401 sorted by their average spike phase, indicated by the dots. (G and H) Histograms of average spike phase
402 relative to Vm theta oscillation for all CaMKII neurons during resting (G) and walking (H) (N=31 cells). (I)
403 and (J) Distribution of spike phase relative to the Vm theta oscillation for individual PV neurons during
404 resting (I) and walking (J). Each row shows the spike phase distribution of one neuron, and neurons were
405 sorted by their average spike phase, indicated by the dots. (K and L) Histograms of average spike phase
406 relative to Vm theta oscillation for all PV neurons during resting (K) and walking (L) (N=28 cells). (M and
407 N) CaMKII firing rates during Vm theta cycles with low and high Vm theta power during resting (M, N=31
408 cells, Wilcoxon signed rank test, p=7.202e-6, low power firing rate: 8.54 ± 8.79 Hz, high power firing rate:
409 12.11 ± 9.58 Hz) and walking (N, N=31 cells, Wilcoxon signed rank test, p=0.1313, low power firing rate:
410 7.72 ± 7.62 Hz, high power firing rate: 8.66 ± 8.74 Hz). (O and P) Peak frequency of CaMKII Vm theta cycles
411 with and without spikes, during resting (O, N=31 cells, Wilcoxon signed rank test, p=1.578e-6, without
412 spike frequency: 7.84 ± 0.24 Hz, with spike frequency: 7.53 ± 0.27 Hz) and walking (P, N=31 cells, Wilcoxon
413 signed rank test, p=2.114e-5, without spike frequency: 7.87 ± 0.33 Hz, with spike frequency: 7.55 ± 0.28 Hz).
414 (Q and R) Normalized theta power of CaMKII Vm theta cycles with and without spikes, during resting (Q,
415 N=31 cells, Wilcoxon signed rank test, p=9.475e-6, without spike power: -0.07 ± 0.13 , with spike power:
416 0.12 ± 0.10) and walking (R, N=31 cells, Wilcoxon signed rank test, p=0.0168, without spike power: -

417 0.01±0.11, with spike power: 0.08±0.14). (**S** and **T**) PV firing rates during Vm theta cycles with low and
418 high Vm theta power during resting (S, N=48 cells, Wilcoxon signed rank test, p=6.712e-6, low power firing
419 rate: 8.13±6.98Hz, high power firing rate: 10.89±6.23Hz) and walking (T, N=48 cells, Wilcoxon signed rank
420 test, p=0.0001, walking-low power firing rate: 7.68±5.80Hz, resting-high power firing rate: 9.63±6.25Hz).
421 (**U** and **V**) Peak frequency of PV Vm theta cycles with and without spikes, during resting (U, N=48 cells,
422 Wilcoxon signed rank test, p=1.111e-8, without spike frequency: 7.86±0.28Hz, with spike frequency:
423 7.56±0.27Hz) and walking (V, N=48 cells, Wilcoxon signed rank test, p=6.900e-7, without spike frequency:
424 7.78±0.27Hz, with spike frequency: 7.54±0.23Hz). (**W** and **X**) Normalized theta power of PV Vm theta
425 cycles with and without spikes, during resting (W, N=48 cells, Wilcoxon signed rank test, p=1.431e-6,
426 without spike power: -0.06±0.10, with spike power: 0.11±0.12) and walking (X, N=48 cells, Wilcoxon
427 signed rank test, p=5.529e-6, without spike power: -0.06±0.13, with spike power: 0.07±0.10). In boxplots,
428 notch indicates median, box indicates 25th to 75th percentiles, whiskers indicate the range of non-
429 outliers, and dots indicate outliers.

430



431

432 **Figure 3. Distinct LFP phase preference of spikes in CaMKII versus PV neurons.** (A) Average spike phase
 433 relative to LFP theta oscillation of individual CaMKII neurons during resting (left) and walking (right) (N=31
 434 cells). The orange circle at the end of the phase vector indicates significant phase-locking. The number
 435 indicates the percentage of neurons showing significant phase-locking. (B) Amplitude of spike phase-
 436 locking relative to LFP theta oscillation across the CaMKII population during resting (black) and walking
 437 (gray) (N=31 cells, Wilcoxon signed rank test, p=0.0057, resting: 0.12 ± 0.09 , walking: 0.19 ± 0.12). (C)
 438 Average spike phase relative to the LFP theta oscillation of individual PV neurons during resting (left) and
 439 walking (right) (N=28 cells). The orange circle at the end of the phase vector indicates significant phase-
 440 locking. The number indicates the percentage of neurons showing significant phase-locking. (D) Amplitude
 441 of spike phase-locking relative to the LFP theta oscillation of the PV population during resting (black) and
 442 walking (gray) (N=28 cells, Wilcoxon signed rank test, p=0.0006, resting: 0.18 ± 0.07 , walking: 0.24 ± 0.11).
 443 (E and F) Distributions of spike phase relative to LFP theta oscillation for individual CaMKII neurons during

444 resting (E) and walking (F). Each row shows the spike phase distribution of one neuron and the neurons
445 were sorted by their average spike phase, indicated by the dots. (G and H) Histograms of average spike
446 phase relative to LFP theta oscillation for all CaMKII neurons during resting (G) and walking (H) (N=31
447 cells). (I and J) Distributions of spike phase relative to LFP theta oscillation for individual PV neurons during
448 resting (I) and walking (J). Each row shows the spike phase distribution of one neuron, and neurons were
449 sorted by their average spike phase, indicated by the dots. (K and L) Histograms of average spike phase
450 relative to LFP theta oscillation for all PV neurons during resting (K) and walking (L) (N=28 cells).

451

452

453 **Figure 4. Distinct synchrony between Vm and LFP oscillations in CaMKII and PV neurons. (A and B)**
454 Distributions of the phase shifts between Vm theta cycles and LFP theta cycles of individual CaMKII
455 neurons during resting (A) and walking (B). Each row shows the phase shift distribution of one neuron,
456 and neurons were sorted by their average phase shift, indicated by the dots. (C and D) Histograms of
457 average Vm-LFP phase shift for all CaMKII neurons during resting (C) and walking (D) (N=31 cells). (E and
458 F) Normalized LFP theta power during the CaMKII Vm theta cycles with various phase shifts during resting
459 (E) and during walking (F) (N=31 cells, one-way ANOVA). (G and H) Distributions of the phase shifts

460 between Vm theta cycles and LFP theta cycles of individual PV neurons during resting (G) and walking (H).
461 Each row shows the phase shift distribution of one neuron and the neurons were sorted by their average
462 phase shift, indicated by the dots. (I and J) Histograms of average Vm-LFP phase shift for all PV neurons
463 during resting (I) and walking (J) (N=28 cells). (K and L) Normalized LFP theta power during the PV Vm
464 theta cycles with various phase shifts during resting (K) and walking (L) (N=28 cells, one-way ANOVA,
465 *p<0.05). (M and N) Circular correlations between the average Vm-LFP theta phase shift and the average
466 spike phase relative to the LFP theta oscillation for all CaMKII neurons during resting (M, N=31 cells,
467 circular correlation coefficient=0.5313) and during walking (N, N=31 cells, circular correlation
468 coefficient=0.5257). (O and P) Circular correlations between the average Vm-LFP theta phase shift and
469 the average spike phase relative to the LFP theta oscillation for all PV neurons during resting (O, N=28
470 cells, circular correlation coefficient=0.8042) and during walking (P, N=28 cells, circular correlation
471 coefficient=0.9147). In boxplots, notch indicates median, box indicates 25th to 75th percentiles, whiskers
472 indicate the range of non-outliers, and dots indicate outliers.

473

474 **References**

475 1. A. Navas-Olive *et al.*, Multimodal determinants of phase-locked dynamics across deep-
476 superficial hippocampal sublayers during theta oscillations. *Nat Commun* **11**, 2217 (2020).

477 2. G. Buzsaki, Theta oscillations in the hippocampus. *Neuron* **33**, 325-340 (2002).

478 3. J. O'Keefe, M. L. Recce, Phase relationship between hippocampal place units and the EEG theta
479 rhythm. *Hippocampus* **3**, 317-330 (1993).

480 4. W. E. Skaggs, B. L. McNaughton, M. A. Wilson, C. A. Barnes, Theta phase precession in
481 hippocampal neuronal populations and the compression of temporal sequences. *Hippocampus*
482 **6**, 149-172 (1996).

483 5. G. Buzsaki, C. A. Anastassiou, C. Koch, The origin of extracellular fields and currents--EEG, ECoG,
484 LFP and spikes. *Nat Rev Neurosci* **13**, 407-420 (2012).

485 6. M. Strüber, J. F. Sauer, M. Bartos, Parvalbumin expressing interneurons control spike-phase
486 coupling of hippocampal cells to theta oscillations. *Sci Rep* **12**, 1362 (2022).

487 7. E. Stark *et al.*, Inhibition-induced theta resonance in cortical circuits. *Neuron* **80**, 1263-1276
488 (2013).

489 8. S. Royer *et al.*, Control of timing, rate and bursts of hippocampal place cells by dendritic and
490 somatic inhibition. *Nat Neurosci* **15**, 769-775 (2012).

491 9. K. Mizuseki, K. Diba, E. Pastalkova, G. Buzsaki, Hippocampal CA1 pyramidal cells form
492 functionally distinct sublayers. *Nat Neurosci* **14**, 1174-1181 (2011).

493 10. J. Huxter, N. Burgess, J. O'Keefe, Independent rate and temporal coding in hippocampal
494 pyramidal cells. *Nature* **425**, 828-832 (2003).

495 11. T. Klausberger *et al.*, Brain-state- and cell-type-specific firing of hippocampal interneurons in
496 vivo. *Nature* **421**, 844-848 (2003).

497 12. T. Klausberger, P. Somogyi, Neuronal diversity and temporal dynamics: the unity of hippocampal
498 circuit operations. *Science* **321**, 53-57 (2008).

499 13. C. Varga, P. Golshani, I. Soltesz, Frequency-invariant temporal ordering of interneuronal
500 discharges during hippocampal oscillations in awake mice. *Proc Natl Acad Sci U S A* **109**, E2726-
501 2734 (2012).

502 14. B. Amilhon *et al.*, Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta
503 Frequency. *Neuron* **86**, 1277-1289 (2015).

504 15. P. Wulff *et al.*, Hippocampal theta rhythm and its coupling with gamma oscillations require fast
505 inhibition onto parvalbumin-positive interneurons. *Proc Natl Acad Sci U S A* **106**, 3561-3566
506 (2009).

507 16. T. F. Freund, M. Antal, GABA-containing neurons in the septum control inhibitory interneurons
508 in the hippocampus. *Nature* **336**, 170-173 (1988).

509 17. M. Stewart, S. E. Fox, Do septal neurons pace the hippocampal theta rhythm? *Trends Neurosci*
510 **13**, 163-168 (1990).

511 18. Y. Sun *et al.*, Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-
512 dependent rabies tracing. *Cell Rep* **7**, 269-280 (2014).

513 19. B. Hangya, Z. Borhegyi, N. Szilagyi, T. F. Freund, V. Varga, GABAergic neurons of the medial
514 septum lead the hippocampal network during theta activity. *J Neurosci* **29**, 8094-8102 (2009).

515 20. G. Unal *et al.*, Spatio-temporal specialization of GABAergic septo-hippocampal neurons for
516 rhythmic network activity. *Brain Struct Funct* **223**, 2409-2432 (2018).

517 21. S. R. Cobb, E. H. Buhl, K. Halasy, O. Paulsen, P. Somogyi, Synchronization of neuronal activity in
518 hippocampus by individual GABAergic interneurons. *Nature* **378**, 75-78 (1995).

519 22. Y. Fujita, T. Sato, Intracellular records from hippocampal pyramidal cells in rabbit during theta
520 rhythm activity. *J. Neurophysiol.* **27**, 1011-1025 (1964).

521 23. L. W. s. Leung, C. Y. Yim, Intracellular records of theta rhythm in hippocampal CA1 cells of the
522 rat. *Brain Research* **367**, 323-327 (1986).

523 24. C. D. Harvey, F. Collman, D. A. Dombeck, D. W. Tank, Intracellular dynamics of hippocampal
524 place cells during virtual navigation. *Nature* **461**, 941-946 (2009).

525 25. A. Kamondi, L. Acsady, X. J. Wang, G. Buzsaki, Theta oscillations in somata and dendrites of
526 hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials.
527 *Hippocampus* **8**, 244-261 (1998).

528 26. K. D. Piatkevich *et al.*, Population imaging of neural activity in awake behaving mice. *Nature* **574**,
529 413-417 (2019).

530 27. Y. Adam *et al.*, Voltage imaging and optogenetics reveal behaviour-dependent changes in
531 hippocampal dynamics. *Nature* **569**, 413-417 (2019).

532 28. A. O. Komendantov, G. A. Ascoli, Dendritic excitability and neuronal morphology as
533 determinants of synaptic efficacy. *J Neurophysiol* **101**, 1847-1866 (2009).

534 29. B. K. Hulse, E. V. Lubenov, A. G. Siapas, Brain State Dependence of Hippocampal Subthreshold
535 Activity in Awake Mice. *Cell Rep* **18**, 136-147 (2017).

536 30. M. Malezieux, A. L. Kees, C. Mulle, Theta Oscillations Coincide with Sustained Hyperpolarization
537 in CA3 Pyramidal Cells, Underlying Decreased Firing. *Cell Rep* **32**, 107868 (2020).

538 31. J. D. Cohen, M. Bolstad, A. K. Lee, Experience-dependent shaping of hippocampal CA1
539 intracellular activity in novel and familiar environments. *Elife* **6**, (2017).

540 32. J. Epsztein, M. Brecht, A. K. Lee, Intracellular determinants of hippocampal CA1 place and silent
541 cell activity in a novel environment. *Neuron* **70**, 109-120 (2011).

542 33. J. Epsztein, A. K. Lee, E. Chorev, M. Brecht, Impact of spikelets on hippocampal CA1 pyramidal
543 cell activity during spatial exploration. *Science* **327**, 474-477 (2010).

544 34. S. Xiao *et al.*, Large-scale voltage imaging in behaving mice using targeted illumination. *iScience*
545 **24**, 103263 (2021).

546 35. F. Fuhrmann *et al.*, Locomotion, Theta Oscillations, and the Speed-Correlated Firing of
547 Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. *Neuron* **86**,
548 1253-1264 (2015).

549 36. L. L. Colgin, Rhythms of the hippocampal network. *Nat Rev Neurosci* **17**, 239-249 (2016).

550 37. R. Kramis, C. H. Vanderwolf, B. H. Bland, Two types of hippocampal rhythmical slow activity in
551 both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether,
552 urethane, and pentobarbital. *Exp Neurol* **49**, 58-85 (1975).

553 38. C. H. Vanderwolf, Hippocampal electrical activity and voluntary movement in the rat.
554 *Electroencephalogr Clin Neurophysiol* **26**, 407-418 (1969).

555 39. J. Platkiewicz, R. Brette, Impact of fast sodium channel inactivation on spike threshold dynamics
556 and synaptic integration. *PLoS Comput Biol* **7**, e1001129 (2011).

557 40. M. H. Higgs, W. J. Spain, Kv1 channels control spike threshold dynamics and spike timing in
558 cortical pyramidal neurones. *J Physiol* **589**, 5125-5142 (2011).

559 41. W. B. Wilent, D. Contreras, Stimulus-dependent changes in spike threshold enhance feature
560 selectivity in rat barrel cortex neurons. *J Neurosci* **25**, 2983-2991 (2005).

561 42. D. A. Henze, G. Buzsaki, Action potential threshold of hippocampal pyramidal cells in vivo is
562 increased by recent spiking activity. *Neuroscience* **105**, 121-130 (2001).

563 43. F. Munoz, P. Fuentealba, Dynamics of action potential initiation in the GABAergic thalamic
564 reticular nucleus in vivo. *PLoS One* **7**, e30154 (2012).

565 44. G. Stuart, N. Spruston, B. Sakmann, M. Häusser, Action potential initiation and backpropagation
566 in neurons of the mammalian CNS. *Trends Neurosci* **20**, 125-131 (1997).

567 45. J. Waters, A. Schaefer, B. Sakmann, Backpropagating action potentials in neurones:
568 measurement, mechanisms and potential functions. *Prog Biophys Mol Biol* **87**, 145-170 (2005).

569 46. N. L. Golding, W. L. Kath, N. Spruston, Dichotomy of action-potential backpropagation in CA1
570 pyramidal neuron dendrites. *J Neurophysiol* **86**, 2998-3010 (2001).

571 47. M. S. Jensen, R. Azouz, Y. Yaari, Spike after-depolarization and burst generation in adult rat
572 hippocampal CA1 pyramidal cells. *J Physiol* **492 (Pt 1)**, 199-210 (1996).

573 48. F. G. Pike *et al.*, Distinct frequency preferences of different types of rat hippocampal neurones in
574 response to oscillatory input currents. *J Physiol* **529 Pt 1**, 205-213 (2000).

575 49. H. Hu, K. Vervaeke, J. F. Storm, Two forms of electrical resonance at theta frequencies,
576 generated by M-current, h-current and persistent Na⁺ current in rat hippocampal pyramidal
577 cells. *J Physiol* **545**, 783-805 (2002).

578 50. L. Z. Fan *et al.*, All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory
579 Processing in Cortical Layer 1. *Cell* **180**, 521-535 e518 (2020).

580 51. K. Allen, E. C. Fuchs, H. Jaschonek, D. M. Bannerman, H. Monyer, Gap junctions between
581 interneurons are required for normal spatial coding in the hippocampus and short-term spatial
582 memory. *J Neurosci* **31**, 6542-6552 (2011).

583 52. H. Katsumaru, T. Kosaka, C. W. Heizmann, K. Hama, Gap junctions on GABAergic neurons
584 containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). *Exp
585 Brain Res* **72**, 363-370 (1988).

586 53. T. Fukuda, T. Kosaka, Gap junctions linking the dendritic network of GABAergic interneurons in
587 the hippocampus. *J Neurosci* **20**, 1519-1528 (2000).

588 54. S. D. Oddie, B. H. Bland, Hippocampal formation theta activity and movement selection.
589 *Neurosci Biobehav Rev* **22**, 221-231 (1998).

590 55. Z. Gu, J. L. Yakel, Cholinergic Regulation of Hippocampal Theta Rhythm. *Biomedicines* **10**, (2022).

591 56. P. Aitken, Y. Zheng, P. F. Smith, The modulation of hippocampal theta rhythm by the vestibular
592 system. *J Neurophysiol* **119**, 548-562 (2018).

593 57. J. C. Magee, Dendritic integration of excitatory synaptic input. *Nat Rev Neurosci* **1**, 181-190
594 (2000).

595 58. J. C. Magee, E. P. Cook, Somatic EPSP amplitude is independent of synapse location in
596 hippocampal pyramidal neurons. *Nat Neurosci* **3**, 895-903 (2000).

597 59. P. Berens, CircStat: A MATLAB Toolbox for Circular Statistics. *Journal of Statistical Software* **31**, 1
598 - 21 (2009).

599

600

601 **Acknowledgements**

602 X.H. acknowledges funding from NSF (CBET-1848029, DIOS-2002971) and NIH R01MH122971 R.A.M.
603 acknowledges funding from NIH F31MH123008 and NIH/NIGMS Quantitative Biology and Physiology
604 Fellowship (T32GM008764) through the Boston University Biomedical Engineering Department. E. L.
605 acknowledges funding from Boston University Center for Systems Neuroscience and Kilachand Center. The
606 authors acknowledge the support from the Shared Computing Cluster in Boston University's Research
607 Computing Services, and the Boston University Micro and Nano Imaging Facility (NIH S10OD024993).

608

609 **Author Contributions**

610 H. T., R. A. M. and X. H. designed the experiments. R. A. M conducted all experiments. H. T. and R. A. M.
611 performed data analysis. E. L., H. J. G. and C.C. provided technical assistance. X. H. supervised the study.
612 H. T. , R. A. M. and X. H. wrote the manuscript. All authors edited the manuscript.

613

614 **Competing Interests**

615 Authors declare that they have no competing interests.

616

617 **Data and materials availability:**

618 Data are available from lead contact upon reasonable request.

619

620 **Materials and Methods**

621 ***Animal Surgery and Recovery***

622 All animal procedures were approved by the Boston University Institutional Animal Care and Use
623 Committee. 13 mice expressing Cre recombinase in parvalbumin-expressing cells (PV-Cre mice, B6;129P2-
624 Pvalbtm1(cre)Arbr/J, JAX stock #017320, Jackson Laboratory) were used. Mice were 8-20 weeks old at the
625 start of experiments. Both male and female mice were used. Animals first underwent surgery to implant
626 a sterilized custom imaging window with an attached guide cannula and LFP electrode that was assembled
627 before surgery. The window assembly consisted of a stainless steel cannula (outer diameter: 3.17 mm,
628 inner diameter: 2.36 mm, height: 1.75 mm, B004TUE45E, AmazonSupply) fitted with a circular coverslip
629 (size 0, diameter: 3 mm, Deckgläser Cover Glasses, Warner Instruments), adhered to the bottom using a
630 UV-curable optical adhesive (Norland Optical Adhesive 60, P/N 6001, Norland Products). The guide
631 cannula (26 gauge, No C315GC-4/SP, PlasticsOne) was fixed at an approximately 60° angle to the imaging
632 cannula and terminated flush with the window surface. The LFP electrode consisted of either an insulated
633 stainless steel wire (diameter: 0.125 mm, No: 005SW-30S, PlasticsOne) soldered to a pin (No: 853-93-100-
634 10-001000, Mill-Max) or a bipolar electrode (wire diameter: 0.125 mm, No: MS303S/3-B-SP, PlasticsOne)
635 and was fixed parallel to the guide cannula, terminating about 200 µm below the window surface.

636 During surgery, an approximately 3.2mm hole was drilled in the skull (centered at anterior/posterior: -
637 2.0mm, medial/lateral: +1.8mm) and the cortical tissue overlaying the hippocampus was aspirated away
638 to expose the corpus callosum. The corpus callosum was then thinned until the underlying tissue of the
639 CA1 could be visualized through the surgical microscope. The imaging cannula was placed on top of the
640 hippocampus (stratum pyramidal) with LFP electrode located in stratum radiatum, and sealed in place
641 using a surgical silicone adhesive (Kwik-Sil, World Precision Instruments). A hole was drilled posterior to
642 lambda to implant an electrode (No: 853-93-100-10-001000, Mill-Max) for ground reference in LFP

643 recordings. The imaging window and ground electrode were secured in place, and a custom aluminum
644 head-plate was attached to the skull (posterior to the window), using bone adhesive (C&B Metabond,
645 Parkell) and dental cement. All mice were treated with buprenorphine for at least 48 hours after each
646 surgery. Mice were singly-housed after window implantation surgery to prevent damage to the head-
647 plate and imaging window.

648 After complete recovery from surgery (7+ days), 500-750 nL of virus was infused through the guide
649 cannula into the CA1. Most CaMKII mice (n=4) were infused with AAV9-CaMKII-SomArchon-GFP (titer:
650 3.2×10^{12} GC/mL, Addgene #126942), and one CaMKII mouse was infused with AAV9-synapsin-SomArchon-
651 GFP (titer: 5.9×10^{12} GC/mL, Addgene #126941). PV mice (n=9) were infused with AAV9-CAG-FLEX-
652 SomArchon-GFP (titer: 6.3×10^{12} – 1.1×10^{13} GC/mL, Addgene #126943) or AAV9-synapsin-FLEX-
653 SomArchon-GFP (titer: 1.28×10^{13} GC/mL). All viruses except AAV9-synapsin-FLEX-SomArchon-GFP were
654 obtained from the University of North Carolina Chapel Hill Vector Core. The plasmid for AAV9-synapsin-
655 FLEX-SomArchon-GFP was designed in-house, created by Epoch Life Science, and packaged into AAV by
656 Vigene Biosciences. Animals were awake and head-fixed during infusion. An internal cannula (33 gauge,
657 No: C315IS-4-SPC, PlasticsOne) was inserted into the guide cannula and infusion was performed using a
658 microinjector pump (UMP3 UltraMicroPump, World Precision Instruments). The internal cannula
659 remained in place for 1 min before infusion. Rate of infusion was 50 nL/min. After infusion, the internal
660 cannula remained in place for 5-10 min before being withdrawn. One PV mouse did not receive a viral
661 infusion, and instead underwent a stereotaxic viral injection surgery prior to window implantation. During
662 surgery, a hole was drilled in the skull targeting the hippocampus (anterior/posterior: -2.0mm,
663 medial/lateral: +1.4mm, dorsal/ventral: -1.6mm from bregma). The injection was performed with a blunt
664 33-gauge stainless steel needle (NF33BL-2, World Precision Instruments) and a 10 μ L microinjection
665 syringe (Nanofil, World Precision Instruments), using a microinjector pump (UltraMicroPump3-4, World
666 Precision Instruments). The needle was lowered over 1 min and remained in place for 1 min before

667 infusion. The rate of infusion was 50 nL/min. After infusion, the needle remained in place for 7-10 min
668 before being withdrawn over 1 min. The skin was then sutured closed with a tissue adhesive (Vetbond,
669 3M). After complete recovery (7+ days after virus injection), the animal underwent a second surgery for
670 window implantation as described above.

671 ***Animal Habituation***

672 After viral infusion, animals were habituated to experimenter handling and head-fixation on a motorized
673 treadmill. Each animal was habituated to cyclic resting and walking at 11.75 cm/sec (20 seconds each,
674 repeating) on the treadmill 4-5 days a week for at least 3 weeks prior to the start of imaging. Viral
675 expression peaked and remained high 4 weeks after infusion/injection. Imaging was performed about
676 once every seven days and animals were continually habituated in the interim between imaging days.

677 ***Voltage Imaging and LFP Recording***

678 During each imaging session, animals were head-fixed on the treadmill underneath a conventional wide-
679 field microscope equipped with an ORCA-Fusion Digital complementary metal oxide semiconductor
680 (CMOS) Camera (C14440-20UP, Hamamatsu Photonics K.K.) and a 40x NA0.8 CFI APO NIR objective
681 (Nikon). Because each SomArchon molecule has an attached GFP tag that can be used as a static label for
682 SomArchon-expressing cells, the microscope was equipped with a 5 W light emitting diode (M470L4,
683 ThorLabs), an 475/15-nm bandpass emission filter, 525/45-nm bandpass excitation filter, and 495-nm
684 dichroic mirror. To excite and record SomArchon, the microscope was also equipped with a 40-mW 637-
685 nm red laser (Coherent Obis 637-140X), a 706/95-nm band-pass emission filter, and a 635-nm dichroic
686 mirror (Semrock).

687 Cells were first located using the static GFP tag. SomArchon dynamics were subsequently imaged at
688 approximately 828 Hz (1.2 ms exposure) using HClImage Live (Hamamatsu Photonics K.K.) software.
689 HClImage Live data were stored as DCIMG image files, and further analyzed offline. Each cell was imaged

690 for 5 trials while the treadmill was off and 5 trials while the treadmill was on, for a total of 10 trials. Each
691 imaging trial was 12.07 seconds long, with a break of about 45 seconds between each trial. Resting and
692 running trials were interleaved such that each resting trial was followed by a running trial. After imaging
693 SomArchon dynamics of a cell, each cell was also imaged in the GFP channel for 5 treadmill off trials and
694 5 treadmill on trials, to identify physiological signals (such as hemodynamics or breathing) that may have
695 contaminated the SomArchon channel. Each GFP trial was 12.07 seconds with a break of about 25 seconds
696 between each trial. The imaging field of view was 122 pixels in height and of variable width.

697 Local field potential (LFP) was recorded simultaneously at 1 kHz during all trials using an OmniPlex system
698 (PLEXON). The camera also sent a TTL pulse to the OmniPlex system at the onset of each imaging trial to
699 synchronize SomArchon recordings and LFP recordings.

700

701 ***Histology***

702 At the end of the experiments, all mice were transcardially perfused and tissue was processed to confirm
703 SomArchon expression and cannula placement. Mice were perfused with 0.01M phosphate buffered
704 saline (PBS, No: BP2944100, Fisher Scientific) followed by 4% paraformaldehyde (No: 158127, Sigma-
705 Aldrich). Brains were carefully removed and post-fixed in 4% paraformaldehyde for 4-12 hours. Brains
706 were then transferred to 30% sucrose solution for at least 24 hours before sectioning. Brains were
707 sectioned into 50 μ m-thick coronal slices using a freezing microtome (SM2010R, Leica). Slices were
708 collected through the entire anterior hippocampus, from at least -1.0mm to -3.0mm relative to bregma.
709 A subset of sections from brains with CaMKII-SomArchon expression were stained with a mouse anti-
710 CaMKII α / β / γ / δ antibody (sc-5306, Santa Cruz, 1:50) followed by Alexa Fluor 568 goat anti-mouse
711 secondary antibody (No: A-11004, Thermo Fisher Scientific, 1:500). A subset of sections from brains with
712 FLEX-SomArchon expression were stained with a guinea pig anti-PV antibody (GP72, Swant, 1:1000)

713 following by Alexa Fluor 568 goat anti-guinea pig secondary antibody (No: A-11075, Thermo Fisher
714 Scientific, 1:500). All antibodies were diluted in 2% normal goat serum and 0.5% Triton-X (No: T9284,
715 Sigma-Aldrich) in 0.01M PBS. Briefly, sections were first rinsed with 0.01M PBS and a solution of 100mM
716 glycine (No: G7126, Sigma-Aldrich) and 0.5% Triton-X in 0.01M PBS, followed by a 2-hour incubation in
717 blocking buffer containing 5% normal goat serum and 0.5% Triton-X in 0.01M PBS. Sections were then
718 incubated for 24 hours with primary antibody, rinsed with 100mM glycine and 0.5% Triton-X in 0.01M
719 PBS, and incubated with secondary antibody for 2 hours. Slices were then incubated for 10 min with
720 Hoechst 33342 (No: 62249, Thermo Fisher Scientific, 1:10,000 in 0.01M PBS), rinsed with 100mM glycine
721 and 0.5% Triton-X in 0.01M PBS, and rinsed again in 100mM glycine in 0.01M PBS. Slices were mounted
722 on slides (Fisherbrand Superfrost Plus, No: 12-5550-15, Fisher Scientific) using anti-fade mounting
723 medium (ProLong Diamond, No: P36965, Thermo Fisher Scientific). Images were taken on an Olympus
724 FV3000 scanning confocal microscope using a 20 \times objective.

725

726 ***Data Analysis***

727 ***Motion Correction***

728 All videos were motion corrected with a custom Python script. To assist motion correction, we first pre-
729 processed each frame to enhance the image. To avoid camera artifacts that occasionally occur at the
730 edges of the image, the edge areas corresponding to 10% of the image width/height were discarded. The
731 image was then high-pass filtered (gaussian filter, sigma=50) to remove any potential uneven background.
732 We further enhance the boundary of high intensity areas by adding 100 times the difference between two
733 low-pass filtered images (gaussian filter, sigma=2 and 1) to the low-pass filtered image (gaussian filter,
734 sigma=1). After pre-processing the images, we performed the motion correction as following. We
735 calculated the cross-correlation coefficient between the processed image and a reference image, and

736 obtained the displacement between the center of the image and the maximum coefficient. we then
737 shifted the original unprocessed image accordingly. For the first trial, we used the mean intensity image
738 of the video as the initial reference image to motion-correct the first trial, and then we used the mean
739 intensity image of the motion-corrected first trial as the new reference image to motion-correct all trials.

740

741 ***ROI Selection, Trace Extraction, and Spike identification***

742 A region of interest (ROI) was identified for each cell using the first or second video recorded for that cell.
743 A mean projection image was generated for the video and an ROI was drawn manually using ImageJ. An
744 average fluorescence trace for the ROI was then extracted for each video in MATLAB, and detrended with
745 a double-exponential fitting line (MATLAB fit function, 'exp2') or linear detrend (MATLAB fit function,
746 'detrend') to remove the influence of photobleaching.

747 To identify the spikes, we first high-pass filtered the trace at 5Hz to remove any slow changes (Tf), and
748 generated a moving-window averaged trace (Tm, window length = 21 data points). We then generated
749 the upper trace (Tu), which includes the potential spike:

$$750 \quad Tu = \begin{cases} Tm, & Tf < Tm \\ Tf, & Tf \geq Tm \end{cases}$$

751 Similarly, we also generated the lower trace (Tl):

$$752 \quad Tl = \begin{cases} Tf, & Tf < Tm \\ Tm, & Tf \geq Tm \end{cases}$$

753 We then calculated the derivatives of Tu and Tl (diff_Tu and diff_Tl, respectively). Since diff_Tl captured
754 the half of the intensity changes not due to spikes, we estimated baseline fluctuation (B) as two times the
755 standard deviation of diff_Tl. Because a spike was a rapid increase in intensity followed by rapid decrease

756 in intensity within a few data points, we identified the data point (t) as a spike with the following two
757 criteria:

758
$$(diff_Tu(t - 1) + diff_Tu(t)) > mean(diff_Tu) + 4 * B$$

759
$$(diff_Tu(t + 1) + diff_Tu(t + 2)) < mean(diff_Tu) - 3 * B$$

760 We obtained the amplitude of each spike (A) by calculating the difference between the spike peak
761 intensity and the lower intensity of the prior two data points. We then estimated the corresponding
762 amplitude to baseline fluctuation ratio (ABR). Because true spikes should share a similar ABR, we further
763 refined our spike identification results based on the ABR distribution. Specifically, we performed k-mean
764 clustering on the ABR to obtain two clusters and found the major cluster, which included more spikes. We
765 then excluded the spikes with ABR less than four standard deviations away from the mean of the ABR of
766 the major cluster.

767 To ensure the quality of the trace, we only included the trials with firing rate > 0.5Hz and average ABR >
768 1.5, and without motion artifacts identified by manual inspection, blind from experiment conditon. Only
769 ROIs with at least one resting trace and one walking trace were included in further analysis.

770

771 **Spectrogram and Power Analysis**

772 Spectrograms were generated with the MATLAB cwt function ('TimeBandwidth'=60,
773 'VoicesPerOctave'=10). We focused all oscillation analysis within the frequency range from 2 to 40Hz,
774 except Supplemental Figure 2. In Supplemental Figure 2, Vm spectrogram was calculated up to 70 Hz to
775 avoid the interference of camera fan mechanical noise around 80Hz, and LFP spectrogram was calculated
776 up to 200Hz. The spectrograms were normalized by z-scoring either over frequencies (to emphasize
777 changes in the power distribution over frequencies; Figure 1 and Supplemental Figure 2) or over time (to

778 emphasize changes in the power of specific frequencies over time; all other figures). To obtain the power
779 of a specific frequency band, the powers within the desired frequency range were averaged. Similarly, to
780 obtain the power of a specific time window, we averaged the powers of all time points within the window.
781 All spectrograms/power distributions from the trials of the same condition (resting/running) from one
782 neuron were averaged to create the representative spectrogram/power of that neuron during the
783 condition, and then averaged across all neurons.

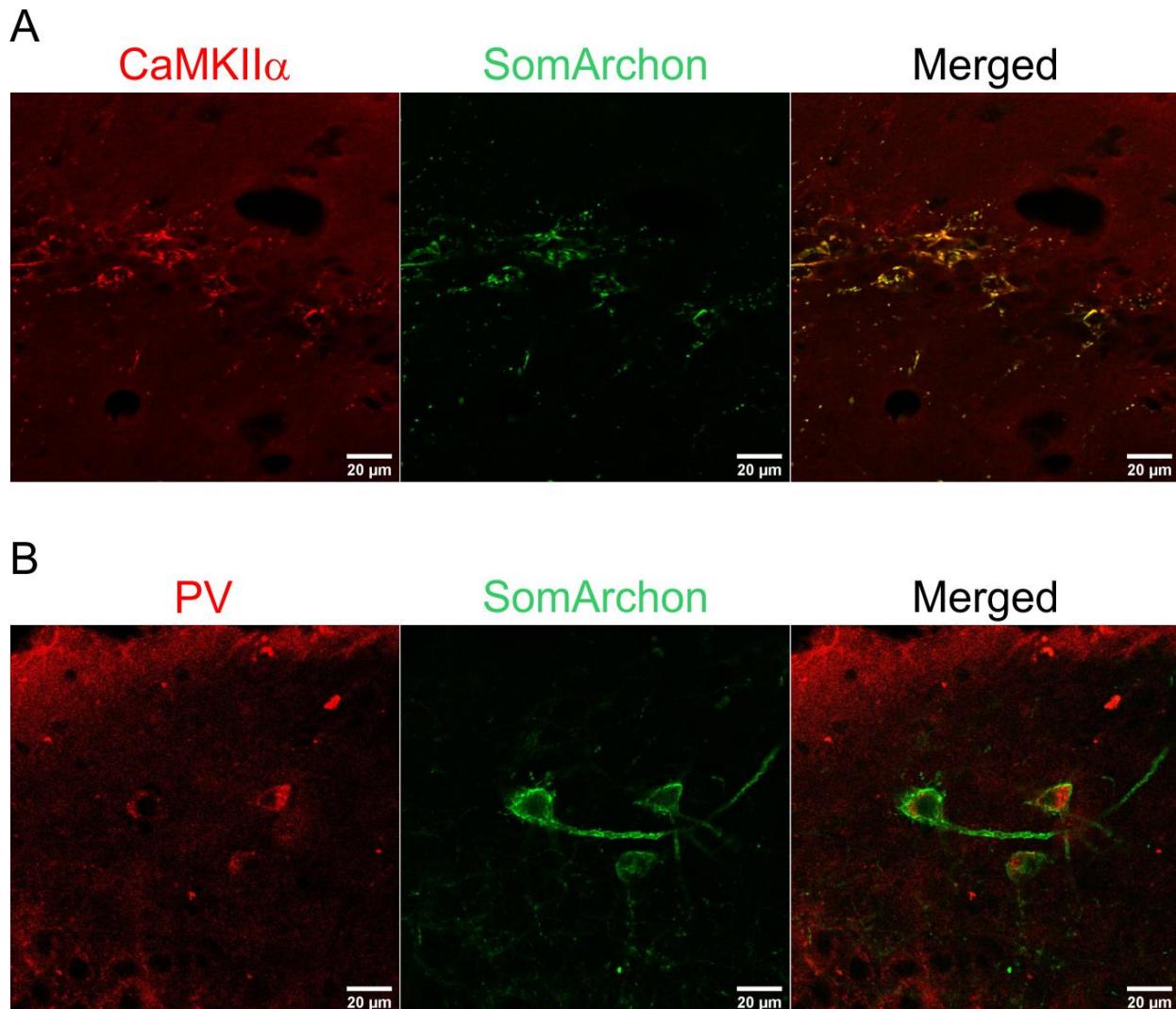
784

785 **Bootstrapping Analysis for Significant Changes in Power Distribution**

786 When aligning power distributions to the spike onsets or to the peaks of Vm theta cycles, we obtained the
787 frequency of significant power changes by identifying the frequencies where the population power
788 distribution was outside of the non-specific population power distribution, calculated as following. For
789 true spikes/peaks, we established the potential range of the population power distribution by calculating
790 the average \pm standard error across the representative power distributions of all neurons. The non-specific
791 population power distribution was obtained via bootstrapping. Specifically, we randomly selected the
792 same number of timepoints as the spikes/peaks in each session as pseudo-spikes/peaks and performed
793 the same analysis as described in the previous sentence to get a representative non-specific power
794 distribution for a neuron. The representative non-specific power distributions from all neurons were
795 averaged to obtain a non-specific population power distribution. This random selection procedure was
796 repeated 500 times to obtain a set of 500 non-specific population power distributions. We then
797 established the confidence interval of the non-specific population power distribution by calculating the
798 average $\pm 2 \times$ standard deviation of the set of non-specific population power distributions.

799

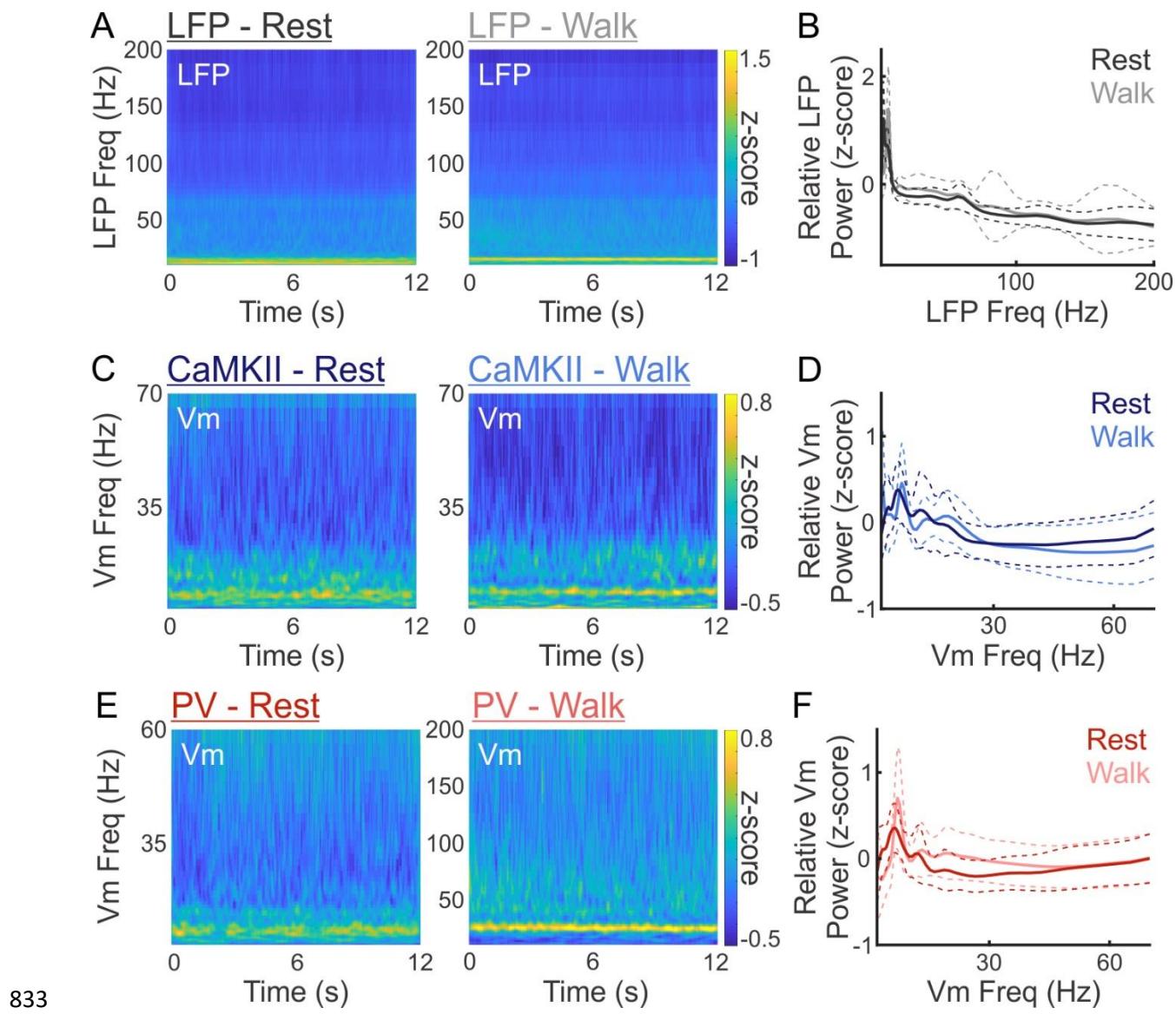
800 **Theta Peak and Cycle Identification and Phase Calculations**


801 To identify theta peaks, we first filtered V_m or LFP at theta frequency (5-10Hz). The theta peaks were
802 defined as the local maximum found by the MATLAB findpeaks function. For each theta peak, the
803 beginning of its corresponding theta cycle was defined as the time point of the minimum intensity
804 between the current peak and the previous theta peak. The end of its corresponding theta cycle was
805 defined as the time point of the minimum intensity between the current peak and the subsequent theta
806 peak. Each cycle was thus defined as the time window between the beginning and end of the cycle. For
807 each cycle, we calculated its actual frequency by taking the inverse of the cycle duration. We calculated
808 the representative power of each cycle by averaging the power across all time points within the cycle.

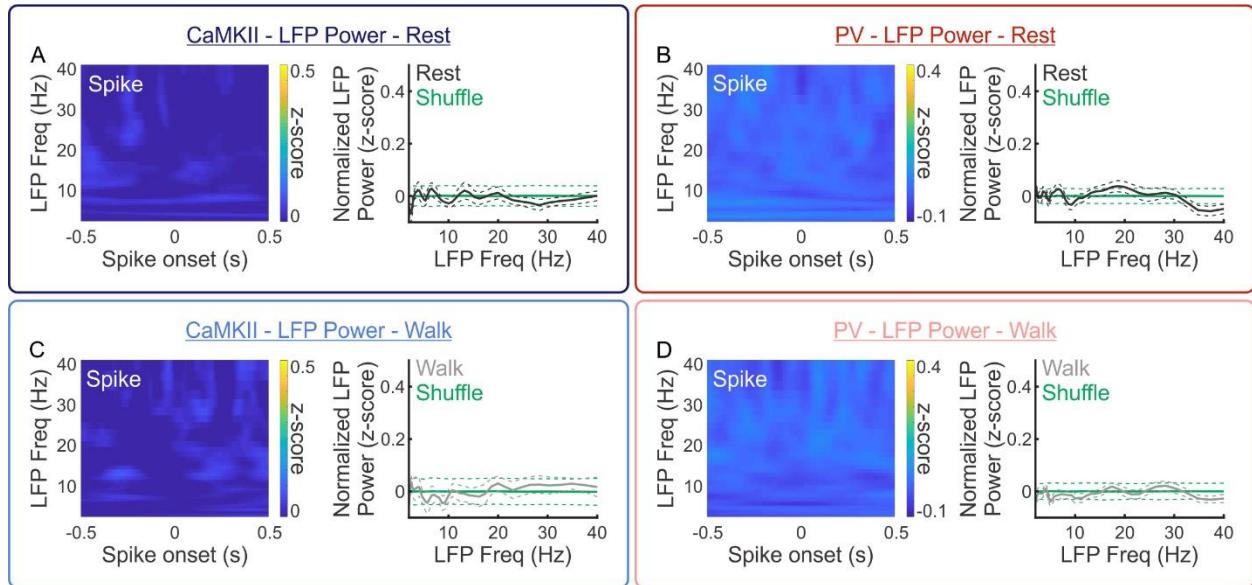
809 To obtain the phase of a spike, we calculated a delay-to-period ratio. The delay was defined as the time
810 duration from the peak before the spike to the spike, and the period was defined as the time duration
811 between the two neighboring peaks on either side of the spike. We then converted this ratio to a phase
812 between $-\pi$ and π , where 0 was the peaks of one oscillation cycle. To then obtain the distribution of spike
813 phase for each neuron, we divided one cycle into 18 bins, and calculated the percentage of the spikes
814 from each neuron that occur within each bin.

815 When calculating the phase shift between a V_m cycle and LFP cycle, we similarly calculated a delay-to-
816 period ratio and converted the ratio to phase between $-\pi$ and π . We defined the delay as the time duration
817 from the LFP peak before the V_m peak to the V_m peak. The period was defined as the duration between
818 the two neighboring LFP peaks on either side of the V_m peak. We obtained the distribution of V_m -LFP
819 phase shift for each neuron as described above. Briefly, we divided one cycle into 18 bins and calculated
820 the percentage of phase shifts from each neuron that fell within each bin. To obtain the power of each
821 V_m or LFP cycle, we first calculated the normalized power as described in section Spectrogram and Power
822 Analysis, and used the power at the peak of the oscillation as the power for that cycle. When calculating

823 the LFP power during each V_m oscillation cycle (Figure 4E, F, K, and L), we used the power at the LFP peak
824 closest to the V_m peak. Circular correlation coefficient was calculated with CircStat (59).


825

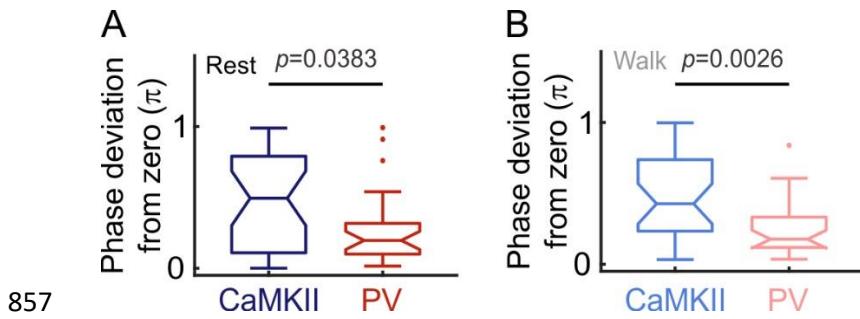
827 **Supplemental Figure 1. Cell-type specific expression of SomArchon.**


828 (A) Confocal microscopy images from an example mouse expressing SomArchon in CaMKII cells. Co-
829 localization (right) of CaMKII α / β / γ / δ immunostaining (left) and CaMKII-SomArchon expression (middle).
830 (B) Confocal microscopy images from an example mouse expressing SomArchon in PV cells. Co-localization
831 (right) of PV immunostaining (left) and FLEX-SomArchon expression (middle).

832

835 (A) Average LFP spectrograms from all recordings, showing a higher frequency range than that shown in
836 Fig 1B, during resting (left) and walking (right) (N= 59 cells). (B) Relative LFP power distributions of all
837 recordings during resting (black) and walking (gray) (N= 59 cells). (C) Average Vm spectrograms from all
838 CaMKII neurons, showing a higher frequency range than that shown in Fig 1G, during resting (left) and
839 walking (right) (N= 31 cells). (D) Relative Vm power distributions of all CaMKII neurons during resting (dark
840 blue) and walking (light blue) (N= 31 cells). (E) Average Vm spectrograms from all PV neurons, showing a

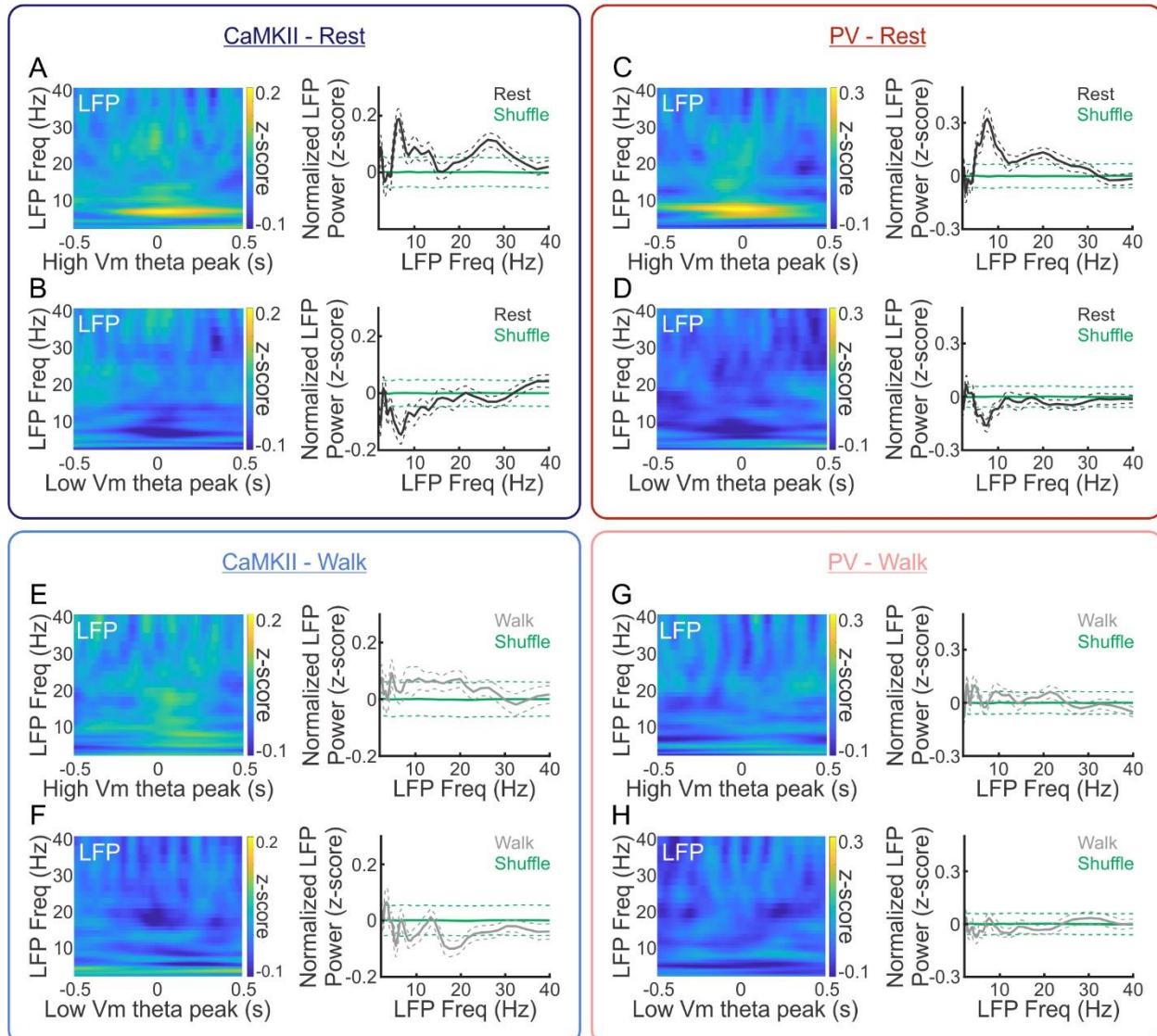
841 higher frequency range than that shown in Fig 1K, during resting (left) and walking (right) (N=48 cells). (F)
842 Relative Vm power distributions of all PV neurons during resting (dark red) and walking (light red) (N=48
843 cells). In power plots, solid lines and dashed lines indicate mean and \pm standard deviation, respectively.
844 The power at each time point was normalized by calculating its z-score across frequencies. In boxplots,
845 notch indicates median, box indicates 25th to 75th percentiles, whiskers indicate the range of non-
846 outliers, and dots indicate outliers.



847

848 **Supplemental Figure 3. LFP oscillation at spike onsets.**

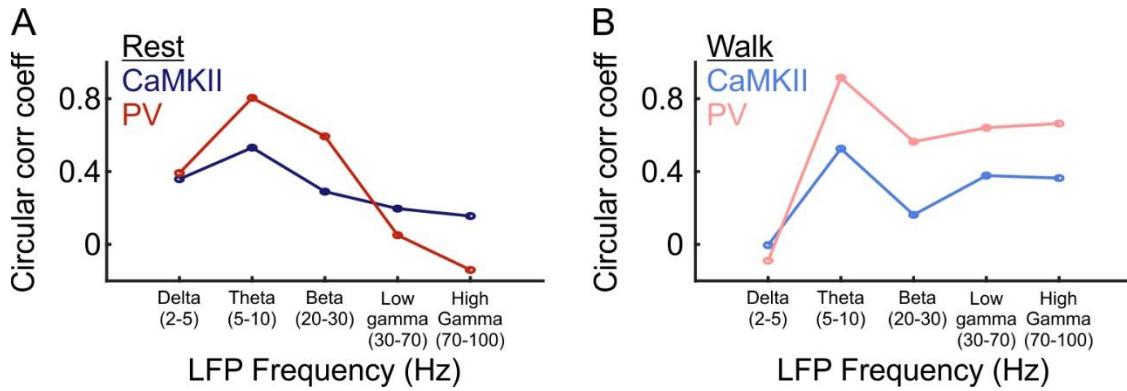
849 (A) Average LFP spectrogram (left, N=31 cells) aligned to all CaMKII spikes during resting, and the
850 corresponding LFP power distribution (right, black, mean \pm standard error, N=31 cells), compared to LFP
851 power in random shuffles (right, green, mean \pm 2*standard deviation). (B) Average LFP spectrogram (left,
852 N=28 cells) aligned to all PV spikes during resting, and the corresponding LFP power distribution (right, black, mean \pm standard error, N=28 cells), compared to LFP power in random shuffles (right, green,
853 mean \pm 2*standard deviation). (C and D) Same as (A, and B) but during walking (gray). In power plots, the
854 power at each frequency was normalized by calculating the z-score across all time points within each trial.
855


856

858 **Supplemental Figure 4. PV Vm theta oscillation is more synchronized with LFP theta oscillation than**
859 **CaMKII Vm theta oscillation.**

860 **(A)** Phase shift between Vm theta oscillation and LFP theta oscillation across all CaMKII neurons (dark
861 blue) and all PV neurons (dark red) during resting (CaMKII: 31 cells, PV: 28 cells, ranksum test, resting:
862 $p=0.0383$). **(B)** Phase shift between Vm theta oscillation and LFP theta oscillation across all CaMKII neurons
863 (light blue) and all PV neurons (light red) during walking (CaMKII: 31 cells, PV: 28 cells, ranksum test,
864 resting: $p=0.0026$). In boxplots, notch indicates median, box indicates 25th to 75th percentiles, whiskers
865 indicate the range of non-outliers, and dots indicate outliers.

866


867

868 **Supplemental Figure 5. Behavioral state-dependent association between Vm theta power and LFP theta**
869 **power.**

870 (A) Average LFP spectrogram aligned to the peak of CaMKII Vm theta cycles with high Vm theta power
871 (power>0.5) during resting (left, N=31 cells), and the corresponding LFP power distribution (right, black,
872 mean±standard error, N=31 cells), compared to the LFP power in random shuffles (right, green,
873 mean±2*standard deviation). (B) Average LFP spectrogram aligned to the peak of CaMKII Vm theta cycles
874 with low Vm theta power (power<-0.5) during resting (left, N=31 cells), and the corresponding LFP power

875 distribution (right, black, mean \pm standard error, N=31 cells) compared to the LFP power in random shuffles
876 (right, green, mean \pm 2*standard deviation). (C) Average LFP spectrogram aligned to the peak of PV Vm
877 theta cycles with high normalized Vm theta power (power>0.5) during resting (left, N=28 cells), and the
878 corresponding LFP power distribution (right, black, mean \pm standard error, N=28 cells) compared to the LFP
879 power in random shuffles (right, green, mean \pm 2*standard deviation). (D) Average LFP spectrogram
880 aligned to the peak of PV Vm theta cycles with low normalized Vm theta power (power<-0.5) during
881 resting (left, N=28 cells), and the corresponding LFP power distribution (right, black, mean \pm standard error,
882 N=28 cells) compared to the LFP power in random shuffles (right, green, mean \pm 2*standard deviation). (E,
883 F, G, and H) Same as (A, B, C, D), respectively, during walking (gray). In power plots, the power at each
884 frequency was normalized by calculating the z-score across all time points within each trial.

885

886

887 **Supplemental Figure 6. Selective elevation of correlation between spike-LFP phase and Vm-LFP phase**

888 **shift at theta frequency.**

889 (A) Circular correlation coefficients between spike-LFP phase and Vm-LFP phase shift across all CaMKII
890 neurons (dark blue) and all PV neurons (dark red) over a range of LFP frequency bands during resting. (B)
891 Circular correlation coefficients between spike-LFP phase and Vm-LFP phase shift across all CaMKII
892 neurons (light blue) and all PV neurons (light red) over a range of LFP frequency bands during walking.

893