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As we strive to establish a long-term presence in space, it is crucial to plan large-scale
space missions and campaigns with future uncertainties in mind. However, integrated space
mission planning, which simultaneously considers mission planning and spacecraft design, faces
significant challenges when dealing with uncertainties; this problem is formulated as a stochastic
mixed integer nonlinear program (MINLP), and solving it using the conventional method
would be computationally prohibitive for realistic applications. Extending a deterministic
decomposition method from our previous work, we propose a novel and computationally
efficient approach for integrated space mission planning under uncertainty. The proposed
method effectively combines the Alternating Direction Method of Multipliers (ADMM)-based
decomposition framework from our previous work, robust optimization, and two-stage stochastic
programming (TSSP). This hybrid approach first solves the integrated problem deterministically,
assuming the worst scenario, to precompute the robust spacecraft design. Subsequently, the
two-stage stochastic program is solved for mission planning, effectively transforming the problem
into a more manageable mixed-integer linear program (MILP). This approach significantly
reduces computational costs compared to the exact method, but may potentially miss solutions
that the exact method might find. We examine this balance through a case study of staged
infrastructure deployment on the lunar surface under future demand uncertainty. When
comparing the proposed method with a fully coupled benchmark, the results indicate that our
approach can achieve nearly identical objective values (no worse than 1% in solved problems)
while drastically reducing computational costs.

Nomenclature

A = Set of arcs
𝒄𝑣𝑖 𝑗𝑡 = Commodity cost coefficient vector of
𝑐′𝑣𝑖 𝑗𝑡 = Spacecraft Cost coefficient
C𝑐 = Set of continuous commodity flow variables
C𝑑 = Set of discrete commodity flow variables
𝒅𝝎̃
𝑖𝑡

= Demand vector
E = Expectation
F = Spacecraft sizing function
𝐻𝑣𝑖 𝑗 = Concurrency matrix
𝑚𝑑 = Spacecraft dry mass
Γ 𝑓 = Spacecraft propellant capacity
Γ𝑝 = Spacecraft payload capacity
N = Set of nodes
P = Probability
𝑇𝑣𝑖 𝑗𝑡 = Commodity transformation matrix
T = Set of time steps
Δ𝑡𝑖 𝑗 = Time of Flight (ToF)
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𝑢𝝎̃
𝑣𝑖 𝑗𝑡

= Spacecraft flow variable
V = Set of spacecraft
𝑊𝑖 𝑗 = Launch time window
𝒙𝝎̃
𝑣𝑖 𝑗𝑡

= Commodity flow variable
𝒘 = Penalty weight
𝛾 = Weight update parameter
𝜹 = Discrepancy
𝜂 = Number of all commodity types
𝝀 = Lagrange multiplier estimate
𝜙 = Penalty function
𝝎 = Random parameter
𝝎̃ = Random parameter realization
Ω = Support of random parameter

Indices
𝑖 = Departure Node index
𝑗 = Arrival node index
𝑘 = Vector element index
ℓ = Subsystem index
𝑠 = Scenario or realization index
𝑡 = Time index
𝑣 = Vehicle index
𝜁 = Iteration count

I. Introduction
As we strive to establish a long-term presence in space, it is essential to be prepared for future uncertainties and

to plan large-scale space missions and campaigns accordingly. At the same time, since mission planning, spacecraft
design, and potentially other elements are tightly coupled, they should be considered simultaneously [1]; we refer to this
problem as integrated space mission planning. Whereas more effective decisions can be made by combining these two
imperative aspects, it requires solving the integrated space mission planning under uncertainty. Our previous work [2]
has established an effective decomposition method for the deterministic variant of the same problem. As such, this
paper focuses on addressing the stochastic nature of the problem and extends the approach to solve integrated space
mission planning under uncertainty.

One common way to handle uncertainties, especially in the space industry, is to assume the worst-case scenario;
however, it can lead to prohibitive costs if other, less severe scenarios unfold [3]. Hence, a better strategy is to make
flexible and uncertainty-aware decisions now and adapt to the realization in the future, while still ensuring the worst-case
scenario can be managed. In the field of stochastic programming, such a way of optimizing current decisions is known as
the Two-Stage Stochastic Program (TSSP) [4]. However, naively incorporating TSSP into the existing framework results
in a stochastic Mixed-Integer NonLinear Program (MINLP), which is a highly costly or impossible problem to solve.

There exist studies tackling decision-making under uncertainty in various subfields of space logistics: on-orbit
servicing [5, 6], satellite constellation deployment [7], and campaign scheduling under stochastic launch delay [8],
to name a few. Although they successfully handle uncertainties in their respective ways, they rely on Mixed-Integer
Linear Programming (MILP) formulations and thus are not applicable to our problem. Work in Ref. [9] addresses a
similar problem from a policy optimization perspective using hierarchical reinforcement learning. However, as with any
learning-based method, it suffers from the irreproducibility of solutions, the need for extensive hyperparameter tuning,
and high computational expense for training.

To solve the problem of integrated space mission planning under uncertainty, we propose a novel and computationally
scalable approach that combines the decomposition method from our previous work, robust (i.e., worst-case) optimization,
and TSSP for MILP. These "building blocks" are detailed in Section III. Based on the concepts of hard constraints in
robust optimization [10], we hypothesize that solving the problem of integrated space mission planning under uncertainty
will produce the same or similar spacecraft design as in the worst case. Assuming the hypothesis holds, we first solve
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the deterministic robust optimization, which can be solved efficiently by our decomposition method. Then, the TSSP for
mission planning is solved with robust spacecraft design; that is, the mission planning and spacecraft design are no
longer coupled. Exploiting a unique structure of the integrated mission planning problem, where nonlinearity only exists
in sizing constraints for the spacecraft (or other components), we can formulate the TSSP as a MILP. The proposed
approach reduces computational cost in exchange for a partial coupling between space mission planning and spacecraft
design. To study the trade-off, we compared the proposed approach against a fully coupled benchmark method, which is
a straightforward integration of TSSP with the decomposition framework. The results show that the objective values of
the proposed and benchmark methods are closely matched or identical for every case study problem while achieving
marginally lower computational expense.

The remainder of this paper is structured as follows. In Section II, we define the problem of interest, including
detailed definitions of the objective, constraints, variables, and parameters of the problem. Then Section III describes
the main challenges in solving the defined problem and introduces the optimization concepts and methods used to
address them. The proposed approach is presented and discussed in Section IV, along with its advantages, limitations,
and underlying assumptions. The approach is then tested through case studies in Section V. A staged deployment of
infrastructure on the lunar surface under future demand uncertainty is considered. We define a benchmark method and
compare the results of the two in several case study settings. Finally, the conclusion is stated in Section VI.

II. Problem Definition: Integrated Space Mission Planning Under Uncertainty
We consider simultaneous optimization of two-mission space campaign planning and spacecraft design under

uncertain future demand. The optimization formulation and its definitions of variables and parameters are detailed
in this section. Table 1 presents definitions for variables, parameters, and sets used in the formulation in (1). The
integrated space mission planning problem aims to optimize commodity (e.g., crew, propellant) and spacecraft flow
over a space logistics network composed of nodes (e.g., lunar surface) and arcs (e.g., trajectory from low-Earth orbit to
low-lunar orbit) to minimize the total campaign cost. In addition, the spacecraft to be used in the campaign is designed
concurrently. To consider uncertainty in this already complex problem, we make several important assumptions. First,
if we let 𝝎 be the vector of uncertain parameters, we assume that its support Ω = {𝝎1,𝝎2, . . . } is known a priori and
finite. Namely, we know a finite number of possible scenarios that can happen in the future, while their realization is
probabilistic. If the uncertainty follows a continuous distribution, it must be approximated as a discrete distribution
using methods such as the average sample approximation [11]. Secondly, we only consider uncertainties in future
demand; other types of uncertainty, such as model uncertainties, are beyond the scope of this work. In a more specific
context, we assume that the mission requirements are known for the first (current) mission but not for the second (future)
mission. Finally, we assume that the spacecraft can be reused but cannot be modified (e.g., expanding capacities) once it
is built for the first mission. Based on these assumptions and definitions in Table 1, we can formulate the optimization
problem as a TSSP as follows.

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+ E


∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎
𝑣𝑖 𝑗𝑡

) (1a)

s.t.

∑︁
(𝑣, 𝑗 ):(𝑣,𝑖, 𝑗 ) ∈A

[
𝒙𝝎̃
𝑣𝑖 𝑗𝑡

𝑚𝑑𝑣𝑢
𝝎̃
𝑣𝑖 𝑗𝑡

]
−

∑︁
(𝑣, 𝑗 ):(𝑣,𝑖, 𝑗 ) ∈A

𝑇𝑣 𝑗𝑖𝑡

[
𝒙𝝎̃
𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖 )

𝑚𝑑𝑣𝑢
𝝎̃
𝑣 𝑗𝑖 (𝑡−Δ𝑡 𝑗𝑖 )

]
≤ 𝒅𝝎̃𝑖𝑡 ∀𝑖 ∈ N , ∀𝑡 ∈ T , ∀𝝎̃ ∈ Ω (1b)

𝐻𝑣𝑖 𝑗𝒙
𝝎̃
𝑣𝑖 𝑗𝑡 ≤

[
Γ𝑝𝑣

Γ 𝑓𝑣

]
𝑢𝝎̃𝑣𝑖 𝑗𝑡 ∀(𝑣, 𝑖, 𝑗) ∈ A, ∀𝑡 ∈ T , ∀𝝎̃ ∈ Ω (1c)


𝒙𝝎̃
𝑣𝑖 𝑗𝑡

𝒙𝝎̃
𝑣𝑖 𝑗𝑡

≥
=

0 if 𝑡 ∈ 𝑊𝑖 𝑗

0 otherwise
∀(𝑣, 𝑖, 𝑗) ∈ A, ∀𝑡 ∈ T , ∀𝝎̃ ∈ Ω (1d)

𝑚𝑑𝑣 = F (Γ𝑝𝑣 , Γ 𝑓𝑣 ) ∀𝑣 ∈ V (1e)

𝒙𝝎1
𝑣𝑖 𝑗𝑡

𝑢
𝝎1
𝑣𝑖 𝑗𝑡

= · · · = 𝒙
𝝎 |Ω|
𝑣𝑖 𝑗𝑡

= · · · = 𝑢
𝝎 |Ω|
𝑣𝑖 𝑗𝑡

∀𝑡 ∈ T1 (1f)
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Table 1 Variables, parameters, and sets definitions

Name Description Domain
Variables

𝒙𝝎̃
𝑣𝑖 𝑗𝑡

Commodity flow variable, or the quantity of the commodity delivered from node 𝑖
to 𝑗 at time 𝑡 by spacecraft 𝑣 for scenario realization 𝝎̃. Each commodity is in the
continuous commodity set (C𝑐) or the discrete commodity set (C𝑑).

R
| C𝑐 |
≥0 × Z

| C𝑑 |
≥0

𝑢𝝎̃
𝑣𝑖 𝑗𝑡

Spacecraft flow variable, which indicates the number of spacecraft type 𝑣 flying
from node 𝑖 to 𝑗 at time 𝑡 for scenario realization 𝝎̃. Z≥0

Γ𝑝𝑣 Payload capacity of spacecraft 𝑣. R≥0

Γ 𝑓𝑣 Propellant capacity of spacecraft 𝑣. R≥0

𝑚𝑑𝑣 Dry mass of spacecraft 𝑣. R≥0

Parameters
𝒄𝑣𝑖 𝑗𝑡 Commodity cost coefficient where the number of the commodities is 𝜂 = |C𝑐 | + |C𝑑 |. R

𝜂

≥0
𝑐′
𝑣𝑖 𝑗𝑡 Spacecraft cost coefficient. R≥0

𝒅𝝎̃
𝑖𝑡

Demand/supply vector of different commodities and spacecraft at node 𝑖 at time 𝑡

for scenario realization 𝝎̃. R𝜂+1

𝑇𝑣𝑖 𝑗𝑡 Commodity transformation matrix. R(𝜂+1)×(𝜂+1)

𝐻𝑣𝑖 𝑗 Concurrency constraint matrix. R2×𝜂

𝑊𝑖 𝑗 Launch window vector including the allowed time steps from node 𝑖 to 𝑗 . R | T |

Δ𝑡𝑖 𝑗 Time of Flight (ToF) from node 𝑖 to 𝑗 . R≥0

Sets
A Set of arcs realized by spacecraft.
C𝑐 Set of continuous commodity flow variables.
C𝑑 Set of discrete commodity flow variables.
N Set of nodes.
T Set of time steps for all missions.
T1,T2 Set of time steps for the first mission (T1) and the second mission (T2).
V Set of spacecraft (vehicles).
Ω Support of random parameter 𝝎.

The objective of the problem is defined in (1a). The design variables are scaled linearly with cost coefficients;
this type of objective is known as Initial Mass at Low-Earth Orbit (IMLEO) and is widely adopted in Space Logistics
literature (e.g., Refs [2, 12–14]). The first term is the mass launched to LEO for the first mission (note that it is summed
over the first mission time steps T1), and the second term is the expectation of the second mission launch mass. The
second term differs from IMLEO in the mentioned literature and is unique to the TSSP formulation. Such an objective
definition aims to optimize here-and-now (first mission) decisions while accounting for the uncertainties in the future
(second mission). The solution of the TSSP formulation allows for more flexibility and adaptability to future scenario
realizations, and the second-stage cost inside the expectation is termed the recourse cost (or function) because it measures
the cost to adjust to a certain realization [4]. As we assume finite support Ω, the following is the equivalent expression:

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+
∑̃︁
𝝎∈Ω
P {𝝎 = 𝝎̃}


∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎̃𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎̃
𝑣𝑖 𝑗𝑡

) (2)

where 𝝎̃ is an arbitrary realization of 𝝎. If we additionally assume the equal probability for all scenarios, it simplifies to

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+
∑̃︁
𝝎∈Ω

∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

1
|Ω|

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎̃𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎̃
𝑣𝑖 𝑗𝑡

)
(3)
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The set of constraints in (1b) to (1f) formulates the flows of commodities and spacecraft over a space logistics
network. Inequality (1b) is the mass balance or conservation constraint that ensures that the demand or supply for
commodities is satisfied for all nodes, time steps, and scenarios. It also captures the consumption of commodities, such
as propellant usage or crews’ consumption. In addition to the said transformation, the conservation of commodities and
spacecraft is expressed via the commodity transportation matrix, denoted by 𝑇𝑣 𝑗𝑖𝑡 . The order of the nodes (that is, 𝑖 𝑗
vs. 𝑗𝑖) is reversed here to represent the inflow and outflow of commodities. Furthermore, to guarantee the capacity
limit of the spacecraft, we impose the so-called concurrency constraint expressed in inequality (1c). The concurrency
constraint matrix 𝐻𝑣𝑖 𝑗 is used, for example, to sum up the mass of different types of payload to compare with the payload
capacity of the spacecraft Γ𝑝𝑣 . The expression in (1d) is the time window constraint, stating that commodities can only
flow over arc (𝑖, 𝑗) in the allowed time steps. Equation (1e) is the spacecraft sizing constraint, where the dry mass of
spacecraft 𝑣 is a nonlinear and potentially black-box function of its payload capacity, propellant capacity, and some
other parameters that are not variables in optimization. See Eq. (15) in the appendix for details. Lastly, Eq. (1f) is called
the nonanticipativity constraint in stochastic programming, stating that decisions should only depend on the information
available at the time of decision-making, not future uncertainty realizations. In this problem, we force all the first
mission variables to be identical (notice T1 is the set of the first mission time steps). It does not apply to variables that
are independent of realization 𝝎̃, such as spacecraft capacities. The resulting optimization problem cannot be solved in
a straightforward manner. As such, we introduce and review some useful concepts and methods that we employ to
tackle the difficulties in the next section.

III. Optimization Background
The major difficulties in problem formulation (1) are twofold: the nonlinear and nonconvex spacecraft sizing

constraint in Eq. (1e) and the computational expense caused by the introduction of variables for each realization 𝝎̃. We
cover how to address them in their respective subsections in the following.

A. Deterministic ADMM-Based Decomposition Method
The deterministic simultaneous optimization of space mission planning and spacecraft sizing has been studied in

our previous work [2]. We only give a brief overview of the method here; see [2] for details. To define the deterministic
formulation, we can simply consider a single scenario, say 𝝎1, with probability 1 (i.e., Ω = {𝝎1}). Consequently,

min
∑︁
𝑡∈T

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
s.t. (1b) to (1e)

P {𝝎 = 𝝎1} = 1

(4)

is the deterministic formulation. Although there is no stochasticity here, it is still a highly challenging problem due to
the co-existence of discrete variables and nonconvex constraint in Eq. (1e), which results in an MINLP. This problem
cannot be solved as is even by the state-of-the-art MINLP solvers, such as Baron [15], because of the black-box or
implicit nonconvex constraint in Eq. (1e). Our approach avoids directly solving the nonconvex MINLP by decomposing
the problem to a convex mixed-ineger quadratic program (MIQP) and nonconvex nonlinear programs (NLP) and solving
them iteratively to find the solution to the original problem. Specifically, our previous work decomposes the sizing
constraint from the rest using a multidisciprinary design optimization (MDO) method based on augmented Lagrangian
and alternating direction method of multipliers (ADMM) [16–18]. We chose the ADMM-based method over other
decomposition schemes due to the extensive and established knowledge in augmented Lagrangian and ADMM, its
compatibility with parallel computing, and its capability to handle complex subproblem interactions (e.g., hierarchical
subsystem design). While it was originally developed for MDO in continuous domain, we employed it to separate
discreteness and nonconvexity. Namely, we relax the sizing constraint in (4) and move it to another subproblem. To
ensure the solution after decoupling is still feasible, the so-called target values are generated, and each subproblem
is penalized as its solution deviates from the target. To this end, the augmented Lagrangian penalty function in the
following is introduced for each subproblem ℓ

𝜙(𝜹ℓ) = (𝝀ℓ)⊤𝜹ℓ +


𝒘ℓ ◦ 𝜹ℓ



2
2 (5)

where 𝝀 is the Lagrangian multiplier estimates, 𝒘 is the penalty weights, 𝜹 is the discrepancy from the target values, and
◦ represents the Hadamard product. The target values are only generated for the variables shared among subprolbems.
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Since the sizing constraint involves three variables (payload capacity Γ𝑝𝑣 , propellant capacity Γ 𝑓𝑣 , dry mass 𝑚𝑑𝑣 ), the
discrepancy for subproblem ℓ is

𝜹ℓ =


Γ̂𝑝𝑣 − Γℓ

𝑝𝑣

Γ̂ 𝑓𝑣 − Γℓ
𝑓𝑣

𝑚̂𝑑𝑣 − 𝑚ℓ
𝑑𝑣

 (6)

where ·̂ denotes the target values. To compute the target values, we can solve the following master problem which
minimizes the sum of penalty functions for all subproblems

min
∑︁
ℓ

𝜙(𝜹ℓ) (7)

Once the target values are computed, the augmented Lagrangian penalty function in Eq. (5) and subproblems can be
defined. Notice that a set of target variables (i.e., initial guess) must be provided to initiate the algorithm. To this end,
we use the multi-dimensional piecewise linear (PWL) approximation method in [19] for the sizing constraint. See
[2, 20] for its usage in space mission planning. To apply the ADMM-based decomposition to (4), we need to define
1 + |V| subproblems; one for space mission planning, and one for each spacecraft 𝑣 ∈ V. Let ℓ be ℓ ∈ {0, . . . , |V|} so
that subproblem 0 is for space mission planning, and subproblem 𝑣 is for spacecraft 𝑣. Then, the space mission planning
subproblem can be defined as:

min
∑︁
𝑡∈T

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+ 𝜙(𝜹0)

s.t. (1b) to (1d)
P {𝝎 = 𝝎1} = 1

(8)

Compared to (4), the sizing constraint Eq. (1e) is removed and the augmented Lagrangian penalty function is added to
the objective. As 𝜙 is a convex quadratic function, the subproblem is a convex MIQP. The sizing constraint is moved to
its corresponding spacecraft sizing subprolbem as follows:

min 𝜙(𝜹𝑣)
s.t. 𝑚𝑑𝑣 = F (Γ𝑝𝑣 , Γ 𝑓𝑣 )

(9)

Since it does not have its own objective to minimize (e.g., IMLEO for the space mission planning subproblem), only
the augmented Lagrangian penalty is minimized here. Notice it is a nonconvex NLP due to the sizing constraint. Once
all subproblems are solved, the Lagrange multiplier estimates and penalty weights are updated for the next iteration. If
we let 𝜁 be the iteration number of the algorithm, the Lagrange multiplier estimates are updated by the following rule.

𝝀ℓ𝜁+1 = 𝝀ℓ𝜁 + 2𝒘ℓ
𝜁 ◦ 𝒘ℓ

𝜁 ◦ 𝜹ℓ𝜁 (10)

Let 𝑤ℓ
𝜁 ,𝑘

be the 𝑘-th element of the penalty weight for subproblem ℓ at iteration 𝜁 . Then, the update rule is

𝑤ℓ
𝜁+1,𝑘 =

{
𝑤ℓ

𝜁 ,𝑘
if

���𝛿ℓ𝜁 ,𝑘 ��� ≤ 𝛾2

���𝛿ℓ𝜁 −1,𝑘

���
𝛾1𝑤

ℓ
𝜁 ,𝑘

otherwise
(11)

where 𝛾1 > 0 and 0 < 𝛾2 < 1 are weight update parameters. In this paper, 𝝀0 = 0, 𝒘0 = 1, 𝛾1 = 2, and 𝛾 = 0.5 are
used. The algorithm terminates when the discrepancy for all subproblems is within a predefined tolerance; see [17] for
the specific termination conditions.

B. Two-Stage Stochastic Programming and Robust Optimization for Mixed-Integer Linear Programs
Another challenge in solving the TSSP problem (1) is the high computational cost introduced by duplicates of the

design variables for each scenario. When the number of possible realizations grows, the problem formulation in the form
of (2) (i.e., minimizing the first-stage cost plus the second-stage cost expectation) becomes computationally prohibitive
even without nonlinear constraints. Two-stage stochastic integer programming has been an active research area to handle
such computational cost, and there exist specialized decomposition, cut generation, and branch-and-bound algorithms
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[21–24]. Their major drawback is that they often require strict assumptions, such as pure integer second-stage cost or
mixed-binary decision variables. However, our problem involves general mixed-integer variables; for example, the
number of crew flying over an arc can take values of 0, 1, 2, and so on. There exists a recently published method
that applies to general mixed-integer cases [25], but our implementation suggests that the computational expense to
generate the proposed cutting planes is still too expensive. As such, we restrict the size of stochastic (sub)problems to
be manageable by the generic branch-and-bound algorithm [26].

It is crucial to clarify and discuss why TSSP is needed despite its potentially prohibitive cost. Specifically, one
may wonder why it is necessary to consider variables for all scenarios simultaneously. This question can be answered
by a concept in stochastic programming called the expected value of perfect information [4]. For a generic TSSP, the
following inequality holds

inf
𝑥∈𝑋
E[ 𝑓 (𝒙,𝝎)] ≥ E

[
inf
𝑥∈𝑋

𝑓 (𝒙,𝝎)
]

where 𝑓 is the objective function, 𝒙 is the (first- and second-stage) design variable, 𝑋 is the feasible space for the design
variable 𝒙, and 𝝎 is the random parameter vector; see Chapter 2.4.4 of [4] for the proof. Under the finite support
assumption, we can express the right-hand side in terms of the optimal objective values for realizations 𝝎̃:

inf
𝒙∈𝑋
E[ 𝑓 (𝒙,𝝎)] ≥ E

[
inf
𝒙∈𝑋

𝑓 (𝒙,𝝎)
]
=
∑̃︁
𝝎∈Ω
P {𝝎 = 𝝎̃}

[
inf
𝒙∈𝑋

𝑓 (𝒙, 𝝎̃)
]

The difference between the two quantities is known as the expected value of perfect information (EVPI)

EVPI = inf
𝒙∈𝑋
E[ 𝑓 (𝒙,𝝎)] − E

[
inf
𝒙∈𝑋

𝑓 (𝒙,𝝎)
]

and it is always nonnegative. EVPI = 0 if and only if the minimizer of the objective 𝑓 is independent of realization
𝝎̃, which is rarely the case [4]. An important implication here is that we, in general, cannot run minimization for
each scenario and then take the expectation to recover the TSSP objective. As such, TSSP formulations and their
computational cost are justified and needed for flexible decision-making under uncertainty.

One way to tackle the computational expense of a stochastic program is robust optimization. It can be described as
the optimization of the worst-case objective, and its general expression is

min
𝑥∈𝑋

max
𝝎̃∈Ω

𝑓 (𝒙, 𝝎̃)

It is particularly useful for hard constraints, namely the constraints that must be satisfied for all realizations 𝝎̃ ∈ Ω [10].
In our problem, the concurrency constraint in inequality (1c) is an example of a hard constraint because the spacecraft
cannot physically carry more commodities than its capacity, regardless of the realization. It is known that, under some
mild assumptions, an equivalent deterministic formulation can be found for robust linear programs [10] and MILP
[27, 28]. Note that it is not a trivial task, especially when uncertainties exist on both sides of (in)equalities to define the
feasible space. If a deterministic formulation can be found, a robust optimization problem can be solved efficiently.
Although it is not a replacement for solving TSSP, we can still use it to facilitate the solution process of (1).

IV. Proposed Approach
To efficiently solve the problem of integrated space mission planning under uncertainty in (1), we propose a novel

approach that combines the ADMM-based decomposition, robust optimization, and TSSP for MILP. It first solves
a deterministic robust formulation using the ADMM-based decomposition to find robust spacecraft sizes that meet
nonlinear and nonconvex constraint Eq. (1e). Then, it solves the TSSP with the robust spacecraft design, which is a
MILP as the sizing constraint is removed. The pseudo-algorithm for this method is presented in Algorithm 1. Even
though the proposed approach still accounts for uncertainties in the future, space mission planning and spacecraft sizing
are no longer coupled when solving TSSP. That is, it is based on the hypothesis that the solutions found by the original
TSSP problem in (1) and its robust variation in (12) have the same or similar spacecraft design.

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+max

𝝎


∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎
𝑣𝑖 𝑗𝑡

)
s.t. (1b) to (1f)

(12)
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The justification of this approach can be explained as follows. Recall that we assume that the spacecraft cannot be
modified once built for the first mission. In addition, the concurrency constraint in inequality (1c) states that the
spacecraft load must be within its capacity for all realizations. As such, the spacecraft design by the original formulation
(1) must be at least robust feasible; that is, the spacecraft must be able to carry out the campaign for all scenarios,
including the worst case. We need to emphasize that it by no means guarantees that the optimal spacecraft design found
in the original TSSP problem is robust optimal (i.e., the optimal design for the robust formulation (12)), especially when
multiple spacecraft are considered. This is because robust feasible spacecraft designs are non-unique, and the sizing
constraint is nonconvex.

The first step of our approach is to compute the robust spacecraft design. Let 𝝎𝑅 be the realization corresponding to
the worst case. The deterministic robust optimization is expressed as:

min
∑︁
𝑡∈T

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑅

𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎𝑅

𝑣𝑖 𝑗𝑡

)
s.t. (1b) to (1f)

P {𝝎 = 𝝎𝑅} = 1

(DRO)

Note that identifying such a worst scenario or realization 𝝎𝑅 can be challenging. If so, the previously mentioned
methods [10, 27] can be employed to derive the deterministic robust problem. For simplicity, we assume that 𝝎𝑅 can be
found easily in this paper. (DRO) is a deterministic integrated space mission planning problem; hence, it can be solved
using the ADMM-based decomposition method. Recall that the initial guess of (DRO) can be computed by applying
the PWL approximation to the sizing constraint. The robust space mission planning subproblem can be formulated as
follows:

min
∑︁
𝑡∈T

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑅

𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎𝑅

𝑣𝑖 𝑗𝑡

)
+ 𝜙(𝜹0)

s.t. (1b) to (1d) and Eq. (1f)
P {𝝎 = 𝝎𝑅} = 1

(13)

The spacecraft sizing subproblems remain the same as (9). Once the robust optimal solution (denoted by RO) is obtained,
the two-stage stochastic MILP can be formulated as follows

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+ E


∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎
𝑣𝑖 𝑗𝑡

)
s.t. (1b) to (1d) and Eq. (1f), 𝑚𝑑𝑣 = 𝑚RO

𝑑𝑣
, Γ𝑝𝑣 = ΓRO

𝑝𝑣
, Γ 𝑓𝑣 = ΓRO

𝑓𝑣

(TSSMILP)

Since it is a MILP without spacecraft sizing, the computational expense is greatly reduced compared to the original
formulation. The deterministic robust optimization (DRO) is also more manageable than the original as there is only one
scenario. From the perspective of computational cost, the proposed approach attempts to solve a sequence of tractable
(sub)problems to find the solution for the original computationally expensive problem. However, as mentioned, the
robust optimal spacecraft design might or might not be optimal for the TSSP. Therefore, the proposed approach risks the
optimality for computational cost reduction. We numerically test the trade-off in Section V through case studies.
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Algorithm 1 Proposed approach for the integrated space mission planning under uncertainty
Require: Parameters and sets in Table 1, piecewise linear (PWL) approximation breakpoint increment
Require: 𝝀, 𝒘, 𝛾1, 𝛾2, robust realization 𝝎𝑅 ∈ Ω

Γ̂𝑝𝑣 , Γ̂ 𝑓𝑣 ← Solve (DRO) with PWL approximation for 𝑚𝑑𝑣 = F (Γ𝑝𝑣 , Γ 𝑓𝑣 )
𝑚̂𝑑𝑣 ← F (Γ̂𝑝𝑣 , Γ̂ 𝑓𝑣 )
while ADMM termination conditions are not met do ⊲ Solving deterministic robust optimization (DRO)

for ℓ ∈ {0, . . . , |V|} do
if ℓ = 0 then

Solve (13) ⊲ Space mission planning subproblem
else

Solve (9) ⊲ Spacecraft sizing subproblem
end if

end for
𝝀← (10) ⊲ Lagrange multiplier estimate update
𝒘 ← (11) ⊲ Penalty weight update
Γ̂𝑝𝑣 , Γ̂ 𝑓𝑣 , 𝑚̂𝑑𝑣 ← Solve (7) ⊲ Target variable update

end while
ΓRO
𝑝𝑣

, ΓRO
𝑓𝑣
, 𝑚RO

𝑑𝑣
← Γ̂𝑝𝑣 , Γ̂ 𝑓𝑣 , 𝑚̂𝑑𝑣

Solve (TSSMILP) ⊲ Two-stage stochastic mixed-integer linear program

V. Case Study: Staged Infrastructure Deployment on the Lunar Surface
A staged deployment of infrastructure elements on the lunar surface under demand uncertainty is considered as a

case study to examine the performance of the proposed approach and test the hypothesis mentioned. It is a two-mission
crewed campaign to the lunar surface where infrastructure is deployed over the two missions. Whereas the amount of
infrastructure elements to be delivered and deployed is fixed for the first mission, it is uncertain for the second mission.
When this campaign is seen as the preparation phase for further space exploration in the future, it is natural to assume
that the demand for the infrastructure is uncertain, and a flexible deployment is crucial. In addition, we assume that the
sample return mass from the lunar surface is uncertain with a smaller deviation.

A. Case Study Settings
The detailed case study settings are given in Fig. 1 and Tables 2 to 4. First, Fig. 1 defines the lunar campaign network

nodes and arcs along with their Δ𝑣 cost and time of flight. The commodities and spacecraft are not allowed to fly over
arcs not defined in Fig. 1 (e.g., flying directly from Earth to LLO is not possible).

Earth Low Earth Orbit
(LEO)

Low Lunar Orbit
(LLO)

Lunar Surface
(LS)

ToF= 1 day ToF= 3 days
Δ𝑣 = 4.04 km/s

ToF= 1 day
Δ𝑣 = 1.87 km/s

Fig. 1 Lunar campaign network (modified from [20]).

The description and values of the parameters used in this case study are summarized in Table 2. It includes some
parameters for the spacecraft sizing model; see Eq. (15) in the appendix for the model. The demand and supply of
commodities are specified in Table 3. The 𝑘-th element of the uncertain parameter vector for scenario 𝑠 is denoted
by 𝝎𝑠,𝑘 . Since there are two uncertain parameters for each scenario (i.e., infrastructure demand at the lunar surface
(LS) node and sample return demand at the Earth node), we have 𝝎𝑠 ∈ R2. The realization values of the infrastructure
elements and returned sample mass are the first and second elements of 𝝎𝑠, respectively, and they are specified in
Table 4. Note that the number of scenarios, |Ω|, is at least 2 and at most 4. The support Ω is defined so that it includes
realizations from the first |Ω| scenario indices (i.e., Ω = {𝝎1,𝝎2, . . . }) and does not skip an index (e.g., Ω = {𝝎1,𝝎3}
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is not allowed). It is also important to note that these realizations are defined so that the robust scenario is easy to
identify. For example, if we consider three scenarios, the support is Ω = {𝝎1,𝝎2,𝝎3}, and 𝝎3 is the robust scenario
due to its highest demand for both elements. See Section IV for the justification of this rather strong assumption.

Table 2 Parameters used in the case study problem

Parameters Values
Spacecraft propellant type LH2/LOX
Propellant 𝐼sp, s 420
Propellant density 𝜌 𝑓 , kg/m3 360
Spacecraft miscellaneous mass fraction 𝑐misc 0.05
Spacecraft payload capacity range, kg [500, 10,000]
Spacecraft propellant capacity range, kg [1,000, 100,000]
Increment for piecewise linear approximation breakpoints, kg 2,500
Spacecraft maintenance supply mass per dry mass per flight 0.01
Crewed mission duration on lunar surface 𝑡surf, days 3
Crew mass (including space suit), kg/person 100
Crew consumption, kg/(day·person) 8.655
Time interval between mission start dates, days 365

Table 3 Lunar campaign commodity demand and supply

Payload Type Node Date Supply/Demand
Outbound to the Moon

Crew Earth 0, 365 4
Infra. elements, consumables, and propellant, kg Earth 0, 365 ∞

Crew LS 5, 370 -4

Infrastructure elements, kg LS 5 -2000
370 -𝝎𝑠,1

Inbound to the Earth
Crew LS 8, 373 4

Returned sample mass, kg LS 8, 373 ∞
Crew Earth 13, 378 -4

Returned sample mass, kg Earth 13 -1000
378 -𝝎𝑠,2

Table 4 Uncertainty realization for each scenario

Scenario index 𝑠 1 2 3 4

𝝎𝑠

[
2500
900

] [
3500
1100

] [
4000
1200

] [
2000
800

]
The results of the numerical experiment presented in this paper were produced by a machine with a Ryzen™9

7950X CPU (16 core 32 threads at 4.5 to 5.7 GHz) and 64 GB of RAM. Gurobi 10 [29] and IPOPT [30] were used for
convex mixed-integer (sub)problems and nonconvex NLP subproblems, respectively.

B. Fully Coupled Benchmark Formulation
To analyze the accuracy and computational efficiency of the proposed approach, we define and solve a benchmark

formulation for the same problem. It is a more straightforward extension of the deterministic ADMM-based method
in our previous work [2]. Instead of precomputing the spacecraft design, we can let the space campaign planning
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subproblem handle the uncertainty directly. As a result, space mission planning and spacecraft design are fully coupled.
The subproblem can then be expressed as follows where the nonconvex spacecraft sizing constraint Eq. (1e) is removed
from the original problem (1), and the augmented Lagrangian penalty function is added to the objective:

min
∑︁
𝑡∈T1

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎1
𝑣𝑖 𝑗𝑡
+ 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢

𝝎1
𝑣𝑖 𝑗𝑡

)
+ E


∑︁
𝑡∈T2

∑︁
(𝑣,𝑖, 𝑗 ) ∈A

(
𝒄𝑣𝑖 𝑗𝑡

⊤𝒙𝝎𝑣𝑖 𝑗𝑡 + 𝑐′𝑣𝑖 𝑗𝑡𝑚𝑑𝑣𝑢
𝝎
𝑣𝑖 𝑗𝑡

) + 𝜙(𝜹0)

s.t. (1b) to (1d) and Eq. (1f)

(14)

The spacecraft sizing subproblems remain the same as (9), and an initial guess can be produced by solving (1) with
PWL approximation for the sizing constraint Eq. (1e). As the coupling between space campaign planning and spacecraft
design is fully considered here, it can yield a better solution than the proposed approach.

C. Performance Comparison
The optimization results of the proposed and benchmark methods are compared to study the trade-off between

optimality and computational cost. Hence, the quantities of particular interest are the objective value (i.e., IMLEO) and
total computational time. Various numbers of scenarios are considered for four problem instances, and it is assumed
that all scenarios are equally probable. Let 𝑛des be the number of different spacecraft designs and 𝑛copy be the number of
spacecraft per design such that the total of 𝑛des𝑛copy spacecraft is used in the campaign. Then, pairs of values (𝑛des, 𝑛copy)
are defined as (2, 3), (3, 2), (4, 1), and (5, 1) for problem instances 1, 2, 3, and 4, respectively. The comparison of the
results of the proposed and benchmark methods is summarized in Table 5. The maximum computational time for each
(sub)problem, not to be confused with the total computational time, was set to 3 hours (i.e., 10,800 s). The results where
the time limit was reached are denoted by ∗.

Table 5 Performance comparison of the proposed approach and fully coupled benchmark formulation

Problem instance |Ω| Method IMLEO, kg Comp. time, s Rel. diff. in Reduction in
IMLEO, % comp. time, %

1
(𝑛des = 2, 𝑛copy = 3)

2
Proposed 438,696 17 0 87.5Fully coupled 438,696 136

3 Proposed 451,703 20 0 98.9Fully coupled 451,703 1,828

4 Proposed 449,844 20 -0.63 99.8Fully coupled 452,700∗ 11,223∗

2
(𝑛des = 3, 𝑛copy = 2)

2 Proposed 438,640 26 0.45 97.7Fully coupled 436,668 1,117

3 Proposed 451,717 20 0.48 99.8Fully coupled 449,567∗ 10,839∗

4 Proposed 449,857 45 0.66 99.6Fully coupled 446,919∗ 10,903∗

3
(𝑛des = 4, 𝑛copy = 1)

2 Proposed 438,696 10 -0.002 71.4Fully coupled 438,705 35

3 Proposed 451,753 9 0 69.0Fully coupled 451,753 29

4 Proposed 449,844 9 0 84.8Fully coupled 449,844 59

4
(𝑛des = 5, 𝑛copy = 1)

2 Proposed 421,434 71 -2.00 58.7Fully coupled 430,030 172

3 Proposed 436,327 49 -0.49 86.3Fully coupled 438,480 358

4 Proposed 432,560 49 -0.33 99.0Fully coupled 433,984 5,101
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One of the most important observations is that the objective values of the proposed and benchmark methods are
closely matched or identical for every problem instance and the number of scenarios. It aligns with expectations that
the two methods have slightly different objective values due to the nonconvex nature of the problem. Note that, even
though the fully coupled benchmark case explores the entire design space, it might converge to locally optimal solutions,
which is why in some cases it shows a worse result than the proposed method. Another observation is that whether the
proposed solution can find a close or identical solution to the fully coupled problem appears to depend more on the
problem instance (number of spacecraft designed, etc.) than the number of scenarios. For instances 1 and 3, we see
smaller relative differences in the objective than in the other instances (note that the benchmark method for instance 1
with four scenarios is terminated prematurely due to the three-hour time limit). On the other hand, the proposed method
seems to perform better and worse for instances 4 and 2, respectively. Nevertheless, the results demonstrate that the
proposed method can achieve nearly identical or the same objectives as the fully coupled benchmark method.

The most significant advantage of the proposed approach is its low computational cost. The comparison of
computational costs between the two methods is visualized in Fig. 2 for every combination of problem instances and
numbers of scenarios. We observe that the computational time is reduced for every case, with a reduction exceeding
90% in half of the cases; see Table 5. Whereas the benchmark method suffers from high or prohibitive computational
costs in several cases, the proposed approach has more consistent computational times. The savings are particularly
significant for instances 1, 2, and 4 as well as for the four-scenario cases. Notice that instance 3 exhibits much lower
computational times than the other instances, regardless of the methods used. It is not surprising to see a specific
problem setting that is considerably easier to solve than the others, although such a setting is difficult to predict. The
proposed method still finds (almost) identical objective values, but the cost reduction might not be as beneficial. Yet,
given more consistent performance and the fact that it is not possible to know in advance whether a specific problem is
manageable by the fully coupled method or not, the proposed method can work as an effective and computationally
efficient approach for solving integrated space mission planning under uncertainty.

3,3 3,2 3,4 1,2 4,2 4,3 2,2 1,3 4,4 2,3 2,4 1,4100

101

102

103

104

105

Case (Problem instance, |Ω|)

C
om

pu
ta

tio
na

lt
im

e,
s

Proposed
Fully Coupled
Fully Coupled
(timed out)

Fig. 2 Comparison of computational times for all problem instances and numbers of scenarios. The cases are
sorted in ascending order based on the computational time of the fully coupled benchmark method.
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Another advantage of the proposed approach is its scalability with respect to an increasing number of scenarios. As
seen in the plots for instances 1, 2, 4 in Fig. 3, the cost of the benchmark method rapidly increases as the number of
scenarios grows. On the other hand, the computational time for the proposed method either does not change much or
grows moderately with the number of scenarios. It suggests the potential of the proposed method to handle greater
numbers of scenarios, which is crucial when considering campaigns with more uncertainties, and hence more scenarios.
While we make simplified assumptions about realizations in this paper, it is often unavoidable to consider a greater
number of scenarios. For example, assume the two uncertain parameters we consider (i.e., infrastructure and return
sample mass demands) are independent and can take four realizations each. Then, the number of possible combinations
is now 16, and it only increases as we take other uncertainties into account. Based on the trend that we see in the
computational cost, it is likely that such a problem can only be handled by the proposed approach. The analysis of the
growing number of scenarios is outside the scope of this paper, and we leave it to future work.

2 3 4100
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102

103

104

105

C
om
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tio
na
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e,
s

Instant 1 (𝑛des = 2, 𝑛copy = 3)

Proposed
Fully Coupled
Fully Coupled
(timed out)

2 3 4100

101

102
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104

105

Instant 2 (𝑛des = 3, 𝑛copy = 2)

2 3 4100
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103

104

105

Number of scenarios |Ω|
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Instant 3 (𝑛des = 4, 𝑛copy = 1)

2 3 4100

101

102
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104
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Number of scenarios |Ω|

Instant 4 (𝑛des = 5, 𝑛copy = 1)

Fig. 3 Comparison of computational time between the proposed and fully coupled benchmark methods for each
case study instance.

13

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 In

st
itu

te
 o

f T
ec

hn
ol

og
y 

on
 S

ep
te

m
be

r 1
2,

 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

24
-4

81
6 



VI. Conclusion
This work has proposed a computationally efficient method for the problem of integrated space mission planning

under uncertainty, which is a stochastic MINLP and can be intractable as is. The proposed approach effectively combines
the ADMM-based decomposition framework from our previous work, robust optimization, and two-stage stochastic
mixed-integer linear programming. It first solves the deterministic concurrent optimization of space mission planning
and spacecraft design for the worst case (i.e., robust optimization). Then, the two-stage stochastic program is solved with
the precomputed robust spacecraft design. Since the nonlinearity in spacecraft sizing constraint is removed, the problem
becomes a MILP, which is significantly more manageable. Despite its lower computational cost, it does not entirely
capture the coupling between mission planning and spacecraft design. That is, whereas the proposed approach can
reduce the computational cost, it can potentially miss a better solution that could be found if the problem is fully coupled.
This balance between computational cost and optimality is examined through a case study of staged infrastructure
deployment on the lunar surface under future demand uncertainty. For different instances and uncertainty realizations,
the proposed method is compared with the fully coupled benchmark method. The results of the case study suggest that
the proposed approach can achieve an objective value closely matched or identical to the benchmark method while
drastically reducing the computational cost. In all the problem cases, the worst relative difference in the objective value
was less than 1%, whereas the computational time is reduced for every case, with a reduction exceeding 90% in half of
the cases. Although there is no guarantee that the method can always find a closely matched solution, it is a practical
and computationally efficient approach when the original stochastic MINLP formulation is too expensive or impossible
to solve. Future work could explore more general forms of uncertainties and develop a systematic method to derive a
robust optimization formulation when the robust scenario is not easily identifiable.

Appendix
The spacecraft sizing constraint 𝑚𝑑 = F (Γ𝑝 , Γ 𝑓 ) is defined in Eq. (15). It is a parametric model for lunar landers,

originally proposed in our previous work [2] using the data and method developed in [31, 32]. Assuming that the
size of each spacecraft subsystem depends on the total dry mass of the spacecraft 𝑚𝑑 , mass estimation relations can
be developed for all subsystems in terms of 𝑚𝑑 and other parameters. Since the dry mass is merely the summation
of all subsystem mass, an implicit equation can be written as shown in Eq. (15). Given all other parameters, we can
numerically solve for 𝑚𝑑 .

𝑚𝑑 =
∑︁

𝑚sub = 𝑚str + 𝑚prop + 𝑚power + 𝑚avi + 𝑚ECLSS + 𝑚misc

where
𝑚str = 𝑛stg

−0.6705 (0.3238𝑚𝑑 + 693.7 Γ𝑝
0.04590)

𝑚prop = 0.1648 (𝑚𝑑 + Γ𝑝) + 20.26
Γ 𝑓

𝜌 𝑓

𝑚power = 7.277 · 10−8 𝑚𝑑
2.443 + 137.0

𝑚avi = 1.014𝑚power
0.8423 + 22.33 𝑡surf

𝑚ECLSS = 0.004190 𝑛crew 𝑡surf 𝑚𝑑
0.9061 𝑛stg

0.7359 + 434.7

𝑚misc = 𝑐misc 𝑚𝑑

(15)

Note that 𝑛stg is the number of stages (either 1 or 2), 𝜌 𝑓 is the propellant density in kg/m3, 𝑛crew is the number of crew,
𝑡surf is the lunar surface mission duration in days, and 𝑐misc is the miscellaneous mass fraction. 𝑚str, 𝑚prop, 𝑚avi, 𝑚ECLSS,
and 𝑚misc are the mass for the structure and thermal protection system, the propulsion system (e.g., engines, tanks),
the power system, the avionics, the environmental control and life support system, and miscellaneous subsystems,
respectively. 𝑛stg = 1 is used in this paper, and other parameters can be found in Table 2. See [2] for more details on the
model.
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