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A B S T R A C T

Predicting extreme events in chaotic systems, characterized by rare but intensely fluctuating properties, is
of great importance due to their impact on the performance and reliability of a wide range of systems.
Some examples include weather forecasting, traffic management, power grid operations, and financial market
analysis, to name a few. Methods of increasing sophistication have been developed to forecast events in
these systems. However, the boundaries that define the maximum accuracy of forecasting tools are still
largely unexplored from a theoretical standpoint. Here, we address the question: What is the minimum
possible error in the prediction of extreme events in complex, chaotic systems? We derive the minimum
probability of error in extreme event forecasting along with its information-theoretic lower and upper bounds.
These bounds are universal for a given problem, in that they hold regardless of the modeling approach
for extreme event prediction: from traditional linear regressions to sophisticated neural network models.
The limits in predictability are obtained from the cost-sensitive Fano’s and Hellman’s inequalities using the
Rényi entropy. The results are also connected to Takens’ embedding theorem using the information can’t
hurt inequality. Finally, the probability of error for a forecasting model is decomposed into three sources:
uncertainty in the initial conditions, hidden variables, and suboptimal modeling assumptions. The latter allows
us to assess whether prediction models are operating near their maximum theoretical performance or if further
improvements are possible. The bounds are applied to the prediction of extreme events in the Rössler system
and the Kolmogorov flow.
1. Introduction

Extreme events, characterized by rare but intensely fluctuating
properties, are ubiquitous in both engineering system and natural
phenomena [1]. For instance, turbulent gusts over an aircraft can
result in bumpy flights [2], severe weather can disrupt communication
systems [3], rare but large cascades in electrical power grids may lead
to failures [4], extreme ocean temperature oscillations could impact
agriculture and ecosystems [5], rare but significant fluctuations in brain
network could cause seizures [6], and sudden increases in traffic flow
can trigger network paralysis [7]. In these scenarios, the real-time
prediction of extreme events is crucial for enabling proactive measures
to avert potential issues [8,9]. By accurately forecasting the extreme
states of dynamical systems, we can mitigate adverse effects, reduce
downtime, and prevent failures. In this study, we investigate the limits
of predictability in extreme event detection using the framework of
information theory. The limit obtained is a fundamental property –
independent of the modeling approach – that arises from the finite
amount of information the observed state contains about the extreme
event.

∗ Corresponding author.
E-mail address: yuany999@mit.edu (Y. Yuan).

A variety of methods have been employed to predict extreme events
in time series of chaotic dynamical systems. Some of the approaches
that have proven effective include nonlinear dynamics estimation based
on the Koopman operator theory [10] and Takens’ embedding theo-
rem [11], along with machine learning techniques, such as support
vector machines [12], singular spectrum analysis and the maximum
entropy method [13]. Advanced deep learning methods, including auto-
encoders [14], long short-term memory networks [15], and reservoir
computing [16] have also been instrumental to devise forecasting mod-
els for chaotic systems with high-dimensional attractors. A discussion
on the role of information in the context of model prediction and
control for chaotic dynamical systems can be found in Ref. [17].

Despite the significant advancements described above, the inherent
nature of chaos continues to impose limits on the accuracy of models for
extreme event forecasting. The prediction errors in chaotic dynamical
systems stem from three primary sources [18]. First, the model might
not accurately represent the physical reality. Second, the observable
variables may not capture all the relevant degrees of freedom present
in the dynamical system. Third, the initial conditions required for
forecasting might not be precisely known.
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Improvements in the prediction of extreme events can be achieved
either by enhancing models to better represent the physics, gaining
access to more observables, or reducing uncertainty in the initial con-
ditions. Eliminating modeling errors is theoretically possible, given the
knowledge of a set of governing equations that reflect the underly-
ing dynamics of the observed system. However, accessing variables
beyond what is currently observable may be limited by experimental
or computational constraints. Additionally, no feasible approach can
completely eliminate prediction errors caused by uncertainty in the
initial conditions. Even with highly precise measurements, minor errors
in the initial state eventually amplify due to chaos, compromising the
accuracy of the forecast for long times [19]. Here, our focus is not
on developing superior models for extreme event prediction. Instead,
we pose the fundamental question: what is the theoretically maximum
achievable accuracy in extreme event prediction regardless of the
modeling approach and source of error?

2. Formulation

2.1. Modeled extreme event indicator

Consider a chaotic dynamical system completely determined by 𝑁
ime-dependent variables given by the vector 𝑸(𝑡) = [𝑄1(𝑡), 𝑄2(𝑡),… ,
𝑁 (𝑡)], where 𝑡 is the time. We are interested in the extreme values of
he variable 𝑄𝐸 (𝑡), which is a function of the components of 𝑸(𝑡). The
xtreme event indicator 𝐸(𝑡) is defined as

(𝑡) =

{

1 if 𝑄𝐸 (𝑡) ⩾ 𝜂,
0 otherwise,

(1)

here 𝜂 is the threshold for extreme event detection. The specific
alue of the threshold 𝜂 is dependent on the problem and should
e selected based on the definition of extreme event for each par-
icular application. The vector of observable variables is defined as
̂ (𝑡) = [𝑄̂1(𝑡), 𝑄̂2(𝑡),… , 𝑄̂𝑀 (𝑡)], which contains the accessible informa-
ion about the system (i.e., the variables that can be measured or are
ssumed to be known). The components of 𝑸̂ correspond to individual
omponents of 𝑸 or functions of them. In practical scenarios, 𝑀 ≤ 𝑁
nd the number of observed variables 𝑀 is equal or smaller than the
umber of degrees of freedom of the system 𝑁 .
We aim to build a predictive model for 𝐸. To that end, we define the

imited-precision observable containing information from the present
ime and 𝑝 ≥ 0 times in the past:

̂ − = [𝑸̂(𝑡), 𝑸̂(𝑡 − 𝛿𝑡1),… , 𝑸̂(𝑡 − 𝛿𝑡𝑝)] ± 𝛿𝑸̂−, (2)

here 𝛿𝑡𝑖 > 0, 𝑖 = 1, 2,… , 𝑝 are the time lags used for prediction,
nd 𝛿𝑸̂− is the uncertainty in the observations. The latter may arise
xperimentally from inaccuracies in measurement tools, numerically
rom round-off errors in 𝑸̂ or its discretization, and generally, from any
ncertainties in the value of 𝑸̂. One could forecast the extreme event
ndicator in the future 𝐸(𝑡+ 𝛿𝑡) after a time horizon 𝛿𝑡 > 0 using 𝑸̂− as
he input to the model 𝑓 such that

̂ (𝑡 + 𝛿𝑡) = 𝑓
(

𝑸̂−) , (3)

here 𝐸̂ is the modeled extreme event indicator, which might differ
rom 𝐸. The performance of the model can be evaluated using the
robability of error

𝑒(𝑸̂
−, 𝑓 ) = Probability(𝐸̂ ≠ 𝐸) = 𝑃 (𝑓 (𝑸̂−) ≠ 𝐸). (4)

Mispredicted extreme events can manifest as either false positives,
(𝐸̂ = 1, 𝐸 = 0), or false negatives, 𝑃 (𝐸̂ = 0, 𝐸 = 1). However, these
wo types of errors can bear significantly different consequences. For
nstance, incorrectly predicting a hurricane (false positive) might be
nconvenient but acceptable; however, failing to predict one (false neg-
2

tive) can be catastrophic. To accurately reflect the distinct impact of i
alse positive and negative, we introduce the cost-sensitive probability
f error:
𝑐
𝑒 (𝑸̂

−, 𝑓 ) = 𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0) + 𝑐−𝑃 (𝐸̂ = 0, 𝐸 = 1), (5)

here 𝑐+ > 0 and 𝑐− > 0 are the false positive and negative cost
eighting factors, respectively. These factors reflect the relative sever-
ty of each type of error, and their values are selected according to
he specific prediction task. In the case of extreme event prediction,
he value of 𝑐− is often larger than 𝑐+. This choice is driven by the
nderstanding that non-extreme events occur more frequently than
xtreme ones. Prediction models with equal costs (𝑐+ = 𝑐−) are inclined
o favor the majority class of non-extreme events. By imposing higher
enalties on false negative errors (𝑐− > 𝑐+), we steer the prediction
odel to focus more on accurately identifying the critical, but less
requent, extreme events. The value of the factors 𝑐− and 𝑐+ is arbitrary,
nd only their relative magnitude matters. Consequently, 𝑐− and 𝑐+ can
e scaled in different manners. To guarantee that the model with the
inimum probability of error yields 𝑃 𝑐

𝑒 ≤ 1∕2, we choose 1∕𝑐++1∕𝑐− =
[see Appendix A for more details].

.2. Minimum cost-sensitive probability of error

We are interested in the minimum cost-sensitive probability of error
iven the observable 𝑸̂− over all possible models 𝑓 ,
𝑐
𝑒,min(𝑸̂

−) = min
𝑓

𝑃 𝑐
𝑒 (𝑸̂

−, 𝑓 ). (6)

The minimum cost-sensitive probability of error attainable by any
odel is [see proof in Appendix A]
𝑐
𝑒,min(𝑸̂

−) = E[𝐼(𝑸̂−)] =
∑

𝒒̂−
𝐼(𝑸̂− = 𝒒̂−)𝑃 (𝑸̂− = 𝒒̂−), (7)

here E[𝐼(𝑸̂−)] is the expectation of 𝐼 , 𝒒̂− is a particular state (i.e., value
or 𝑸̂−, 𝑃 (𝑸̂− = 𝒒̂−) is the probability of 𝑸̂− taking the value 𝒒̂−, and
(𝑸̂− = 𝒒̂−) is the minimum probability of error for the state 𝑸̂− = 𝒒̂−:

(𝑸̂− = 𝒒̂−)

= min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+
(

1 − 𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)}

, (8)

here 𝑃 (𝐸 ∣ 𝑸̂− = 𝒒̂−) is the probability of 𝐸 conditioned on 𝑸̂− =
̂−. The minimum error given by Eq. (7) is the consequence of the
navoidable uncertainty intrinsic to chaotic systems. This uncertainty
rises from the lack of knowledge about the variables (e.g., unobserved
ariables and/or those observed for a limited amount of time) and
rrors in the initial condition values (e.g. finite precision), which
ranscend the predictive capabilities of any model.
Eq. (7) provides the precise limit for extreme event forecasting;

owever, its application to the development, optimization, and eval-
ation of models for extreme event prediction is challenging due to
ts non-convex nature. This motivates the derivation of information-
heoretic lower and upper bounds for 𝑃 𝑐

𝑒,min(𝑸̂
−) that are more

menable in terms of applications and interpretation. For example,
btaining 𝑃 𝑐

𝑒,min(𝑸̂
−) reliably from Eq. (7) may not be possible in

ituations where, on the other hand, information-theoretic quantities
an be efficiently calculated using estimators [20]. Even when Eq. (7)
an be evaluated accurately, its manipulation becomes challenging in
he context of model development due to the non-linearity introduced
y the min(⋅) operator [21]. In such instances, using an information-
heoretic formulation of the error facilitates the optimization of model
arameters. Information theory can also be employed for feature selec-
ion, specifically identifying the input variables that most significantly
id in predicting extreme events [22]. Additionally, the sources of
rror contributing to 𝑃 𝑐

𝑒,min(𝑸̂
−) are more easily interpreted in terms

f information rather than probabilities, since the former adheres to
he properties of additivity and the chain rule [23]. In the next section,
e derive lower and upper bounds for Eq. (7) using the framework of

nformation theory.
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2.3. Information-theoretic bounds for minimum probability of error

The key idea to derive the information-theoretic bounds is that
the prediction of extreme events can be intuitively understood as an
information transmission process, where information from the current
observable state is conveyed to predict the future state [17]. If the
forecast is treated as a noisy channel, then the Fano’s [24] and Hell-
man’s [25] inequalities provide the foundations for deriving lower and
upper bounds on the minimum probability of error in the transmission
of discrete messages. We measure the uncertainty in the extreme event
indicator 𝐸 given the information from the observable 𝑸̂− using the
cost-sensitive, conditional Rényi entropy [26,27]

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−) =

∑

𝒒̂−
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)

𝑃 (𝑸̂− = 𝒒̂−), (9)

here
𝑐
𝛼(𝑝) = ℎ𝛼

(

min{𝑐−𝑝, 𝑐+(1 − 𝑝)}
)

s the cost-sensitive binary Rényi entropy function of order 𝛼 > 0, with

𝛼(𝑝) = lim
𝛾→𝛼

1
1 − 𝛾

log2 (𝑝𝛾 + (1 − 𝑝)𝛾 ) .

Eq. (9) quantifies the additional information required to determine
he outcome of 𝐸 given the information in 𝑸̂− accounting for the
eighting factors 𝑐− and 𝑐+. It is useful to interpret 𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−) as
he uncertainty in 𝐸 after conducting the ‘measurement’ of 𝑸̂−. If 𝐸
nd 𝑸̂− are independent random variables, then 𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−) = 𝐻𝑐
𝛼 (𝐸),

.e., knowing 𝑸̂− does not reduce the uncertainty in 𝐸. In this case, 𝑸̂−

s not a useful observable for forecasting 𝐸. Conversely, if knowing the
bservable 𝑸̂− provides the knowledge to completely determine 𝐸, then
𝑐
𝛼 (𝐸 ∣ 𝑸̂−) = 0, i.e., there is no uncertainty in 𝐸 given 𝑸̂−, and 𝑸̂− can
otentially be used to predict 𝐸 with no error. The order 𝛼 determines
he extent to which different probabilities influence the uncertainty,
ith larger values of 𝛼 giving greater weight to higher probabilities.
or 𝑐+ = 𝑐− = 𝛼 = 1, 𝐻𝑐

1 (𝐸 ∣ 𝑸̂−) is equal to the classic conditional
hannon entropy [28], which is a concave function in the conditional
istribution, making it well-suited for optimization tasks.
The minimum probability of error can be lower and upper bounded

s a function of the cost-sensitive conditional Rényi entropy [see proof
n Appendix A]
𝑐
𝑒,min,LB(𝑸̂

−) ≤ 𝑃 𝑐
𝑒,min(𝑸̂

−) ≤ 𝑃 𝑐
𝑒,min,UB(𝑸̂

−), (10)

here the lower and upper bounds are
𝑐
𝑒,min,LB(𝑸̂

−) = ℎ−1𝛼
(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−)

)

𝑐
𝑒,min,UB(𝑸̂

−) = min
{ 1
2
𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−), 𝐶
}

,
(11)

nd 𝐶 = min
{

𝑐−𝑃 (𝐸 = 1), 𝑐+(1 − 𝑃 (𝐸 = 1))
}

. Eq. (10) is valid for
< 𝛼 ≤ 2, with the tightest bounds achieved for 𝛼 = 2, i.e., the
onditional quadratic entropy 𝐻𝑐

2 (𝐸 ∣ 𝑸̂−). Nonetheless, maintaining
he more general formulation with 𝛼 is beneficial, as it establishes
relationship between error and information within the context of
ifferent entropies. It is worth noting that the minimum error in
q. (7) and the information-theoretic bounds in Eq. (10) hold for any
value of the thresholding parameter 𝜂 defining the cutoff for extreme
events. Furthermore, Eqs. (7) and (10) are generally applicable to the
rediction of any binary events, whether they are extreme or not.
A corollary from the conditional entropy inequality (a.k.a. informa-

ion can’t hurt ) [23] is that incorporating additional time lags into the
ector of observables can decrease (but never increase) the minimum
robability of error [see proof in Appendix B]
𝑐
𝑒,min,LB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,LB(𝑸̂

−𝑝), for 𝑙 > 𝑝,

𝑐
𝑒,min,UB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,UB(𝑸̂

−𝑝), for 𝑙 > 𝑝,
(12)

here 𝑙 and 𝑝 denote the number of time lags in 𝑸̂−𝑙 and 𝑸̂−𝑝,
espectively, i.e., 𝑸̂−𝑙 = [𝑸̂(𝑡), 𝑸̂(𝑡 − 𝛿𝑡 ),… , 𝑸̂(𝑡 − 𝛿𝑡 )] ± 𝛿𝑸̂−𝑙 (and
3

1 𝑙
similarly for 𝑸̂−𝑝). The inequality presented in Eq. (12) is particularly
useful in scenarios where not every variable of the system is directly
observable. In such instances, it is still possible to lower the minimum
probability of error by employing additional time-lagged measurements
of the observed variables. This result can be connected to Takens’
embedding theorem [29], whereby the dynamics of a dynamical system
can be captured by embedding a sequence of past observations into a
higher-dimensional space. The latter is consistent with the decrease in
the probability of error from Eq. (12). Takens’ embedding theorem also
states that the delayed-embedding phase space of 𝑸̂−𝑙 is topologically
equivalent to the original phase space of the full dynamical system
𝑸 for a non-degenerate, noise-free observable with 𝑙 > 2𝑑𝐴, where
𝑑𝐴 is the dimension of the attractor. From an information-theoretic
viewpoint, this implies that 𝑸̂−𝑙 provides the same information as
he state vector of the full system 𝑸 when there is no uncertainty
n the observable (𝛿𝑸̂−𝑙 = 𝟎) and 𝑙 > 2𝑑𝐴. Under those conditions,
𝑐
𝑒,min(𝑸̂

−𝑙) = 𝑃 𝑐
𝑒,min(𝑸) = 0 and exact predictions are possible.

The minimum probability of error from Eq. (7) and the information-
theoretic bounds from Eq. (10) are derived assuming the discretization
of the continuous variable 𝑸̂. This reflects the inherent uncertainty
in the initial conditions, which is captured by the term |𝛿𝑸̂−

| > 0.
Nonetheless, the same inequality holds when 𝑸̂ is assumed to be a
continuous variable by replacing the 𝐻𝑐

𝛼 with its continuous extension
[see Appendix C]. In that case, there is no uncertainty in the value
of 𝑸̂, and we can take 𝛿𝑸̂− = 𝟎. It can also be shown that the right-
hand side of Eq. (7) and the bounds in Eq. (11) converge to their
continuous counterparts when the partition size used to discretize 𝑸̂ is
refined towards zero. Here, we focus on the discrete case, as in practical
applications there is always some degree of uncertainty in 𝑸̂.

2.4. Sources contributing to the probability of error

The probability of error in the extreme event forecaster can be
decomposed into three sources: 𝑃 𝑐

𝑒 (𝑸̂
−, 𝑓 ) = 𝑃 𝑐

𝑒,𝐼 + 𝑃 𝑐
𝑒,𝑂 + 𝑃 𝑐

𝑒,𝑀 given
by

𝑃 𝑐
𝑒,𝐼 = 𝑃 𝑐

𝑒,min(𝑸
−),

𝑃 𝑐
𝑒,𝑂 = 𝑃 𝑐

𝑒,min(𝑸̂
−) − 𝑃 𝑐

𝑒,min(𝑸
−),

𝑃 𝑐
𝑒,𝑀 = 𝑃 𝑐

𝑒 (𝑸̂
−, 𝑓 ) − 𝑃 𝑐

𝑒,min(𝑸̂
−),

(13)

where the vector 𝑸− = 𝑸 ± 𝛿𝑸 contains all the degrees of freedom
governing the system 𝑸 (i.e., absolute observability) but with finite
precision 𝛿𝑸. The interpretation of each term in Eq. (13) is as follows:

- 𝑃 𝑐
𝑒,𝐼 represents the probability of error solely arising from uncer-
tainty in the initial conditions. This is because 𝑸− contains all the
degrees of freedom of the system, which are sufficient to integrate
the system forward in time. However, the process is subject to
the initial uncertainty 𝛿𝑸 such that a higher 𝛿𝑸 might result in a
higher 𝑃 𝑐

𝑒,𝐼 . The magnitude of 𝛿𝑸 varies depending on the specific
problem. If𝑸− is known with infinite precision (i.e., 𝛿𝑸 = 𝟎), then
𝑃 𝑐
𝑒,𝐼 equals zero.

- 𝑃 𝑐
𝑒,𝑂 denotes the probability of error caused by missing informa-
tion from unobserved variables. This error originates from the
fact that 𝑸̂− contains less information than 𝑸−. As discussed
in Section 2.3, the inclusion of multiple time lags in 𝑸̂− can
compensate for the lack of observed variables [29]. However, 𝑃 𝑐

𝑒,𝑂
will still be an important contributor to the total probability of
error in those situations where the number of degrees of freedom
is much larger than the number of observed variables, 𝑁 ≫ 𝑀 .

- 𝑃 𝑐
𝑒,𝑀 is the probability of error attributable to a suboptimal model.
Values of 𝑃 𝑐

𝑒,𝑀 > 0 imply that 𝑓 is not efficiently exploiting the
information available in 𝑸̂−. In those cases, the model is not
operating at its theoretical maximum performance, and further
improvements are possible. Conversely, 𝑃 𝑐

𝑒,𝑀 = 0 implies that 𝑓
is the best-performing model given the observed variables and

uncertainties in the initial conditions.
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Fig. 1. (a) Trajectory of the Rössler system. (b) Extraction of time series of 𝜃1, 𝜃2, 𝜃3 and extreme events in the Rössler system. Although not shown, the whole time-span of the
signals is 10,000 time units.
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In the following, we demonstrate the application of our results in
two distinct scenarios: the Rössler system and the Kolmogorov flow.
The Rössler system offers a simple case for studying extreme events
in a chaotic system where all variables can be observed. We use this
case to illustrate the classification of errors from Eq. (13). On the
ther hand, the Kolmogorov flow, characterized by complex, multi-
cale interactions among numerous degrees of freedom, represents the
ynamics of extreme events found in more realistic systems. This case
s used to demonstrate the effect of cost-sensitive analysis.

. Applications

.1. Rössler system

The Rössler system with state variables 𝑸 = [𝜃1, 𝜃2, 𝜃3] is governed
y the ordinary differential equation:
d𝜃1
d𝑡

= −𝜃2 − 𝜃3,

d𝜃2
d𝑡

= 𝜃1 + 𝑎𝜃2,

d𝜃3
d𝑡

= 𝑏 + 𝜃3(𝜃1 − 𝑐),

(14)

with parameters 𝑎 = 0.1, 𝑏 = 0.1, and 𝑐 = 14. We investigate extreme
events in 𝜃3, which exhibits rare excursions of intense magnitude.
Fig. 1(a) shows the trajectory of the Rössler system in the three-
imensional phase space. The extreme event indicator is defined as

(𝑡) =

{

1 if 𝜃3(𝑡) ⩾ 𝜃̄3 + 3𝜎𝜃3 ,
0 otherwise,

(15)

here 𝜃̄3 and 𝜎𝜃3 are the mean and standard deviation of 𝜃3 over time.
he threshold is set to 𝜂 = 𝜃̄3 + 3𝜎𝜃3 , but the conclusions drawn in this
ection apply to other values of 𝜂. Results for a higher threshold can be
ound in Appendix D. Fig. 1(b) contains a fragment of the time history
f 𝑸 and the extreme event indicator 𝐸.
We investigate the case with balanced risk 𝑐+ = 𝑐− = 1 and define

he normalized probability of error as 𝑃 𝑐
𝑒 = 𝑃 𝑐

𝑒 ∕𝐶. This normalization
s such that 𝑃 𝑐

𝑒,min → 1 for 𝛿𝑡 → ∞ in practical applications. Fig. 2 shows
he normalized minimum probability of error as a function of time-
orizon for extreme event prediction 𝛿𝑡 using Eq. (7). Three scenarios
re considered.

- In the first case, we assume that the only observable variable is
𝑄̂−

1 = 𝜃3(𝑡)±𝛿𝜃3(𝑡), where the uncertainty in the initial condition is
set to 𝛿𝜃3 ≤ 0.05𝜎𝜃3 . Here, the uncertainty 𝛿𝜃3 is not introduced by
perturbing the equations of the system. Instead, the uncertainty
is incorporated in a non-intrusive manner when calculating the
4

𝑃

probability 𝑃 (𝜃3) by discretizing 𝜃3 into bins of size 2𝛿𝜃3. This
is equivalent to assuming that the solution passing through 𝜃3
cannot be distinguished from another trajectory, also contained
within the attractor of the system, at a distance from 𝜃3 equal
to or less than 𝛿𝜃3. The associated minimum probability of error,
𝑃 𝑐
𝑒,min(𝑄̂

−
1 ), is represented by the solid line in Fig. 2(a).

- In the second scenario, the observable includes two time lags in
addition to the present time: 𝑸̂−

2 = [𝜃3(𝑡), 𝜃3(𝑡−𝛿𝑡), 𝜃3(𝑡−2𝛿𝑡)]±𝛿𝜽3,
where the uncertainty 𝛿𝜽3 is again set to 0.05𝜎𝜃3 for all time
lags. The minimum probability of error, 𝑃 𝑐

𝑒,min(𝑸̂
−
2 ), is depicted

by the solid line in Fig. 2(b). The difference between the two
minimal errors 𝑃 𝑐

𝑒,min(𝑸̂
−
2 ) and 𝑃 𝑐

𝑒,min(𝑄̂
−
1 ) from Fig. 2(a) serves as

a measure of the improvement in predictive accuracy gained by
incorporating observations from two additional times in 𝜃3.

- In the third scenario, it is assumed that the knowledge of the
full state is available at the present time with finite precision,
i.e., 𝑸− = [𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡)] ± 𝛿𝜽, where 𝛿𝜽 ≤ 0.05[𝜎1, 𝜎2, 𝜎3]
with 𝜎𝑖 the standard deviation of 𝜃𝑖. The minimum probability
of error, 𝑃 𝑐

𝑒,min(𝑸
−), is indicated by the dashed line in Fig. 2(a)

and 2(b). Errors arising from uncertainty in initial conditions
are quantified by 𝑃 𝑐

𝑒,𝐼 = 𝑃 𝑐
𝑒,min(𝑸

−) (highlighted by the purple
shaded region in Fig. 2). The discrepancy between 𝑃 𝑐

𝑒,min(𝑄̂
−
1 ) and

𝑃 𝑐
𝑒,min(𝑸

−) in Fig. 2(a), and between 𝑃 𝑐
𝑒,min(𝑸̂

−
2 ) and 𝑃 𝑐

𝑒,min(𝑸
−) in

Fig. 2(b), allows us to quantify the errors resulting from the lack
of knowledge of 𝜃1 and 𝜃2 (i.e., 𝑃 𝑐

𝑒,𝑂, indicated by the yellow
shaded region in Fig. 2).

he region beneath each curve, 𝑃 𝑐
𝑒,min(𝑄̂

−
1 ), 𝑃

𝑐
𝑒,min(𝑸̂

−
2 ), and 𝑃 𝑐

𝑒,min(𝑸
−),

orresponds to models that are unattainable given the observable 𝑄̂−
1 ,

̂ −
2 , and 𝑸−, respectively, whereas the region above represents models
hat are suboptimal. Over time, all cases converge to 𝑃 𝑐

𝑒 → 1 given the
haotic nature of the system. This convergence is slower for 𝑃 𝑐

𝑒,min(𝑸
−),

s errors are only due to uncertainties in the initial condition.
To illustrate the errors from an actual predictive model, we trained

ecision tree models, 𝑓𝐷𝑇 , to predict 𝐸 using either 𝑄̂−
1 or 𝑸̂

−
2 as input.

ifferent decision tree models are trained to forecast 𝐸 at each 𝛿𝑡. The
aximum number of branch node splits is 8, and each leaf contains
t least 10 observations. The results are also included in Fig. 2(a) and
b). Additional details about the confusion matrix for the decision tree
odel can be found in Appendix D. The normalized probability of error
or the decision tree models, 𝑃 𝑐

𝑒 (𝑄̂
−
1 , 𝑓

𝐷𝑇 ) and 𝑃 𝑐
𝑒 (𝑸̂

−
2 , 𝑓

𝐷𝑇 ), enables the
uantification of the model error 𝑃 𝑐

𝑒,𝑀 for the specific case. The results
n Fig. 2(a) show that the model error 𝑃 𝑐

𝑒 (𝑄̂
−
1 , 𝑓

𝐷𝑇 ) closely approaches
he minimum error given by 𝑃 𝑐

𝑒,min(𝑄̂
−
1 ), indicating that the model is

perating near its maximum theoretical performance. On the other
and, the results in Fig. 2(b) reveal a gap between the model error
̄ 𝑐 ̂ − ̂𝐷𝑇 ̄ 𝑐 ̂ − .4.
𝑒 (𝑸2 , 𝑓 ) and the minimum theoretical error 𝑃𝑒,min(𝑸2 ) for 𝛿𝑡 < 0
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Fig. 2. Normalized probability of error for extreme events prediction in the Rössler system for the threshold 𝜂 = 𝜃̄3 + 3𝜎𝜃3 using as observable (a) 𝑄̂−
1 = 𝜃3(𝑡) ± 𝛿𝜃3 and (b)

̂ −
2 = [𝜃3(𝑡), 𝜃3(𝑡 − 𝛿𝑡), 𝜃3(𝑡 − 2𝛿𝑡)] ± 𝛿𝜽3 . 𝑃 𝑐

𝑒,min(𝑄̂
−
1 ), 𝑃

𝑐
𝑒,min(𝑸̂

−
2 ), and 𝑃 𝑐

𝑒,min(𝑸
−) are the minimum probability of error using the observable 𝑄̂−

1 , 𝑸̂
−
2 , and 𝑸− = [𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡)] ± 𝛿𝜽,

espectively. 𝑃 𝑐
𝑒,𝐼 (purple) is the error due to uncertainty in the initial conditions; 𝑃

𝑐
𝑒,𝑂 (yellow) is the error caused by unobserved variables; 𝑃 𝑐

𝑒,𝑀 (red) is the error due to suboptimal
odel.
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Fig. 3. Normalized information-theoretic upper and lower bounds of the minimum
probability of error for extreme events prediction in the Rössler system for the threshold
𝜂 = 𝜃̄3 + 3𝜎𝜃3 and observables 𝑄̂−

1 and 𝑸̂−
2 . The solid line is 𝑃 𝑐

𝑒,min and the shaded
area represents the region confined within 𝑃𝑒,min,LB and 𝑃𝑒,min,UB obtained for the
second-order, cost-sensitive conditional Rényi entropy.

This indicates that the model is suboptimal, and models with improved
performance are possible. For both cases, as 𝛿𝑡 increases, 𝑃 𝑐

𝑒,𝑂 rapidly
becomes the predominant source of error. Conversely, 𝑃 𝑐

𝑒,𝐼 is minor
ompared to 𝑃 𝑐

𝑒,𝑂. Hence, the analysis also shows that missing variables
ave a greater impact on the accuracy of the forecast compared to
uboptimal modeling and uncertainty in the initial conditions.
Finally, we compare the exact minimum probability of error from

q. (7) with the information-theoretic bounds from Eq. (11) for the
econd-order, cost-sensitive conditional Rényi entropy. The results are
resented in Fig. 3 using either 𝑄̂−

1 or 𝑸̂−
2 as observables. In both

ases, the bounds provide a narrow region within which 𝑃 𝑐
𝑒,min must be

onfined. In situations where directly obtaining 𝑃 𝑐
𝑒,min is challenging,

he region defined by the upper and lower bounds can be used to
emarcate the theoretical zone of near-optimal operation for a model. If
he error falls within this zone, the model can be considered as possibly
perating near its best theoretical performance.

.2. Kolmogorov flow

Next, we evaluate the cost-sensitive error bounds for forecasting
ntense energy dissipation events in a turbulent flow [30]. The case con-
idered is the Kolmogorov flow: a high-dimensional, chaotic dynamical
ystem described by the two-dimensional Navier–Stokes equations and
5

driven by monochromatic body forcing [31]:

𝜕𝑢𝑖
𝜕𝑡

= −
𝜕(𝑢𝑖𝑢𝑗 )
𝜕𝑥𝑗

− 𝜕𝛱
𝜕𝑥𝑖

+ 1
𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑘𝜕𝑥𝑘

+ 𝑓𝑖, 𝑖 = 1, 2, (16)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (17)

here repeated indices imply summation, 𝑢𝑖(𝑥1, 𝑥2, 𝑡) is the 𝑖th velocity
omponent, 𝛱 is the pressure, 𝑥1 and 𝑥2 are the spatial coordinates,
nd 𝑓𝑖 is the forcing term with 𝑓1 = sin(4𝑥2) and 𝑓2 = 0. The velocity
ector is denoted as 𝒖 = [𝑢1, 𝑢2]. The flow setup is characterized by the
eynolds number 𝑅𝑒 = 100 for which the flow exhibits intermittent
ursts of dissipation events [32]. For our analysis, we use data from
arazmand and Sapsis [30], obtained by numerically resolving all the
cales of the problem in a doubly periodic box with side 2𝜋 and
562 spatial Fourier modes. Fig. 4(a) shows the velocity amplitude
𝒖(𝑥1, 𝑥2, 𝑡)| at a given time.
Our focus is on the prediction of extreme events characterized by

luctuations in the mean dissipation rate of kinetic energy 𝐷(𝑡) =
2𝑆𝑖𝑗𝑆𝑖𝑗∕𝑅𝑒⟩, where 𝑆𝑖𝑗 = 1∕2(𝜕𝑢𝑖∕𝜕𝑥𝑗 + 𝜕𝑢𝑗∕𝜕𝑥𝑖) is the rate-of-strain
ensor, and ⟨⋅⟩ denotes average in space. The extreme event indicator
s

(𝑡) =

{

1 if 𝐷(𝑡) ⩾ 𝐷̄ + 1.5𝜎𝐷,
0 otherwise,

(18)

here 𝐷̄ and 𝜎𝐷 are the mean and standard deviation of 𝐷 over time.
redictions of extreme events using a higher threshold can be found
n Appendix B. The observable chosen is the magnitude of the spatial
ourier mode of 𝒖 corresponding to the wavenumber [1, 0], which is
enoted by 𝑄̂ = |

|

𝒖̆1,0||. The latter is one of the preferred observables
or predicting extreme dissipation events in the Kolmogorov flow, as it
as been shown to correlate with the growth of 𝐷 [30]. An excerpt of
̂ and 𝐷 extracted from the full time history is presented in Fig. 4(b).
he time is non-dimensionalized by 𝑡𝑒 = (𝑅𝑒𝐷̄)−1∕2.
Three cases are investigated with increasing cost for false positives:

− = 1, 1.5, and 2. The first case (𝑐− = 1) penalizes false positives and
alse negatives equally. The other two cases assign a higher penalty
o false negatives, such that the cost of failing to predict an extreme
vent is two times (for 𝑐− = 1.5) or three times (for 𝑐− = 2) the
ost of incorrectly predicting a non-extreme event. We denote the
inimum probability of error for each case as 𝑃 𝑐−=1

𝑒,min (𝑄̂
−), 𝑃 𝑐−=1.5

𝑒,min (𝑄̂−),
nd 𝑃 𝑐−=2

𝑒,min (𝑄̂
−), respectively. Fig. 5 shows the results as a function of

𝛿𝑡. The minimum cost-sensitive probability of error is normalized as
𝑃 𝑐
𝑒,min = 𝑃 𝑐

𝑒,min∕𝐶 such that 𝑃 𝑐
𝑒,min → 1 for 𝛿𝑡 → ∞.

The results from Fig. 5 show that increasing 𝑐− reduces the nor-
malized minimum probability of error, making the predictions less

challenging. This trend is particular to the Kolmogorov flow and the
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Fig. 4. (a) The instantaneous velocity amplitude |𝒖| for the Kolmogorov flow. (b) Time history of 𝐷(𝑡), |𝒖̆1,0|(𝑡), and 𝐸(𝑡) for 𝜂 = 𝐷̄ + 1.5𝜎𝐷 .
Fig. 5. Normalized, cost-sensitive, minimum probability of error for extreme events
prediction in the Kolmogorov flow for 𝜂 = 𝐷̄ + 1.5𝜎𝐷 and 𝑐− = 1, 1.5, and 2.

hosen variables, and other systems can exhibit different behavior.
ig. 5 also illustrates two interesting characteristics of 𝑃 𝑐

𝑒,min(𝑄̂
−) for

he three 𝑐− values considered. First, 𝑃 𝑐
𝑒,min(𝑄̂

−) is not initially zero
hen 𝛿𝑡 = 0. This situation arises because 𝐷 was not considered an
bserved variable, leading to uncertainty in 𝐸 even at 𝛿𝑡 = 0. The
econd interesting observation is that 𝑃 𝑐

𝑒,min reaches its lowest value at
𝑡min = 2.8𝑡𝑒. This observation can be understood by noting that in this
ystem, energy is transferred among different scales due to nonlinear
nteractions until it is ultimately dissipated. This process occurs on a
imescale comparable to 𝛿𝑡min [30], which explains the effectiveness of
𝒖̆1,0|| in predicting extreme dissipation events at that time lag. For times
eyond this point, |

|

𝒖̆1,0|| becomes increasingly less effective due to the
haoticity of turbulence.
Finally, we compare the normalized information-theoretic upper

nd lower bounds of the minimum probability of error when 𝑐− = 2.
he results, presented in Fig. 6, show that the bounds accurately reflect
he trend observed for 𝑃 𝑐−=2

𝑒,min : there is a non-zero minimum probability
f error at 𝛿𝑡 = 0, which initially decreases before eventually increasing
owards one.

. Conclusions

In this study, we have derived the minimum cost-sensitive prob-
bility of error in extreme event forecasting (Eq. (7)) along with its
information-theoretic lower and upper bounds (Eq. (11)). The bounds
are rooted in the cost-sensitive Fano’s and Hellman’s inequalities for
the Rényi entropy. Furthermore, the minimum probability of error and
6

e

Fig. 6. Normalized, cost-sensitive, information-theoretic upper and lower bounds of the
minimum probability of error for extreme events prediction in the Kolmogorov flow for
𝜂 = 𝐷̄+1.5𝜎𝐷 . The solid line is 𝑃 𝑐

𝑒,min and the shaded area represents the region confined
within 𝑃𝑒,min,LB and 𝑃𝑒,min,UB obtained for the cost-sensitive, second-order, conditional
Rényi entropy.

its bounds are applicable to scenarios involving both balanced and
unbalanced risks. The results are also connected to Takens’ embedding
theorem using the information can’t hurt inequality, which shows that
incorporating additional time lags into the vector of observables can
decrease (but never increase) the minimum probability of error. The
probability of error for a forecasting model was also decomposed into
three sources: uncertainty in the initial conditions, hidden variables,
and suboptimal modeling assumptions (Eq. (13)).

We have demonstrated the application of these bounds to deter-
mine the limits of extreme event prediction in two cases related to
fluid dynamics: the Rössler system and the Kolmogorov flow. These
applications illustrate the utility of the minimum probability of error
and its lower and upper bounds as tools for investigating the intrinsic
limitations of forecasting extreme events in chaotic systems. We have
shown that the minimum error and its bounds maintain their validity
irrespective of the chosen modeling method and play a crucial role
in assessing whether models are functioning near their theoretical
optimum. Future efforts will be devoted to understanding the limits of
predictability for extreme events such as dissipation, wall-shear stress,
and wall-pressure in turbulent flows at high Reynolds numbers, which
are relevant for advancing the field of external aerodynamics. Nonethe-
less, the method presented here is generally applicable to problems in
other fields such as economics, biology, and finance, among others.

Finally, the use of Eqs. (7) and (11) extends beyond the extreme
vent predictions presented here; they are broadly applicable to any
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binary classification of events, whether they are categorized as extreme
or non-extreme. Eqs. (7) and (11) also lay the foundation for future
extensions to forecasting continuous in time signals by employing
generalized versions of Fano’s and Hellman’s inequalities.
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Appendix A. Proof of information-theoretic bounds

The minimum cost-sensitive probability of error achievable by any
model based on the cost-sensitive uncertainty in 𝐸 conditioned to the
observable 𝑸̂− is

𝑃 𝑐
𝑒,min(𝑸̂

−) = E[𝐼(𝑸̂−)], (A.1)

and it is lower and upper bounded as

ℎ−1𝛼
(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−)

)

≤ 𝑃 𝑐
𝑒,min(𝑸̂

−) ≤ min
{ 1
2
𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−), 𝐶
}

, (A.2)

where ℎ𝛼(𝑝) is a concave function for 𝑝 ∈ [0, 1∕2] when 0 < 𝛼 ≤ 2, and

= min
{

𝑐−𝑃 (𝐸 = 1), 𝑐+(1 − 𝑃 (𝐸 = 1))
}

.

roof. The overall cost-sensitive probability of error is a weighted sum
f the probability of error for each specific state of 𝑸̂−,
𝑐
𝑒 (𝑸̂

−, 𝑓 ) = 𝑐−𝑃 (𝐸̂ = 0, 𝐸 = 1) + 𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0)

=
∑

𝒒̂−

(

𝑐−𝑃 (𝐸̂ = 0, 𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)

+ 𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−)
)

𝑃 (𝑸̂− = 𝒒̂−),

(A.3)

here the factors 𝑐− and 𝑐+ are scaled as 1∕𝑐−+1∕𝑐+ = 2 to ensure that

𝑐
𝑒,min(𝑸̂

−) ≤

{

𝑐−𝑃 (𝐸 = 1), if 𝐸̂ = 0
𝑐+𝑃 (𝐸 = 0), if 𝐸̂ = 1

≤ min
{

𝑐−𝑃 (𝐸 = 1), 𝑐+ (1 − 𝑃 (𝐸 = 1))
}

= 𝐶 ≤ 𝑐−𝑐+ = 1 .

(A.4)
7

𝑐+ + 𝑐− 2 c
This convention was adopted to avoid 𝑃 𝑐
𝑒,min(𝑸̂

−) > 1∕2, as in those
ituations, the model with the minimum probability of error could be
btained by flipping the model with 𝑃 𝑐

𝑒,min(𝑸̂
−) > 1∕2 to the one with

probability of 1 − 𝑃 𝑐
𝑒,min(𝑸̂

−) ≤ 1∕2. For each specific state of 𝑸̂−, the
inimum probability of error is determined by

−𝑃 (𝐸̂ = 0, 𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−) + 𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−)

=

{

𝑐−𝑃 (𝐸̂ = 0, 𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), if 𝐸̂(𝒒̂−) = 0
𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−), if 𝐸̂(𝒒̂−) = 1

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−) − 𝑐− 𝑃 (𝐸̂ = 1, 𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

,

if 𝐸̂(𝑸̂− = 𝒒̂−) = 0
𝑐+𝑃 (𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−) − 𝑐+ 𝑃 (𝐸̂ = 0, 𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

,

if 𝐸̂(𝑸̂− = 𝒒̂−) = 1

≥ min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+𝑃 (𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−)
}

= min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+
(

1 − 𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)}

.

(A.5)

Let us define the minimum probability of error at each state as

(𝑸̂− = 𝒒̂−)

= min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+
(

1 − 𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)}

. (A.6)

Applying Eqs. (A.3) and (A.5) we have,

𝑐
𝑒,min(𝑸̂

−) =
∑

𝒒̂−
𝐼(𝑸̂− = 𝒒̂−)𝑃 (𝑸̂− = 𝒒̂−) = E[𝐼(𝑸̂−)] ≤ 𝑃 𝑐

𝑒 (𝑸̂
−, 𝑓 ), (A.7)

hich is the Bayes error rate typically discussed in statistical classifica-
ion [33] but applied here in the context of extreme event prediction.
Given the concave function

𝛼(𝑝) = lim
𝛾→𝛼

1
1 − 𝛾

log2 (𝑝𝛾 + (1 − 𝑝)𝛾 )

for 𝑝 ∈ [0, 0.5][34] when 𝛼 ∈ (0, 2], the Jensen’s inequality for the
random variable 𝐼(𝑸̂−) results in

ℎ𝛼
(

𝑃 𝑐
𝑒,min(𝑸̂

−)
)

= ℎ𝛼
(

E[𝐼(𝑸̂−)]
)

≥ E
[

ℎ𝛼
(

𝐼(𝑸̂−)
)]

. (A.8)

he right hand side of Eq. (A.8) is

E
[

ℎ𝛼
(

𝐼(𝑸̂−)
)]

=
∑

𝒒̂−
ℎ𝛼

(

𝐼(𝑸̂− = 𝒒̂−)
)

𝑃 (𝑸̂− = 𝒒̂−)

∑

𝒒̂−
ℎ𝛼

(

min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+(1 − 𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−))
})

𝑃 (𝑸̂− = 𝒒̂−)
∑

𝒒̂−
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)

𝑃 (𝑸̂− = 𝒒̂−) = 𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−),

(A.9)

here 𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−) is defined as the cost-sensitive conditional Rényi

ntropy, and the cost-sensitive binary entropy function is given by

𝑐
𝛼(𝑝) =

⎧

⎪

⎨

⎪

⎩

ℎ𝛼 (𝑐−𝑝) for 𝑝 ∈
[

0, 1
2𝑐−

)

,

ℎ𝛼
(

𝑐+(1 − 𝑝)
)

for 𝑝 ∈
[

1
2𝑐− , 1

]

,
(A.10)

such that

ℎ𝑐𝛼(𝑝) = ℎ𝛼
(

min
{

𝑐−𝑝, 𝑐+ (1 − 𝑝)
})

. (A.11)

he function ℎ𝑐𝛼(𝑝) emerges naturally as a measure of information. The
actors 𝑐+ and 𝑐− weight the importance (risk) of each event, whereas
he order 𝛼 controls how the different probabilities in the distribution
ontribute to the overall measure of uncertainty. For increasing val-
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ues of 𝛼, the measure gives more weight to larger probabilities. For
xample, consider the process of tossing a coin where both heads and
ails are assigned equal importance (𝑐+ and 𝑐− for heads and tails,
espectively, with 𝑐+ = 𝑐− = 1). The greatest amount of information
i.e., uncertainty) regarding the outcome corresponds to the probability
= 1∕2 that maximizes the binary entropy function ℎ𝛼(𝑝). However,
hen the importance of the outcomes differs (e.g., heads is preferred
ver tails, 𝑐+ > 𝑐−), the greatest uncertainty is achieved at 𝑝 = 𝑐+

𝑐++𝑐− ,
maximizing cost-sensitive binary entropy ℎ𝑐𝛼(𝑝). In conclusion,

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−) = E

[

ℎ𝛼
(

𝐼(𝑸̂−)
)]

≤ ℎ𝛼
(

E[𝐼(𝑸̂−)]
)

= ℎ𝛼
(

𝑃 𝑐
𝑒,min(𝑸̂

−)
)

,

(A.12)

which implies

ℎ−1𝛼
(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−)

)

≤ 𝑃 𝑐
𝑒,min(𝑸̂

−) = E
[

𝐼(𝑸̂−)
]

. (A.13)

On the other hand, given the binary entropy function ℎ𝛼(𝑝) for
𝑝 ∈ [0, 0.5], 𝛼 ∈ (0, 2], it is straight forward to show that

ℎ𝛼
(

𝐼(𝑸̂− = 𝒒̂−)
)

≥ 2𝐼(𝑸̂− = 𝒒̂−). (A.14)

Applying the expectation operator to each side of the inequality,

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−) = E

[

ℎ𝛼
(

𝐼(𝑸̂−)
)]

≥ 2E
[

𝐼(𝑸̂−)
]

= 2𝑃 𝑐
𝑒,min(𝑸̂

−). (A.15)

In conclusion,

−1
𝛼

(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−)

)

≤ 𝑃 𝑐
𝑒,min(𝑸̂

−) = E
[

𝐼(𝑸̂−)
]

≤ min
{ 1
2
𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−), 𝐶
}

(A.16)

□

ppendix B. Proof of inequality of minimum probability of error
or additional time lags

A consequence of incorporating additional time lags into the vector
bservable variables is that
𝑐
𝑒,min,LB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,LB(𝑸̂

−𝑝), for 𝑙 > 𝑝,

𝑐
𝑒,min,UB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,UB(𝑸̂

−𝑝), for 𝑙 > 𝑝,
(B.1)

here 𝑙 and 𝑝 denote the number of time lags in 𝑸̂−𝑙 and 𝑸̂−𝑝,
espectively, i.e.,

𝑸̂−𝑙 = [𝑸̂(𝑡), 𝑸̂(𝑡 − 𝛿𝑡1),… , 𝑸̂(𝑡 − 𝛿𝑡𝑙)] ± 𝛿𝑸̂−𝑙 ,
̂ −𝑝 = [𝑸̂(𝑡), 𝑸̂(𝑡 − 𝛿𝑡1),… , 𝑸̂(𝑡 − 𝛿𝑡𝑝)] ± 𝛿𝑸̂−𝑝.

(B.2)

roof. First, we prove the cost-sensitive conditional entropy inequality,

𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑙) ≤ 𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−𝑝). (B.3)

Noting that 𝑸̂−𝑙 = [𝑸̂−𝑝, 𝑸̂−𝑟], where 𝑸̂−𝑟 = [𝑸̂(𝑡 − 𝛿𝑡𝑝+1),… , 𝑸̂(𝑡 −
𝑡𝑙)] ± 𝛿𝑸̂−𝑟, proving Eq (B.3) is equivalent to proving

𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑝, 𝑸̂−𝑟) ≤ 𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−𝑝). (B.4)

By the law of total probability applied to the conditional probability:

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝)
∑

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝, 𝑸̂−𝑟 = 𝒒̂−𝑟)𝑃 (𝑸̂−𝑟 = 𝒒̂−𝑟 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝). (B.5)
8

𝒒̂−𝑟 e
The cost-sensitive entropy function ℎ𝑐𝛼 is a concave function when
∈ (0, 2], applying Jensen’s inequality,

𝑐
𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝)
)

(B.5)
= ℎ𝑐𝛼

(

∑

𝒒̂−𝑟
𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝, 𝑸̂−𝑟 = 𝒒̂−𝑟)

× 𝑃 (𝑸̂−𝑟 = 𝒒̂−𝑟 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝)
)

≥
∑

𝒒̂−𝑟
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝, 𝑸̂−𝑟 = 𝒒̂−𝑟)
)

𝑃 (𝑸̂−𝑟 = 𝒒̂−𝑟 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝).

(B.6)

Applying the inequality to the right hand side of Eq. (B.3), we get

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑝)

=
∑

𝒒̂−𝑝
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝)
)

𝑃 (𝑸̂−𝑝 = 𝒒̂−𝑝)

B.6)
≥

∑

𝒒̂−𝑝

∑

𝒒̂−𝑟
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝, 𝑸̂−𝑟 = 𝒒̂−𝑟)
)

𝑃 (𝑸̂−𝑟 = 𝒒̂−𝑟 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝)𝑃 (𝑸̂−𝑝 = 𝒒̂−𝑝)

=
∑

𝒒̂−𝑝

∑

𝒒̂−𝑟
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂−𝑝 = 𝒒̂−𝑝, 𝑸̂−𝑟 = 𝒒̂−𝑟)
)

× 𝑃 (𝑸̂−𝑟 = 𝒒̂−𝑟, 𝑸̂−𝑝 = 𝒒̂−𝑝)

=𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑝 , 𝑸̂−𝑟) = 𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−𝑙).

(B.7)

Finally, the conditional entropy inequality is applied to the infor-
ation theoretic-bounds
𝑐
𝑒,min,LB(𝑸̂

−𝑙) = ℎ−1𝛼
(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑙)

)

,

𝑐
𝑒,min,LB(𝑸̂

−𝑝) = ℎ−1𝛼
(

𝐻𝑐
𝛼 (𝐸 ∣ 𝑸̂−𝑝)

)

,

𝑐
𝑒,min,UB(𝑸̂

−𝑙) = min
{ 1
2
𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−𝑙), 𝐶
}

,

𝑐
𝑒,min,UB(𝑸̂

−𝑝) = min
{ 1
2
𝐻𝑐

𝛼 (𝐸 ∣ 𝑸̂−𝑝), 𝐶
}

,

(B.8)

y taking into account that 𝑃 𝑐
𝑒,min(𝑸̂

−𝑝) ≤ 1∕2,

𝑐
𝑒,min,LB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,LB(𝑸̂

−𝑝), for 𝑙 > 𝑝,

𝑐
𝑒,min,UB(𝑸̂

−𝑙) ≤ 𝑃 𝑐
𝑒,min,UB(𝑸̂

−𝑝), for 𝑙 > 𝑝,
□ (B.9)

ppendix C. Continuous extension of information-theoretic bound

We show that the bound for minimum cost-sensitive probability
f error also holds for continuous observables just by replacing the
ost-sensitive Rényi entropy 𝐻𝑐

𝛼 by the cost-sensitive Rényi entropy
𝐶
𝛼 conditioned on a continuous variable. The minimum cost-sensitive
robability of error achievable by any model with continuous 𝑸̂− is
−1
𝛼

(

𝑐
𝛼(𝐸 ∣ 𝑸̂−)

)

≤ 𝑃 𝑐
𝑒,min(𝑸̂

−)

= E[(𝑸̂−)] ≤ min
{ 1
2
(

𝑐
𝛼(𝐸 ∣ 𝑸̂−)

)

, 𝐶
}

. (C.1)

The cost-sensitive conditional Rényi entropy is defined as

𝑐
𝛼(𝐸 ∣ 𝑸̂−) = ∫𝑸̂−

ℎ𝑐𝛼
(

𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)

𝜌𝑸̂− (𝒒̂−)d𝒒̂−, (C.2)

here 𝜌𝑸̂− (𝒒̂−) is the probability density function of 𝑸̂− and the integral
s taken over the support of 𝑸̂−. The minimum probability of error at
ach value is defined as

(𝑸̂− = 𝒒̂−)

= min
{

𝑐−𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−), 𝑐+
(

1 − 𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)}

. (C.3)

roof. Similar to Eq. (A.3), the overall cost-sensitive probability of
rror is a weighted integral of the probability of error for each value of
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Fig. D.7. Normalized probability of error for extreme events prediction in the Rössler system for the threshold 𝜂 = 𝜃̄3 + 6𝜎𝜃3 using observable (a) 𝑄̂−
1 and (b) 𝑸̂−

2 . 𝑃
𝑐
𝑒,min(𝑄̂

−
1 ),

̄ 𝑐
𝑒,min(𝑸̂

−
2 ), and 𝑃 𝑐

𝑒,min(𝑸
−) are the minimum probability of error using the observable 𝑄̂−

1 , 𝑸̂
−
2 , and 𝑸−, respectively.
̂ −,

𝑐
𝑒 (𝑸̂

−, 𝑓 ) = ∫𝑸̂−

(

𝑐−𝑃 (𝐸̂ = 0, 𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)

+ 𝑐+𝑃 (𝐸̂ = 1, 𝐸 = 0 ∣ 𝑸̂− = 𝒒̂−)
)

𝜌𝑸̂− (𝒒̂−)d𝒒̂−,
(C.4)

Applying Eqs. (C.4) and (A.5) we have,

𝑃 𝑐
𝑒,min(𝑸̂

−) = ∫𝑸̂−
(𝑸̂− = 𝒒̂−)𝜌𝑸̂− (𝒒̂−)d𝒒̂− = E[(𝑸̂−)]. (C.5)

Analogous to Eq. (A.12),

E
[

ℎ𝛼
(

(𝑸̂−)
)]

≤ ℎ𝛼
(

E[(𝑸̂−)]
)

= ℎ𝛼
(

𝑃 𝑐
𝑒,min(𝑸̂

−)
)

, (C.6)

where

E
[

ℎ𝛼
(

𝐼(𝑸̂−)
)]

= ∫𝑸̂−
ℎ𝛼 (𝐼(𝒒̂−)) 𝜌𝑸̂− (𝒒̂−)d𝒒̂−

= ∫𝑸̂−
ℎ𝑐𝛼

(

𝑃 (𝐸 = 1 ∣ 𝑸̂− = 𝒒̂−)
)

𝜌𝑸̂− (𝒒̂−)d𝒒̂−

= 𝑐
𝛼(𝐸 ∣ 𝑸̂−).

(C.7)

On the other hand, similar to Eq. (A.15),

𝑐
𝛼(𝐸 ∣ 𝑸̂−) = E

[

ℎ𝛼
(

(𝑸̂−)
)]

≥ 2E
[

(𝑸̂−)
]

= 2𝑃 𝑐
𝑒,min(𝑸̂

−). (C.8)

In conclusion,

ℎ−1𝛼
(

𝑐
𝛼(𝐸 ∣ 𝑸̂−)

)

≤ 𝑃 𝑐
𝑒,min(𝑸̂

−)

= E
[

(𝑸̂−)
]

≤ min
{ 1
2
(

𝑐
𝛼(𝐸 ∣ 𝑸̂−)

)

, 𝐶
}

. (C.9)

□

Appendix D. Results for higher thresholds and confusion matrix
for 𝒇𝑫𝑻

To address the sensitivity of the results to the intensity of the
extreme events in the Rössler system and the Kolmogorov flow, we
repeated the analysis with higher threshold values in both cases. The
minimum probability of error is shown in Figs. D.7 and D.8 as a
unction of 𝛿𝑡 for the cases discussed above. The main observation is
hat increasing the threshold for extreme events makes the prediction
ore challenging, due to the higher scarcity of events, which renders
hem more unpredictable. Nonetheless, the trends discussed in the main
ext regarding the behavior of 𝛿𝑡 remain unchanged.
The confusion matrix for the decision tree model to predict extreme

vents in the Rössler system using observable 𝑄̂−
1 is shown in Table D.1

or 𝛿𝑡 = 0.075.
9

Fig. D.8. Normalized, cost-sensitive minimum probability of error for extreme event
prediction in the Kolmogorov flow for 𝜂 = 𝐷̄ + 3𝜎𝐷 .

Table D.1
Confusion matrix of decision tree model. The normalized probability of error of the
model can be calculated as 𝑃 𝑐

𝑒 (𝑄̂
−
1 , 𝑓

𝐷𝑇 ; 𝛿𝑡 = 0.075) = 0.0060+0.0030
0.0030+0.0194

= 0.3554..

Decision tree 𝐸̂ = 0 𝐸̂ = 1

𝐸 = 0 0.9716 0.0060
𝐸 = 1 0.0030 0.0194
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