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Abstract

Self-supervised metric learning has been a successful approach for learning a distance from
an unlabeled dataset. The resulting distance is broadly useful for improving various distance-
based downstream tasks, even when no information from downstream tasks is utilized in the
metric learning stage. To gain insights into this approach, we develop a statistical frame-
work to theoretically study how self-supervised metric learning can benefit downstream tasks
in the context of multi-view data. Under this framework, we show that the target distance
of metric learning satisfies several desired properties for the downstream tasks. On the other
hand, our investigation suggests the target distance can be further improved by moderating
each direction’s weights. In addition, our analysis precisely characterizes the improvement
by self-supervised metric learning on four commonly used downstream tasks: sample identi-
fication, two-sample testing, k-means clustering, and k-nearest neighbor classification. When
the distance is estimated from an unlabeled dataset, we establish the upper bound on distance
estimation’s accuracy and the number of samples sufficient for downstream task improvement.

Finally, numerical experiments are presented to support the theoretical results in the paper.
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1 Introduction

1.1 Self-Supervised Metric Learning in Multi-View Data

Measuring distance is the first step to understand relationships between the data points and also
one of the most key components in many distance-based statistics and machine learning methods,
such as the k-means clustering algorithm and k-nearest neighbor method. The performance of
these distance-based methods usually depends in large part on the choice of distance. Although
various distances have been proposed to quantify the difference between data points in different
applications, e.g., Euclidean distance, Wasserstein distance, and Manhattan distance, it is still
unclear which distance the researcher should use to quantify the dissimilarity between the data
for a given task at hand. One promising solution for such a problem is metric learning, which
has already been used in a wide range of applications, including face identification (Guillaumin,
Verbeek, and Schmid, 2009; Liao et al., 2015; Li et al., 2014; Yi et al., 2014), remote sensing
(Zhang, Lu, and Li, 2018; Ji et al., 2018) and neuroscience (Ktena et al., 2018; Ma et al., 2019).
Most metric learning methods require access to similar and dissimilar data pairs since they
aim to preserve the closeness between similar data pairs and push dissimilar data points far from
each other. A commonly-used strategy is to construct similar and dissimilar data pairs based on
the labels’ value in a supervised setting. For example, when the label is binary, the data points
within the same class are regarded as similar ones, and those from different classes are dissimilar
ones. Despite of the popularity in practice, such a strategy usually needs a large amount of labeled
data, which can sometimes be expensive or difficult to collect. To overcome this challenge, a
self-supervised learning framework is proposed to leverage the unlabeled data (Zhang, Isola, and
Efros, 2016; Oord, Li, and Vinyals, 2018; Tian, Krishnan, and Isola, 2019; Chen et al., 2020a).
The pseudo labels are generated from the unlabeled dataset itself, and then the statistics or machine
learning model is trained by these pseudo labels. Specifically, when it comes to self-supervised
metric learning, similar and dissimilar data pairs are constructed in an unsupervised fashion from

the unlabeled dataset to train a better distance.



It is generally difficult to distinguish similar and dissimilar data pairs from unstructured data
as we usually do not have insights on which data points are closer than which. However, it can
be much easier to construct similar pairs in an unsupervised way when there is some structure
information in the dataset. In particular, multi-view data is a typical class of such datasets, where
several different views from each sample are observed. More concretely, multi-view data refers
to a dataset of m samples, in which n different views of each sample (X;1,...,X;,) € R4xn

1 =1,...,m, are recorded. Multi-view data is very common in real applications, for instance:

* In face recognition, the images of the same face with different illumination or viewpoints
are collected, such as the Extended Yale Face Database B (Georghiades, Belhumeur, and

Kriegman, 2001).

* In the microbiome studies, the microbial samples of the same individual are usually collected

at multiple time points (Gajer et al., 2012; Flores et al., 2014).

* Inrobotics, the videos of the same scenario from multiple viewpoints are recorded (Sermanet

et al., 2017; Dwibedi et al., 2018).

* Data augmentation is a popular technique to help increase the amount of data and gener-
ate extra views for each sample. For example, many different ways are used to synthesize
imaging data, such as flipping, rotation, colorization, and cropping (Gidaris, Singh, and Ko-
modakis, 2018; Shorten and Khoshgoftaar, 2019). By the data augmentation technique, a

multi-view dataset can be generated from a single-view dataset.

In these multi-view datasets, one can naturally label data points from two different views of the
same sample, X; ; and X ;» for some j # j’, as similar pair and data points from different samples,
X, ; and Xy ; for some i # 4', as dissimilar pair. Therefore, it is a popular strategy to use multi-
view data for self-supervised metric learning, which has been very successful in practice (Sohn,
2016; Movshovitz-Attias et al., 2017; Sermanet et al., 2017; Duan et al., 2018; Tian, Krishnan, and

Isola, 2019; Roth et al., 2020; Deng et al., 2021).



Given the similar and dissimilar data pairs, a common principle of most existing metric learning
methods is to look for a distance that can better predict whether a pair of data points is similar or
not. If similar and dissimilar data pairs come from the multi-view data, it is equivalent to find
a distance that can distinguish if a pair of data points comes from the same sample or not. To
achieve this goal, different loss functions have been proposed to compare data pairs in metric
learning (Xing et al., 2002; Weinberger and Saul, 2009; Kulis, 2012; Bellet, Habrard, and Sebban,
2013, 2015; Musgrave, Belongie, and Lim, 2020). Despite the difference in these loss functions,
the ideal distance in metric learning methods aims to have a much larger value for dissimilar data

pairs than similar ones.

1.2 Self-Supervised Metric Learning and Downstream Task

Learning a distance from multi-view data is never the end of story, and the ultimate goal of self-
supervised metric learning is to improve various downstream distance-based methods, be it k-
means clustering algorithm or k-nearest neighbor method. In the supervised setting, where simi-
larity is determined based on the actual labels, it is natural to believe that the resulting distance from
metric learning can benefit the downstream tasks since similar and dissimilar data pairs are directly
related to the labels in the downstream analysis (Weinberger and Saul, 2009). On the other hand,
different from the supervised setting, the self-supervised metric learning only has access to the fact
whether two data points come from the same sample or not. At first sight, the self-supervised met-
ric learning seems impossible to improve the performance of downstream distance-based methods
since it does not utilize any label information. However there is considerable empirical evidence
showing that self-supervised metric learning can indeed improve the efficiency of downstream
analysis (Schroff, Kalenichenko, and Philbin, 2015; Sermanet et al., 2017; Tian, Krishnan, and
Isola, 2019). These phenomena raise several natural questions: why does self-supervised metric
learning benefit the downstream tasks? What kind of distance is a reasonable distance from an

angle of downstream analysis? To what extent can the downstream tasks be improved by self-



supervised metric learning? How much unlabeled multi-view data is sufficient to help improve the
downstream tasks?

The theoretical properties of metric learning are mainly studied from the angle of generaliza-
tion rates under a supervised setting in the literature (Jin, Wang, and Zhou, 2009; Bellet, Habrard,
and Sebban, 2015; Cao, Guo, and Ying, 2016; Jain, Mason, and Nowak, 2017; Ye, Zhan, and
Jiang, 2019). These results could help us understand how fast the empirical loss function con-
verges but do not connect the resulting distance with downstream tasks. On the other hand, the
self-supervised metric learning we study here is closely connected with self-supervised represen-
tation learning, which aims to find a transformation of the data that makes it easier to build an
efficient classifier (Bengio, Courville, and Vincent, 2013; Tschannen et al., 2019). Instead of dis-
tance, some recent works study how the representation learned from the data is helpful for the
downstream tasks under a self-supervised setting (Arora et al., 2019; Lee et al., 2020; Tian et al.,
2020; Tosh, Krishnamurthy, and Hsu, 2021; Wei et al., 2020; Tsai et al., 2020). Although these
results provide theoretical insights of self-supervised representation learning, the analysis cannot
be directly applied to the investigation of metric learning and the downstream distance-based task,
such as k-means clustering algorithm and k-nearest neighbor method. Therefore, there is a clear
need for a comprehensive theoretical study for self-supervised metric learning from a perspective

of the downstream task.

1.3 A Downstream Task Perspective

This paper’s main goal is to understand how self-supervised metric learning works from the per-
spective of the downstream task. To demystify the effectiveness of self-supervised metric learn-
ing, we focus on learning a Mahalanobis distance, which has the form Dy, (X3, X3) = (X; —
Xo)'M (X, — X3) for some positive semi-definite matrix M, and assume the multi-view data

(Xi1,-..,X;n)is drawn from a latent factor model

Xi; = BZ;+ ¢, j=1...,n,1=1,...,m



where Z; € R¥ is ith sample’s unobserved latent variable and B = (by, . . ., bx) is the collection of
factors such that BT B = A, where A = diag(A1, ..., Ax) is a diagonal matrix. Here, €; ; is some
view-specific random variable independent from Z;. Under this latent factor model, the intrinsic
structure of data lies in a K -dimensional subspace, where K is usually much smaller than d. Our
investigation shows that the target distances of metric learning under the latent factor model can

be seen as the following distance
D*(X1,X5) = (X; — Xo)"BBT (X, — X»).

Roughly speaking, the target distance D* measures the difference between data within the K-
dimensional subspace spanned by by, ...,bx and puts more weights in the directions that can
better distinguish the similar and dissimilar data pairs. Thus, the distance can help reduce the data
dimension, but is this distance a reasonable distance for downstream analysis?

The target distance D* seems only related to the latent factor model of multi-view data and
has nothing to do with downstream tasks. However, our analysis shows that, perhaps surprisingly,
D~ has several desired properties for the downstream tasks if we further assume the latent variable

includes all the label information in the downstream analysis, i.e.,
Y L (Xin, .o, Xin)|Z;

where Y; € {—1, 1} is the binary label in the downstream analysis. Here, no assumption is made
for the relationship between label Y and latent variable Z. Specifically, the distance D* has the
following properties: 1) D* is a distance between a sufficient statistic for Y, so no information
on the label is lost; 2) D* is robust to a collection of spurious features in data; 3) D* only keeps
minimally sufficient information for Y. In a word, the distance that self-supervised metric learning
aims for can help remove nuisance factors and keep necessary information even when no label is
utilized. On the other hand, our further analysis suggests that the directions that can better capture
the difference between the similar and dissimilar data pairs are not necessarily more useful in the
downstream tasks than the one that cannot capture the difference very well. Motivated by this

observation, we argue that target distance D* can be improved by an isotropic version of target



distance, that is, we put equal weights in all directions
D™ (X1, Xs) = (X1 — Xo)"BAT'BT (X, — X»).

In particular, our results indicate that the distance D** is a better choice than D* when the condition

number of factor model is large where condition number is defined as K = A1 /Ak.

Downstream Task Measure Euclidean Distance Metric Learning
A% K174,

VA VA

sample identification detection radius

1/2 1/2
a7 2 a7 2
two-sample test detection radius <M M
s s
: IS ) ( IS )
mis-cluster rate exp| ——+——= exp | ——~———<
k-means P ( 8(A + 0?) P 8(A + 0?)
o K dy K 2
required signal 1+? A+ 1—1—; o 1—1-? (A+0%)
k-nearest neighbor excess risk s~ (1+h)/(2a+d) s~ (1+8)/(2a+K)

Table 1: Performance comparisons between Euclidean distance and resulting distance from self-
supervised metric learning. d is the dimension of the data, K is the number of factors, s is the
sample size in the downstream task, o> measures the variation of different views, \ measures the
variation of sample difference, and p is the expected difference between class.

To further investigate the benefits of self-supervised metric learning, we compare the perfor-
mance of Euclidean distance and target distances from metric learning, both D* and D**, on
four commonly used distance-based methods: distance-based sample identification, distance-based
two-sample testing, k-means clustering, and k-nearest neighbor (k-NN) classification algorithm.
The informal results are summarized in Table 1 if we assume A = A\; = ... = Ak and the covari-
ance matrix of ¢; ; is 2. The formal results of a general setup, including both upper and lower
bound, are discussed in Section 4. Table 1 suggests that the performance of downstream tasks can
be improved in different ways. In particular, the curse of dimensionality can be much alleviated by
self-supervised metric learning as the performance only relies on the number of factors K rather

than the dimension of data d when self-supervised metric learning is applied. For example, the



nonparametric method k£-NN behaves just like on a K'-dimensional space as the target distance D*

and D** fits the geometry of the Bayes classification rule in a better way.

Downstream Task  Distance Accuracy A Sample Size m
two-sample test D o(\) K d;r? N do*
k-means A QQ A2
sample identification D** o(1) di do
nA ”2)52 .
D* \s~ 1/ (2a+K) 51/(2a+K) K+ di do
k-nearest neighbor nA Tf A2
do do
D** —1/(2a+K) 1/2o+K) [ ©Y
° ° nA  n2)\?

Table 2: Distance estimation’s accuracy and number of samples sufficient for downstream task
improvement in self-supervised metric learning.

In practice, we still need to estimate the target distances D* and D** from the unlabeled multi-
view data when they are unknown in advance. Our investigation shows that the estimated distances
from self-supervised metric learning can also help improve above four distance-based methods
provided the distance estimation is accurate enough. Specifically, if we quantify the distance esti-

mation’s accuracy by their largest discrepancy

A(D,D)=  sup D(X17X2)_b(X17X2) )

[ X1-X2|<1

the sufficient accuracy to achieve results in Table 1 is summarized in Table 2. To estimate an
accurate distance for downstream tasks, we consider a spectral metric learning method and study
its theoretical properties in this paper. We show that the spectral method can help achieve minimax
optimality in estimating target distances. Moreover, the analysis can help precisely characterize
the number of samples m sufficient for downstream tasks improvement, which is also summarized
in Table 2. Table 2 shows that it is easier to estimate D** than D* from the unlabeled multi-view
data.

The rest of the paper is organized as follows. We first introduce the multi-view model and
discuss the main assumptions of the model in Section 2. Next, Section 3 studies the target distance

of metric learning methods and its properties from a perspective of downstream analysis. In Sec-



tion 4, the benefits of self-supervised learning are systematically investigated on several specific
downstream distance-based tasks. Then, we study target distance estimation and characterize the
sample complexity for downstream tasks improvement in Section 5. Finally, we analyze both the
simulated and real data sets in Section 6 to verify the theoretical results in this paper. All proofs

are relegated to online Supplemental Materials.

2 A Model for Multi-View Data

In this paper, we consider the following model of multi-view data for m different samples
(Xi,17"'7Xi,n7Zi>}/;)7 izla"'ma

where n is the number of views observed for each sample. We assume each (Z;,Y;) is indepen-
dently drawn from a distribution 7(Z,Y"), where Z € R” represents the sample’s latent variable,
and Y is the label of interest. For simplicity, we always assume the label of interest is binary, i.e.,
Y € {—1,1}. We also assume the conditional distribution of Z given Y is a continuous distri-
bution, that is, the probability density function 7(Z|Y") exists. Given the latent variable Z;, we
assume the data of n different views X, ; € R%, j = 1,..., n, are independently drawn from a con-
tinuous conditional distribution f(X|Z). In self-supervised metric learning, instead of observing

the full data, we only observe the unlabeled multi-view data, i.e.,

(Xi,la---7Xin)7 Zzl,m

)

In the downstream analysis, depending on the task, we assume the observed data is a collection of

single-view data with or without labels, i.e.,
(X1, Y1),..., (X, Ys) or X, X,

Here, X; refers to the single-view data in downstream analysis, and X ; refers to the multi-view
data in metric learning. We assume the data used in metric learning and downstream analysis are

drawn from the same distribution, but different parts of the data are observed. In a typical self-



supervised learning setting, we can expect the sample size in unlabeled multi-view data m is much
larger than the sample size in the downstream analysis s.

The latent variable Z plays a vital role in the structure of multi-view data, characterizing the
information shared by different views of the same sample. We assume X, ; connects with Z;

through a factor model (Fan et al., 2020), i.e.,

K
Xi; = Z bpZik + €i (1
=1

where ¢; ; is a mean zero random variable independent from Z;. ¢; ; are independent for different ¢

and j. If we write B = (by, . .., b ), we further assume
B'B=A and  Var(Z) = Ig,

where A = diag(Aq, ..., A\g) is a diagonal matrix with A\; > ... > Ag and [ is an identity
matrix. In addition, we assume (I; — B(BTB)™'BT)¢, ; is independent from B”¢; ;. This latent
factor model assumes that the intrinsic structure of data lies in a /K'-dimensional subspace. In
the rest of the paper, we write U = BA~'/2 as normalized projection matrix and u;, = by/v/As.
Besides, we also assume the latent variable Z includes all information about the sample which is

invariant from different views, and thus
Y L(Xin, ..o, Xin)|Z;. 2

In other words, the observed multi-view data is connected with the label of interest only through

the latent variable.

3 Self-Supervised Metric Learning

3.1 Metric Learning

Given the multi-view data, metric learning aims to learn a distance D that can help improve the
downstream tasks. In particular, many different loss functions have been proposed to separate
similar and dissimilar data pairs in the literature of metric learning Kulis (2012); Musgrave, Be-

longie, and Lim (2020), including contrastive loss (Xing et al., 2002; Chopra, Hadsell, and LeCun,



2005; Hadsell, Chopra, and LeCun, 2006), the triplet loss (Weinberger and Saul, 2009; Chechik
et al., 2010; Schroff, Kalenichenko, and Philbin, 2015), and N-pair loss(Sohn, 2016). These loss
functions have been widely used in various applications and lead to good performance in practice.

We now study how metric learning can extract information from the similar and dissimilar
data pairs. The common goal of different metric learning methods is to find a distance that can
distinguish dissimilar and similar data pairs. This goal can be naturally achieved by maximizing
the following expected distance difference between dissimilar and similar data pairs in multi-view

data

E(D(vaX’ ’) _D(XZJ7X ))7

where X ; and Xy ; are from different samples, and X ; and X; ; are different views of the same

sample. If we are interested in learning a Mahalanobis distance, we can show that

M*:= argmax E(Dp(X;;, Xy ;) — Dy(Xi;, X)) = BB /| BB"||F, 3)
Mest M| p<1

where SiXd is the collection of symmetric and positive semi-definite matrix and the Frobenius
norm of a matrix M is defined as ||M||r = Z?Zl o?(M) where o;(M) are the singular values
of M. The main purpose of constraint for the Frobenius norm of M is to avoid the scaling issue of
Mahalanobis distance. For example, we always have E (D (X, j, Xir j/) — Dear (X 5, Xi ) >

E (D (X, Xirj) — Dy (X, X 7)) for any constant ¢ > 1. When we observe infinite samples,

the target Mahalanobis distance in above metric learning formulation is
D*(X1,X2) = (X1 — X2)"BBT(X; — Xo) = (X1 — X0)"UAUT (X, — X).

Compared with the Euclidean distance, the target distance D* makes two main modifications: (i)
D* measures the difference between data points in /K directions spanned by the column space of
B; (i1) D* puts different weights in different directions. Is this distance D* a reasonable distance

for the downstream analysis?

10



3.2 Distance for Downstream Task

The self-supervised metric learning aim to learn a distance D* by the unlabeled multi-view data.
However, it is still unclear how the target distance D* is linked with the downstream tasks. In this
section, we will see that the distance D* has several good properties desired for the downstream
tasks, but may not honestly reflect the information needed for the downstream analysis. To see

this, we need the following theorem.

Theorem 1. Suppose all the assumptions for multi-view data model in Section 2 hold. Then there
exists a function g and a vector 0 € R with ||0]| < 2 such that

(XY =1) T
—— =g(U' X d EX|]Y =1 —EX|Y =-1)= B0
Sy = o —UTX) ad (XY = 1) - E(X)Y = 1) = B,
where U is the normalized projection matrix in factor model and w(X |Y') is the probability density
function of X given Y. Moreover, for any given 0 € RE with ||0|| < 2, there exists a joint

distribution of (X, Z,Y') satisfying assumptions in Section 2 such that
EX|Y =1) -E(X|Y =-1) = B0.
Theorem 1 shows that D* has the following good properties for downstream tasks:

e In Theorem 1, it is shown that U? X is a sufficient statistic for Y. Thus, from a prediction
view, no information on Y is lost when D* is used. This property is also a gold standard of
many other problems, including approximate Bayesian computation (Fearnhead and Prangle,
2012), representation learning (Cvitkovic and Koliander, 2019), and dimension reduction

(Adragni and Cook, 2009).

* Theorem 1 suggests the mean difference between classes lies in the column space of B. If
we write U, as an orthogonal matrix of U, then UT X is a collection of spurious features.

D~ is robust to these spurious features.

11



* As suggested by the second part of Theorem 1, all u} X, k = 1,. .., K, are potentially useful
when we do not have access to Y in the metric learning stage. In other words, the distance

D~ only keeps minimally sufficient information of X for Y.

In a word, the distance D* can keep all necessary information for Y and remove nuisance factors
from the data X, although label information is not utilized in the metric learning stage.

Unlike Euclidean distance, the target distance D* puts more weights in the directions that can
reflect more difference between similar and dissimilar data pairs. More concretely, if we project

the data to the direction uy, the difference between similar and dissimilar data pairs is A
2 2
A =E ([ug(xm — X 0)]7 = Wl (X, — X )] > . k=1,... K.

Along direction wy, the average distance between dissimilar data pair is more significant than that
between similar data pair when )\ is larger. So u; can better distinguish similar and dissimilar
data pairs than w1 as Ay > Agy1. It seems reasonable to put more weights on wuy over uy. 1 since
it is usually believed that a feature that can better distinguish similar and dissimilar data pairs is
more useful for the downstream analysis. However, the second part of Theorem 1 suggests that
it is possible that w1 is more useful than u; in the downstream analysis. For example, if we
assume Z|Y ~ N(0Y/2, [x — 007 /4) with 0 such that 6, = 0 but 6., # 0, then vl X|Y =1
and u} X|Y = —1 follow the same distribution while u{,, X|Y = 1 and uj , XY = —1 follow

different ones. Motivated by this observation, we consider a moderated target distance
D* (X1, Xo) = (X1 — Xo)"UUT (X1 — Xo),

which puts equal weights in all directions ug, £ =1, ..., K. Similar to D*, D** also has the same
good properties for the downstream tasks. As we can see in the next section, D** is a better choice

than D* when the conditional number k = \; /A is large.

4 Target Distance on Specific Tasks

The ultimate goal of self-supervised metric learning is to improve various downstream distance-

based statistical and machine learning methods. But it is still unclear to what extent the perfor-
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mance of the specific downstream task can be improved. In order to fill this gap, we investigate
the benefits of self-supervised metric learning on some specific tasks when we observe infinite
unlabeled multi-view samples, that is, D* and D** are known. We consider four of the most com-
monly used distance-based methods: k-nearest neighbor classification algorithm, distance-based
two-sample testing, k-means clustering (discussed in Supplemental Materials), and distance-based

sample identification (discussed in Supplemental Materials).

4.1 £k-Nearest Neighbor Classification

Classification is the first problem we consider in this section. The observed data in classification
includes the label of each sample, i.e., (X1, Y1), .., (Xs, Ys). In classification, our goal is to build
a decision rule f : RY — {—1,1} to predict the label Y for any given input of X. A long list of
classification methods has been proposed to predict the labels. One of the most simple, intuitive,
and efficient ones is probably the k-nearest neighbor (k-NN) classification method (Fix, 1985;
Altman, 1992; Biau and Devroye, 2015). Given the choice of distance D and a fixed point x, k-
NN is defined as following: (X(1), Y(1)), ..., (X(s), Y{s)) is a permutation of (X1,Y7), ..., (X, Y})

such that

D(X(l),l’) <...< D(X(S),ZL’),

and then the decision rule of k-NN is the majority vote of its neighbors

, L XL e =1) > k/2,
f
—1, otherwise.
The k-NN classification rule is a plug-in estimator of the Bayes classification rule, which is given
by
L n(z) 2 1/2,
f(x) =
—1, otherwise,

where n(z) = P(Y = 1|X = z) is the regression function. The Bayesian rule is considered as the

optimal decision rule since it minimizes misclassification error R(f) = P(Y # f(X)). To com-

13



pare the performances of different distances on k-NN, we use the excess risk of misclassification

error as the measure

r(D) =E (B(Y # fo(X))) = B(Y # f*(X)).

Before characterizing the performance of £-NN, we can show that both the Bayes classification
rule and the regression function can be written as a function of U7 X, A toy example of regression
function is shown in Figure 1 to illustrate the idea. The form of the regression function is closely

connected to the multiple index model in statistical literature (Li, 1991; Lin et al., 2021).

227
L7
,r/ﬂll;ﬁziiitg;lll
L7750
1770

Figure 1: A toy example of regression function in two dimensional space. The regression function
only changes along one direction.

Proposition 1. [fthe assumptions in Section 2 hold, there exists a function 1 and f * such that

n(@) =i(UTz)  and  f*(z) = f{(U"w).
We omit the proof of Proposition 1 since it is an immediate result of Theorem 1. Proposition 1

suggests that we can make assumptions for 7 and f* rather than n and f*. Specifically, we consider

the following assumptions.
Assumption 1. It holds that

“ wherey,y € RE;

(a) 1(y) is a-Hélder continuous, i.e., |n(y) —n(y')| < Lljy — ¢/|

(b) the distribution of X satisfies 3-marginal assumption, i.e., P(0 < |[7(UTX) —1/2] < t) <

Cot? for some constant Cj;

14



(c) the support of X is a compact set and the probability density function u(x) exists. The
probability density function p(x) is bounded away from 0 on the support of X, i.e., p(z) >

Hmin for some small constant fiyiy.

These assumptions in Assumption 1 are commonly used conditions for analyzing nonparamet-
ric classification methods such as k-NN (Audibert and Tsybakov, 2007; Samworth, 2012). With
these conditions, the following theorem characterizes the convergence rate of k-NN when different

distances are used.

Theorem 2. Suppose assumptions in Section 2 and Assumption 1 hold. If we choose k = cs>*/(2+d)

for some constant c, then

r(|] - |2) S s~ Gatd),

~Y

On the other hand, if k = c(s /x5 ~1)20/QatK) op | = 520/20+K) for some constant c, then

T(D*) SJ (S/KK—I)—a(1+ﬁ)/(2a+K) and T(D**) 5 S—a(1+ﬁ)/(2a+K)'

Let F be the collection of regression function n(x) and probability density function ji(x) satis-

fying Assumption 1. We have

min sup 7(|| - ||?) > 50/ Catd)

b
ko (uer

min sup r(D*) > (s/p571) 700D/ CeHE)and min sup (D) > smoHA/QatE),
P (weF ko mwer

We write a < b for two sequences a and b if there exists a constant C' such that a < Cb, and
a 2 b for two sequences a and b if there exists a constant ¢ such that a > ¢b. The two parts in
Theorem 2 show that the convergence rates are tight. Theorem 2 suggests that when the target
distances D* and D** are used, the curse of dimensionality is alleviated and the convergence rate
of k-NN can be much improved. The reason for the improvement is that the neighborhood defined
by target distance D* and D** can better fit the geometry of the Bayes classification rule than that
defined by Euclidean distance. To illustrate this point, we compare balls defined by Euclidean

distance and target distance, respectively, denoted by Bj.2(x,r) and Bp-(x,r). The shapes of
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the two neighborhoods are quite different: Bj.j2(x,r) is a standard sphere, while Bp-(x,7) is a
cylinder, of which axis is in the orthogonal complement of B. One toy example in R? is illustrated
in Figure 2, where the red area is Bp-(x,r), and the yellow area is B).j2(x, ). As pointed out by
Proposition 1, the value of 7(x) only changes along with the directions in the column subspace
of U, so we can expect values of 7)(x) is more similar in Bp-«(x,r) than in Bj.2(x,r) and thus
Bp-(x,r) can lead to a smaller bias than Bj.j2(z, 7).

3

Figure 2: An illustrative example for the neighborhoods defined by Euclidean distance || - ||* and
target distance D* or D**.

4.2 Two-Sample Testing

Two-sample testing is central to statistical inferences and an important tool in many applications.
Unlike the multi-view data used for metric learning, we observe only one view but with labels
for each sample in the standard two-sample testing setting. Specifically, the data we observe in

two-sample testing is (X1, Y7), ..., (X, Ys) and we are interested in the following hypothesis
Hy:E(X|Y =-1) =EX]|Y =1) and H :E(X|]Y =—-1) #2E(X|Y =1).
In order to test such a hypothesis, many different tests have been proposed. One of the most

widely used test families is the distance-based method, including the energy distance test (Székely
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and Rizzo, 2005; Sejdinovic et al., 2013), permutational multivariate analysis of variance (PER-
MANOVA) (McArdle and Anderson, 2001; Anderson, 2014; Wang, Cai, and Li, 2021), and graph-
based test (Friedman and Rafsky, 1979; Chen and Friedman, 2017). The idea of a distance-based
test is that the pairwise distances between samples are first evaluated, and then the test is then con-
structed based on the distance matrix. The distance-based two-sample test is also closely related to
the kernel-based two-sample test, such as the maximum mean discrepancy (MMD) (Gretton et al.,
2012). In particular, Sejdinovic et al. (2013) shows the equivalence between the energy distance
test and the MMD test when the distance is a metric of negative type.

In this section, we mainly focus on the energy distance test

E(D) = ZDX“X) Z D(X;, Xy)-———— Y D(X;, Xy)

S48
Y;#Yy Y Y, =1 Y Y =-1

where D is a given distance, sy = |{i : ,and s_ = |{i : Y; = —1}|. The energy
distance test compares the average within-group distance and the one across groups and can fully
characterize the distribution homogeneity between groups when the distance is a metric of negative
type (Sejdinovic et al., 2013). Euclidean distance is a metric of negative type, but neither D* nor
D** is since they measure the difference only along with K directions. This suggests that the
target distances in self-supervised metric learning cannot fully capture the difference between two
general distributions but are particularly suitable for the multi-view data, as we show in this section.
To make decisions, we still need to choose a critical value for F(D) or transform F(D) to a p-
value. Here, we consider two different ways to make decisions based on F(D). The first one we
consider here is the permutation test. Specifically, let @, be the set of permutations on {1, ..., s},
ie, & = {¢ : {1,...,s} — {1,...,s}o(i) # ¢(j) if ¢ # j}. Given a permutation ¢, we
write ¢LJ(D) as the energy distance test statistic calculated on (X1, Yy1)), ..., (X, Yy(s)). Let

¢1,...,¢p be B permutations drawn from ¢, randomly. Then, the p-value can be calculated by

B
P = L+ D e Loy B0))
1+ B '
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We reject the null hypothesis when P < «. The second way to make the decision is based on
asymptotic distribution. We show that under the null hypothesis, £(D)/sdg,(E(D)) — N(0,1),
where sdy, (F(D)) is the standard deviation of F(D) under the null hypothesis. So we can reject
the null hypothesis when E(D) > z,sdy,(E(D)) where z, is the upper a-quantile of standard
normal distribution. sdy,(E(D)) is usually a function of the covariance matrix and thus can be
estimated consistently in practice (Chen and Qin, 2010).

The energy distance test’s performance depends largely on the choice of distance and the differ-
ence between distributions in two groups. Here, we mainly study the tests’ performance when the
means between groups, 1 = E(X|Y = —1) # E(X|Y = 1), are different. We consider detection
radius for the two-sample testing problem to compare the performance of different distances

r(D,e) =inf ¢ :P(¢p = 1|Ho) + P(¢p = 0| H:(r)) <€ ¢,

-

type I error type 11 error

where ¢p is the test defined above by permutation test or asymptotic distribution and H;(r) =
{|lp|| > r}. Intuitively, the detection radius (D, €) represents the smallest distance to separate
the null and alternative hypothesis reliably. Thus, the test is more powerful to distinguish similar
samples when 7 (D, €) is smaller. To characterize the performance of energy distance test, we make

the following assumptions.

Assumption 2. It holds that
(a) we choose ov = €/2;
(b) assume P(Y =1)=P(Y = —-1) =1/2;
(c) assume the covariance matrix of €; ; is 2

(d) if we write the covariance matrix of X given Y = 1 as X, and the covariance matrix
of X given Y = —1 as ¥_, then we assume Tr(X;,2;,2:.%,) = o(|Zy +3_||3) for
11,192,13,%4 = + or —. We assume it still hold when we replace ¥ and >._ by BTZ+B and

BYS_B(UTY U and UTY_U).
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(e) forany 1 < i < j < s, we assume E(XX;)* = o(s||Z; + Z_||%), E(X]BBTX;)* =
o (s|BT(Z4 + X2)B|}) and E(XTUUTX;)* = o (s||UT(Z4 + Z)U||%).

The first three assumptions in Assumption 2 are fairly weak conditions, and the last two are
moment conditions used for the central limit theorem of U-statistics. Similar assumptions also
appear in Hall (1984); Chen and Qin (2010); Li and Yuan (2019). If we use Euclidean distance and
the distance D* and D** in the energy distance test (D), the detection radius can be characterized

by the following theorem.

Theorem 3. Suppose assumptions in Section 2 and Assumption 2 hold. If the test ¢p is defined
by permutation test (permutation test does not need (d) and (e) in Assumption 2) or asymptotic
distribution, then

1/2
BB+ 3|

1/2
2 < 182+ BTEB|)/
(1% 0 8 =

~Y

r(D*,€)

S/\K

and
1/2
A+ UTsUd

Consider the energy distance test defined by permutation test or asymptotic distribution and

r(D**, €)

the following local alternative hypothesis H,(r) = {u = rug}. If r = o(||BBT + E||;/2/\/§),

then
P(¢||.||2 = 0‘1'{[1(7“)) —1—a.
Similarly, if r = o(||A2 + BTSB||}/? /v/shk) or v = o(|A + UTSU||}/* /\/5), then
P(¢p- = 0|H,(r)) = 1 — « and  P(¢p. = 0|H,(r)) = 1 —a.
Together with the first and second part of Theorem 3, the detection radius for Euclidean dis-
tance and the target distances of self-supervised metric learning are sharp. Theorem 3 suggests that
the detection radius of the energy distance test is mainly determined by the variation of X, which

can be decomposed into two parts: the first part corresponds to the difference between samples and

the second part is due to the variation between different views of the same sample. If we assume
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¥ = 0] in Theorem 3, we can have

(VRN + Vo)
\/E Y

(VEA + Vo)
NG

(-7 6)

r(D*.€) S VE

and
_ (VB + VR

When self-supervised metric learning is used, variation between different views can be reduced

r(D**, €)

from vdo? to v/ Ko2. It implies that the energy distance test can be improved by self-supervised

metric learning when the variation between different views dominates, i.e., v K \; < Vdo?.

S Self-Supervised Metric Learning in Multi-View Data

5.1 Data-Driven Distance on Downstream Tasks

In the previous section, we show that target distances D* and D** in self-supervised metric learning
are good distances for downstream analysis. However, we cannot directly adopt target distances in
each downstream task as they are usually unknown in advance. In practice, we still need to estimate
D* and D** from the unlabeled multi-view data. One may wonder if the data-driven distances
estimated from unlabeled multi-view data can also improve the downstream tasks similarly to
target distances. Our investigation in this section confirms that the data-driven distance can benefit
the downstream analysis when the target distances can be estimated accurately. It is sufficient to

estimate the following matrices to estimate the target distances
M*=BB" and M*=UU".

Let M* and M** be some estimators for M* and M **,and Dy, and D ;.. be the distances de-
fined by them. The measure A(D, D’) can be rewritten as the spectral norm of matrix difference,
A(D,D") = |M — M|, where D(X;,X5) = (X; — Xo)TM(X, — X5) and D'(X1, X,) =
(X1 — X2)TM'(X; — X5). The following theorem shows that the estimated distances can still

improve downstream analysis.
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Theorem 4. Suppose the data in self-supervised metric learning is independent from the data in
downstream tasks and assumptions in Section 2 hold and k is bounded. Let M* and M** be some

estimators of M* and M** such that
A(D*,Dy.) <07 and A(D*™, D) < 5™

* (k-nearest neighbor classification) Suppose Assumption 1 holds and let c be some constant.
Ifk — C(S/KK_1>20/(QQ+K), S* § /\K(S/KJK_l)_l/(zOH_K) in DM* ork = CSQa/(2a+K)’ 5 5

s Y CHK) 0 D gy, then

T’(DM*) 5 (S//{K—l)—a(l-i-ﬁ)/(Qa—&-K) and T(DM**) 5 S_a(1+6)/(2a+K).

* (two-sample testing) Suppose Assumption 2 and ||X|| < A1 hold and let ¢ be a large enough

constant. If §* = o(Ag) in D ;. or 6™ = o(1) in Dyy.., then

1/2 1/2
b o< I8+ BTSBIY _ A+ uTsuly
NE NE

e (k-means clustering) Suppose Assumption SI holds and t > logs. If | BT p|| > W(A? +

and (D s €)

BTY.B), 6* = o(Ak) in Dy. or ||u|| > V(A + UTSLU), §** = o(1) in Dy, then
r(Dy.) <T(1+0(1),B ", B">:B)  and  r(Dy..) <T(1+0(1), 1, UTELU)
with probability at least 1 — s° — exp(—+/v||u||) where v — oc.

* (sample identification) Suppose Assumption S2 holds and \;(¥) > c||X|| where \q(X) is the

smallest eigenvalue of ¥. If §* = o(A\k) in D ;. or §** = o(1) in D .., then

IB"SB|? US|
r(Dy.,€) < and  7(D ., €) < :
Dy €) A (Dyges s €) e

Theorem 4 suggests that the estimated distance D ;. and D ;.. from the self-supervised metric
learning could help achieve a similar performance as D* and D** when the target distances can
be estimated accurately. Self-supervised learning can help improve two-sample testing, k-means
clustering, and sample identification as long as we have enough unlabeled multi-view data to esti-

mate the target distance consistently, i.e., A(D*, Dy,.) = o(Ax) or A(D**, Dyy..) = o(1). Unlike
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these three downstream tasks, the improvement of k-nearest neighbor classification needs a more
accurate estimation of target distance. Theorem 4 assumes the independence between data in met-
ric learning and downstream tasks for the simplicity of analysis. This is a reasonable assumption
when we have many unlabeled multi-view data in a typical self-supervised learning setting. If the
metric learning and downstream tasks use the same data set, the results in Theorem 4 might still

hold, but the analysis can be much more involved.

5.2 Spectral Self-Supervised Metric Learning

The previous section shows that the downstream task can be improved when the target distances
can be estimated accurately. Two questions naturally arise: how shall we estimate the target
distances? how much unlabeled multi-view data is sufficient to improve the downstream analy-
sis? To answer these questions, we consider a spectral method to estimate D* and D** in this
section. Since M* is the optimal solution of (3), a natural idea of estimating M™ is to replace
E (D (X, X j) — Dv(Xi;, Xijr)) with its empirical version. More concretely, its empirical
version can be written as

Z DM 1]7 ’) n—l ZDM zy; )

Z# 953" 1,575’

Here, we consider all pairs of dissimilar and similar data and use U-statistics as the estimator.
After plugging in the empirical version of distance difference and some calculation, M* can be

estimated by the following optimization problem
mj\?xTr <RM> : st. ||[M||lp<1 and rank(M)<K.

where R is a d x d matrix

1

i =Ty 2 (K&E + XeX)

m(m L
i#£i!

Z (Xiy X5+ Xip X)) =

mn(n — 1) byt

Here, R is an unbiased estimator of BBT regardless of the ¢; ;’s distribution. The reason for
having unbiased estimator is that we observe several views of each sample. This is different from

the classical factor model, where we only observe a single view for each sample (Fan et al., 2020).
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In the above optimization problem, we also add a constraint for the rank of M since BB” is a
low-rank matrix. This optimization problem’s form can then naturally lead to a simple spectral
algorithm to estimate M *, summarized in Algorithm 1. The spectral method in can also be easily

adjusted to estimate M ** when we change the last step, which is also included in Algorithm 1.

Algorithm 1 Spectral Metric Learning in Multi-view Data
Input: Multi-view data (X 1,...,X;,,) fori =1,...m.
Output: A matrix M* or M™.
Evaluate R. R A

Find the first K” eigenvalues and eigenvectors of R, ie., (A1,..., Ag) and (4, ..., Uk).
Estimate M™* or M** by

K K

S 3 ~ ~T Ok ~ AT

M* = g AU U, or M™ = E Uy, -
k=1 k=1

The Algorithm 1 seems computationally expensive at first sight since the definition of R in-
volves U-statistics, which usually requires quadratic time complexity. However, thanks to the
special structure of empirical covariance matrix R, it can be rewritten as the following equivalent

form

~ n 1 1 - = 1 m = =
R = — XX — ——— XX — — XXT
(n—1+m—1>mzi: ! mn(n—l); TN m—1

where X; = n~! >, Xi; and X =m! S, X;. Thus, R can be computed in a linear time.
We now investigate the theoretical properties of M* or M** in Algorithm 1. To the end, we

make the following assumptions.
Assumption 3. It holds that
(a) € ; and Z; follow sub-Gaussian distributions, that is, for any a € R? and b € R
E (€<aa€i,j>) < ¢’llall?/2 and E (e<b:Zi*IE(Zi)>) < ellez/2;
(b) conditional number k is bounded;

(c) assume K is known.
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The assumption on sub-Gaussian distributions is the key assumption in Assumption 3, which
is commonly used in the study of eigenspace estimation (Zhang, Cai, and Wu, 2018; Chen et al.,
2020b). Since we observe multi-view data of each sample, we do not assume diagonal or sparse
covariance matrix as literature (Yao, Zheng, and Bai, 2015; Zhang, Cai, and Wu, 2018). The

following theorem characterizes the convergence rate of M* and M**.

Theorem 5. Suppose assumptions in Section 2 and Assumption 3 hold. If m > clog(d+m)(k*K log(d+
m) + dko?/nAk + dot/n*)%) for a large enough constant c, then, with probability at least

1—6/(d+ m)° we have

« p.y< Viogd+m) GV LV
A(D* Dy) < NG VEMN + N

In addition, if m > clog(d + m)(K + drko? /nAk + do* /n?\%.) for a large enough constant c,

we have similar results for M ** that is

log(d 4+ m)

A(D*, D) <
( ) M)N \/m

with probability at least 1 — 6/(d + m)?®.

Naturally, one may wonder whether the bound for spectral method is tight, and if there are
some other methods that can help learn distance D* or D** better. To answer these questions, we
develop the information-theoretic lower bound that matches the upper bound in Theorem 5. To
develop the lower bound, we focus on the following Gaussian noise model X; ; = BZ; + ¢ ;,

where Z; ~ N(0,1) and ¢; ; ~ N(0,0%I) and consider the collection of matrix B
B(v) = {B € R"" : \{(B)/Ak(B) < Vk,Ax(B) > v},
where A\ (B) and Ax (B) are the largest and smallest singular value of B.

Theorem 6. Suppose k > 1 is bounded, m > K and 4K < d. Then

1 Vdv Vd
inf sup E(A(D*, D)) 2 — |VKv+o + 02— .
N+ BeB(v) (A i) m vn n



We also have similar results for M ** that is

1 d d
inf sup E(A(D™,Dyp)) 2 —= |0 vd +J2£ :
M** BeB(v) vm | nv ny

Through comparing Theorem 5 and 6, we can know the results in Theorem 5 are indeed sharp
up to a logarithm factor. As shown in these two theorems, estimating D ;.. is easier than D .
since there is no need for estimating the eigenvalues 5\1, e ,5\ k- Theorem 5 also suggests D ;.
and D ;.. can improve the downstream analysis provided the sample size of unlabeled multi-view
data is large enough. By combining Theorem 4 and 5, we have the following corollary which

precisely characterizes the sample size needed for downstream tasks improvement.

Corollary 1. Suppose assumptions in Theorem 4 and 5 hold. If m >> (s/k%=1)1/22+K) Jog(d +
m)(K + do? /n)g + do* /n?)%) in Dy, or m > st/ ) Jog(d + m)(do? /nXg + do /n?\%)
in Dy;.., k-NN can achieve the same convergence rate in Theorem 4. If m >> log(d + m)(K +
do?/nk +do* /n*A%) in D . orm > log(d4+m)(do? /n\k +do* /n? %) in Dyy.., two-sample
testing, k-means clustering and sample identification can also achieve the same convergence rate

in Theorem 4.

6 Numerical Experiments

In this section, we conduct several numerical experiments to complement our theoretical develop-
ments. In particular, we compare the performance of the four downstream tasks in Section 4 when

Euclidean distance and resulting distance from metric learning are used.

6.1 Simulated Data

To simulate the data, we consider the Gaussian model X; ; = BZ; + ¢; ;, where €; ; ~ N (0, o2l ).
Here, we choose A\, = \(K—k+1)/K for some A and the directions of B, {b,/||b1||, ..., bx/||bx||}
are obtained from the first /' left-singular vectors of randomly generated d x d standard Gaussian
matrix. We generate Z; from a mixture model, 0.5N (o, I — aa®) +0.5N (—a, I —aa®), for some

a € RE with ||a| < 1. We let Y; = 1if Z; is drawn from N(a, I — aa®) and Y; = —1 otherwise.
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Sample identification To study the effect of | Z; — Z5|| and K, we vary || Z; — Z»|| = 1,2,3,4,5
and K = 10,50. Specifically, we set the first K /2 elements in Z; — Z, as zero and the last
K /2 elements in Z; — Z, as the same non-zero constant. We consider 7 distances: Euclidean
distance, target distance D* and D**, estimated distance D* and D** by spectral method with
m = 1000, 5000 samples. We choose d = 100, A = 4, 0> = 1 and n = 10 and repeat the
simulation 500 times. We compare the performance of sample identification by power, which is
estimated by the number of rejecting null hypothesis. The results are summarized in Table 3.
Table 3 suggests that self-supervised metric learning is indeed helpful for sample identification,

and the helps shrinkage when K becomes larger, which is consistent with the theoretical results.

K =10 K =50
121 — Zs]] 1 2 3 4 5 1 2 3 4 5
|- [? 0.08 021 042 0.77 096 007 0.13 034 0.61 091
D* (1000) 0.04 024 0.64 095 1.00 008 0.14 028 0.53 085
D* (5000) 0.05 027 0.65 096 1.00 008 0.13 030 0.56 0.87
D* 0.06 027 0.67 097 1.00 008 0.13 030 0.56 0.87
D* (1000) 0.09 047 090 099 100 0.09 022 050 0.83 099
D* (5000) 0.09 048 090 100 1.00 008 020 049 082 0.99
D** 0.09 047 090 100 1.00 008 020 0.50 082 0.99

Table 3: Comparisons of different distances on sample identification.

Two-sample testing We now move to the simulation experiment for two-sample testing. Similar
to sample identification, we still compare the same 7 distances and choose d = 100, 0? = 1,
K =10, n = 10 and s = 500. Let v be a vector such that &; = ... = a4y = 0 and a5 =
... = ayg = r/+/6 for some r. We study the effect of ||z|| and \ by considering the following two
experiment settings: 1) A = 1 and r = 0,0.05,...,0.52) A = 0.5,1,...,5and r = 0.3/ so that
|| el is fixed. To evaluate the power of different methods, we still repeat the simulation 500 times.
The results are summarized in Figure 3. Through Figure 3, we can conclude that self-supervised
metric learning is helpful when \/o? is moderate, while all distances perform similarly when \ /o

is large. These results help verify the theoretical conclusion in Theorem 3.
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Figure 3: Comparisons of different distances on two-sample testing: left is setting 1 and right is
setting 2.

k-means clustering We then consider the simulation experiment for k-means clustering. We
adopt the same setting in two-sample testing and set A = 2. We choose « as a vector such that
o] =...=0q = r/\/Z for some r and a5 = ... = ay9 = 0. To compare the required signal, we
vary v = 0.4,0.6,0.8,1 and use the mis-clustering rate as the measure of performance, which is
defined in Section S1.1. We consider two ways to choose the initial estimator of mean in k-means:
1) we randomly choose the two points as initial points 2) we use the true mean in each class as
initial points. The results based on the 500 times simulation are summarized in Table 4. In Table 4,
even when the starting point is perfect, the performances of D* is not as good as Euclidean distance
and D** due to the anisotropic transformation. Moreover, the distance D** is slightly helpful when

random initial points are used. This is again consistent with the theoretical results.

k-nearest neighbor classification In the last simulation experiment, we compare the perfor-
mance of k-nearest neighbor classification when it works with different distances. We use the
same setting in k-means clustering and vary s and r in «, where a; = ... = a5 = 0 and
o = ... = ay = r/v/5. Specifically, we consider the following two experiment settings:
r = 0.9 and the sample size is different s = 500, 1000, ..., 5000; sample size is s = 2000 and

r =0.1,..., 1. The misclassification error defined in Section 4.1 is used as the measure for perfor-

27



Random Start Perfect Start
r=04 r=06 r=08 r=1 r=04 r=06 r=08 r=1

Bk 043 039 034 0.14 038 031 021 005
D* (1000) 043 040 036 023 041 037 029 0.2
D* (5000) 043 039 034 023 041 037 031 0.4

D* 043 039 034 024 041 037 031 0I5
D™ (1000) 043 039 034 012 040 034 024 005
D** (5000) 043 039 034 012 039 034 024 005

D* 043 039 034 013 040 034 024 005

Table 4: Comparisons of different distances on k-means clustering.

mance of different distances. The results are summarized in Figure 4, showing the self-supervised
metric learning is helpful for £-NN, and the error decreases when the sample size or the difference

between populations increases (large r implies large 5 in marginal assumption).

Error
Error

' ' . ' ' ' ' ‘ '
1000 2000 3000 4000 5000 025 050 075 1.00
s r

— D'(m=1000) — Ditrue) —_— D"{mzsoum — Euclidean
Method 5 . .
— D(m=5000) — D (m=1000) — D {true)

Figure 4: Comparisons of different distances on k-nearest neighbor classification.

All the numerical results in these four simulation experiments are consistent with theoretical
conclusion in Section 4. Compared with target distance D*, the isotropic target distance D** is
a better choice for all four downstream tasks we consider here. In addition, distance estimated
from self-supervised metric learning performs almost as well as the true target distance in these

simulation experiments.
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6.2 Computer Vision Task

We further compare Euclidean distance and resulting distance from self-supervised metric learning
on some computer vision tasks. Specifically, we consider two datasets: MNIST (LeCun et al.,
1998) and Fashion-MNIST (Xiao, Rasul, and Vollgraf, 2017). Both datasets contain 6 x 10%
training images and 10? testing images, which are all 28 x 28 gray-scale images from 10 classes.
The difference between the two datasets is that MNIST is a collection of handwritten digits while
Fashion-MNIST is a collection of clothing. MNIST and Fashion-MNIST do not contain multi-
view data, but we can generate a multi-view dataset by shifting the images. Specifically, we shift
the image in 4 different directions (left, right, upper and lower) to generate the multi-view dataset.

A toy example of image shifting can be found in Figure 5.

Figure 5: Multi-view data generated from MNIST dataset: from left to right are original, left shift,
right shift, upper shift and lower shift.

In each dataset, we consider applying k-NN to classify the images. In this numerical exper-
iment, a large unlabeled multi-view dataset (m = 10* and n = 5) and a small labeled dataset
(s = 103,2x 10,5 x 10%) are randomly drawn from training images and then used to train a k-NN
classifier. We consider the following three ways to train k-NN classifier: 1) Euclidean distance is
used to train £-NN directly on the small labeled dataset; 2) the anisotropic distance D* is estimated
by the spectral method from the unlabeled multi-view dataset, and then the estimated distance is
used to train k-NN; 3) the isotropic distance D** is estimated from the unlabeled multi-view dataset
and then used to train £-NN. To measure the performances, we adopt the misclassification errors,
which can be estimated on 103 images randomly drawn from testing images. The misclassification
errors are reported in Table 5. It suggests that the self-supervised metric learning on the dataset

from simple image shifting is helpful for the downstream classification task.
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MNIST Fashion-MNIST
s = 1000 0.115 0.268 0.094 0.254 0.380 0.254
s = 2000 0.086 0.222 0.079 0.240 0.352 0.233
s = 5000 0.062 0.169 0.059 0.208 0.318 0.204

Table 5: Comparisons of different distances on computer vision task.

7 Conclusion

This paper conducts a systematic investigation of self-supervised metric learning in unlabeled
multi-view data from a downstream task perspective. Building on a latent factor model for multi-
view data, we provide theoretical justification for the success of this popular approach. Our
analysis precisely characterizes the improvement by self-supervised metric learning on several
downstream tasks, including sample identification, two-sample testing, k-means clustering, and
k-nearest neighbor classification. Furthermore, we also establish the upper bound on distance
estimation’s accuracy and the number of samples sufficient for downstream task improvement.
We assume that the number of factors K is known in the analysis. In practice, some data-driven
methods can help choose K, like Kaiser criterion and scree plot, when it is unknown. See more
discussion in Chapter 10 of Fan et al. (2020). The results in this paper rely on the assumption of
the latent factor model and are designed for Mahalanobis distance. It could also be interesting to

explore if the results can be extended to the deep neural network-based metric learning methods.
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SUPPLEMENTARY MATERIALS

We provide some extra results and prove all the theorems and relevant lemmas in the online
Supplementary Materials. All analyses for numerical experiments can be found under https:

//github.com/lakerwsl/SSTMetric-Manuscript—-Code.
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