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A B S T R A C T

Objective: This study develops new machine learning architectures that are more adept at detecting interictal
epileptiform discharges (IEDs) in scalp EEG. A comparison of results using the average precision (AP) metric
is made with the proposed models on two datasets obtained from Baptist Hospital of Miami and Temple
University Hospital.
Methods: Applying graph neural networks (GNNs) on functional connectivity (FC) maps of different frequency
sub-bands to yield a novel architecture we call FC-GNN. Attention mechanism is applied on a complete graph
to let the neural network select its important edges, hence bypassing the extraction of features, a model we
refer to as CA-GNN.
Results: On the Baptist Hospital dataset, the results were as follows: Vanilla Self-Attention → 0.9029 ± 0.0431,
Hierarchical Attention → 0.8546 ± 0.0587, Vanilla Visual Geometry Group (VGG) → 0.92 ± 0.0618, Satelight
→ 0.9219 ± 0.046, FC-GNN → 0.9731 ± 0.0187, and CA-GNN → 0.9788 ± 0.0125. In the same order, the
results on the Temple University Hospital dataset are 0.9692, 0.9113, 0.97, 0.9575, 0.963, and 0.9879.
Conclusion: Based on the good results they yield, GNNs prove to have a strong potential in detecting
epileptogenic activity.
Significance: This study opens the door for the discovery of the powerful role played by GNNs in capturing
IEDs, which is an essential step for identifying the epileptogenic networks of the affected brain and hence
improving the prospects for more accurate 3D source localization.
1. Introduction

Epilepsy is a chronic brain disorder that affects 65 million people
worldwide and 3.4 million in the United States, according to the
Epilepsy Foundation. For 50% of this population, no identifiable cause
is known and 30% of them do not benefit from any available treatment.
Scalp electroencephalography (EEG) remains the most widely used
modality for recording seizures and for understanding brain dynamics
in epilepsy patients. The relevance of EEG recordings is due to the
ability to explore brain electric activity at a high temporal resolution
while also being relatively simple to administer, non-invasive, and
cost-effective.

Although seizures can occur in non-epileptic brains, their existence
is still considered to be a strong epilepsy-indicator. Hence, seizure
detection has been widely studied to early-identify the occurrence of
epilepsy for anti-epileptic treatment purposes. For example, an entropy-
based dynamic graph embedding model was proposed in [1] where
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the graph structure is inferred from the correlation among the signals
of the multi-channel scalp EEG. The detection of seizures is based on
the notion that the graph entropy during the seizure time interval is
different from other time intervals. A progressive deep wavelet cascade
classification (PDWC) model was proposed in [2] where recognition is
performed in cycles. In each of those cycles, wavelet energy features
are extracted by discrete wavelet transform (DWT) that are then fed
into a set of cascade random forest (RF) classifiers. A technique based
on reservoir computing (RC) was used to detect seizures in intracranial
EEG (iEEG) of rats in [3]. The detection of such seizures could aid
in the process of localizing the seizure onset zone (SOZ) [4]. It is
notable that EEG is typically used along with other modalities such
as magnetoencephalogram (MEG) to identify the epileptogenic zone
with higher accuracy as in [5] where high-density EEG (HD-EEG) was
utilized for its high spatial resolution. Magnetic resonance imaging
(MRI) is a generic imaging modality that has several uses such as
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diagnosing breast tumors and predicting chemotherapy responses [6].
One particular application of interest is combining EEG with MRI to
accurately localize the SOZ.

Despite the advancements in scalp-EEG seizure detection systems,
which have been proven to be helpful in clinical settings, the contin-
uous supervision of patients and complete visual review by specially
trained personnel remain a necessity [7]. Several studies have shifted
their focus on epileptogenic activity in the form of interictal epilepti-
form discharges (IEDs) occurring in between seizures. This shift is due
to three main reasons: First , the high sensitivity of EEG signals to the
resence of movement artifacts (eye blinks, tongue movement, etc.),
hich are abrupt, complicates their delineation despite the success of

everal artifact removal algorithms [8]. Second, seizures are gener-
lly random and unpredictable, while IEDs are relatively consistent
orphologically and spatially, which could provide better insight for

uilding and modeling the so-called epileptogenic network [9]. Identi-
ying such networks is crucial for localizing the focal source from which
he epileptogenic activity may originate. Accurate source localization is
ritical for surgical interventions that become inevitable when patients
ith focal epilepsy face drug-resistant and recurring seizures that could
ltimately lead to abnormal neuronal death [10–12]. For patients with
ocal epilepsy, it is clinically essential to consider multiple IEDs to
verage the random effects of regular background activity to locate
he SOZ more accurately. The third reason is that IEDs are more
requent than epileptic seizures. Waiting for seizures to happen requires
xtended EEG recording sessions, which require added cost and more
ime and effort spent monitoring these recording sessions.

The visual inspection of EEG by neurologists with the purpose
f identifying IEDs is a highly subjective task, exceedingly tedious,
nd time-consuming. Hence, the automation of such a process has
een the main focus of numerous studies [13–18]. Several procedures
re followed to be able to distinct IEDs from artifacts or non-IEDs
NIEDs). Early studies relied mainly on the morphological features of
he potential epileptogenic discharges (such as the rising and falling
dges) in context of the containing EEG segment (such as the average
eak value) to determine whether a specific discharge is an IED or
IED using a rule-based approach. For instance, in [19], epileptogenic
EG sharp transients were detected and false positives were eliminated
ased on the spatial and temporal context information available on 16
hannels of EEG. The feasibility of using the Walsh transformation to
etect EEG interictal spikes was evaluated in [20]. A complete real-
ime system with software and hardware specifications to detect spikes
as described in [21] using the wavelet transform. Differentiating the
eometrical characteristics between spikes and normal EEG activity was
one using mathematical morphology in [22].

More recently, the identification process was subdivided into a
ulti-step machine learning (ML)-based system. To cite some, a non-

inear digital filter that uses adaptive autoregressive (AR) model [23]
o eliminate trivial non-spikes was used as a pre-classifier in [24]. This
tems from the convention that EEG is formed by the combination of
tationary background waves (trivial non-spikes) and non-stationary
pike waves (spikes and spike like non-spikes). Hence, the stationary
aves could be mathematically expressed as an AR process. Support
ector machine (SVM) was then used as a post-classifier to extract
ctual spikes. The generic spike template proposed by Chatrian [25]
as used in [26] to collect more templates which are then clustered
ith the k-means algorithm. Clusters having less than 5% of the col-

ected templates were dropped and hence the number of clusters was
utomatically determined. The centroids for the remaining clusters are
sed as the final templates to detect IEDs. The study presented in [27]
xtended the previous approach by extracting duration, amplitude,
lope, and area features from the average channel (on which the candi-
ate spike was identified) as well as the two related bipolar channels.
ach channel provided 10 such features and hence, an RF classifier was
sed to detect spikes using the 30 features from the three channels. In
2

study by Heers et al. semi-automated and automated detections of
IED types in long-term video-EEG monitoring (LTM) were in agreement
with visually detected IED types and the SOZ [28].

One of the major challenges in such architectures is the high im-
balance in the dataset. This is caused by the high sensitivity of the
pre-filtering step (in order not to miss IEDs) which collects a large
number of artifacts that ought to be rejected by the subsequent ML
step. Synthetic minority oversampling technique (SMOTE) was adopted
in [29] to synthesize additional spikes and hence mitigate the prob-
lem. Extracting features from the EEG segments can also be useful
with scarce data. However, hand-crafting features requires domain-
specific-knowledge and opens the door for extended research in order
to identify the best set of features for the ML problem at hand. For
instance, the structuring element (pertaining to the mathematical mor-
phology analysis) used in [29] is different from the one used in [30].
Hence, recent studies try to identify spikes from raw EEG. For instance,
in [31], a simple VGG convolutional neural network (CNN) was used
to detect IEDs in 2-second EEG epochs. CNNs were used in what is
called as SpikeDeeptector that was introduced in [32] to identify the
EEG channels that contain neural spikes. Spikes, ripples, and ripples-
on-spikes present in iEEG were detected in [33] using a long short-term
memory (LSTM) neural network.

A similar multi-step approach is considered in this study. Within
a few minutes of scalp EEG, candidate IEDs are collected using a
rule-based algorithm depending on the morphological features of the
discharge in context of the containing EEG segment. Those candidates
are investigated by an expert neurologist to distinguish IEDs from
potential false positives. These labeled EEG segments are used to train
different neural network (NN) architectures.

Our main contribution lies in developing two graph neural network
(GNN) architectures, namely functional connectivity (FC)-based GNN
(FC-GNN) and complete attention GNN (CA-GNN). The two proposed
models are compared against Vanilla Self-Attention, Hierarchical At-
tention [34], Vanilla VGG [31], and Satelight [35] on two datasets.
The first dataset is obtained from Baptist Hospital of Miami. The
second dataset is the Temple University Hospital EEG Events Corpus
(TUEV) [36]. The improved results based on average precision (AP)
call for more investigation into the role GNNs can play in identifying
IEDs. We also outline in the Discussion section a list of suggestions
for future work and summarize the strengths and weaknesses of the
proposed method.

The development of the FC-GNN architecture is inspired by the
findings of a previous study by our research group [37] where it was
emphasized that IEDs yield FC maps that are statistically distinct from
those of NIEDs. This structural disproportionality could be exploited by
GNNs in favor of our task. The role of graph convolutional networks
(GCNs) applied on transverse and longitudinal bipolar EEG montages
for IED detection is investigated in [38]. This study was the only
graph-based architecture designed for IED detection reported in recent
reviews [39–41]. Hence, this field remains widely unexplored. Instead
of defining the graph edges through EEG montages, FC-GNN relies on
FC analysis to establish the edges. A relatively similar approach was
recently published in [42] and in [43] for the detection of seizures
in neonatal EEG and for person identification, respectively. In [44],
EEG-GNN was introduced and it was shown to outperform the standard
CNN classifiers on both the ErrP, and RSVP brain-computer interface
(BCI) datasets. Pearson correlation coefficient was used as the FC metric
establishing the graph edges. In [45], GNNs applied on 8 different FC
measures were compared against each other and against 3 baseline
models for the classification of Alzheimer’s Disease (AD) based on EEG.
Despite no certain FC measure outperformed the other FC measures,
the GNN models were shown to significantly perform better than the
baseline models. Results show that GNNs applied to graphs estimated
through FC analysis performed better than when applied to graphs
whose edges are determined using the spatial distance between the
EEG electrodes. This observation adds another motivation for using an

FC-based GNN architecture to detect epileptic spikes in EEG.
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FC maps visualize the coupling between different brain regions. This
information could hardly be realized by mere visual inspection of the
EEG. We use the weighted phase lag index (wPLI) metric [46] for its
high immunity to the direct linear mixing effects, albeit no FC measure
resolves the volume conduction problem entirely [47]. Moreover, wPLI
provides the FC measure at several frequency sub-bands of interest,
namely delta-band (𝛿: 0.5–4 Hz), theta-band (𝜃: 4–8 Hz), alpha-band
(𝛼: 8–13 Hz), and beta-band (𝛽: 13–30 Hz). We exclude the gamma-
band (𝛾: 30–48 Hz) for its strong susceptibility to muscle artifact in
scalp EEG recordings as reported in [48,49]. It was also reported that
the 𝛾-band yields low-reliability graph metrics [50]. At the beginning of
FC-GNN, a CNN is used to extract representations of each EEG channel
separately. Positional encoding on the channels’ embeddings is then
performed before they are input to the GNN of each frequency sub-band
FC map. Each GNN produces its own encoding and thus an attention
mechanism [51] is used to combine these encodings. Eventually, a
multi-layer perceptron (MLP) is used to output the final classification.

In order to extend this architecture further without extracting hand-
crafted features (FC maps), the CA-GNN applies attention to the nodes’
dimension of a complete graph (a single graph where all nodes are
connected to each other). This is done to let the neural network
choose the most important graph edges as directed by the downstream
classification training task.

The rest of the paper is organized as follows: Section 2 presents the
data collection/preprocessing procedures of the Baptist dataset, and the
pre-filtering algorithm used to capture candidate discharges. Section 3
introduces the different NN architectures used. For the sake of self-
sufficiency within this paper, the necessary background concepts for
understanding the architectures are described in detail assuming that
the reader may not be readily familiar with such concepts. Results,
discussions, limitations, and suggested future work are presented in
Section 4. Concluding remarks are finally presented in Section 5.

2. Collected data

2.1. Data preprocessing

Recordings from 19 scalp electrodes placed according to the 10–20
standard EEG system were collected from 39 patients at Baptist Hospital
of Miami. The study process was approved by the Institutional Re-
view Board of Florida International University (protocol number: IRB-
150247). Patients were told to relax and avoid movement whenever
possible during the recording session. Subjects are all adults ranging
from 40 to 80 years old. The recording sampling frequencies were
512, 256, and 200 Hz. In order to minimize the processing time, all
data were downsampled to 100 samples/s. This was done after the AC
line noise was removed with a 60 Hz notch filter and applying a 4th
order Butterworth band-pass filter with 0.75–38 Hz passing frequency
range. The International Federation of Societies for Electroencephalog-
raphy and Clinical Neurophysiology (IFSECN) categorizes IEDs into
four groups: sharp waves, spikes, spike-wave complexes, and polyspike-
wave complexes [52]. Most of the collected IEDs are sharp waves and
spikes with few instances of spike-wave complexes. The filtered EEG
data were divided into 3-second segments as suggested by the neurol-
ogists in order to provide temporal context around the discharge of
interest. A brief description of the TUEV dataset is given in Section 4.2
before presenting its results.

2.2. Pre-filtering

The whole EEG recording is divided into 3-second segments. Note
that the final classification is done on the level of the segment as a
whole. Therefore, a segment is labeled as a candidate IED-segment if it
contains at least one candidate discharge. In reference to Fig. 1, all the
3

following conditions have to be met in a candidate IED-segment:
Fig. 1. Template spike with RPF waveform.

(a) For each local maximum, 𝑃 , within every electrode channel of
the segment, both the preceding local minimum, 𝑅, and the
following local minimum, 𝐹 , are identified. The average, 𝜇𝐴,
and the sample standard deviation, 𝑠𝐴, of the quantity 𝐴 =
(𝐴1 + 𝐴2)∕2 is computed. A peak is considered if the following
conditions are met: (i) 𝐴 ≥ 𝜇𝐴 + 2𝑠𝐴, (ii) 𝐴 ≥ 20 μV, and (iii)
0.1 ≤ 𝐴1∕𝐴2 ≤ 6.

(b) 20 ms ≤ 𝛥𝑅𝑃 + 𝛥𝑃𝐹 ≤ 240 ms
(c) |𝛥𝑅𝑃 − 𝛥𝑃𝐹 | ≤ 0.75 (𝛥𝑅𝑃 + 𝛥𝑃𝐹 )
(d) 𝑃𝑎 has to be at least 1.25 times larger than all the amplitudes

within 140 ms prior to 𝑅.
(e) Within every 𝑅𝑃𝐹 waveform, the absolute of the slopes of the

steepest rising edge and the steepest falling edge should be at
least 0.8 mV/s. In addition, the maximum absolute curvature
between the rising and falling edges should be at least 0.55
mV/s2.

(f) It was shown in [53] that independent component analysis (ICA)
has higher ability to concentrate spike events (as expressed
through a spikiness index) into fewer number of components
when compared to both raw MEG and singular value decompo-
sition (SVD). The spikiness index of the 𝑚th component, 𝑧𝑚(𝑡), is
given by: 𝐼𝑚 = max|𝑧𝑚(𝑡)| ∕

1
𝑇 ∫ |𝑧𝑚(𝑡)|𝑑𝑡, where the maximum is

computed over the entire observation interval 𝑇 (3 s in our case).
Instead of performing ICA followed by selecting ℑ components
with the highest spikiness indices, we use reconstruction ICA
(RICA) to extract ℑ (9 in our MATLAB implementation) sources
directly. In its simplest form, RICA learns an unmixing matrix,
𝑊 ∈ 𝐑ℑ×19, that minimizes 𝜆‖𝑊 𝑥‖1 +

1
2‖𝑊

𝑇𝑊 𝑥 − 𝑥‖22, where
𝑥 ∈ 𝐑19×300 represents the whole EEG segment recording from
the 19 scalp electrode channels. The term 𝜆 is a hyperparameter
that determines how important the minimization of the first part
of the objective function is compared to the second part. The
second part tries to enforce the orthonormality across the sources
(not mere linear independence) by trying to enforce 𝑊 𝑇𝑊 to be
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equal to the identity matrix 𝐼 . We hint out that this is not feasible
due to the given under-completeness (i.e., ℑ < 19). However, the
algorithm is encouraged to enforce this orthonormality through
the soft reconstruction 𝐿2-norm loss. 𝐿2-norm is avoided in the
first part of the objective function due to its undesired property
of discouraging sparsity in the resulting sources. Hence, 𝐿1-
norm is used instead as our aim is to enforce the sparsity of the
sources, i.e., the reading at a specific electrode is only affected
by a few sources. A new time course 𝑑(𝑡) is then computed
and is given by max|𝑧𝑚(𝑡)|, where the maximization is done
across the ℑ components. The 𝑑(𝑡) time course is then simply
thresholded. For a certain 𝑅𝑃𝐹 waveform that satisfied all the
previous conditions, if 𝑑(𝑃𝑡) < 0.01, then this waveform will be
omitted.

(g) It is important to observe that strong artifacts can easily produce
high spikiness index (𝐼𝑚 defined in the previous step). Thus,
to enhance the selectivity of the algorithm further, we fit a
single current dipole using the multiple signal classification
(MUSIC) algorithm within ±20 ms around each 𝑃 satisfying all
the conditions above. Around each 𝑃 , the EEG recording, X
∈ 𝐑19×𝐿, is given as: 𝐀𝐬 + 𝐧. 𝐿 is the length of the cropped
40 ms recording in samples, 𝐀 ∈ 𝐑19×𝑟 is the mixing matrix
of the 𝑟 sources responsible for producing the interictal activity
present in 𝐬 ∈ 𝐑𝑟×𝐿. 𝑟 is set to 4 as recommended in [53] and
𝐧 ∈ 𝐑19×𝐿 denotes the noise. Each column of the matrix A is
denoted by 𝒂(𝜃) = 𝑮(𝜌)𝜙 where 𝑮(𝜌) ∈ 𝐑19×3 is the gain matrix.
𝒂(𝜃) represents the effect of a certain source (located at position
𝜌 in the brain and with orientation 𝜙) on the 19 scalp electrodes.
Hence, 𝜃 is characterized by the {𝜌, 𝜙} pair. In practice, the gain
matrix is formed as follows: The MRI is segmented using any
of the available techniques like the one in [54] which makes
use of a CNN model. As the electromagnetic properties of the
segmented regions (skin, skull, grey/white matter) are known,
the effect of a source at location 𝜌 on the electrodes can be
determined by solving the forward model which results in the
head model. Since we do not have MRIs for the patients, we
acquired a template head model in Brainstorm software [55].
The covariance matrix of the data, 𝐗𝐗𝑇 , has eigenvectors 𝜱
which can be written as

[

𝜱𝑠,𝜱𝑛
]

where 𝜱𝑠 and 𝜱𝑛 represent
orthonormal bases for the epileptogenic signal subspace and
the noise subspace, respectively. The MUSIC algorithm finds
the source locations as those for which the corresponding 𝒂(𝜃)
projects almost entirely into the estimated signal subspace [56],
i.e., high subspace correlation (denoted by 𝑠𝑢𝑏𝑐𝑜𝑟𝑟). Hence, it
is desired to find 𝜃 that maximizes 𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝒂(𝜃),𝜱𝑠)21 which is
equivalent to finding 𝜌 that maximizes 𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝑮(𝜌),𝜱𝑠)21 since
𝒂(𝜃) is in the span of 𝑮(𝜌). Thus, we want to find the maximum
dot product of two normalized vectors (one in the column space
of 𝑮(𝜌) and the other in the column space of 𝜱𝑠). This is how
𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝑮(𝜌),𝜱𝑠)1 is defined in [57] which is the maximum
subspace correlation coefficient. Note that we are only fitting
a single dipole. Therefore, there is no need to find the corre-
sponding 𝜙 that is necessary to fit the subsequent dipoles as
described in [56]. To find 𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝑮(𝜌),𝜱𝑠)1, we first need to
orthogonalize the two matrices by carrying out singular value
decomposition (SVD). Since 𝜱𝑠 is already orthogonalized, we
only decompose 𝑮(𝜌) as 𝑼𝑮(𝜌)𝜮𝑮(𝜌)𝑽 𝑇

𝑮(𝜌). 𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝑮(𝜌),𝜱𝑠)1 is
the highest singular value of the matrix 𝑼𝑇

𝑮(𝜌)𝛷𝑠 and therefore
𝑠𝑢𝑏𝑐𝑜𝑟𝑟(𝑮(𝜌),𝜱𝑠)21 = 𝜆𝑚𝑎𝑥(𝑼𝑇

𝑮(𝜌)𝛷𝑠𝛷𝑇
𝑠 𝑼𝑮(𝜌)) where 𝜆𝑚𝑎𝑥() is the

maximum eigenvalue of the enclosed square matrix. The single
dipole is fitted if the maximum subspace correlation is above
0.925 for any 𝜌.

Note that all the previously mentioned rules are inspired by our
earlier work in [20] and from Ossadtchi et al. in [53]. However,
4

the thresholds were relaxed in a way that would make the algorithm
ensitive enough to capture all IEDs that we previously had. Indeed,
his came with the price of having potential false positives. From
he recordings of the 39 patients, 759 flagged (by the pre-filtering
lgorithm described above) EEG segments were checked by an expert
nd were split into 166 IED segments and 593 NIED segments. Hence,
e observe a high imbalance in the data which is quite typical in IED
etection tasks. It is the responsibility of the subsequent ML algorithms
described in the following section) to filter out the NIED segments.
ote that the amount of segments is somehow limited considering the
mount of data needed to train modern NN architectures. To alleviate
his problem, random right-left reflections of the EEG segments are
erformed during the training of the different models to help them
bserve more variations of IED/NIED segments. This approach is mo-
ivated by the widely used image augmentation techniques. We start
y trying several architectures in an attempt to discover the one with
he best performance. For this, we split the data into 5 folds (with
lmost the same number of IED and NIED segments) and then trained
he different models in an inter-patient fashion. To maintain fairness in
he comparison, the number of trainable parameters is kept nearly the
ame (10–11 K) for all models.

. Methods

.1. Vanilla self-attention

Since EEG data is sequential in nature, recurrent neural networks
RNNs) were extensively used with EEG in different applications. For
nstance, epileptic seizures and spikes were detected in [29,58–60],
espectively using variations of long short-term memory (LSTM) [61].
t should be noted that for EEG data, the sequence can be very long
epending on the sampling rate and the duration of the analyzed seg-
ent which would raise the problem of vanishing gradients. Although

STM and gated recurrent unit (GRU) [62] architectures were able to
itigate this problem which is very prominent in vanilla RNN, it was

hown that the self-attention mechanism is more adept at solving it
ntirely. This is because self-attention gives the output at each time
tep the ability to peek at the input of each time step [51]. In [63],
elf-attention was applied along with LSTM to detect epileptic spikes.
lthough the attention mechanism could be used with the different
ariations of RNN, it was shown in [51] that with the help of positional
ncoding of the time samples and masking, the attention mechanism is
ufficient to handle the ordered nature of the input. We briefly describe
he architecture in the following enumerated steps:

1. For each input sample, 𝑖, across the attention dimension (time in
this model) and each attention head, ℎ, among the 𝐻 attention
heads (set as a hyperparameter), a linear dense layer generates a
key–value pair, i.e., (𝒌ℎ,𝑖, 𝒗ℎ,𝑖). The lengths of 𝒌ℎ,𝑖 and 𝒗ℎ,𝑖 vectors
are 𝑑𝑞𝑘 and 𝑑𝑣, respectively.

2. Another dense layer is used to generate a query vector, 𝒒ℎ,𝑗 for
each output sample, 𝑗, and each attention head. In this model,
each input sample, 𝑖, has a corresponding output sample, 𝑗.
Hence, the name self-attention.

3. The term 𝑒ℎ,𝑖,𝑗 represents the effect input, 𝑖, will have on a
certain output, 𝑗, at a certain attention head, ℎ, and is given
by 𝒒𝑇ℎ,𝑗𝒌ℎ,𝑖∕

√

𝑑𝑞𝑘 (scaled dot-product). The normalized version
of those effects, 𝜒ℎ,𝑖,𝑗 , is obtained by applying a softmax func-
tion across the input dimension to yield ∑

𝑖 𝜒ℎ,𝑖,𝑗 = 1. For a
certain 𝑗, the output would be the concatenation of the quantity
∑

𝑖 𝜒ℎ,𝑖,𝑗𝒗ℎ,𝑖 across the different attention heads.

Positional Encoding : Since the attention mechanism described above
includes only linear layers whose inputs have no inherent ordering,
positional encoding is needed in order to distinguish between the input
features at different 𝑖 values. Instead of concatenating the absolute
time to the features at each sample, the features at 𝑖 are added to

2×1∕𝐸 2×1∕𝐸 2×2∕𝐸
the vector 𝒑𝒆(𝑖) = [ sin(𝑖∕100 ), cos(𝑖∕100 ), sin(𝑖∕100 ),
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cos(𝑖∕1002×2∕𝐸 ), sin(𝑖∕1002×3∕𝐸 ), cos(𝑖∕1002×3∕𝐸 ), . . . .. ]𝑇 where 𝐸 is the
number of features (19 electrodes), which is also the length of the 𝒑𝒆(𝑖)
vector.

Similar to the encoder block in [51], dropout is applied to the output
of the attention layer, followed by addition with the original input
before layer normalization [64] is applied. The output from such a
process is inputted to a feed-forward leaky rectified linear unit (ReLU)
layer on top of which the same steps are applied (dropout, additive
skip-connection, and finally layer normalization). Hence, the encoder
block consists of two sub-blocks of similar architectures except that one
has the attention layer while the other introduces non-linearity through
the feed-forward layer.

This model is formed by stacking the following layers: Positional
Encoding, Encoder Block (𝐻 = 7, 𝑑𝑞𝑘 = 7, 𝑑𝑣 = 7), 1D-MaxPooling
(6), Positional Encoding, Encoder Block (𝐻 = 6, 𝑑𝑞𝑘 = 6, 𝑑𝑣 = 6), 1D-
MaxPooling (5), Positional Encoding, Encoder Block (𝐻 = 4, 𝑑𝑞𝑘 = 4,
𝑑𝑣 = 4), 1D-MaxPooling (2). The output tensor from that sequence has
a shape of (𝐵, 19, 5). Conv1D layer with 19 input channels (Note: The
number 19 here does not refer to the number of EEG scalp electrodes
whereas 𝐵 denotes the batch size), 1 output channel, kernel size of
1, and a leaky-ReLU activation function is then applied. Finally a
dense layer with a sigmoid activation function is applied to obtain the
classification of the EEG segment.

3.2. Hierarchical attention

One of the elegant approaches that was applied on EEG for the
task of human decision prediction was the hierarchical LSTM model
with attention presented in [34]. This approach addresses the non-
stationarity problem of the long EEG segment by dividing it into smaller
epochs on which LSTM networks are applied separately. By doing so,
the vanishing gradient problem is also better addressed by reducing
the length of the sequence the LSTM network is applied on. Another
LSTM network is applied on the encodings of the epochs. Hence, the
name hierarchical LSTM. We adopt a slight variation of this model by
replacing the LSTM with attention (again to address the problem of
vanishing gradients entirely). The description of the model is as follows:

1. The EEG segment is divided into 0.5-second epochs with 50%
overlap.

2. Positional encoding is applied on the samples of each epoch in
the same manner described in the previous subsection. A sep-
arate attention layer is then applied on the encoded samples of
each epoch. However, it is desired to have one vector embedding
representing the encoding of the whole epoch. For that, we do
not generate a query vector from each sample as was the case in
the vanilla self-attention model. Instead, each epoch is assigned
a single trainable query vector per attention head. This approach
is somehow similar to the attention mechanism proposed in the
state-of-art Fastformer architecture [65]. A dot product between
the epoch query vector and sample keys is then carried out to
obtain the weight coefficients that will be multiplied with the
sample values in the same way described previously. We refer
to this as the sample attention. The used hyperparameters are:
𝐻𝑠𝑎𝑚𝑝𝑙𝑒 = 3, 𝑑𝑞𝑘,𝑠𝑎𝑚𝑝𝑙𝑒 = 5, 𝑑𝑣,𝑠𝑎𝑚𝑝𝑙𝑒 = 5. The middle dense layer
maps 15 (𝐻𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑑𝑣,𝑠𝑎𝑚𝑝𝑙𝑒) input features to 15 output features
on which leaky-ReLU is applied.

3. After step 2, we have a new sequence of embeddings, each repre-
senting the encoding of its corresponding epoch. Hence, another
positional encoding and attention layer (again with a single
trainable query vector per attention head) are applied to this
epoch sequence. The hyperparameters of this epoch attention
are: 𝐻𝑒𝑝𝑜𝑐ℎ = 3, 𝑑𝑞𝑘,𝑒𝑝𝑜𝑐ℎ = 5, 𝑑𝑣,𝑒𝑝𝑜𝑐ℎ = 5.

4. Finally, the output of the epoch attention (step 3) is fed to an
MLP to obtain the classification of the segment. Leaky-ReLU
activations are used for all layers of the MLP except for the
final one where sigmoid function is used. The number of neurons
within the layers are as follows: 15 (𝐻𝑒𝑝𝑜𝑐ℎ × 𝑑𝑣,𝑒𝑝𝑜𝑐ℎ), 10, 5, and
5

finally 1.
3.3. Vanilla VGG

Despite their design simplicity, CNN architectures have shown many
successes in many applications. These successes are not only limited
to the conventional image/video input data types, but also extend to
sequential data such as EEG signals for spike detection [32] and textual
data for emotion analysis [66]. The VGG CNN architecture described
in [31] was able to perform well on our task as will be presented in the
Results section. In our implementation, we stack the following layers:
Conv1D (19, 32, 3, 1), Leaky-ReLU, Conv1D (32, 32, 3, 1), Leaky-ReLU,
Conv1D (32, 32, 2, 2), Leaky-ReLU, Conv1D (32, 16, 3, 1), Leaky-ReLU,
Conv1D (16, 16, 3, 1), Leaky-ReLU, Conv1D (16, 16, 2, 2), Leaky-ReLU,
Conv1D (16, 8, 3, 1), Leaky-ReLU, Conv1D (8, 8, 3, 1), Leaky-ReLU,
Conv1D (8, 8, 2, 2), Leaky-ReLU, Conv1D (8, 4, 3, 1), Leaky-ReLU,
Conv1D (4, 4, 3, 1), Leaky-ReLU, Conv1D (4, 4, 2, 2), Leaky-ReLU,
Conv1D (4, 2, 3, 1), Leaky-ReLU, Conv1D (2, 2, 3, 1), Leaky-ReLU,
Conv1D (2, 1, 3, 1), Leaky-ReLU, Conv1D (1, 1, 3, 1), Leaky-ReLU,
Conv1D (1, 1, 3, 1), Leaky-ReLU, Conv1D (1, 1, 3, 1), Leaky-ReLU,
Conv1D (1, 1, 3, 1), Sigmoid. The arguments of the Conv1D layers are
the number of input channels, number of output channels, kernel size,
and finally the stride. Valid padding is used for all the Conv1D layers.
The Conv1D layers with kernel size of 2 and a stride of 2 are placed to
reduce the dimension significantly (similar to pooling layers).

3.4. Satelight

In this subsection, we provide a brief overview of the architecture
described in [35]. In the beginning, 15 temporal 1-D convolutional
kernels (each of length 50 time samples) are applied to the EEG
channels. For each of the resulting 15 channels (depth channels not
EEG electrodes), 2 kernels encode the readings from all the 19 EEG
channels at each time sample. The output is then flattened to yield a
tensor of shape (𝐵, time length, 30 = 15 × 2). Batch normalization,
ReLU, Dropout(p = 0.2), and MaxPooling (with a kernel of size 4 to
reduce the time dimension) are then applied.

Two consecutive blocks are then introduced. In reference to [35],
each block has two main sub-blocks and a MaxPooling layer. The first
sub-block has the following structure: Attention Layer (𝐻 = 1, 𝑑𝑞𝑘 = 30,
𝑑𝑣 = 30), Batch Normalization, Dropout(p = 0.2). The output from
these three operations is added to the input, i.e., skip connection.
The output of the first sub-block is then forwarded to the second
which has the following structure: Linear Layer (30 input features, 30
output features), Batch Normalization, ReLU, Dropout (p = 0.2). The
output of these operations is also added with the input to the second
sub-block. Eventually, 1-D MaxPooling is then applied to reduce the
time dimension. The kernel sizes of the MaxPooling layers of the first
and second blocks are 4 and 5, respectively. The final output is then
flattened and forwarded to a linear layer with a single output neuron
and a sigmoid activation function.

We emphasize that although the general architecture of the Sate-
light is adopted, the number of layers and kernels were modified to fit
our data. This is done for two reasons: First, our input EEG segment has
a different time length and sampling rate, and the number of electrodes
used is not the same as those used in the original Satelight paper.
Second, we attempted to force all the models to have roughly the same
number of trainable parameters (10k–11k) for a fair comparison.

3.5. Functional connectivity GNN (FC-GNN)

In a previous study [37] by our group, a statistically significant
difference was found in the graph structures produced by the FC maps
when comparing IED-segments to NIED-segments. This naturally led
us to conclude that GNNs could be applied on FC maps due to their
ability to harness such graph composition dynamics and subtle changes

in favor of our application.
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Among a wide variety of FC measures, our choice of wPLI, as
introduced originally in [46], was attributed to its frequency-detailed
design nature where the connectivity could be inspected under different
frequency sub-bands independently as well as for its ability to overcome
volume conduction. This wPLI measure at a certain frequency, 𝑓 , be-
ween two time series, 𝑥 and 𝑦, collected from two different electrodes
s given by:

𝑃𝐿𝐼𝑥,𝑦(𝑓 ) =

|

|

|

|

|

E
[

ℑ
{

𝑋(𝑓 )𝑌 ∗(𝑓 )
}

]|

|

|

|

|

E
[

|

|

|

ℑ
{

𝑋(𝑓 )𝑌 ∗(𝑓 )
}

|

|

|

] , (1)

where |.|, E[.], ℑ{.}, and * represent the absolute, expectation, imag-
inary part, and the complex conjugate functions, respectively. More-
over, 𝑋(𝑓 ) and 𝑌 (𝑓 ) are the frequency representations of 𝑥 and 𝑦,
respectively. The computation of the above formula is intractable as
it contains an expectation operator as well as a Fourier transform.
To empirically compute it, each discretized 3-second EEG segment is
divided into a sufficiently large number of overlapping windows, 𝑁 ,
where 𝑁 ≥ 30 [46] in order to avoid large estimator bias [67]. This
is done to replace the expectation operator by the arithmetic average;
i.e., 1

𝑁
∑𝑁

𝑛=1, where 𝑛 is the index of the window. 𝑋(𝑓 ) in Eq. (1) is
eplaced by 𝑋𝑛(𝑓 ) which is the Fast Fourier Transform (FFT) of the 𝑛th
indow of 𝑥. Similarly, 𝑌 (𝑓 ) is replaced by 𝑌𝑛(𝑓 ).

To compute the coupling between the two series within a specific
requency sub-band, 𝑆, an integral of the above formula needs to be
arried out as such [68]:

𝑃𝐿𝐼𝑆𝑥,𝑦 =
∫ 𝑓𝑈
𝑓𝐿

𝑤𝑃𝐿𝐼𝑥,𝑦(𝑓 ) 𝑑𝑓

𝑓𝑈 − 𝑓𝐿
, (2)

here 𝑓𝐿, and 𝑓𝑈 are the lower frequency bound and upper frequency
ound of 𝑆, respectively. Note that 𝑓 ranges from 0 Hz to 𝑓𝑠∕2 Hz
here 𝑓𝑠 is the sampling frequency (100 samples/s).

In order to have binary edges within the FC graphs of the four
requency sub-bands of interest (𝛿, 𝜃, 𝛼, and 𝛽), thresholding is done on
wo steps: (i) A threshold value between 0.5 and 0.6 was recommended
n [69] to indicate the beginning of physical connectivity between
wo regions. Through empirical evaluations, our choice was set at a
lightly higher threshold of 0.75 as the minimum wPLI measure below
hich connectivity links were omitted. (ii) Relying on the minimum
C value in i alone could yield very dense connectivity matrices in
nstances where a strong background activity surpassing the threshold
evel happens to exist. Hence, we adopt an adaptive threshold that
ould consider the highest 25% of all the connectivities provided that

hey are already above the 0.75 specified minimum threshold.
The proposed architecture shown in Fig. 2 is structured as follows:

1. Inspired by the good results demonstrated by the simple CNN in
the Vanilla VGG subsection, our aim was to take advantage of
it in building a new architecture to further enhance the perfor-
mance. Instead of relying on a CNN to take-in the EEG segment
as a whole while considering all the channels simultaneously,
we use the CNN to produce the embedding of each EEG channel
separately while disregarding others. To do this efficiently, we
pass the EEG segment to a two-dimensional CNN with one-
dimensional kernels that handle each channel independently.
Hence, the kernels only observe the time samples of a certain
channel while producing its embedding. The structure of the
channel embedding CNN is as follows: Conv2D (1, 2, (1, 3)),
Leaky-ReLU, Conv2D (2, 3, (1, 3)), Leaky-ReLU, MaxPool2D
((1,2)), Conv2D (3, 4, (1, 3)), Leaky-ReLU, Conv2D (4, 5, (1, 3)),
Leaky-ReLU, MaxPool2D ((1,2)), Conv2D (5, 6, (1, 3)), Leaky-
ReLU, Conv2D (6, 7, (1, 3)), Leaky-ReLU, Conv2D (7, 8, (1,
3)), Leaky-ReLU, Conv2D (8, 9, (1, 3)), Leaky-ReLU, MaxPool2D
6

((1,2)), Conv2D (9, 10, (1, 3)), Leaky-ReLU, Conv2D (10, 11, (1,
3)), Leaky-ReLU, Conv2D (11, 12, (1, 3)), Leaky-ReLU, Conv2D
(12, 13, (1, 3)), Leaky-ReLU, MaxPool2D ((1,2)), Conv2D (13,
13, (1, 3)), Leaky-ReLU, Conv2D (13, 13, (1, 3)), Leaky-ReLU,
Conv2D (13, 13, (1, 3)), Leaky-ReLU, Conv2D (13, 13, (1, 3)),
Leaky-ReLU, Conv2D (13, 13, (1, 3)), Leaky-ReLU, Conv2D (13,
13, (1, 2)), Leaky-ReLU. The arguments to the Conv2D layers in
order are the number of input channels, the number of output
channels, and the kernel size. A stride of 1 and valid padding are
used for all the Conv2D layers.

2. Positional encoding is applied to each of the 13-dimensional
embeddings before they are passed to the GNNs (next step). This
is done to help the GNNs which are inherently order invariant
distinguish between different EEG channels. Hence, positional
encoding here is done along the EEG channels dimension, not
the time dimension as was the case in the Vanilla Self-Attention
Section 3.1.

3. From the EEG segment, the wPLI FC maps of the different
sub-bands are obtained as described above. The thresholded
connectivities can be thought of as edges between EEG channel
nodes whose embeddings have been obtained as in the previous
step. Hence, the embeddings of the channels are forwarded to
the four graphs to obtain a separate embedding for each graph.
The embedding from each GNN is extracted according to the
following: The input before getting processed by the GNN is
referred to as 𝑭 (0) ∈ 𝐑19×13 where each row corresponds to
the positionally-encoded EEG channel embedding. In the first
layer of the GNN, each node receives the embeddings from its
neighbors and adds them together. Mathematically, this is done
by multiplying the highly sparse FC adjacency matrix with 𝑭 (0).
This can be carried out efficiently using sparse matrix multi-
plication in deep learning (DL) frameworks such as pytorch.
Each node then adds its own embedding to the accumulated
embeddings of the neighbors. Note that it was found in [70]
that the addition of a trainable 𝜖 parameter did not result in an
enhanced performance and therefore we did not experiment its
usage for simplicity. Each node finally passes the vector formed
by the addition of its own embedding and the embeddings of
the neighbors to a dense layer (13 input & 13 output neurons)
followed by a leaky-ReLU activation. This yields 𝑭 (1) ∈ 𝐑19×13

with each row representing the embeddings of a node after the
processing of one layer. We add two more layers to obtain 𝑭 (2) ∈
𝐑19×13 and 𝑭 (3) ∈ 𝐑19×13 using the same sparse FC adjacency
matrix. 𝑭 (0), 𝑭 (1), 𝑭 (2), and 𝑭 (3) are finally concatenated together
along the node feature dimension to form 𝑭 ∈ 𝐑19×(4×13) so that
each row represents the aggregated embedding across all layers.
The graph embedding is then formed by summing all the rows
of 𝑭 together to form a 52-dimensional (4 × 13) vector.

4. Since each frequency sub-band generates its own graph em-
bedding, we need to combine them before forwarding the new
overall embedding to a classification MLP. One option would
be to simply concatenate the embeddings together. Instead, we
chose to apply an attention mechanism with a single attention
head across the four embeddings. Note that the softmax function
applied in an attention head to compute the 𝜒 parameters is
a differentiable approximation of the maximization function
which would simply attend fully to one of the embeddings.
Therefore, the decision to apply attention was basically to ob-
serve the frequency embedding that the NN would learn on its
own to pay the most attention to. We shall elaborate on this
further in the results section. Hence, the input index, 𝑖, here is
an index of the frequency sub-band. Since we only have a single
attention head with a single output, we set the query to be a
trainable vector (of hyperparameter length 15) that will generate
the normalized attention weights (𝜒𝛿 , 𝜒𝜃 , 𝜒𝛼 , 𝜒𝛽) after being
dot multiplied with the keys (𝒌𝛿 , 𝒌𝜃 , 𝒌𝛼 , 𝒌𝛽) generated from the
embeddings of the graphs.
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Fig. 2. FC-GNN model: Attention is used to combine graph embeddings of the four sub-bands. Positional encoding gives the GNNs the ability to distinguish between channels.
5. Finally, a weighted average of the values (𝒗𝛿 , 𝒗𝜃 , 𝒗𝛼 , 𝒗𝛽) also
generated from the embeddings (each of length 15) is obtained
and forwarded to a classification MLP with dense layers of sizes:
15, 10, 5, and finally 1 with a sigmoid function. All other dense
layers are followed by leaky-ReLU activation.

.6. Complete attention GNN (CA-GNN)

As can be seen from the results presented in Section 4 below, the
odel described in the previous subsection (FC-GNN) is able to yield
etter results compared to other existing architectures on the collected
aptist dataset. However, one of its shortcomings is its reliance on
he computation of FC maps for the different frequency sub-bands.
ence, the need to develop a similar graph-based model that requires
o feature engineering (represented in the FC analysis in FC-GNN).
herefore, we start by using a CNN to extract embeddings for each EEG
hannel separately followed by positional embedding in the same way
escribed in steps 1 and 2 in the previous subsection. Again this would

(0) ∈ 𝐑19×13.
ield the embedding matrix 𝑭
However, without carrying out the FC analysis (Eqs. (1) and (2)
are not used), it was unclear how the EEG segment can be reflected
into a meaningful graph structure with defined edges. It is important
to observe the similarity between the self-attention when applied across
the nodes dimension and the message passing mechanism adopted in
GNN, where each node passes its embeddings to its neighbors. The
only difference is that in the self-attention case, the receiving node
(EEG channel) gets to choose the most important channels to focus
on (i.e., the attention heads). Indeed, this comes with a quadratic
computational complexity cost. We analyze further this issue in Sec-
tion 4. Similarly, the additive residual connection in the self-attention
encoder block resembles the addition of the node’s own embedding
to the received embeddings from the neighbors. Overall, the encoder
block with all of its constituents (self-attention, residual connection,
and non-linearity) is similar to the GNN layer presented in the previous
subsection.

The CA-GNN architecture follows the assumption that all the nodes
of the graph (single graph not 4 as in FC-GNN) are directly connected
to each other yielding a complete graph. We then use self-attention
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Fig. 3. TP with respect to both FC-GNN and CA-GNN.
with 3 attention heads in order to let each node learn the most
important 3 neighbors it should softly attend to. Hence, the same
classical self-attention mechanism is applied here but on the nodes
dimension instead of the time dimension as was the case in the Vanilla
Self-Attention model.

As per the explanation above, we apply an encoder block on 𝑭 (0)

followed by positional encoding to obtain 𝑭 (1) ∈ 𝐑19×13. As done
reviously, we add two more layers to obtain 𝑭 (2) ∈ 𝐑19×13 and 𝑭 (3) ∈
19×13. For all the encoder blocks, 𝐻 , 𝑑𝑞𝑘, and 𝑑𝑣 were set to 3, 5, and

7, respectively. The embedding matrices are concatenated together to
form 𝑭 ∈ 𝐑19×(4×13) and eventually all the rows are added up to yield
a 52-dimensional graph embedding vector. This vector is then passed

to an MLP with dense layers of the following sizes: 52, 25, 10, 5, and
finally 1. All layers are followed by leaky-ReLU activation except for
the output layer that has sigmoid activation function.

4. Results & discussion

4.1. Baptist dataset results

The implementation code of the six models described in the previous
section (Self-Attention, Hierarchical Attention, Vanilla VGG, Satelight,
FC-GNN, and CA-GNN) is made public for the research community1.

1 https://github.com/ahmedmohammed107/GNNs_EEG_Spike_Detection-

https://github.com/ahmedmohammed107/GNNs_EEG_Spike_Detection-
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Fig. 4. FN with respect to both FC-GNN and CA-GNN.
As mentioned before, the results presented in this section are obtained
by testing the performance of the different models on data from pa-
tients that were never considered during the training phase. Shown
in Figs. 3, 4, 5, and 6 are 12 examples of EEG segments (from 12
different patients) in the dataset which contained discharges that were
captured by the pre-filtering algorithm and thus were labeled as can-
didate segments. Due to its high sensitivity, the pre-filtering algorithm
could capture multiple discharges in the segments. For simplicity, we
only show one such detection per segment. Each figure shows three
examples of EEG segments belonging to the same category plotted in
average montage and bipolar montage. The four categories are true
positive (TP), false negative (FN), false positive (FP), and true negative

(TN). This labeling is made with respect to the two proposed models
(FC-GNN and CA-GNN). All detections for the different models are
made with a threshold of 0.5. It is important to emphasize that the
pre-filtering algorithm as well as the different models are applied to
the average montage. However, we also present the segments in bipolar
montage to facilitate the recognition of IEDs for experts. The IEDs as
identified by the expert and captured by the pre-filtering algorithm are
marked with green boxes for TP (in Fig. 3(b)) and red boxes for FN
(in Fig. 4(b)) on the bipolar plots. Both Self-Attention and Vanilla VGG
failed to identify the IED present in the first TP example. Only FC-GNN
and CA-GNN classified the second TP example correctly. Satelight was
able to detect the IED in the third TP example. Hierarchical Attention
correctly detected the IEDs in the first two FN examples. Self-Attention

and Satelight were able to detect only that in the first FN example.
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We show NIED-segments with discharges that were captured by the

pre-filtering algorithm marked in red ellipses for FP (in Fig. 5(a)) and

green ellipses for TN (in Fig. 6(a)). While we use the colors green/red

o indicate correct/incorrect classification, we stress on the fact that

he classification is done on the level of the whole EEG segment. The

anilla VGG model classified all the presented FP examples correctly.

he first and third examples were also correctly classified by the

atelight model. Self-Attention and Hierarchical Attention were able

o correctly classify the second and third FP examples, respectively.

elf-Attention and Hierarchical Attention misclassified all TN examples

resented in Fig. 6. The third TN example was also misclassified by the

anilla VGG model.
Due to the imbalanced nature of the datasets used to train IED
etection algorithms, several studies present the overall performance
n terms of sensitivity or recall (of all IED-segments, how many are
aptured by the algorithm?) and precision (how accurate is the algo-
ithm when it does make a detection?) instead of the overall accuracy.
hese measures however, require a predefined specific threshold and
herefore vary with its change. The change in the confidence threshold
epresents the trade-off between the desired high precision and high
ecall.
One of the widely used metrics in classification tasks that integrates

ut the confidence threshold dependence is the area under the re-
eiver operating characteristics curve (ROC-AUC). Another metric that
lso takes into account several possible threshold levels and is more
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Fig. 6. TN with respect to both FC-GNN and CA-GNN.
appropriate for highly imbalanced datasets is the average precision
(AP). This AP measure is computed from the precision–recall curve
which is obtained by plotting the precision on the vertical axis and
recall on the horizontal axis for different confidence threshold values.
Note that calculating the area under the precision–recall curve using
the trapezoidal rule could yield extra optimistic results. Instead, AP is
computed as the weighted mean of precision values achieved at each
threshold, with the increase in the recall used as the weight. Hence, we
show the overall performance of the models in terms of the AP metric.

The results presented in Table 1 are the best observed among several
raining trials (each with a different random initialization). This was
one because it was observed that for some trials, the training was

tuck at sub-optimal points. This retraining approach was adopted for
all models to maintain a fair comparison. It is clear how the proposed
FC-GNN yields higher average AP with less standard deviation than
those of the Vanilla Self-Attention, Hierarchical Attention, Vanilla VGG,
and Satelight. It was anticipated to observe a high attention that
the network would pay to the embeddings of specific frequency sub-
bands. This is due to the role played by the 𝜃-band in highlighting
epileptogenic activity as reported in several studies. For instance, IED
spikes were shown in [71] to have an impact on the theta rhythm for
patients with temporal lobe epilepsy (TLE). Patients with mesial TLE
(MTLE) showed significantly less 𝜃-band power compared to the non-
MTLE (NMTLE) group in [72]. In a previous study by our group [73],
the 𝜃-band required the least amount of power penalization among

other frequency sub-bands to delineate the region of interest (ROI)
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Table 1
Validation Average Precision (AP) scores on the Baptist dataset for the 5 groups of patients. The results are presented
in the same order of subsections 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6.

Self
attention

Hierarchical
attention

Vanilla VGG Satelight FC-GNN CA-GNN

Group 1 0.8587 0.8524 0.9327 0.8601 0.952 0.9706
Group 2 0.9538 0.8998 0.9329 0.8991 0.9706 0.9747
Group 3 0.8578 0.7555 0.8125 0.9174 0.9603 0.9647
Group 4 0.9138 0.8692 0.9568 0.9586 0.9991 0.9927
Group 5 0.9302 0.896 0.9649 0.9745 0.9837 0.9912

Avg. 0.9029 0.8546 0.92 0.9219 0.9731 0.9788
Std. Dev. 0.0431 0.0587 0.0618 0.046 0.0187 0.0125
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significantly. Surprisingly, the 𝜒𝜃 parameter was not consistently higher
than the other attention weights for the different groups of patients.
Even within the same group, the frequency sub-band with the highest
𝜒 parameter was different from trial to trial. It is unclear for us why
the model did not pay special high attention to the 𝜃-band despite the
forementioned results of previous studies. Perhaps, this behavior could
e attributed to the relatively limited available training dataset and
hould be further investigated once a larger dataset becomes available.
e discuss this further in the discussion subsection. On this dataset, the

A-GNN architecture offers a slight improvement over the FC-GNN.

.2. TUEV dataset results

In this subsection, we briefly describe the preparation procedure of
he open-source TUEV dataset and present the results obtained when
pplying our method on this dataset. The same preprocessing described
arlier for the collected Baptist dataset is adopted here. We consider
nly the average montage of the 19 electrodes of interest, applied notch
nd band-pass filters, and downsampled the EEG to 100 samples/s.

The TUEV dataset is divided into training and evaluation sets con-
aining labeled EEG recordings. Six labels are assigned to 1-second
aveforms of the EEG electrodes. The six labels are: spike and slow
ave (1: spsw), generalized periodic epileptiform discharge (2: gped),
eriodic lateralized epileptiform discharge (3: pled), eye movement (4:
yem), artifact (5: artf), and background (6: bckg). Following [74], we
ssign the first three labels to the IED class whereas the last three labels
re assigned to the NIED class. From the training set, data of some
atients were kept as a hold-out validation set. No patient existed in
oth sets. The evaluation set was used for testing. Since our method
rocesses 3-second EEG segments, we extend the considered IED seg-
ents around the original 1-second labeled waveforms. Extended NIED

egments are considered if no overlap occurs with any of the extended
ED segments.

This dataset is balanced for IED detection task. In particular, the
umber of IED/NIED segments is 3509/3648 in the training set,
90/990 in the validation set, and 1832/1649 in the test set. It is ex-
licitly stated in the TUEV dataset documentation that the background
abel is a catch-all label that is given to a waveform if it clearly belongs
o none of the first five labels. This could explain the relatively balanced
ature of the dataset. This was the case in the dataset used in [35]
ith 16008 IEDs and 15478 artifacts collected from 50 children. Those
ischarges were collected by a rule-based architecture and then used
o train the Satelight model. The resulting testing AP for the different
odels are as follows: Vanilla Self-Attention → 0.9692, Hierarchical
ttention → 0.9113, Vanilla VGG → 0.97, Satelight → 0.9575, FC-
NN → 0.963, and CA-GNN → 0.9879. We note how the CA-GNN
rchitecture outperforms all other approaches including FC-GNN on
oth datasets (Baptist and TUEV). This is probably due to the freedom
ranted to each node to pay attention to other nodes as directed by
ackpropagation instead of dictating the neighboring nodes by FC
12

nalysis.
.3. Discussion

Computational Complexity : For the FC-GNN architecture, the overall
omplexity is dominated by the FC analysis which consists of two steps.
irst, we compute the FFT for all windows of all electrode recordings.
he complexity of this part is 𝑂(𝐸 ∗ 𝑁 ∗ 𝑙 ∗ log(𝑙)) where 𝐸, 𝑁 ,
nd 𝑙 represent the number of electrodes, the number of windows,
nd the length of each window, respectively. The second step involves
omputing the wPLI metric between all possible pairs of channels as
escribed in Eq. (1) which takes 𝑂(𝐸2 ∗ 𝑁 ∗ 𝑙) complexity. Hence, the

overall complexity is 𝑂(𝐸 ∗ 𝑁 ∗ 𝑙 ∗ log(𝑙) + 𝐸2 ∗ 𝑁 ∗ 𝑙). For the CA-
NN architecture, the computation is dominated by the attention part
cross the electrodes which requires quadratic complexity (i.e., 𝐸2).
ote that the number of electrodes is relatively limited even in the

tate-of-the-art HD-EEG (typically below 512). The significance of the
2 factor is thus limited. For vanilla self-attention and Satelight, the

omputation is quadratic in the length of the EEG segment. With
he high sampling rate of modern EEG modalities of up to 10,000
amples/s, the quadratic factor can significantly slow the computation.
ote that both architectures rely on max pooling to reduce the time
imension. The hierarchical attention architecture reduces the time
imension by hierarchically using attention. Indeed, as the vanilla VGG
rchitecture does not include any attention across any dimension, it
ould be viewed as the simplest architecture. However, it is important
o consider the enhanced performance that comes with the limited
omplexity of attention across the electrodes.

In the proposed deep learning architectures, the channel embedding
NN is responsible for extracting the temporal features of the discharge
ithin the isolated EEG channel. The spatial features, on the other
and, are embedded with the original encoding through the adopted
ositional encoding scheme. For instance, in the case of an eyeblink
pike-like artifact affecting the two frontal electrodes (Fp1 and Fp2),
he GNN can identify these two electrodes with the help of positional
ncoding. Theoretically, this added spatial information helps the GNN
ecognize eyeblinks and differentiate them from similar actual spikes
hat could occur in other electrodes’ readings. Hence, positional encod-
ng would differentiate the embedding of the graphs in both scenarios.
n brief, the CNN handles the temporal features while the GNN with
he positional encoding handles the spatial interaction between the EEG
hannels.

Some limitations and suggestions for future work that could ex-
end the application scope of the proposed method are provided be-
ow. Moreover, strengths and weaknesses of the proposed method are
ummarized at the end of these suggestions.

(a) Instead of having a CNN shared by all electrodes to generate an
embedding for each electrode channel in both FC-GNN and CA-
GNN, a separate CNN could be assigned for each electrode as in
Satelight. Doing so could reduce the overall number of kernels
required to generate a good representative embedding for each
channel and thus reduce the overall number of trainable network

parameters.
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(b) When deploying the proposed architectures with HD-EEG sys-
tems, the global summation pooling strategy used to generate
an embedding of a graph (i.e., summing all rows of the matrix
𝑭 ) might not be the best option. The hierarchical pooling tech-
nique becomes more suitable for designs that involve a large
number of electrodes. For example, the study in [75] utilizes a
so-called DIFFPOOL layer that maps a given graph with given
nodes’ embeddings and edges to another graph of super nodes
(or clusters) along with their own embeddings and edges. An
assignment matrix mapping each node accomplishes this task.
The algorithm is trained end-to-end without recourse to on-
the-shelf community detection algorithms such as Louvain or
BigCLAM.

(c) It is important to note that both FC-GNN and CA-GNN have
CNN channel encoders. However, FC-GNN bypasses the elec-
trodes attention step done in CA-GNN by running FC analysis
to define the edges and perform standard message passing. An
edge defined by the FC metric represents an explainable entity.
On the other hand, the attention done in CA-GNN grants each
node the complete freedom to choose the other nodes to attend
to. An intermediate approach would combine the best of the two
worlds by first defining the edges using any available FC metric
(not necessarily wPLI as in our study), and then letting the
neural network decide on those edges deemed most important.
Different FC metrics could also be used as a hyperparameter as
described in [45].

(d) Another way to increase the explainability of such graph-based
models for detecting EEG epileptic spikes would be to add a fake
node connected to all other nodes. After a few GNN layers, at-
tention could be applied only at the fake node through multiple
attention heads. The classification output of the segment would
depend only on the resulting embedding of that fake node. We
expect that for a true positive (TP) example (EEG segment with
a spike successfully detected by the algorithm) in the test set,
the fake node will learn to give more attention to the nodes
corresponding to the electrodes affected by the spike. However,
this expected behavior would decay as the number of GNN
layers increase due to the over-smoothing issue of GNNs (nodes’
embeddings become more like each other as we stack more GNN
layers). Indeed, this behavior needs to be validated. Another
possible method to tackle this issue is to formulate the problem
as a node classification problem instead of a graph classification
problem. This approach will force the GNN to recognize the
EEG channels affected by the spike. However, getting labels
for such data becomes more challenging than simple EEG seg-
ment labeling. Labeling groups of electrodes could be a feasible
workaround. For example, for a patient with focal epilepsy in the
left frontal (LF) lobe, only the LF group of electrodes (including
Fp1, F7, and F3) are given the IED label within a spike segment.

(e) To expand on the previous point (d), through the adopted at-
tention mechanism, several studies attempt to investigate which
parts of the input the neural network attended to when generat-
ing its output. For example, in [35,63], the model automatically
attended to EEG waveforms of specific interest to predict the
existence of spikes. Similarly, in [34], the proposed model high-
lighted the time points contributing to the classification based on
a human decision. The channel encoder part of the architecture
can thus take advantage of such an approach. Hence, we would
know the time of interest at each EEG channel from the channel
encoder, and then we would determine the channel(s) the fake
node attended to as discussed in the previous point.

(f) The main limitation of most ML-based solutions in the med-
ical field remains the scarcity of data available for training
reliable ML systems, with only a limited amount of labeled
open-source EEG records accessible to the research community.
13

We also contend with other issues related to de-identified data t
to ensure patients’ anonymity and compliance with HIPAA re-
quirements. It is important to stress the enormous benefits and
breakthroughs that would come with large standardized publicly
available datasets. The training phase of machine learning would
be significantly enhanced, with plenty more data available to
challenge the testing and validation phases. This process can be
monitored initially by expert(s) in the early stages to validate
the detection results of the model. In [32], for example, the
labeling was done semi-automatically using the principal com-
ponents to label the discharges. Discharges at the boundaries in
between clusters were re-assessed by experts. For our study, the
classification is done on relatively long 3-second segments with
multiple candidate discharges to provide useful temporal context
information to the classifier. This would make it harder to rely
on the first two principal components for clustering or to adopt
SMOTE before training the models.

(g) Among the methods used to tackle the data scarcity problem
without overfitting, as mentioned in the last point (e), is to adopt
Bayesian neural networks (BNNs), where parameters of the deep
learning model are assumed to be random variables. Instead of
learning the model parameters directly through backpropaga-
tion, these parameters -in whole or in part- can be assumed to
follow a Gaussian distribution with learnable mean and standard
deviation. BNNs have several advantages, including robustness
to overfitting and estimating uncertainty in predictions. How-
ever, this comes at the cost of scalability. This drawback is not
as significant when dealing with relatively small models like
the ones at hand. Hence, we believe that adopting BNNs is
worth investigating. Another approach would be to train models
as generative adversarial networks (GAN) to synthesize more
data for training. For example, an auxiliary classifier GAN (AC-
GAN) was used in [76] to feed the developed LSTM network
architecture, called IEDnet, with more samples to improve the
detection performance. We believe that this approach would
be a better option compared to tackling the problem as an
anomaly detection problem. This recommendation is made since
supervised learning architectures yield better performance in
general.

Strengths: (i) Performance: In terms of average precision, the in-
troduced models outperformed other existing architectures on the col-
lected Baptist hospital dataset. On the TUEV dataset, the CA-GNN
architecture produced the best results. (ii) For the CA-GNN architec-
ure, no domain knowledge is required since there are no features that
re explicitly extracted. This is a strength and a weakness simultane-
usly since the model explainability becomes an issue. We outlined
ome methods to tackle this issue in parts (c), (d), and (e) of the
uggested future work listed above.
Weaknesses: (i) Explainability: It is generally harder to interpret

he results of deep learning architectures compared to standard ML
lgorithms such as decision trees that are trained on hand-crafted
eatures. (ii) Data limitation: We elaborated on this issue extensively
n parts (f) and (g) in the above list.

. Conclusion

In this study, we proposed a multi-stage algorithm for IED detection.
irst, a rule-based morphological algorithm was used to collect candi-
ate IEDs. To guarantee high enough sensitivity of this first stage, all
he used thresholds were tweaked until the algorithm was able to suc-
essfully capture all IEDs that were at hand previously. For the second
tage, two graph-based architectures are proposed and examined along
ith four other architectures for comparative purposes.

As presented in the results section, the proposed CA-GNN outper-
ormed the other approaches on both the Baptist Hospital dataset and

he Temple University Hospital dataset. In particular, the validation
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AP results for the Baptist Hospital dataset is as follows: Vanilla Self-
Attention → 0.9029 ± 0.0431, Hierarchical Attention → 0.8546 ± 0.0587,

anilla VGG → 0.92 ± 0.0618, Satelight → 0.9219 ± 0.046, FC-GNN
0.9731 ± 0.0187, CA-GNN → 0.9788 ± 0.0125. For the Temple

University Hospital dataset, the testing AP results in the same order
are 0.9692, 0.9113, 0.97, 0.9575, 0.963, and 0.9879.

In summary, this study sheds light on the role played by GNNs
applied on FC maps of different frequency sub-bands combined with
attention for the purpose of IED detection. Furthermore, another model
is proposed that relies entirely on attention to deduce the underlying
graph structure which could enhance the overall average precision. As
previously mentioned in the introduction section, the role of GNNs
in detecting epileptogenic spikes has been investigated in only one
previous study [38] where the edges were defined through the EEG
montage. Hence, the approach followed in this manuscript for the same
purpose opens the door widely for further investigation to combine
FC analysis, attention mechanism, and GNNs to develop novel robust
architectures. The guidelines outlined in points (a) through (e) in the
suggested future work could be a starting point.
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