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ABSTRACT
Gaming the system, characterized by attempting to progress through
a learning activity without engaging in essential learning behaviors,
remains a persistent problem in computer-based learning platforms.
This paper examines a simple intervention to mitigate the harmful
effects of gaming the system by evaluating the impact of imme-
diate feedback on students prone to gaming the system. Using a
randomized controlled trial comparing two conditions - one with
immediate hints and feedback and another with delayed access to
such resources - this study employs a Fully Latent Principal Strati-
fication model to determine whether students inclined to game the
system would benefit more from the delayed hints and feedback.
The results suggest differential effects on learning, indicating that
students prone to gaming the system may benefit from restricted
or delayed access to on-demand support. However, removing im-
mediate hints and feedback did not fully alleviate the learning
disadvantage associated with gaming the system. Additionally, this
paper highlights the utility of combining detection methods and
causal models to comprehend and effectively respond to students’
behaviors. Overall, these findings contribute to our understanding
of effective intervention design that addresses gaming the system
behaviors, consequently enhancing learning outcomes in computer-
based learning platforms.
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• Applied computing → Computer-assisted instruction; •
Human-centered computing → Empirical studies in interaction
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1 INTRODUCTION
Researchers in Learning Analytics (LA) and associated fields have
exerted immense effort to identify students’ latent states as they
use computer-based learning platforms (CBLP). For example, LA
researchers often seek to determine when students are gaming
the system – attempting to progress through a learning activity
without learning [11, 19, 44–46]. Furthermore, extensive literature
exists on understanding why students exhibit these behaviors [7–9].
Other studies have evaluated interventions that may reduce the
frequency andmigrate the effects of gaming to the system behaviors
[10, 40, 53, 62, 64]. However, many of these interventions focus on
changing game behaviors instead of improving learning outcomes.
Thus, it is unclear which interventions help students who tend to
game the system to engage with and learn from CBLPs.

In the current paper, we seek to isolate the learning impact
of immediate feedback on students who game the system. More
specifically, this study addresses whether students who game the
system in a traditional CBLP that includes multiple-choice and
open-response questions with immediate hints and feedback would
respond differently to a CBLP in which they do not have access
to those hints and feedback while solving problems. Furthermore,
the paper provides an example of incorporating predictions from
detection models into causal models. The combination of detection
and causal models allows us to go beyond identifying and under-
standing behaviors towards knowing how to respond in a way that
positively impacts learning.

2 BACKGROUND
2.1 Gaming The System
Gaming the system behavior is defined as "attempting to succeed
in an educational environment by exploiting properties of the sys-
tem rather than by learning the material and trying to use that
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knowledge to answer correctly" [8]. This behavior is associated
with reduced performance within CBLP [9] and poor learning out-
comes [17]. It is also predictive of poor distal outcomes such as
state test performance [48] and low college enrollment [2].

The two key behaviors indicative of gaming the system are
rapid and repeated requests for help (hint abuse) and submission
of answers in a systemic way (guess-and-check) [8, 62]. In sum,
these behaviors suggest that a student is trying to get the answer to
individual problems and progress through the assignment without
employing the requisite effort to learn from the activity. Gaming
the system tends to be associated with student frustration rather
than general disengagement [8], as it is not correlated with off-task
behavior [9].

Some research indicates that specific program features may cause
gaming behaviors [7]. Such findings suggest that students move
from states of confusion and frustration towards gaming the system
behaviors because the CBLP’s features do not adequately address
their learning needs [7, 54]. Ambiguity and abstractness within
CBLP’s activities are critical factors associated with gaming behav-
iors [7]. This evidence, combined with research suggesting that
frustration may be causing students to game the system, suggests
reducing problem difficulty and adding supports to alleviate frus-
tration may reduce gaming behaviors [8]. Alternatively, additional
assistance features, such as hints and feedback, may provide more
opportunities to abuse assistance features, further dissuading some
students from engaging in a learning process requiring persistence
and effort.

2.2 Mitigating Gaming the System Behaviors
Attempts to mitigate gaming behavior generally fall into either
proactive or reactive categories. Proactive interventions include
dissuading students from unnecessary hint usage [3, 40] or pro-
viding visualizations that allow students to see and interpret their
behaviors [62, 64]. Reactive options implementation interventions
after the gaming behavior has been identified [10].

Research suggests that proactively dissuading students from
unnecessarily requesting hints may be too blunt to address a prob-
lem from one population of students. Telling students that they
should only use hints if they truly needed them while slightly de-
laying hint availability (10-second pause) reduced hint usage for all
students and did not improve overall performance [40]. However,
this method may have improved the performance of the lowest-
knowledge students; the sample size was small, and the effect was
marginally insignificant. Nevertheless, the finding is suggestive
that manipulating access to hints could help students who game
the system.

In theory, presenting students with information about their
gaming-related behaviors can have two potential effects. It can
indicate to the student that the system is logging their behaviors,
thus creating "panopticon-like paranoia" of constant awareness of
potential observation [62]. Visualizing the student’s actions may
also nudge students to reflect on their learning behaviors [64]. Two
studies found that presenting students with graphical representa-
tions of their behaviors can reduce gaming the system behaviors
[62, 64]. However, neither of these studies evaluated whether their

intervention improved students’ learning. Furthermore, since stu-
dents are likely to game the system to progress through learning
activities, it is unclear that they will not also game the system to
manipulate the outputs of the visualizations.

As a reactive option, [10] placed students who had previously
gamed the system on specific content into an intervention focused
on that content. In this intervention, students saw an animated dog
that displayed emotions that aligned with the student’s learning-
related behaviors. The animation served as a primitive mirror of
emotions that a human tutor might display while working alongside
a student (e.g., excitement and positivity if a student exerted effort
or frustration if a student gamed the system). The intervention
reduced students’ gaming behaviors and positively affected their
learning outcomes as measured by a post-test compared to a control
group who did not have access to the animated dog.

Overall, directly dissuading students from gaming behaviors like
hint abuse may have adverse effects on the students’ learning in
general while potentially benefiting lower-performing students.
Alternatively, presenting visualizations that represent students’ ac-
tions may reduce their gaming behaviors. However, the learning
impact of this method has not been explored. Notably, only the
study that imposed a direct content-specific intervention showed
a significant impact on learning [10]. Thus, none of these stud-
ies connected the prevention of gaming behaviors with learning
outcomes.

2.3 Immediate Assistance in CBLPs
Immediate assistance meant to provide "just in time" instruction to
students is a cornerstone of many CBLPs. The efficacy of immediate
hints and feedback has been studied extensively. Timely feedback
and support during learning activities benefit students’ learning out-
comes [14, 56]. Studies suggest that receiving feedback immediately
after giving responses or completing problem sets might be effec-
tive for improving students’ procedural and conceptual knowledge
[18, 22, 50]. In CALPs, often, this assistance takes the form of hints
and feedback accessible on demand as students work on problems,
which can vary in form and focus. Common hints and feedback
modes include presenting general topical information [4], worked
examples where a student is shown a complete solution to a similar
problem [38], providing the complete solution to the given prob-
lem [63], being shown similar examples done incorrectly [1, 38],
being given targeted feedback based on a students’ common wrong
answers [27, 28], and being given a series of step-by-step hints [24].
One study found that worked examples improved students’ efficacy
in learning but not overall learning outcomes [38]. Another study,
which used machine learning to generate explanations and deploy
them to learners, found that students performed better when pre-
sented with explanations as opposed to only receiving the answer
[63].

Beyond the benefits to academic performance, optional tutoring
strategies in intelligent tutoring systems have the added benefit
of encouraging help-seeking behaviors, which can increase stu-
dents’ autonomy and control of their learning [3, 5]. However, the
efficacy of optional assistance is contingent upon students hav-
ing the requisite metacognitive skills to evaluate when they need
help. One study found that access to general information aimed
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at helping students learn concepts, such as a glossary, was often
ignored; students prefer specialized hints that focus on their current
problem [4]. These findings suggest that students are not focused
on learning the broad skills associated with the individual tasks
but on getting the information they need to improve immediate
performance. Another study found that students required support
to utilize on-demand learning assistance but failed to find learning
gains even when this support was given [5].

Overall, on-demand instruction is a common component of in-
telligent tutoring systems, with varied implementations and var-
ied levels of efficacy. Tutoring strategies, which provide targeted
support for specific problems, are effective at improving student
performance [49, 51]. Research has also shown that this feedback
is most effective if provided as the student is answering questions
[37]. Although there is ample research on how type and focus influ-
ence immediate hints and feedback efficacy, more work is needed
to understand who benefits from these resources. Furthermore, the
interplay between access to on-demand learning supports, how
students use these supports, and learning outcomes has not been
fully explored.

3 CURRENT STUDY
The problem of hint abuse and guess-and-check behaviors suggests
that some students are not benefiting from the availability of hints
and feedback commonly embedded in problems in many CBLPs.
However, the solution to this problem is unclear as other research
suggests that providing on-demand assistance may alleviate frustra-
tion, an ostensible root cause of gaming the system, thus mitigating
the behavior [8]. Alternatively, frustration and confusion may be
precursors to learning as they represent a student’s awareness that
they have yet to master the knowledge component being taught.
Thus, gaming the system behaviors could be a crutch for some
students that allows them to avoid the productive struggle nec-
essary to learn. If this hypothesis is true, removing the program
features that allow for hint abuse and guess-and-check may help
some students who would have gamed the system engage with the
content and learn.

The current study seeks to address this issue directly using a
subset of data from a randomized controlled trial that compared
methods of teaching pre-algebra concepts of expression equiva-
lence to test whether the effect of feedback varies based on students
gaming the system behavior [20]. Our work focuses on two condi-
tions: traditional multiple-choice and open-response problem sets
with immediate or delayed hints and feedback (Immediate Condi-
tion and Delayed Condition). In the Immediate Condition, students
had access to hints and could see whether their submitted answers
were correct while completing the problem sets. In the Delayed
Condition, students could only access the hints and feedback after
they completed each problem set. (Section 4.1 contains complete
descriptions of these conditions.)

This study aims to test whether students who game the system
when they access immediate hints and feedback behavior would
benefit from delaying access to those resources until they complete
the entire problem set. Essentially, the delayed condition removes
students’ abilities to engage in hint abuse because they did not see
the hints during the activity and guess-and-check because they

could only submit their answers once. We hypothesize that stu-
dents with a high propensity to game the system in the Immediate
Condition will employ better learning behaviors in the Delayed
Condition and thus learn more in that condition. This research
question and hypothesis, as well as the methods we employ to an-
swer them, were preregistered on OSF1. We will test our hypothesis
by estimating whether the effect of immediate feedback varies by
student propensity to game the system using a Fully Latent Prin-
cipal Stratification (FLPS) model, which estimates causal effects
for subgroups that emerge during an intervention of a randomized
controlled trial [35, 61].

This work provides two contributions to the LA community. First,
it addresses when and for whom hints and feedback are effective.
Second, the work provides an example of combining the detection
of students’ behaviors with causal inference in a way that may be
leveraged for effective personalization in the future. As the field
continues to use artificial intelligence and machine learning to
detect and predict students’ latent states (e.g., affect, knowledge
component mastery, wheel-spinning, etc.), we must also consider
how to adjust learning systems based on these predictions. This
objective requires understanding which conditions will positively
impact students when they are determined to be gaming the system,
wheel spinning, confused, etc. Thus, the combination of methods
used in this paper, discussed in detail below, may be deployed to
help future researchers understand what actionable steps will be
impactful after detecting and predicting students’ latent states.

4 METHOD
4.1 Conditions
The two conditions included in this paperwere administered through
ASSISTments [30], an online homework system that provides feed-
back to students as they solve traditional textbook problems. The
problem sets in ASSISTments are adapted from open-source curric-
ula, thus resembling problems students encounter in their textbooks
and homework assignments. ASSISTments presents students with
problems one at a time on their screen. Each condition included
218 problems of the same problems selected from three curricula
– EngageNY, Utah Math, and Illustrative Math – to address spe-
cific algebra skills related to procedural knowledge, conceptional
knowledge, and flexibility. The problems were divided into nine
problem sets and administered in nine half-hour sessions during
school hours.

4.1.1 Immediate Feedback and Hints (Immediate Condition). In the
Immediate condition, students could request three hints and receive
feedback on whether their answers were correct immediately after
submitting each answer. Each problem contained a series of hints
with a similar structure. An example problem is displayed in Figure
1. The first hint gave the students the first step for answering the
problem. The second hint gave the student a worked example of
a similar problem. The final hint was a bottom-out hint, which
provided the student with the steps to complete the problem as well
as the problem’s solution. Students could submit as many answers

1https://osf.io/jf25x/; This paper only includes one of the analyses/hypotheses included
in the preregistration. We are still testing the other hypotheses.
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as needed but could not move on until they entered the correct
answer.

Figure 1: Immediate Feedback Condition Example

4.1.2 Problem Sets With Post-Assignment Feedback (Delayed Condi-
tion) . The Delayed Condition provided post-assignment feedback
rather than immediate hints and feedback. Figure 2 presents an
example problem from the Delayed Condition. In this condition,
problem sets were administered in “test mode,” so students did not
receive any feedback or hints during problem-solving. They could
only submit one answer and progressed through the problem set
without any feedback on their performance. Students received a re-
port with feedback on their accuracy at the end of each problem set,
through which they could review their responses, revisit problems,
and request hints.

4.2 Analysis Plan
The fundamental question of this paper – whether the student who
game the system in one condition will benefit from the other con-
dition – poses a methodological difficulty because the conditions
likely confound the behavior of gaming the system. In fact, we
hypothesize that students who game the system in the Immediate
Condition will not game the system in the Delayed Condition and
thus benefit from learning when they engage with content. To ad-
dress this methodological problem, we propose that students have a

Figure 2: Delayed Feedback Condition Example

In the delayed feedback condition, hints and correctness feed-
back were not provided during the problem set. The students in
this condition were provided with a report at the end of each
problem set through which they had access to their accuracy
and hints on the problems.

baseline propensity to game the system in the Immediate Condition
that exists prior to randomization, regardless of whether it can
manifest itself after treatment assignment. Because it is considered
a baseline covariate and potential moderator, similar to students’
pretest knowledge, it is independent of the random treatment as-
signment. However, unlike pretest knowledge, only students in the
treatment condition have the opportunity to display the behavior;
therefore, its value in the control condition is unknown. Neverthe-
less, once this latent propensity to game the system is estimated,
we can also estimate whether and to what extent it moderates the
treatment effect of the various interventions.

Our analyses require two key steps, which are described in depth
below. First, we identify instances where students are gaming the
system within the Immediate Condition. Then, we use the causal
method of Fully Latent Principal Stratification (FLPS), which will
allow us to estimate the effect heterogeneity of each condition
based on students’ latent propensity to game the system [55]. These
methods are delineated in the sections below.

4.2.1 Implementation of Gaming The System Detector. This pa-
per employs the rule-based gaming detectors originally proposed
by [47] to identify gaming behavior among students working on
algebra problems. To the best of the authors’ knowledge, this Cogni-
tive Model developed by [47] was the first of its kind as the detector
was transferable across intelligent tutoring systems from Cognitive
Tutor Algebra (CTA) to ASSISTments. The rule-based detector was
initially engineered to detect gaming in CTA [12]. [44] extended the
implementation of the rule-based gaming detector by relying on hu-
man judgments through text replays of logged learner actions [13].
The insights garnered from this cognitive model were subsequently
used to develop gaming detectors for CTA and validate the trans-
ferability of rule-based gaming detectors by implementing them
onto ASSISTments.

We employed the rule-based Cognitive Model for identifying
gaming behavior as these models mitigate key challenges such as
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enhancing generalizability and controlling for detector rot. Un-
like other system specific gaming detectors, the rule-based model
demonstrated cross system generalizability, underscoring its adapt-
ability and reliability in different contexts [47]. Detector rot is a
phenomenon that refers to the gradual decline in a model’s perfor-
mance over time. Prior studies have reported that more complex
models, using more advanced Machine Learning and Deep Learn-
ing algorithms, are more prone to this phenomenon than their
simpler counterparts [34, 36]. Given that many gaming the system
detection models were developed years before our study, they are
at a higher risk of experiencing detector rot. Therefore, we opted
for the rule-based detector, in light of its potential for sustained
generalizability and resistance to detector rot due to its simple yet
effective detection of gaming behavior.

We employed the rule-based detector to identify gaming behavior
among students using the Immediate Condition. The rule-based
detector system uses log-filed data aggregated in twenty-second
clips (Section 5.1 describes the variables used) and indicates whether
students were gaming during each time clip. We then used these
indicators in the FLPS model described below.

4.2.2 Estimating Effects Using Fully Latent Principal Stratification.
FLPS is a variant of Principal Stratification, a causal inference
method used in randomized controlled trials for estimating the
intervention effects on subgroups that emerge after the treatment
has begun [25, 43]. Traditional estimation of effects for subgroups
requires that these subgroups are defined before intervention and
be independent of any treatment. For instance, in the case of pretest
knowledge, simply interacting the treatment with the pretest knowl-
edge score provides information about how the treatment effect
varies across subgroups of students with similar prior knowledge.
However, subgroups defined based on students’ interactions with a
treatment program cannot be observed at baseline and are never
observed for students randomized to the control condition. Of-
ten, program implementation consists of a complex sequence of
users’ behaviors or choices. FLPS models these behaviors as mani-
festations of latent student characteristics, which are not directly
observed for students randomized to the treatment condition either
but must be estimated.

This method is particularly relevant in CBLPs, in which students
may display an array of behaviors during the program such as
meeting implementation goals [21, 60], productive persistence [61],
mastering knowledge components in mastery learning [55], and
gaming-the-system behaviors that may be viewed as indicators of
latent student characteristics (i.e., high fidelity users, persistent
learners, mastery users, gamers). These behaviors are unobserved
for the control groups who do not have the same opportunity to
use, game, or master as they did not interact with the same CBLP.
When observable, they are confounded by the students’ condition.
Therefore, their underlying latent student characteristics can be
interpreted as explaining students’ behaviors if randomized to the
treatment condition. For example, [55] determined whether the
effect of Cognitive Tutor Algebra I on students varies based on
whether students were likely to master knowledge components
by estimating the likelihood of mastering knowledge components
for the treatment group as a latent variable. In the current study,
we evaluate whether the effect of the Immediate Condition differs

based on students’ latent propensity to game the system had they
been assigned to that condition.

Let 𝜏𝑖 be subject 𝑖’s individual treatment effect: the difference
between what 𝑖’s posttest score would be if 𝑖 were randomized to
treatment and their score if randomized to control. Since students’
gaming the system behavior was detected in the Immediate Con-
dition, our goal is to know how students with a high propensity
to game the system would fare if placed in the Delayed Condition.
For simplicity, we refer to the Immediate Condition as the treat-
ment and the Delayed Condition as the control. Let T and C be the
samples of students randomized to treatment and control, respec-
tively. Let 𝛼𝑡𝑖 be 𝑖’s propensity to game the system if randomized
to the treatment condition. 𝛼𝑡𝑖 is defined for 𝑖 ∈ C, as students
in the control condition still had a potential to game the system
had they been randomized to treatment, even if this potential was
never realized. Therefore, 𝛼𝑡𝑖 is estimated from gaming the system
behavior for T and 𝛼𝑡𝑖 is imputed for C.

The principal effect is the treatment effect for the subgroup of
students with a particular value for 𝛼𝑡 :

𝜏 (𝛼) = 𝐸 [𝜏 |𝑎𝑡 = 𝛼] (1)

To estimate the function 𝜏 (𝛼), we (1) estimate 𝛼𝑡 for T as a
function of pre-treatment covariates observed in both groups, (2)
use that model to impute 𝛼𝑡 for C, (3) estimate 𝜏 (𝛼) by including
a treatment interaction in a linear regression model. The models
are estimated using iterations through these steps in a Bayesian
principal stratification model with a continuous variable consisting
of measurement and outcome submodels, as outlined by [31] and
[42].

4.2.3 Measurement Submodel: Modeling Gaming the System Behav-
ior. First, we estimate 𝛼𝑡 by running a multilevel logistic submodel
predicting whether the gaming detector identified the students in
the treatment condition to have gamed the system on each twenty-
second time clip as delineated in the equation 2. Let𝐺𝑐 𝑗𝑖 be a binary
indicator of whether student 𝑖 gamed the system during time-clip 𝑐
when working on problem 𝑗 . Let 𝑃𝑘𝑖 be covariate predictor 𝑘 of 𝐾
student-level predictors, which are measured at baseline for both
T and C (described in section 5.2). Let the random intercepts be 𝜇 𝑗
for problems, 𝜇𝑖 for students, 𝜇𝑡 for teachers, and 𝜇𝑠 schools, each
modeled as independent and with normal distributions with means
of 0 and standard deviations estimated from the data.

𝑙𝑜𝑔𝑖𝑡 (𝐺𝑐 𝑗𝑖 ) = 𝛾0 +
𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 + 𝜇 𝑗 + 𝜇𝑖 + 𝜇𝑡 + 𝜇𝑠 (2)

Using the parameters from equation 2, students’ propensity to
game the system is defined as

𝛼𝑖 =

𝐾∑︁
𝑘=1

𝛾𝑘P𝑘𝑖 + 𝜇𝑖 + 𝜇𝑡 + 𝜇𝑠 (3)

We impute 𝛼𝑖 for C with random draws from a normal distri-
bution with mean

∑
𝑘 𝛾𝑘P𝑘𝑖 + 𝜇𝑡 [𝑖 ] + 𝜇𝑠 [𝑖 ] , where 𝜇𝑡 [𝑖 ] and 𝜇𝑠 [𝑖 ]

are the random intercepts for student 𝑖’s teacher and school, re-
spectively, and standard deviation equal to the estimated standard
deviation of 𝜇𝑖 . Note that randomization occurred at the student
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level (i.e. teachers had students in the treatment and control in their
classes). Therefore, we include the random intercepts for schools
and teachers from submodel 2 in valuation for 𝛼𝑡𝑖 for students in
the control. However, 𝜇𝑖 is unknown for C, but we can assume
its distribution is the same in the two conditions because of the
randomization.

4.2.4 Outcomes Submodel: Modeling Posttests 𝜏 (𝑎). To estimate
the treatment effect for students with differing propensities to game
the system, we run a multilevel linear regression predicting stu-
dent’s post-test algebraic knowledge (𝑌𝑖 ). The submodel includes
interaction between 𝛼𝑐𝑖—estimated for T and randomly imputed
for C—and 𝑍𝑖 , an indicator of being in the treatment condition
(Immediate Condition). Let the random effects for teacher be 𝜈𝑡 and
for school be 𝜈𝑠 .

𝑌𝑖 = 𝛽0 + 𝛽1Z𝑖 + 𝛽2𝛼𝑡𝑖 + 𝛽3𝛼𝑡𝑖Z𝑖 +
𝐾∑︁
𝑘=1

𝜆𝑘P𝑘𝑖 + 𝜈𝑡 + 𝜈𝑠 + 𝜖𝑖 (4)

Using the parameters from the submodel 4, the treatment effect
for students with a particular propensity to game the system is
modeled as

𝜏 (𝛼) = 𝛽1 + 𝛽3𝛼 (5)
Submodels (2) and (4) together formed a FLPS model, which we

fit using the Stan Markov Chain Monte Carlo software through
STAN [6].

5 DATA & VARIABLES
The data for this study exists at two different levels. There are
student-level variables, including the student-level predictors and
the learning outcome. Alternatively, the data used in gaming the
system detector and the detector’s output is aggregated in twenty-
second clips of the students usage of the program. Only time-clip
data from the Immediate Condition is used. All data from the study
are available through OSF2 and a full explanation of the data can
be found in [41].

The sample consists of 779 students: 394 in the Immediate Con-
dition and 385 in the Delayed Condition. The students were taught
by 34 teachers, in 9 schools. In the Immediate Condition, students
completed 96,311 problems across 107,577 clips.

5.1 Gaming the System Detector Data and
Output

Gaming labels were generated by adopting the methodology de-
scribed by [47] to produce action clips for the gaming detector, as
explained in Section 4.2.1. These clips capture sequences of actions
taken by students in ASSISTments. Each clip contains unique iden-
tifiers: the student working on the problem, the problem(s) being
worked on, the skill associated with the problem, and the prob-
lem type. Additionally, the clips detail the start and end times of
actions, their total duration, and, for attempts, the action’s correct-
ness and the student’s answer. Supplementary data within the clips
include indicators for hint requests, the number of hints requested
during the clip, the total hints available for the problem, the use
2https://osf.io/r3nf2/

of a ‘bottom-out’ hint, and the total attempts by the student. It is
important to note that the dataset had an indicator for scaffolding
support as well; however, the problems analyzed in our study did
not implement scaffolding support. Gaming labels produced by the
Cognitive Model detector were generated based on instances where
students’ actions in the clip met one or more rules indicative of
gaming system behavior.

5.2 Pretreatment Predictors
To estimate students’ propensity to game the system, we used de-
mographic data and data from assessments administered prior to
their use of their assigned condition. Pretest scores were collected
by the original studies’ researchers: algebraic knowledge, math
anxiety, and perceptual processing skills. Algebraic knowledge was
measured using a variant of the learning outcome described below
(Section 5.3). The math anxiety assessment was adapted form from
the Math Anxiety Scale for Young Children-Revised [16], which as-
sessed negative reactions towards math, numerical inconfidence,
and math-related worrying (Cronbach’s 𝛼=.87; see the items on
OSF3). Five items adapted from the Academic Efficacy Subscale of
the Patterns of Adaptive Learning Scale to assess math self-efficacy (
[39] Cronbach’s 𝛼 = .82; see items on OSF4). The perceptual process-
ing assessment evaluates students’ ability to detect mathematically
equivalent and nonequivalent expressions as quickly as possible
[23, 32] (see item on OSF5). Log forms of assessment test times were
also included in the models. We included polynomials of the pretest
scores when they improved model fit. The school district in which
the original study was conducted provided students’ demographic
data—race/ethnicity, individualized education plan status (IEP), and
English as a second or foreign language (ESOL) status. The district
also provided students’ most recent standardized state test scores in
math. Race and ethnicity were dummy-coded, with white students
as the reference category. We standardized (z-score) all continuous
scores to improve model fit and ease interpretation. Missing data
were imputed using singly-imputation with the Random Forest
routine implemented by the missForest package in R [52, 59]. The
number of missing data for each student was included as a predictor
in each submodel.

5.3 Learning Outcome
The learning outcome for the study is students’ algebraic knowl-
edge, which was assessed using ten multiple-choice items from a
previously validated measure of algebra understanding (Cronbach’s
𝛼 = .89; see the items on OSF6) [58]. Four of the items focused on
conceptual understanding of algebraic equation-solving (e.g., the
meaning of an equal sign), three focused on procedural skills of
equation-solving (e.g., solving for a variable), and three focused
on flexibility of equation-solving strategies (e.g., evaluating differ-
ent equation-solving strategies). These ten items together assessed
students’ knowledge in algebraic equation-solving, the improve-
ment of which was the goal of the interventions. The assessment

3https://osf.io/rq9d8
4https://osf.io/rq9d8
5https://osf.io/r47ev
6https://osf.io/uenvg
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was taken before and after the intervention. Students’ scores were
standardized to ease model fit and interpretation.

6 RESULTS
6.1 Gaming Detector
The students in the Immediate feedback condition produced 89,960
twenty-second clips of data. The gaming detector estimated that
students gamed the system during 4.62% of the clips. A majority
of students (94.18%) gamed the system at least once. Overall, stu-
dents averaged two gaming clips (mean = 5.85, SD = 4.11), but the
distribution is skewed, such that 39.05% of the total gaming system
behavior was attributed to the students in the upper quartile of
gaming frequency. This suggests that some students have a higher
propensity to game the system than others.

Notably, there were many problems (74.35%) in which no student
gamed the system at all. There was a small significant negative cor-
relation between the gaming rate on each problem and the average
accuracy on the problem (r = -0.21, p < 0.001). Furthermore, some
problem types had significantly higher rates of gaming behaviors
than others (F[2,244] = 4.69 p < 0.001). Students were more likely
to game the system on ’check all that apply’ problems compared
with problems they had to submit a number (p < 0.001), variable
(p = 0.038), an algebraic expression (p = 0.044), or submit an open
response (p < 0.029). Students were also more likely to game the
system on a multiple choice question than problems in which they
had to submit a numeric answer (p = 0.035). Because the problems
without gaming behavior would not be informative for assessing
students gaming the system, we did not include these problems in
the measurement model.

6.2 Fully Latent Principal Stratification
We ran 11,000 iterations of FLPS models using Markov chain Monte
Carlo chains calling Stan through rstan [57] in R; code is posted on
GitHub7. We evaluated convergence using trace plots and 𝑅. The
maximum 𝑅 for estimated parameters was 1.01. Table 1 provides
parameter estimates and relevant statistics for the measurement
and outcome submodels.

6.2.1 Measurement Submodel. Prior to the simultaneous estima-
tion of the FLPS sub-models in STAN, we ran the measurement
model using the stan_glmer function from the rstanarm package
[26] with different combinations and transformations of the pretest
predictors and demographic variables to find a suitable model for
the analysis. While building the measurement model, we split the
data into training (80%) and testing (20%) data sets. The model per-
formed best when pretest sub-scores from the tests were included,
so we included many pretest sub-scores in the final model. Our
final model produced an acceptable AUC of 0.87 on the training
data set.

The measurement model provides some notable predictors of
gaming the system behavior. Students with lower scores on the
math section of the state test were more likely to game the system
(𝛾17 = -0.31, 𝑃 (< 0) = .99). This effect was consistent with the albeit
smaller associationswith the algebraic knowledge sub-scores. There
was a nonlinear association between math anxiety and gaming
7https://github.com/kirkvanacore/FLPS_GamingTheSystem

behavior. Students with higher math anxiety were also less likely
to game the system (𝛾6 = -0.23, 𝑃 (< 0) = .97) and this effect became
greater in magnitude as high math anxiety increased, as shown the
effect associated with the math anxiety squared (𝛾7 = -0.04, 𝑃 (< 0)
= .92). Students with a higher negative reaction toward math (𝛾8 =
0.19, 𝑃 (> 0) = .99) and with higher numeric confidence (𝛾9 = 0.13,
𝑃 (> 0) = .96) were more likely to game the system. Times on the
algebraic knowledge test and the perceptual sensitivity learning sub-
tests were all predictive of gaming the system behavior. Students
who took less time on these tests were more likely to game the
system.

6.2.2 Outcomes Submodel. The outcomesmodel provided evidence
of an interaction between gaming behavior and the feedback condi-
tions, suggesting that while feedback is likely effective for students
with a low propensity to game the system, it is likely ineffective for
those with a high propensity to game the system. The main effect
for the Immediate Condition was likely positive (𝛽1 = 0.06, 𝑃 (> 0)
= .90). Notably, the effect was small – 6% of a standard deviation –
suggesting that while hints and feedback play a role in the effec-
tiveness of CBLP other program components also contribute to its
effectiveness. As expected, students with a high propensity to game
the system performed substantially worse than those with a low
propensity to game the system (𝛽2 = -0.37, 𝑃 (< 0) > .99).

The interaction between students’ propensity to game the system
and the Immediate Condition was likely negative (𝛽3 = -0.11, 𝑃 (< 0)
> .93). Table 2 presents estimated average effects for students in
each quartile of the propensity to game the system (𝛼). The students
at the bottom quartile of gaming the system propensity experienced
an estimated positive effect from the Immediate Condition of 0.18
SD of algebraic knowledge. In contrast, those at the top quartile of
gaming the system propensity experienced an estimated negative
effect of -0.02 SD of algebraic knowledge. This finding implies that
students who engage in gaming the system behavior may benefit
from the delayed condition, whereas those with a lower propensity
to game the system likely benefit from the Immediate Condition.

7 DISCUSSION & CONCLUSION
The findings of the study indicate that the impact of on-demand
hints and feedback on student performance in a CBLP varies widely.
This disparity in outcomes may be attributed to how students utilize
assistance features. Those who exploit hints excessively or rely on
trial-and-error methods to complete assignments would potentially
benefit from restricted or delayed access to immediate hints and
feedback. Nevertheless, even when immediate hints and feedback
were eliminated (as in the Delayed Condition), the decrease in
performance associated with gaming behavior was not completely
alleviated. Therefore, these results suggest that while removing on-
demand instruction may assist students inclined towards gaming
the system, further intervention is required to fully mitigate the
detrimental effects of such behavior or address the root causes
behind it.

Although the delayed hints and feedback condition was origi-
nally intended to be an active control in this study, it can be viewed
as a proactive intervention targeting gaming the system behavior.
This approach, similar to others mentioned in previous research
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Table 1: Fully Latent Principal Stratification Model Parameter Estimates

Measurement Submodel Outcomes Submodel
Predictors Estimate SD P(>0) P(<0) Estimate SD P(>0) P(<0)
𝑍 0.06 0.05 0.90 0.10
𝛼𝑡 -0.37 0.15 0.01 0.99
𝛼𝑡 : 𝑍 -0.11 0.08 0.07 0.93
Algebraic Procedural Knowledge -0.04 0.05 0.17 0.83 -0.01 0.04 0.42 0.58
Algebraic Conceptual Knowledge -0.08 0.06 0.10 0.90 0.13 0.05 0.99 0.01
Algebraic Flexibility Knowledge -0.03 0.04 0.25 0.75 -0.03 0.04 0.23 0.77
Algebraic Knowledge Items Complete -0.03 0.08 0.36 0.64 0.03 0.06 0.72 0.28
Algebraic Knowledge Time (Log) -0.04 0.04 0.14 0.86 -0.04 0.03 0.06 0.94
Math Anxiety -0.23 0.12 0.03 0.97 0.07 0.10 0.78 0.22
Math Anxiety (Squared) -0.04 0.03 0.08 0.92 -0.02 0.02 0.23 0.77
Math Negative Reaction 0.19 0.08 0.99 0.01 -0.04 0.07 0.27 0.73
Math Numerical Confidence 0.13 0.08 0.96 0.04 -0.06 0.06 0.16 0.84
Math Self Efficacy -0.04 0.04 0.21 0.79 0.03 0.04 0.81 0.19
Perceptual Sensitivity Score Part 1 -0.05 0.04 0.11 0.89 0.00 0.03 0.54 0.46
Perceptual Sensitivity Time Part 1 (Log) -0.10 0.06 0.03 0.97 -0.00 0.04 0.50 0.50
Perceptual Sensitivity Score Part 2 0.01 0.05 0.60 0.40 0.11 0.04 0.99 0.01
Perceptual Sensitivity Time Part 2 (Log) -0.06 0.05 0.10 0.90 -0.01 0.04 0.34 0.66
Perceptual Sensitivity Score Part 3 0.05 0.05 0.82 0.18 -0.04 0.04 0.15 0.85
Perceptual Sensitivity Time Part 4 (Log) -0.08 0.06 0.09 0.91 0.07 0.04 0.95 0.05
State Test Score -0.31 0.06 0.01 0.99 0.03 0.06 0.68 0.32
Female -0.01 0.04 0.38 0.62 0.02 0.03 0.73 0.27
Hispanic 0.11 0.14 0.78 0.22 0.06 0.10 0.72 0.28
Asian/Pacific Islander -0.15 0.13 0.11 0.89 0.11 0.10 0.88 0.12
Black 0.32 0.20 0.94 0.06 0.17 0.15 0.87 0.13
IEP -0.02 0.04 0.28 0.72 0.00 0.03 0.54 0.46
EIP 0.01 0.04 0.55 0.45 0.00 0.03 0.53 0.47
ESOL 0.01 0.05 0.54 0.46 0.01 0.04 0.65 0.35
Gifted -0.02 0.04 0.33 0.68 0.11 0.03 0.99 0.01
In-person Instruction 0.03 0.05 0.72 0.28 -0.16 0.07 0.02 0.98
Missing Data 0.01 0.07 0.58 0.41 -0.00 0.05 0.49 0.51

Table 2: Mean effects of the Immediate Condition (𝜏) and
each quartile of propensity to game the system (𝛼)

Mean
Quartile 𝛼 𝜏

1 -1.05 0.18
2 -0.23 0.09
3 0.28 0.03
4 0.76 -0.02

[3, 40], employs a standardized approach for all students. The dif-
ferential effect observed for immediate hints and feedback supports
[40]’s suggestion that deterring certain students from using hints
may be beneficial for some students despite the overall negative
impact on the student population. Our finding supports this hy-
pothesis.

One potential solution to the impact differential could involve
disabling immediate hints and feedback for students identified as
gaming the system, thereby offering a targeted intervention to redi-
rect their focus toward learning from the activity. This solution

would not only allow students who do not game the system to ben-
efit from the on-demand assistance, but it could also allow students
who game the system to benefit from this assistance when not
gaming the system. This type of adaptive system may also mitigate
some of the negative effects of the gaming behavior by allowing
those who game to experience the best of both interventions (im-
mediate and delayed). However, it is essential to acknowledge that
implementing such an approach may foster frustration and disen-
gagement. Further investigation is needed to test these hypotheses.

The measurement model parameters that predict gaming the
system suggest that intricate factors contribute to this behavior.
One possible scenario is that students with low knowledge but high
confidence resort to gaming the system after encountering fail-
ure in the activities, which contradicts their perceived self-efficacy.
It may seem contradictory that students’ overall math anxiety is
negatively associated with gaming the system behavior, whereas
negative reactions towards math in general are positively associ-
ated with it. However, it is plausible that math-anxious students
approach problems cautiously, while those with negative reactions
toward math may prioritize completing the assignment quickly.
These findings contribute to existing literature, highlighting that
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attributing gaming the system solely to general disengagement may
be too simplistic, as it likely stems from various underlying causes
[8].

Time spent on pretests was associated with gaming the system;
those who took more time on the pretests were less likely to game
the system. This finding is not necessarily surprising as gaming is
associated with rapid behaviors [8, 44]. However, it is still notable
that this behavior may be evident in the testing context. Thus,
gaming the system may be indicative of general rushing behavior.
Analyses of pause time have suggested that students who take more
timemay be exertingmore effort [29] and performing better [15, 33]
than those respond quickly after starting a problem. Together, these
findings indicate that gaming behaviors may be interrelated with
other leaner profiles, which are also associated with heterogeneity
in learning outcomes.

Finally, this paper showcases the potential of combining de-
tection and causal methods in the field of LA to gain a deeper
understanding of appropriate actions following the identification
of specific behaviors or latent states. Artificial intelligence driven
detection within CBLPs often leaves learning experience design-
ers with "what next" questions (e.g. "What should we do now that
we know a student is frustrated?"). FLPS provides one solution by
combining the output of detectors with causal models to address
which program features will differently benefit students who ex-
hibit specific behavior patterns. Although in the current analysis
we use a rule-based detection method, the integration of artificial
intelligence prediction systems with FLPS holds promise for not
only assessing students’ experiences and actions in CBLPs but also
suggesting optimal adaptations within these programs to maximize
their learning impact.

8 LIMITATIONS & FUTURE DIRECTIONS
Although our findings suggest that the impact of feedback may
vary depending on students’ inclination to game the system, it is
important to acknowledge the limitations of this analysis. First,
there remains some uncertainty regarding whether the main and
interaction effects in the model significantly differ from zero. Sam-
pling from the posterior distribution indicated a 90% certainty that
the main effect (i.e., the effect of Immediate Feedback for those with
an 𝛼 of zero) was greater than zero, and a 93% certainty that the
slope associated with the propensity to game the system (𝛼) was
less than zero. However, it is still possible that the observed effects
may be smaller in magnitude than those presented here. Further
research is needed to validate and replicate these results to establish
the robustness of our findings.

Although this analysis provides information about who is likely
to game the system and under what circumstances, it does not fully
address questions related to the profiles of students who game the
system. Our measurement model finds some corollaries to gaming
behavior but does not provide a robust delineation of learner pro-
files for students who are likely to game the system. More work
is needed in this area. Similarly, we found a negative correlation
between the rate of gaming and the average accuracy on each prob-
lem, but we need a more robust understanding of why students
are gaming on specific problems. There is a notable reciprocal rela-
tion between gaming the system and accuracy, which may explain

this relationship. Some problem types had higher associations with
gaming behavior than others, such as ’check all that apply’ and mul-
tiple choice problems. Future work should seek to understand how
problem difficulty and type influence the likelihood that students
will game the system.

Additionally, it is essential to recognize the limitations of FLPS.
The effects estimated using FPLS rely on the underlying quality
of the model itself, and the extent to which errors in the model
estimation may introduce bias to the effect remains unclear. More
work is necessary to develop a comprehensive understanding of
how to evaluate these models and ensure they provide unbiased
estimates of treatment effects.
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