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ARTICLE INFO ABSTRACT

Communicated by V.M. Perez-Garcia Predicting extreme events in chaotic systems, characterized by rare but intensely fluctuating properties, is
of great importance due to their impact on the performance and reliability of a wide range of systems.
Some examples include weather forecasting, traffic management, power grid operations, and financial market
analysis, to name a few. Methods of increasing sophistication have been developed to forecast events in
these systems. However, the boundaries that define the maximum accuracy of forecasting tools are still
largely unexplored from a theoretical standpoint. Here, we address the question: What is the minimum
possible error in the prediction of extreme events in complex, chaotic systems? We derive the minimum
probability of error in extreme event forecasting along with its information-theoretic lower and upper bounds.
These bounds are universal for a given problem, in that they hold regardless of the modeling approach
for extreme event prediction: from traditional linear regressions to sophisticated neural network models.
The limits in predictability are obtained from the cost-sensitive Fano’s and Hellman’s inequalities using the
Rényi entropy. The results are also connected to Takens’ embedding theorem using the information can’t
hurt inequality. Finally, the probability of error for a forecasting model is decomposed into three sources:
uncertainty in the initial conditions, hidden variables, and suboptimal modeling assumptions. The latter allows
us to assess whether prediction models are operating near their maximum theoretical performance or if further
improvements are possible. The bounds are applied to the prediction of extreme events in the Rdssler system
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and the Kolmogorov flow.

1. Introduction

Extreme events, characterized by rare but intensely fluctuating
properties, are ubiquitous in both engineering system and natural
phenomena [1]. For instance, turbulent gusts over an aircraft can
result in bumpy flights [2], severe weather can disrupt communication
systems [3], rare but large cascades in electrical power grids may lead
to failures [4], extreme ocean temperature oscillations could impact
agriculture and ecosystems [5], rare but significant fluctuations in brain
network could cause seizures [6], and sudden increases in traffic flow
can trigger network paralysis [7]. In these scenarios, the real-time
prediction of extreme events is crucial for enabling proactive measures
to avert potential issues [8,9]. By accurately forecasting the extreme
states of dynamical systems, we can mitigate adverse effects, reduce
downtime, and prevent failures. In this study, we investigate the limits
of predictability in extreme event detection using the framework of
information theory. The limit obtained is a fundamental property —
independent of the modeling approach — that arises from the finite
amount of information the observed state contains about the extreme
event.
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A variety of methods have been employed to predict extreme events
in time series of chaotic dynamical systems. Some of the approaches
that have proven effective include nonlinear dynamics estimation based
on the Koopman operator theory [10] and Takens’ embedding theo-
rem [11], along with machine learning techniques, such as support
vector machines [12], singular spectrum analysis and the maximum
entropy method [13]. Advanced deep learning methods, including auto-
encoders [14], long short-term memory networks [15], and reservoir
computing [16] have also been instrumental to devise forecasting mod-
els for chaotic systems with high-dimensional attractors. A discussion
on the role of information in the context of model prediction and
control for chaotic dynamical systems can be found in Ref. [17].

Despite the significant advancements described above, the inherent
nature of chaos continues to impose limits on the accuracy of models for
extreme event forecasting. The prediction errors in chaotic dynamical
systems stem from three primary sources [18]. First, the model might
not accurately represent the physical reality. Second, the observable
variables may not capture all the relevant degrees of freedom present
in the dynamical system. Third, the initial conditions required for
forecasting might not be precisely known.
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Improvements in the prediction of extreme events can be achieved
either by enhancing models to better represent the physics, gaining
access to more observables, or reducing uncertainty in the initial con-
ditions. Eliminating modeling errors is theoretically possible, given the
knowledge of a set of governing equations that reflect the underly-
ing dynamics of the observed system. However, accessing variables
beyond what is currently observable may be limited by experimental
or computational constraints. Additionally, no feasible approach can
completely eliminate prediction errors caused by uncertainty in the
initial conditions. Even with highly precise measurements, minor errors
in the initial state eventually amplify due to chaos, compromising the
accuracy of the forecast for long times [19]. Here, our focus is not
on developing superior models for extreme event prediction. Instead,
we pose the fundamental question: what is the theoretically maximum
achievable accuracy in extreme event prediction regardless of the
modeling approach and source of error?

2. Formulation
2.1. Modeled extreme event indicator

Consider a chaotic dynamical system completely determined by N
time-dependent variables given by the vector Q(t) = [Q,(1), 0,(¥). ...,
Oy ()], where ¢ is the time. We are interested in the extreme values of
the variable Q(¢), which is a function of the components of Q(r). The
extreme event indicator E(¢) is defined as

o - {1 if 0p() > n. o
0 otherwise,

where 5 is the threshold for extreme event detection. The specific
value of the threshold 7 is dependent on the problem and should
be selected based on the definition of extreme event for each par-
ticular application. The vector of observable variables is defined as
O = [0,(1), 05(1), ..., O3], which contains the accessible informa-
tion about the system (i.e., the variables that can be measured or are
assumed to be known). The components of Q correspond to individual
components of Q or functions of them. In practical scenarios, M < N
and the number of observed variables M is equal or smaller than the
number of degrees of freedom of the system N.

We aim to build a predictive model for E. To that end, we define the
limited-precision observable containing information from the present
time and p > 0 times in the past:

0 =[00.0(-61)).,....00 - 5t,)] + 50", (2)

where 61, > 0,i = 1,2,...,p are the time lags used for prediction,
and 50 is the uncertainty in the observations. The latter may arise
experimentally from inaccuracies in measurement tools, numerically
from round-off errors in @ or its discretization, and generally, from any
uncertainties in the value of Q. One could forecast the extreme event
indicator in the future E(r + 6¢) after a time horizon 67 > 0 using 0 as
the input to the model f such that

Et+sn=7(0). 3)

where £ is the modeled extreme event indicator, which might differ
from E. The performance of the model can be evaluated using the
probability of error

P(Q . f) = Probability(E£ # E) = P(f(Q") # E). “@

Mispredicted extreme events can manifest as either false positives,
P(E = 1,E = 0), or false negatives, P(E = 0, E = 1). However, these
two types of errors can bear significantly different consequences. For
instance, incorrectly predicting a hurricane (false positive) might be
inconvenient but acceptable; however, failing to predict one (false neg-
ative) can be catastrophic. To accurately reflect the distinct impact of
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false positive and negative, we introduce the cost-sensitive probability
of error:

PO . f)=ctP(E=1,E=0)+c P(E=0,E=1), (5)

where ¢t > 0 and ¢~ > 0 are the false positive and negative cost
weighting factors, respectively. These factors reflect the relative sever-
ity of each type of error, and their values are selected according to
the specific prediction task. In the case of extreme event prediction,
the value of ¢~ is often larger than c*. This choice is driven by the
understanding that non-extreme events occur more frequently than
extreme ones. Prediction models with equal costs (¢* = ¢™) are inclined
to favor the majority class of non-extreme events. By imposing higher
penalties on false negative errors (¢~ > c*t), we steer the prediction
model to focus more on accurately identifying the critical, but less
frequent, extreme events. The value of the factors ¢~ and ¢ is arbitrary,
and only their relative magnitude matters. Consequently, ¢~ and c¢* can
be scaled in different manners. To guarantee that the model with the
minimum probability of error yields P¢ < 1/2, we choose 1/c*+1/c™ =
2 [see Appendix A for more details].

2.2. Minimum cost-sensitive probability of error

We are interested in the minimum cost-sensitive probability of error
given the observable @~ over all possible models £,
P (0 = min P{Q . /). (6)
The minimum cost-sensitive probability of error attainable by any
model is [see proof in Appendix A]

P n(@) =K@ =) 10" =g)PQ =q), @)

e,min
q

where E[1(Q )] is the expectation of I, §~ is a particular state (i.e., value)
for ", P(Q" = §7) is the probability of @~ taking the value ¢, and
I(0" = ¢") is the minimum probability of error for the state @~ = §:

10 =4
=min{c"P(E=110 =¢).c"(1-PE=1|0" =q))}. (8)

where P(E | O = §7) is the probability of E conditioned on @ =
q~. The minimum error given by Eq. (7) is the consequence of the
unavoidable uncertainty intrinsic to chaotic systems. This uncertainty
arises from the lack of knowledge about the variables (e.g., unobserved
variables and/or those observed for a limited amount of time) and
errors in the initial condition values (e.g. finite precision), which
transcend the predictive capabilities of any model.

Eq. (7) provides the precise limit for extreme event forecasting;
however, its application to the development, optimization, and eval-
uation of models for extreme event prediction is challenging due to
its non-convex nature. This motivates the derivation of information-
theoretic lower and upper bounds for P;min(Qf) that are more
amenable in terms of applications and interpretation. For example,
obtaining P;min(Q_) reliably from Eq. (7) may not be possible in
situations where, on the other hand, information-theoretic quantities
can be efficiently calculated using estimators [20]. Even when Eq. (7)
can be evaluated accurately, its manipulation becomes challenging in
the context of model development due to the non-linearity introduced
by the min(-) operator [21]. In such instances, using an information-
theoretic formulation of the error facilitates the optimization of model
parameters. Information theory can also be employed for feature selec-
tion, specifically identifying the input variables that most significantly
aid in predicting extreme events [22]. Additionally, the sources of
error contributing to P;min(Q_) are more easily interpreted in terms
of information rather than probabilities, since the former adheres to
the properties of additivity and the chain rule [23]. In the next section,
we derive lower and upper bounds for Eq. (7) using the framework of
information theory.
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2.3. Information-theoretic bounds for minimum probability of error

The key idea to derive the information-theoretic bounds is that
the prediction of extreme events can be intuitively understood as an
information transmission process, where information from the current
observable state is conveyed to predict the future state [17]. If the
forecast is treated as a noisy channel, then the Fano’s [24] and Hell-
man’s [25] inequalities provide the foundations for deriving lower and
upper bounds on the minimum probability of error in the transmission
of discrete messages. We measure the uncertainty in the extreme event
indicator E given the information from the observable 0 using the
cost-sensitive, conditional Rényi entropy [26,27]

HYE|Q ) =Y h (PE=1]10"=47)PQ =), ©)
=
where

hE(p) = hy (min{c™p,c*(1 - p)})

is the cost-sensitive binary Rényi entropy function of order « > 0, with

() = lim —— log, (57 + (1 - ).
rmal—y

Eq. (9) quantifies the additional information required to determine
the outcome of E given the information in @ accounting for the
weighting factors ¢~ and c*. It is useful to interpret H{(E | 0) as
the uncertainty in E after conducting the ‘measurement’ of Q. If E
and O are 1ndependent random variables, then HS(E | 0) = H{(E),
i.e., knowing O~ does not reduce the uncertainty in E. In this case, o
is not a useful observable for forecasting E. Conversely, if knowing the
observable O~ provides the knowledge to completely determine E, then
HE(E | Q) =0, i.e., there is no uncertainty in E given 0 , and 0 can
potentially be used to predict £ with no error. The order « determines
the extent to which different probabilities influence the uncertainty,
with larger values of a giving greater weight to higher probabilities.
Forct =c  =a=1, H{(E | Q") is equal to the classic conditional
Shannon entropy [28], which is a concave function in the conditional
distribution, making it well-suited for optimization tasks.

The minimum probability of error can be lower and upper bounded
as a function of the cost-sensitive conditional Rényi entropy [see proof
in Appendix A]

emmLB(Q )< emm(Q )<P‘mmUB(Q ) (10)

where the lower and upper bounds are
Plinip(@ ) = 1! (HI(E10))

T an
Pl (@) = min { SHU(E | 00).C .

and C = min{c™P(E =1),c*(1 - P(E = 1))}. Eq. (10) is valid for
0 < a < 2, with the tightest bounds achieved for a« = 2, i.e., the
conditional quadratic entropy HJ(E | Q). Nonetheless, maintaining
the more general formulation with « is beneficial, as it establishes
a relationship between error and information within the context of
different entropies. It is worth noting that the minimum error in
Eq. (7) and the information-theoretic bounds in Eq. (10) hold for any
value of the thresholding parameter » defining the cutoff for extreme
events. Furthermore, Egs. (7) and (10) are generally applicable to the
prediction of any binary events, whether they are extreme or not.

A corollary from the conditional entropy inequality (a.k.a. informa-
tion can’t hurt) [23] is that incorporating additional time lags into the
vector of observables can decrease (but never increase) the minimum
probability of error [see proof in Appendix B]

Pe min, LB(Q ) <P

cmmUB(Q )< e,min, UB(Q ), for / >p,

e,min, LB(Q ) for 1 > P, (12)

where / and p denote the number of time lags in 0~ and 07,
respectively, i.e., Q' = [Q®), 00 - 61)),...,00 — 61)] = 5@71 (and
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similarly for Q""). The inequality presented in Eq. (12) is particularly
useful in scenarios where not every variable of the system is directly
observable. In such instances, it is still possible to lower the minimum
probability of error by employing additional time-lagged measurements
of the observed variables. This result can be connected to Takens’
embedding theorem [29], whereby the dynamics of a dynamical system
can be captured by embedding a sequence of past observations into a
higher-dimensional space. The latter is consistent with the decrease in
the probability of error from Eq. (12). Takens’ embedding theorem also
states that the delayed-embedding phase space of Q_l is topologically
equivalent to the original phase space of the full dynamical system
Q for a non-degenerate, noise-free observable with / > 2d,, where
d, is the dimension of the attractor. From an information-theoretic
viewpoint, this implies that Qil provides the same information as
the state vector of the full system Q when there is no uncertainty
in the observable ((SQ_[ = 0) and / > 2d,. Under those conditions,
emm(Q ) = P‘mm(Q) 0 and exact predictions are possible.

The minimum probability of error from Eq. (7) and the information-
theoretic bounds from Eq. (10) are derived assuming the discretization
of the continuous variable Q. This reflects the inherent uncertainty
in the initial conditions, which is captured by the term [6Q | > 0.
Nonetheless, the same inequality holds when Q is assumed to be a
continuous variable by replacing the H¢ with its continuous extension
[see Appendix C]. In that case, there is no uncertainty in the value
of O, and we can take 6@ = 0. It can also be shown that the right-
hand side of Eq. (7) and the bounds in Eq. (11) converge to their
continuous counterparts when the partition size used to discretize O is
refined towards zero. Here, we focus on the discrete case, as in practical
applications there is always some degree of uncertainty in 0.

2.4. Sources contributing to the probability of error

The probability of error in the extreme event forecaster can be

decomposed into three sources: Pec(Qf, = P, + P, + P, given
by ' ' '

Pec, = Pecmm(Qi)

Pio = Pein(@) = Py (07, (13)
P; —PC(Q - emm(Q )

where the vector Q- = Q + §Q contains all the degrees of freedom
governing the system Q (i.e., absolute observability) but with finite
precision §Q. The interpretation of each term in Eq. (13) is as follows:

- P7, represents the probability of error solely arising from uncer-
ta1nty in the initial conditions. This is because Q™ contains all the
degrees of freedom of the system, which are sufficient to integrate
the system forward in time. However, the process is subject to
the initial uncertainty §Q such that a higher §Q might result in a
higher P¢ . The magnitude of 5Q varies depending on the specific
problem If Q" is known with infinite precision (i.e., 5Q = 0), then
Py, equals zero.

P, denotes the probability of error caused by missing informa-
tion from unobserved variables. This error originates from the
fact that @ contains less information than Q~. As discussed
in Section 2.3, the inclusion of multiple time lags in Q  can
compensate for the lack of observed variables [29]. However, P: 0
will still be an important contributor to the total probability of
error in those situations where the number of degrees of freedom
is much larger than the number of observed variables, N > M.
Py, is the probability of error attributable to a suboptimal model.
Values of Py
1nformat10n available in @. In those cases, the model is not
operating at its theoretical maximum performance, and further
improvements are possible. Conversely, P¢ om =0 implies that f
is the best-performing model given the observed variables and
uncertainties in the initial conditions.

> 0 imply that f is not efficiently exploiting the
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Fig. 1. (a) Trajectory of the Rossler system. (b) Extraction of time series of 6,, 6,, 65
signals is 10,000 time units.

In the following, we demonstrate the application of our results in
two distinct scenarios: the Rossler system and the Kolmogorov flow.
The Rossler system offers a simple case for studying extreme events
in a chaotic system where all variables can be observed. We use this
case to illustrate the classification of errors from Eq. (13). On the
other hand, the Kolmogorov flow, characterized by complex, multi-
scale interactions among numerous degrees of freedom, represents the
dynamics of extreme events found in more realistic systems. This case
is used to demonstrate the effect of cost-sensitive analysis.

3. Applications
3.1. Rossler system

The Rossler system with state variables Q =
by the ordinary differential equation:

[6,,6,,05] is governed

® _ .,
a - 2

do,

E = 01 +092, (14)
d03—b+6(9 )

dr 31 =6

with parameters a = 0.1, = 0.1, and ¢ = 14. We investigate extreme
events in 63, which exhibits rare excursions of intense magnitude.
Fig. 1(a) shows the trajectory of the Rossler system in the three-
dimensional phase space. The extreme event indicator is defined as

Epy=1"
"o

where 0; and oy, are the mean and standard deviation of 05 over time.
The threshold is set to n = 85 + 30y,, but the conclusions drawn in this
section apply to other values of #. Results for a higher threshold can be
found in Appendix D. Fig. 1(b) contains a fragment of the time history
of Q and the extreme event indicator E.

We investigate the case with balanced risk ¢t = ¢~ = 1 and define
the normalized probability of error as P¢ = P¢/C. This normalization
is such that F:min — 1 for 6t — oo in practical applications. Fig. 2 shows
the normalized minimum probability of error as a function of time-
horizon for extreme event prediction 6¢ using Eq. (7). Three scenarios
are considered.

if 05(t) > 05 + 30y,

15)
otherwise,

- In the first case, we assume that the only observable variable is
Q‘ = 65(1)+£6065(1), where the uncertainty in the initial condition is
set to 603 < 0.050,, . Here, the uncertainty 66; is not introduced by
perturbing the equations of the system. Instead, the uncertainty
is incorporated in a non-intrusive manner when calculating the
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and extreme events in the Rossler system. Although not shown, the whole time-span of the

probability P(6;) by discretizing 6; into bins of size 266;. This
is equivalent to assuming that the solution passing through 6;
cannot be distinguished from another trajectory, also contained
within the attractor of the system, at a distance from 65 equal
to or less than 66;. The associated minimum probability of error,
(Q ), is represented by the solid line in Fig. 2(a).

emm
In the second scenario, the observable includes two time lags in
addition to the present time: Q; = [05(1), 03(t—061), 05(1—261)] 663,
where the uncertainty 665 is again set to 0.050,, for all time
lags. The minimum probability of error, P‘ (Q2 ), is depicted
by the solid line in Frg 2(b). The drfference between the two
minimal errors P;mm(Qz) and P;min(Q D from Fig. 2(a) serves as
a measure of the improvement in predictive accuracy gained by
incorporating observations from two additional times in 6;.
In the third scenario, it is assumed that the knowledge of the
full state is available at the present time with finite precision,
ie, Q7 = [0,(1),6,(0),05()] = 60, where 60 < 0.05[c,0,,03]
with o; the standard deviation of 6;. The minimum probability
of error, P mm(Q ), is indicated by the dashed line in Fig. 2(a)
and 2(b). Errors arising from uncertainty in initial conditions
are quantified by PC = (Q7) (highlighted by the purple

e min

shaded region in Frg 2) The discrepancy between P:mm(Q ) and
emm(Q ) in Fig. 2(a), and between PC (Qz) and Pc (@) in

Fig. 2(b), allows us to quantify the errors resultlng from the lack
of knowledge of 0, and 6, (i.e., P o> indicated by the yellow
shaded region in Fig. 2).

The region beneath each curve, P‘ (Q ), P:mm(Q;), and P:mm(Q‘),
corresponds to models that are unattamable given the observable QAI’,
Q; , and Q7, respectively, whereas the region above represents models
that are suboptimal. Over time, all cases converge to P¢ — 1 given the
chaotic nature of the system. This convergence is slower for Pe":min(Q‘),
as errors are only due to uncertainties in the initial condition.

To illustrate the errors from an actual predictive model, we trained
decision tree models, /27, to predict E using either Q; or 0, as input.
Different decision tree models are trained to forecast E at each ét. The
maximum number of branch node splits is 8, and each leaf contains
at least 10 observations. The results are also included in Fig. 2(a) and
(b). Additional details about the confusion matrix for the decision tree
model can be found in Appendix D. The normalized probability of error
for the decision tree models, P“(Q‘ fPT)yand P<(Q;, fPT), enables the
quantification of the model error PC for the specific case. The results
in Fig. 2(a) show that the model error PC(Q , fPTy closely approaches
the minimum error given by Pe’mm(Q ), 1nd1cat1ng that the model is
operating near its maximum theoretical performance. On the other
hand, the results in Fig. 2(b) reveal a gap between the model error
P¢(Q,, fPT) and the minimum theoretical error I_’;_min(Q; ) for 61 < 0.4.
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Fig. 2. Normalized probability of error for extreme events prediction in the Réssler system for the threshold n = 6, + 30,, using as observable (a) QAI’ = 0;(1) £ 66; and (b)
Q; = [65(1), 05(t — 61),05(t — 261)] + 505 . mm(Q ), me.n(Q° ), and P‘ in(@7) are the minimum probability of error using the observable QA", Q;, and Q7 = [0,(1), 0,(1), 65(1)] + 66,

respectively. P¢, (purple) is the error due to uncertainty in the mmal conditions; P¢,, (yellow) is the error caused by unobserved variables; P¢, (red) is the error due to suboptimal

model.
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Fig. 3. Normalized information-theoretic upper and lower bounds of the minimum
probability of error for extreme events prediction in the Rossler system for the threshold
n = 05 + 30, and observables Q and Q,. The solid hne is P¢  and the shaded

emin
area represents the region confmed within P, 015 and P, yp Obtained for the

second-order, cost-sensitive conditional Rényi entropy.

This indicates that the model is suboptimal, and models with improved
performance are possible. For both cases, as §¢ increases, I_’; o rapidly
becomes the predominant source of error. Conversely, P/, is minor
compared to P ,. Hence, the analysis also shows that missing variables
have a greater impact on the accuracy of the forecast compared to
suboptimal modeling and uncertainty in the initial conditions.

Finally, we compare the exact minimum probability of error from
Eq. (7) with the information-theoretic bounds from Eq. (11) for the
second-order, cost-sensitive conditional Rényi entropy. The results are
presented in Fig. 3 using either Q‘ or Q; as observables. In both
cases, the bounds provide a narrow region within which PC nin TLUSE De
confined. In situations where directly obtaining P‘ min 1S challengmg,
the region defined by the upper and lower bounds can be used to
demarcate the theoretical zone of near-optimal operation for a model. If
the error falls within this zone, the model can be considered as possibly
operating near its best theoretical performance.

3.2. Kolmogorov flow

Next, we evaluate the cost-sensitive error bounds for forecasting
intense energy dissipation events in a turbulent flow [30]. The case con-
sidered is the Kolmogorov flow: a high-dimensional, chaotic dynamical
system described by the two-dimensional Navier-Stokes equations and

driven by monochromatic body forcing [31]:

du[ _ a(uiuj) _ oIl 1 32

= on . i=12 16
ot ox, ox,  Re 0xk0xk i (16)
ou;

i, 17
S an

where repeated indices imply summation, u;(x,, x,,?) is the ith velocity
component, IT is the pressure, x; and x, are the spatial coordinates,
and f; is the forcing term with f; = sin(4x,) and f, = 0. The velocity
vector is denoted as u = [u;,u,]. The flow setup is characterized by the
Reynolds number Re = 100 for which the flow exhibits intermittent
bursts of dissipation events [32]. For our analysis, we use data from
Farazmand and Sapsis [30], obtained by numerically resolving all the
scales of the problem in a doubly periodic box with side 2z and
256° spatial Fourier modes. Fig. 4(a) shows the velocity amplitude
|u(x,,x,,1)| at a given time.

Our focus is on the prediction of extreme events characterized by
fluctuations in the mean dissipation rate of kinetic energy D() =
(25,;S;;/Re), where S;; = 1/2(du;/0x; + du;/0x;) is the rate-of-strain
tensor, and (-) denotes average in space. The extreme event indicator
is

En=1"
o

where D and o), are the mean and standard deviation of D over time.
Predictions of extreme events using a higher threshold can be found
in Appendix B. The observable chosen is the magnitude of the spatial
Fourier mode of u corresponding to the wavenumber [1,0], which is
denoted by 0 = |it; o|- The latter is one of the preferred observables
for predicting extreme dissipation events in the Kolmogorov flow, as it
has been shown to correlate with the growth of D [30]. An excerpt of
0 and D extracted from the full time history is presented in Fig. 4(b).
The time is non-dimensionalized by ¢, = (ReD)~!/2.

Three cases are investigated with increasing cost for false positives:
¢~ =1, 1.5, and 2. The first case (¢~ = 1) penalizes false positives and
false negatives equally. The other two cases assign a higher penalty
to false negatives, such that the cost of failing to predict an extreme
event is two times (for ¢~ = 1.5) or three times (for ¢~ = 2) the
cost of incorrectly predicting a non-extreme event. We denote the
minimum probability of error for each case as P”m‘l(Q ), P =15(07),

e,min

=2
and P:mm (Q), respectively. Fig. 5 shows the results as a function of

5t. The minimum cost-sensitive probability of error is normalized as
P = ./ C such that PC .
e, min min
The results from Fig. 5 show that increasing ¢~ reduces the nor-
malized minimum probability of error, making the predictions less

challenging. This trend is particular to the Kolmogorov flow and the

if D(t) > D + 1.50p,

. (18)
otherwise,

— 1 for 6t - oo.



Y. Yuan and A. Lozano-Durdn

Physica D: Nonlinear Phenomena 467 (2024) 134246

0.2

ot

—D
o Extreme events
— [t )

0.05

0 100 200 300 400 500 600
t/t.

(b)

Fig. 4. (a) The instantaneous velocity amplitude |u| for the Kolmogorov flow. (b) Time history of D(t), |it, o|(t), and E(r) for n = D+ 150),.

0.8

0.6

Dc
e,min

0.4

— P50
02F _F_)ec{n:"}5(AQ7)
— P (@)
0 L L L
0 5 10 15

bt/t,

Fig. 5. Normalized, cost-sensitive, minimum probability of error for extreme events
prediction in the Kolmogorov flow for # = D+ 1.56,, and ¢~ =1, 1.5, and 2.

chosen variables, and other systems can exhibit different behavior.
Fig. 5 also illustrates two interesting characteristics of Pémin(Q‘) for
the three ¢~ values considered. First, Pémin(Q‘) is not initially zero
when 67 = 0. This situation arises because D was not considered an
observed variable, leading to uncertainty in E even at §t = 0. The
second interesting observation is that Pémi reaches its lowest value at
St min = 2.81,. This observation can be understood by noting that in this
system, energy is transferred among different scales due to nonlinear
interactions until it is ultimately dissipated. This process occurs on a
timescale comparable to 6t,;, [30], which explains the effectiveness of
|it, o| in predicting extreme dissipation events at that time lag. For times
beyond this point, |it; 5| becomes increasingly less effective due to the
chaoticity of turbulence.

Finally, we compare the normalized information-theoretic upper
and lower bounds of the minimum probability of error when ¢~ = 2.
The results, presented in Fig. 6, show that the bounds accurately reflect
the trend observed for 13:;;‘2 there is a non-zero minimum probability
of error at 6t = 0, which initially decreases before eventually increasing
towards one.

4. Conclusions

In this study, we have derived the minimum cost-sensitive prob-
ability of error in extreme event forecasting (Eq. (7)) along with its
information-theoretic lower and upper bounds (Eq. (11)). The bounds
are rooted in the cost-sensitive Fano’s and Hellman’s inequalities for
the Rényi entropy. Furthermore, the minimum probability of error and

i ' ' /
0.8 J
06 ]
I g
0.4} J
_Pecm:'m (Qi)
0.2} So-— Ay A
------- Pe,{nin,LB (Q )
= f:c,m:in,UB(Qi)
0 1 1 L
0 5 10 15

St/t,

Fig. 6. Normalized, cost-sensitive, information-theoretic upper and lower bounds of the
minimum probability of error for extreme events prediction in the Kolmogorov flow for
n = D+1.56,. The solid line is P¢ . and the shaded area represents the region confined

emin

within P, .15 and P, i, yp Obtained for the cost-sensitive, second-order, conditional
Rényi entropy.

its bounds are applicable to scenarios involving both balanced and
unbalanced risks. The results are also connected to Takens’ embedding
theorem using the information can’t hurt inequality, which shows that
incorporating additional time lags into the vector of observables can
decrease (but never increase) the minimum probability of error. The
probability of error for a forecasting model was also decomposed into
three sources: uncertainty in the initial conditions, hidden variables,
and suboptimal modeling assumptions (Eq. (13)).

We have demonstrated the application of these bounds to deter-
mine the limits of extreme event prediction in two cases related to
fluid dynamics: the Rossler system and the Kolmogorov flow. These
applications illustrate the utility of the minimum probability of error
and its lower and upper bounds as tools for investigating the intrinsic
limitations of forecasting extreme events in chaotic systems. We have
shown that the minimum error and its bounds maintain their validity
irrespective of the chosen modeling method and play a crucial role
in assessing whether models are functioning near their theoretical
optimum. Future efforts will be devoted to understanding the limits of
predictability for extreme events such as dissipation, wall-shear stress,
and wall-pressure in turbulent flows at high Reynolds numbers, which
are relevant for advancing the field of external aerodynamics. Nonethe-
less, the method presented here is generally applicable to problems in
other fields such as economics, biology, and finance, among others.

Finally, the use of Egs. (7) and (11) extends beyond the extreme
event predictions presented here; they are broadly applicable to any
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binary classification of events, whether they are categorized as extreme
or non-extreme. Eqgs. (7) and (11) also lay the foundation for future
extensions to forecasting continuous in time signals by employing
generalized versions of Fano’s and Hellman’s inequalities.

CRediT authorship contribution statement

Yuan Yuan: Writing — review & editing, Writing — original draft, Vi-
sualization, Validation, Methodology, Investigation, Conceptualization.
Adridn Lozano-Duran: Writing — review & editing, Writing — origi-
nal draft, Project administration, Methodology, Investigation, Funding
acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Yuan Yuan reports financial support was provided by Massachusetts
Institute of Technology. Adrian Lozano Duran reports financial sup-
port was provided by Massachusetts Institute of Technology. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work was supported by the National Science Foundation,
United States under Grant No. 2140775 and MISTI Global Seed Funds,
United States.

Appendix A. Proof of information-theoretic bounds

The minimum cost-sensitive probability of error achievable by any
model based on the cost-sensitive uncertainty in E conditioned to the
observable O is

P (O ) =E[I(Q)], (A1)

e,min

and it is lower and upper bounded as

h' (HY(E Q) < P

A (1. e
(@) < min { SHEE] 0. C Y, %)
where h,(p) is a concave function for p € [0,1/2] when 0 < a« <2, and
C=min{c"P(E=1),c*(1- P(E=1)}.

Proof. The overall cost-sensitive probability of error is a weighted sum
of the probability of error for each specific state of O,

PO . NH=cPE=0E=1)+c"P(E=1E=0)

=;<C’P(E=O,E=1|Q =q) A.3)

+ctP(E=1,E=0|0" =£1‘)> PO =q).

where the factors ¢~ and ¢* are scaled as 1/¢~+1/c¢t =2 to ensure that

ctP(E=0), ifE=1
<min{c"P(E =1),ct (1 - P(E = 1))}
cet 1

ct+cem 2

. S{C-P(E=1), if E=0

A4

=C<
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This convention was adopted to avoid P;min(Q_) > 1/2, as in those
situations, the model with the minimum probability of error could be
obtained by flipping the model with P:min(Q_) > 1/2 to the one with
a probability of 1 — P:min(Qf) < 1/2. For each specific state of O, the
minimum probability of error is determined by

¢cPE=0E=1|0 =q)+cPE=1LE=0|10 =§¢)
_JePE=0E=1|0"
T\ etPE=1,E=0]0"

¢P(E=1|0 =qg)-c PE=1LE=1|0 =§),

0
ifEQ =¢47)=0 (A.5)

FPE=0|0 =¢)-c"P(E=0,E=0]|0 =q"),

0

if EQ =q)=1
>min{c"P(E=1]0 =§).c"P(E=0]|0 =¢)}
=min{cP(E=1]0 =¢)c"(1-PE=1|0 =q))}.

Let us define the minimum probability of error at each state as

10 =q)
=min{cP(E=1|0 =¢).c"(1-PE=1|0 =q))}. (A.6)

Applying Egs. (A.3) and (A.5) we have,

Pin@) =D 10 =q)PQ =4) =EIQ < PO, /) (AN
e
which is the Bayes error rate typically discussed in statistical classifica-
tion [33] but applied here in the context of extreme event prediction.
Given the concave function
1
-y
for p € [0,0.51[34] when « € (0,2], the Jensen’s inequality for the
random variable I(Q") results in

hy(p) = }I_Ig log, (0" + (1= p)")

iy (P in(@0) = By (ELIQ@ ) 2 E [, (16@D)] . (A8)

The right hand side of Eq. (A.8) is

E [n, (1(0)] = Z he (1@ =37)) PO =4@")

q

= Z hy (min{c"P(E=1]0 =q¢).c"1-PE=1]0" =¢)})
&

=Y h (PE=11Q =q))PQ =g)=HIE|Q),

(A.9)

where HS(E | Q") is defined as the cost-sensitive conditional Rényi
entropy, and the cost-sensitive binary entropy function is given by

. h,(c™p) for pe 0,2%_),
h(p) = . (A.10)
h, (c+(1 - p)) for p e = 1] ,
such that
he(p) = h, (min {cp,c* (1-p)}). (A.11)

The function /¢ (p) emerges naturally as a measure of information. The
factors ¢t and ¢~ weight the importance (risk) of each event, whereas
the order « controls how the different probabilities in the distribution
contribute to the overall measure of uncertainty. For increasing val-
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ues of a, the measure gives more weight to larger probabilities. For
example, consider the process of tossing a coin where both heads and
tails are assigned equal importance (¢* and ¢~ for heads and tails,
respectively, with ¢ = ¢~ = 1). The greatest amount of information
(i.e., uncertainty) regarding the outcome corresponds to the probability
p = 1/2 that maximizes the binary entropy function h,(p). However,
when the importance of the outcomes differs (e.g., heads is preferred

over tails, ¢t > ¢7), the greatest uncertainty is achieved at p = ch’

maximizing cost-sensitive binary entropy k¢ (p). In conclusion,

HY(E | Q) =E [k, (1@)] < by (ELIQ@ ) = hy ( Pin@)
(A.12)

which implies

hy' (HL(E | 0 N) < P;mm(Q_) =E [I(Q_)] . (A.13)

On the other hand, given the binary entropy function h,(p) for
p €[0,0.5],a € (0,2], it is straight forward to show that

he (1@ =g7)) 22100 =q"). (A.14)

Applying the expectation operator to each side of the inequality,

HY(E Q) =E[h, (I@))] 2 2E [1(Q)] = 2P, (0. (A.15)

e, min

In conclusion,
B (HE(E 1) < P (@) =E [10)] <min { S HE(E] @).C

(A.16)

e min

O

Appendix B. Proof of inequality of minimum probability of error
for additional time lags

A consequence of incorporating additional time lags into the vector
observable variables is that

emm LB(Q ) < Pcmm LB(Q ) for /> p, (B.l)
Pemm UB(Q ) <P e,min, UB(Q ) for /> p,
where / and p denote the number of time lags in Qil and 07,
respectively, i.e.,
0 =101,00-51)),....00 - 51)] £ 50~ 62
07 =10). 01 = 61).... O - 61,)] £ 60"

Proof. First, we prove the cost-sensitive conditional entropy inequality,

HYE|Q )< HEE| Q™) (B.3)
Noting that 0~ = [0",0"1, where 0™ = [Q(t — 6t,,,), ..., Ot -

ot))] + EQ_r, proving Eq (B.3) is equivalent to proving

HYE|Q", 0 <HYE|Q™). (B.4)

By the law of total probability applied to the conditional probability:

PE=110"= q-ﬂ)
=Y PE=1]0 0 =g PO =47 10" =g"). B

q"
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The cost-sensitive entropy function k¢, is a concave function when
a € (0,2], applying Jensen’s inequality,

n (PE=110"=47)
2 e (2 PE=110"=470"=q7
qa’
x PO =q"10"=q")
> Y he (PE=110"=47.0"=4")PQ =q710" =47
=

(B.6)
Applying the inequality to the right hand side of Eq. (B.3), we get
HY(E|Q™)
= 2 h (PE=110"=a")PQ7 =47

(B_6) Z Z hc (P(E Q
P a

PO =q710"=4g"HPOQ " "=q"
=33 (Pus S 1107 = 07 =)
q

e

=47, 07 =q7)
(B.7)

xPQ =¢". 0" =q¢"
=HYE|07,0° >=H§<E|Q").

Finally, the conditional entropy inequality is applied to the infor-
mation theoretic-bounds

emm LB(Q ) - (H;(E | Q_I)> 5
emm LB(Q_p) - <H;(E | Q_p)) s
A~ 1 -l (B.8)
Pl pinun(@ ) = min { SHIE107).C
emmUB(Q )_mm{%Hi(E | Q_p)’c},
by taking into account that P:mm(Q y<1/2,
emm LB(Q ) = emm LB(Q*P)’ for I > D, (Bg)

Pe min, UB(Q ) <P e,min, UB(Q ) for I > p,

Appendix C. Continuous extension of information-theoretic bound

We show that the bound for minimum cost-sensitive probability
of error also holds for continuous observables just by replacing the
cost-sensitive Rényi entropy H by the cost-sensitive Rényi entropy
HE conditioned on a continuous variable. The minimum cost-sensitive
probability of error achievable by any model with continuous Q" is

hy (HYE | Q) < PEL(00)

=B(I@ N < min{ 3 (H(E10D),C}. C.1)

The cost-sensitive conditional Rényi entropy is defined as
HYE|Q)= /Q S (PE=110 =4))pp-@)dg, (C.2)

where p-(g7) is the probability density function of 0O and the integral
is taken over the support of O . The minimum probability of error at
each value is defined as

10 =q)

=min{c"P(E=1]0 =¢),c"(1-PE=1|0 =q))}. (C.3)
Proof. Similar to Eq. (A.3), the overall cost-sensitive probability of

error is a weighted integral of the probability of error for each value of
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Fig. D.7. Normalized probability of error for extreme events prediction in the Réssler system for the threshold n = 6; + 60,, using observable (a) QAI’ and (b) Q; P (QAI’),

e,min

P;mi“(Q; ), and P¢ . (Q7) are the minimum probability of error using the observable Q; s Q; , and Q7, respectively.

e,min

0,
PO .= / ( cPE=0E=110 =)
e (C.4)
+ctPE=1LE=0]0 =q) ) po-(@7)dq",
Applying Egs. (C.4) and (A.5) we have,
Pl in@) = /Q _IQ =q)pp-@)dg” =E[L(Q)]. (C.5)
Analogous to Eq. (A.12),
E[hy (1@)] < hy (BIZQ@ ) = hy ( PEin(@D), (C.6)
where
E[h, (1(@)] = /Q _h @) po-@)dG
= /Q R (P(E=110"=4) py- @) Cx
=HUE| Q).
On the other hand, similar to Eq. (A.15),
MH(E| Q) =E[h, (I(Q)] = 2E [1(Q )] = 2P ;. (@ ). (€8
In conclusion,
h (MYE Q) < PEL(0)
=E[10)] Smin{% (HE(E | Q‘)),c}. (C.9)

a

Appendix D. Results for higher thresholds and confusion matrix
for fPT

To address the sensitivity of the results to the intensity of the
extreme events in the Rossler system and the Kolmogorov flow, we
repeated the analysis with higher threshold values in both cases. The
minimum probability of error is shown in Figs. D.7 and D.8 as a
function of ¢ for the cases discussed above. The main observation is
that increasing the threshold for extreme events makes the prediction
more challenging, due to the higher scarcity of events, which renders
them more unpredictable. Nonetheless, the trends discussed in the main
text regarding the behavior of §¢ remain unchanged.

The confusion matrix for the decision tree model to predict extreme
events in the Rossler system using observable QI is shown in Table D.1
for 6t = 0.075.

0.8} )
=06f |
g

I
0.4} )
— Pl (@)
0.2} T _emin (? )]
_PF I!Hl] (Q )
0 1 1 1
0 5 10 15

St /te

Fig. D.8. Normalized, cost-sensitive minimum probability of error for extreme event
prediction in the Kolmogorov flow for n = D + 3c,,.

Table D.1

Confusion matrix of decision tree model. The normalized probability of error of the
0.0060+0.0030

model can be calculated as P¢(Q7., fP7;6t = 0.075) = SOt oores = 03554
Decision tree E=0 E=1
E=0 0.9716 0.0060
E=1 0.0030 0.0194
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