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ABSTRACT
Learning experience designers consistently balance the trade-off be-
tween open and close-ended activities. The growth and scalability
of Computer Based Learning Platforms (CBLPs) have only magni-
fied the importance of these design trade-offs. CBLPs often utilize
close-ended activities (i.e. Multiple-Choice Questions [MCQs]) due
to feasibility constraints associated with the use of open-ended
activities. MCQs offer certain affordances, such as immediate grad-
ing and the use of distractors, setting them apart from open-ended
activities. Our current study examines the effectiveness of Fill-In
problems as an alternative to MCQs for middle school mathematics.
We report on a randomized study conducted from 2017 to 2022,
with a total of 6,768 students from middle schools across the US. We
observe that, on average, Fill-In problems lead to better post-test
performance than MCQs; albeit deeper explorations indicate differ-
ences between the two design paradigms to be more nuanced. We
find evidence that students with higher math knowledge benefit
more from Fill-In problems than those with lower math knowledge.
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1 INTRODUCTION
The rapid growth in technology and the ability to produce educa-
tional material accessible by innumerable learners has led to the
development and adoption of Computer Based Learning Platforms
(CBLPs) across educational sectors. With access to the internet,
learners across the world use CBLPs in the form of Massive Open
Online Courses (MOOCs), Learning Management Systems (LMSs),
and standalone online learning platforms. The past two decades
have seen a drastic rise in the implementation and utilization of
online educational materials [17, 23]. With this growth, Learning
Experience (LX) designers are tasked with the critical responsibility
of ensuring that learning materials are not only effective but also
scalable. A key difficulty faced by LX designers is finding a balance
between the educational merits of different problem types and the
feasibility of employing these problem types effectively at scale.
This balance is crucial for maximizing the impact and reach of these
CBLPs.

Broadly, the instructional strategies leveraged by LX designers
in terms of the problem types can be classified into two categories:
open-ended and closed-ended problems. Closed-ended problems,
such as Multiple Choice Questions (MCQs), ‘Check all that Apply’,
and ‘Arrange in the Correct Order’, lend themselves more easily to
the integration of automated grading and instant feedback. These
features, along with on-demand help, can significantly enhance
the learning experience for users. This approach allows for a more
scalable and efficient way of delivering instruction, particularly in
educational settings, with automation playing a key role in reducing
the demand on instructors’ time and resources [4]. Alternatively,
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incorporating automated grading and instant feedback in open-
ended problems such as short answer questions, essays, and fill-in
problems is more challenging. While closed-ended problems are
more suitable for automation compared to open-ended problems,
researchers have raised concerns regarding their use [12, 32, 49].
They point out that closed-ended problems can be susceptible to
recognition and guessing, which can lead to shallow learning. In
contrast, open-ended problems are often viewed as more rigorous
and allow the instructor to infer the learners’ understanding and
comprehension of the topic from their answers [12, 49]. While rigor
and thoroughness are highly desirable in educational settings, it is
also important to acknowledge that the higher level of difficulty and
the demand for rigorous engagement can be cognitively taxing on
the learners. This strain often stems from the need to exercise recall
over recognition, and generation over selection, which inherently
requires higher cognitive effort.

Research into the comparative effectiveness of close-ended and
open-ended activities in facilitating learning is somewhat mixed.
Some studies have found a preference for traditional open response
problems (ORP) over MCQs [1, 12, 32], while others underscore the
merits of MCQs [16, 48, 50]. Furthermore, others suggest there’s
little to no difference between the two formats [30, 31, 44, 49].
Amidst this backdrop of varied and sometimes conflicting findings
when comparing traditional ORPs toMCQs, Fill-In problems emerge
as an intriguing point of discussion. Fill-In problems share several
characteristics with MCQs, including the benefits of automated
grading, immediate feedback, and availability of on-demand help.
Furthermore, a distinct and linear relationship exists betweenMCQs
and Fill-In problems, enabling the straightforward conversion of
one format to the other, thus offering versatility in the design of
learning activities.

In this paper, we investigate the application of Fill-In problems
as an alternative to MCQs in mastery-based activities. To this end,
we conducted an in-vivo randomized study aimed at exploring
the relative difficulty of utilizing Fill-In problems as an alternative
to MCQs. We then explore the influence of these problem types
on learners’ performance in mastery-based activities and a post-
test with a more complex transfer task upon acquiring mastery.
Finally, we explore the potential heterogeneity in the effectiveness
of the problem types across learners with varying mathematical
prior performances. Specifically, we explore the following research
questions:

(1) Is there a difference in the difficulty between equivalent
MCQ and Fill-In problems?

(2) Does the use of different problem types (MCQ vs. Fill-In) on
mastery-based activities impact students’ learning?

(3) How does the effectiveness of problem type vary among
learners with differing levels of mathematical proficiency?

2 PRIOR WORKS
2.1 MCQs & Fill-In Problems
Over the years, various prior research has explored the efficacy of
utilizing MCQs over ORPs and found mixed results, with some find-
ing MCQs to be more beneficial [16, 48, 50], others finding ORPs to
be more beneficial [1, 12, 32], and others finding little to no differ-
ence between the two problem types [30, 31, 44, 49]. However, prior

exploration regarding the feasibility of the two problem types has
shown ORPs to be more costly towards instructor resources than
MCQs [4]. Beyond their usage, it is also crucial to acknowledge that
other contextual factors can influence the use of one problem type
over the other, as each has its unique advantages and disadvantages.
For example, MCQs can be particularly beneficial in assessing large
cohorts of students en masse( i.e. SAT, TOEFL) [26, 35, 38]. On the
other hand, ORPs have been shown to provide a more accurate as-
sessment of learners’ understanding and comprehension in various
STEM-related subjects compared to MCQs [16, 48]. In fact, prior
studies have reported on inflation of grades when utilizing MCQs
over ORPs in STEM-related subjects [16, 48].

While MCQs are widely used in CBLPs, researchers have ex-
pressed concerns regarding their usage. MCQs can be susceptible
to synthesis, guessing, and recognition due to the use of distrac-
tors1 resulting in shallow learning [10, 19, 35]. Consequently, there
have been concerns regarding the reliability and validity of the use
of MCQs when inferring learners’ knowledge and ability [14]. In
particular, the presence of distractors in MCQs can inadvertently
trigger learners’ recall of topics they are attempting to work on,
thereby diminishing the effectiveness of MCQs in fostering more
rigorous learning and developing a deeper understanding of the
topic [42]. Furthermore, MCQs, due to their design, are relatively
less conducive to fostering creative thinking and idea generation [9],
which are crucial skills for comprehensive learning. In contrast,
Open Response Problems (ORPs) inherently require students to
demonstrate higher-level thinking and reasoning for each problem,
thereby eliminating the guessing element commonly associated
with MCQs [35].

2.2 Mastery-Based Learning Activities
In recent decades mastery-base learning activities have become a
common pedagogical technique, especially in CBLPs. Rather than
assuming learning upon completion of certain activities associ-
ated with the material, mastery-based learning requires learners
to demonstrate knowledge and understanding of the concepts be-
fore progressing to the next topic [8]. Mastery-based learning ap-
proaches have shown to reduce variance in student aptitude [2, 29],
increase long-term retention of knowledge [29], change student
attitude towards content [2, 29], and increase self-belief [2, 18].

One of the primary features of mastery-based learning is to
provide students with the ability to practice the skills that allows
the teachers to assess their students’ abilities while facilitating
learning opportunities. CBLPs, by design, have an advantage when
implementing mastery-based assignments, as the activity can adapt
to the student’s performance. Various CBLPs have explored the
implementation of mastery-based assignments using various ap-
proaches. While some platforms, such as Khan Academy [28, 34],
and ASSISTments [20], have explored using an arbitrary threshold
of N-Consecutive Correct Responses (N-CCR), others have relied
on more precise measures of mastery using Knowledge Tracing
(KT) models [13]. KT models predict student performance in future

1Distractors, also referred to as “Lures" in some academic settings, are incorrect answers
in a multiple-choice question designed to mislead students away from the correct
answer by providing false information.
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problems by leveraging their past performance on similar or re-
lated skills. Both N-CCR and KT approaches have their merits and
flaws; N-CCR is more explainable and interpretable by teachers,
whereas KTmodels are harder to understand for the teachers but are
more accurate at estimating learner mastery. While a heuristic of
N-CCR could be considered rather simplistic, Kelly et al. (2015) [25]
reported that a N-CCR design, with N = 3, has comparable per-
formance in estimating mastery to more sophisticated KT models.
Additionally, Prihar et al. (2022) [36] have reported on the ben-
efits of using N = 2, 4, and 5 as a threshold and found N = 3 to
be an optimal threshold. While a simple N-CCR design is easy to
implement [22, 25] and interpret, some have expressed concerns
regarding the risks of inequitable outcomes due to the use of N-
CCR design’s assumption across students with different learning
rates [15]. Although concerns about the use of N-CCR and its po-
tential impact on creating inequitable outcomes are significant, the
study by Koeginder et al. (2023) [27], which reports a surprising con-
sistency in students’ learning rates under ideal conditions suggests
a possible avenue to both mitigate the concerns related to inequity
stemming from varying learning rates and an opportunity to revisit
the risk of inequity in outcomes on mastery-based activities due to
the methodology utilized in estimating mastery.

3 CURRENT STUDY
3.1 Experimental Design
The current study comparing MCQs and Fill-In problems was con-
ducted using ASSISTments [20], a CBLP popular among middle
school math teachers in the United States. In this experiment, we
developed two mastery-based activities focused on the mathemati-
cal concepts of ‘Greatest Common Factor’ (GCF) and ‘Evaluating
Expressions’ (EE). These activities were designed in accordance
with the Common Core State Standards [33], with the GCF activ-
ity developed using the grade 6 curriculum and the EE activity
developed using the grade 7 curriculum.

As illustrated in Figure 1, each problem set in our study included
a mastery learning component followed by a post-test. The students
are randomized to one of two problem types in the mastery learning
components: MCQs or Fill-In problems. A N-CCR design with N=3
for the mastery-based activity is utilized in both conditions to
estimate mastery, i.e., students need to correctly answer 3 problems
in a row to demonstrate their mastery of the content. If a student
is incorrect on their first attempt or asks for hints, the consecutive
correctness counter is reset to zero. During the assignment, students
have the option to request up to three hints, with the bottom-
out hint giving away the answer to the problem. Additionally, the
system also imposes a daily limit of 10 problems per condition.
However, if a student correctly answers the 9th or 10th problem,
they are allowed to attempt up to 11 or 12 problems, respectively,
to demonstrate mastery. Students unable to demonstrate mastery
within the first 10 problems are required to wait until the following
day to continue with the activity.

Upon demonstrating mastery, students are asked to take a two-
problem post-test. These problems are transfer items on the same
topic as the experiment. These items required that students to apply
the mastered knowledge component to a relatively more complex

problem on the post-test. Examples of the problems in the experi-
ment (MCQs vs. Fill-In problems) and the post-test are illustrated
in Figure 2. As demonstrated in Figure 2, post-test problems are
relatively more complex in comparison to the problems in the mas-
tery learning component. The problem complexity was increased
on the post-test by increasing the dimensionality of the problem
from 2 to 3 and using a more complex sentence structure on the
problem. The objective here is to assess the performance of the
students who demonstrated mastery on a more complex transfer
task as a representation of their learning [47]. We chose to utilize
Fill-In questions as they align more closely with the problem type
that would be utilized in a traditional experimental setup where
the post-test would likely be conducted using a traditional paper
and pencil approach to assess the students’ learning on the transfer
item.

3.2 Description of Dataset
The data was collected across five school years in the United States
(2017-18, 2018-19, 2019-20, 2020-21, 2021-22). During this time, the
assignments were made available to middle school teachers who use
ASSISTments as an instructional tool by assigning mastery-based
activities to their students as part of their lessons. During our study,
192 teachers assigned the two problem sets to 383 classes. A total
of 6774 students participated in the experiment. A small number
of students, 20, worked on both problem sets. In such instances,
we only included the student data from the first participation and
dropped the other records.

In addition to data on student performance, hint usage, and time
to first attempt per problem in themastery-based components of the
experiment, the student performance on the post-test items and the
average prior percent correctness across all problems the students
worked on the CBLP prior to participating in the experiment (prior
performance) were also calculated.

3.3 Descriptive Statistics
The descriptive statistics on student behavior in the mastery learn-
ing component are presented in Table 1. While there was no signif-
icant difference in the average number of problems taken to reach
mastery between the MCQ and Fill-In conditions, other behavioral
differences were notable. Specifically, students in the Fill-In condi-
tion, on average, accessed more hints and took more time before
submitting their first responses compared to their counterparts in
the MCQ condition. Intriguingly, despite every incorrect attempt
and hint request resulting in a loss of 33% partial credit, students
in the Fill-In group achieved a higher average score on the mastery
components. This suggests that while students in the MCQ condi-
tion likely made more attempts than those in the Fill-In group, the
students in the Fill-In condition were able to recognize they needed
help, request it, and effectively utilize it to the problem.

3.4 Analysis Plan
To address our research questions, we conducted three analyses of
the experimental data. The first (Analysis 1: Section 4) addresses
the differences in problem difficulty caused by problem type within
the mastery learning activity and explores students’ performance
patterns within each activity. Next (Analysis 2: Section 5), estimates

509



LAK ’24, March 18–22, 2024, Kyoto, Japan Gurung, et al.

Figure 1: The experiment has two conditions where students are assigned a mastery-based assignment with MCQs or Fill-In
problems. Upon acquiring mastery of the content, students are asked to answer two problems in the post-test to examine the
student’s performance on more complex transfer tasks.

Figure 2: The equivalent MCQ and Fill-In Problems from “Problem Set 1: Greatest Common Factor” (Marked in Green). The
relatively more complex transfer task in the post-test (Marked in gray).

the effects of the problem type on students learning, as represented
by their performance on the post-test. Finally (Analysis 3: Section

6), evaluates whether the effect of problem type varies based on
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Table 1: Descriptive Statistics exploring the total problem to mastery, total hint usage, time to the first response by the students,
and the average score on the problems in the mastery learning component across conditions.

All Fill-In MCQ T-Test

Mean SD Mean SD Mean SD t-Statistic p

Average problems to mastery 4.94 2.99 4.92 2.81 4.97 3.16 0.52 0.603
Average hints access 0.58 1.88 1.04 2.55 0.15 0.56 -16.63 < 0.001
Average time to first response (sec) 61.32 457.61 74.61 417.29 48.76 492.42 -1.99 0.046
Average score on mastery component 86.21 16.98 88.80 13.81 83.77 19.15 -10.60 < 0.001

students’ prior mathematical proficiency. The following three sec-
tions contain detailed information regarding the methodology and
the results of these analyses.

4 ANALYSIS 1: ASSESSING THE DIFFERENCES
IN DIFFICULTY BETWEEN MCQS AND
FILL-IN PROBLEMS

The students were randomized into Fill-In and MCQ conditions
with equivalent problems across conditions in the mastery com-
ponent, i.e., the MCQ and Fill-In problems had the same problem
body and answers. The difficulty of the problem type can be eval-
uated by comparing student performance across conditions. This
analysis allows us to understand whether different problem types
can influence student performance during mastery-based activities.
Furthermore, estimating differences in difficulty can help contextu-
alize potential differences in performance and learning outcomes
across conditions.

4.1 Methods
The relative difficulty between Fill-In and MCQs was estimated
using linear regression models with robust standard errors using
the estimator [39] package in R [37]. First, we ran a model only
utilizing student data from the first problem they attempted in
the mastery learning component. This method allows us to isolate
the difference in performance caused by problem types from any
potential learning or attrition that could occur as the students work
through the mastery component.

Equation (1) represents the difficulty estimation model. Let 𝑌𝑖 𝑗
indicate whether student 𝑖 was correct on the first attempt of prob-
lem 𝑗 . Let Fill-In𝑖 indicate whether student 𝑖 was randomized to
receive Fill-In problems, and 𝑃 be an indicator for each problem
the students attempted. Since assignment to problems and problem
type were randomized and the problems 𝑗 were equivalent across
conditions, the effect of the Fill-In condition (𝛽1) is an unbiased
causal effect. Note that if a student saw a problem but did not submit
a response, we considered their responses to be incorrect. This step
ensured that differences in dropout rates did not bias the results.

𝑌𝑖 𝑗 = 𝛽0 + 𝛽1Fill-In𝑖 +
∑︁

𝛽 𝑗𝑃 𝑗 + 𝑒𝑖 𝑗 (1)

To examine how students performed on subsequent problems
in the mastery learning component, we reran this analysis for
the first 10 problems the students can attempt before reaching

the daily limit without exhibiting mastery. Although these are no
longer unbiased estimates of causal effects of problem types–due to
the potential spillover effects from learning on previous problems
and the differences in samples due to acquisition of mastery and
attrition rates across conditions–the differences are still informative
of students’ learning experiences.

4.2 Results
Students performance on the first problem in the mastery learning
component of the experiment differed significantly based on their
treatment assignment such that students in the MCQ condition
outperformed those in the Fill-In condition by an estimated five
percentage points (𝛽1 = -0.05, SE = 0.012, p < 0.0001). This coefficient
is an unbiased estimate of the difference in difficulty caused by
problem type.

Figure 3 displays the average performance (lines) and samples
(shading) by condition across the first ten problems in the mastery
learning component of the experiment. Notably, for the first prob-
lem, students in the MCQ condition perform better than their peers
in the Fill-In condition. However, this difference dissipates for the
subsequent two problems before reversing, with the students in the
Fill-In condition outperforming their peers in the MCQ condition.
This finding suggests that the difficulty experienced early on by the
students in the Fill-In condition potentially benefited the students
later in the activity. Nevertheless, it is important to acknowledge a
potential confound to this explanation as the samples may differ
across conditions on problem sequences greater than one. This
possibility of potential confound is illustrated in Figure 3, using the
difference in the shaded area (e.g., the percent of students within
each condition who started the problem in that problem sequence)
on the second and third problem before the students could master
the knowledge component. Further exploration of this potential
confound is reported in Section 5.2.

5 ANALYSIS 2: IMPACT OF FILL-IN PROBLEMS
AND MCQS ON STUDENT LEARNING

Analysis 1 (Section 4) shows that Fill-In problems are more difficult
than MCQs. This finding suggests that students tackling Fill-In
problems exerted more effort to achieve mastery. This heightened
challenge might obscure their recognition of substantial learning
progress and potentially lead to negative emotions. Such feelings
could result in unproductive behaviors, including gaming [3], wheel-
spinning [6], or even dropping out of the activity entirely. Thus,
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Figure 3: Accuracy During Mastery Component by Problem Type and Problem Sequence
The lines represent the average accuracy of students within the condition. Students in the Fill-In condition have lower accuracy when starting the
problem set, but this trend switches after the third problem. The shading represents the percent of original samples within each condition. Not that

slightly more students master or attrit in the Fill-In than the MCQ condition early on. This difference is explored further in Section 5.2.

there is the potential that the increased difficulty caused by Fill-In
responses may have an adverse effect on student learning.

However, Analysis 1 also showed that students in the Fill-In
condition outperformed those in the MCQ condition later in the
masterly learning activity. Conversely, MCQs may induce students
to engage in shallow learning, such as employing educated guesses
and deducing answers, effectively recognizing and synthesizing the
information. They could potentially gain only perfunctory mastery
of the concept by deliberating over the provided choices in the
MCQs instead of taking full advantage of the learning opportunities.
Thus, it is unclear which problem type is more conducive to learning
based on differences in problem difficulty alone.

In Analysis 2, we evaluate the impact of problem type (MCQ
vs Fill-In) within mastery-based activities on student learning. To
measure the effectiveness of each approach, we analyze students’
performance on the post-test problems. As explained in Section
3.1, these post-tests are designed to assess how well students can
apply their recently mastered knowledge tomore complex problems
within the same topic (i.e. transfer problems).

5.1 Methods
Evaluating the impact of problem type on students’ learning re-
quires two steps. First, since only the students who mastered the
knowledge component took the post-test, and some students who
mastered the knowledge did not start or complete the post-test, we
must ensure that this attrition does not bias our outcomes. This as-
sessment is critical given that Fill-In problems, being more difficult
than their MCQ counterparts, might prompt students with lower
knowledge levels to attrit. Once we establish whether attrition is

balanced across conditions, we can estimate the effects of the prob-
lem types on student learning as measured by their performance
on the post-test.

To evaluate whether attrition was balanced across conditions,
we employed two tests. First, we compared the difference in attri-
tion rates between conditions to thresholds established by the U.S.
Institute of Education Sciences (IES) [21]. Next, we conducted a Chi-
Square test to estimate whether the attrition differed significantly
between conditions.

To evaluate whether students are more likely to learn while
working on Fill-In problems than MCQs, we estimated a mixed-
effect logistic regression model using the glmer package in R [5].
We regress indicators of whether the students got each individual
post-test problem correct on the first attempt on a binary indicator
for the Fill-In condition. We use this method because averaging
the post-test problem together would not have created a continu-
ous variable, as there were only two post-test problems for each
problem set. Therefore, a linear regression likely has a poor model
fit. Using a logistic regression model, we can treat each post-test
problem individually – this also allows us to include students even
if they did not complete both post-test problems. We include ran-
dom interprets for post-test problems to account for differences in
problem difficulty and students because students completed multi-
ple post-test problems. We also include random intercepts for the
students’ classes because their classroom context could influence
their learning behaviors, and students are often grouped within
classes with students of similar abilities.
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For any given post-test question 𝑗 completed by student 𝑖 , the
model for the likelihood of correctness is represented by Equa-
tion (2) where 𝛾0 is the fixed intercept, 𝜇𝑖 is the random intercept
for each student, 𝜇𝑐 is the random intercept for each student’s class,
and 𝜇 𝑗 is the random intercepts for each post-test problem. Let
Fill-In𝑖 be a binary indicator for whether a student is in the Fill-In
condition. The coefficient, 𝛾1, for the Fill-In problems, represents
the difference in likelihood of the students in the Fill-In condition
answering the post-test items correctly in comparison to the stu-
dents in the MCQs condition. Because assignment to condition was
random, 𝛾1 is the causal effect of Fill-In problems on mastery.

𝑙𝑜𝑔𝑖𝑡 (Student 𝑖 Gets Post-Test Problem 𝑗 Correct) = (2)
𝛾0 + 𝛾1Fill-In𝑖 + 𝜇𝑖 + 𝜇𝑐 + 𝜇 𝑗

5.2 Attrition
Table 2 details the experiment’s attrition rates and the balance test
statistics. The overall attrition rate was 27.07%. Attrition occurred at
three distinct levels: Firstly, 18.02% of students did not demonstrate
mastery in the learning component and thus were unable to take
the post-test. Secondly, 9.91% of students achieved mastery but
did not commence the post-test. Thirdly, a subset of students only
completed one problem of the post-test. These students were not
excluded from our analysis and are not reflected in the overall
attrition figure. Based on the results of both the IES threshold and
the Chi-squared test, suggesting that attrition was balanced across
conditions at all levels. However the differences in mastery rates
between the conditions were only marginally non-significant (p
= 0.006), thus we choice to incorporate a robustness check of our
effects estimation presented below.

5.3 Results
Table 3 presents the parameters of the model used to estimate the ef-
fect of problem type on post-test performance. There was a positive
causal effect of Fill-In problems on student performance on transfer
tasks. Specifically, students who engaged with Fill-In problem sets
were significantly more likely to provide correct responses in the
post-test compared to those who worked through MCQs (𝛾1 = 0.23,
SE = 0.06, p > 0.001). Putting this on the probability scale, students
in the MCQ condition had a 27% probability of getting either of the
transfer problems correct, whereas students in the Fill-In condition
had a 31% probability of getting the transfer item correct. Notably,
this higher likelihood of correctly answering post-test problems per-
sisted even after adjusting for the variance attributable to individual
students, their respective classes, and the problems themselves.

In our analysis, we also examined the variances of 𝜇, 𝜏 , to eval-
uate the variance in post-test performance attributed to students
and their classes. Over one-third, 34% of the variance was asso-
ciated with the random intercepts. A substantial portion of the
performance variance was associated with individual students (𝜏𝑖
= .83; 17% of the variance ). However, the class environment also
played a substantial role, accounting for a considerable proportion
of the variance (𝜏𝑐 = .60; 12% of the variance). This finding indicates
the importance of the student’s learning environment and peer
group in their performance. As part of our analysis of the potential
heterogeneity in outcome across different prior knowledge among

students, we also delve deeper into the impact of the learning en-
vironment on student outcomes in the upcoming section, Section
6.

Notably, this analysis included only post-test problems that stu-
dents attempted, thus excluding students who did not master the
knowledge component and those who did not start the post-test.
Furthermore, some students only completed one problem on the
post-test. Although we showed that the differences in attrition
across conditions were not significant, it is still possible that they
biased our outcomes. Thus, we reran the analysis, coding all of the
students who did not master or attrited in any way with a zero for
each post-test problem. The results of this robustness check model
revealed no difference in significance or magnitude of the causal
effect.

6 ANALYSIS 3: HETEROGENEITY IN THE
IMPACT OF PROBLEM TYPES DIFFERENT
LEVELS OF PRIOR PERFORMANCE

Finally, to address our last research question of whether the effect of
problem type problems on learning varies based on students’ prior
ability, we ran one final analysis. This allows us to assess a potential
nuance of how Fill-In problems benefit student learning. As detailed
in Section 4, Fill-In problems were more difficult than the equivalent
MCQs. As such, students of varying mathematical proficiency may
derive different benefits from each problem type. It’s plausible
that higher-knowledge students potentially benefit more from the
critical thinking, retrieval, and recall required to solve the Fill-In
problems, which lack the options provided in MCQs. On the other
hand, lower-knowledge students might find the availability of the
options in MCQs beneficial in developing intuition and learning
the concept, as distractors can highlight potential misconceptions
and gaps in knowledge. In this section, we explore the potential
heterogeneity in the benefits of the different problem types across
students with different prior performances.

6.1 Methods
To explore whether the effect of problem type varies by prior per-
formance, we added an interaction between students’ prior perfor-
mance and their experimental condition as shown in Equation 3.
The prior performance was calculated as an average of the student’s
scores from all problems they completed prior to prior to partici-
pating in the experiment. In our initial sample, 1,643 students had
completed at least ten problems prior to participating in the experi-
ment, and the rest were excluded from the current analysis. This
exclusion helps ensure accuracy in inferring the students’ mathe-
matical ability, as a limited number of completed problems might
not reliably indicate their ability. This exclusion was proportionally
distributed across both Fill-In and MCQ conditions–19.96% and
19.72% of students, respectively–ensuring no bias in our estimates
due to imbalances in condition-specific sample sizes. In the filtered
sample, prior performance scores ranged from 14.29% to 100% with
a mean of 70.05% and a deviation of 15.02%. The model standardized
the prior performance for better interpretability by z-scoring the
prior performance scores.
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Table 2: Attrition analysis at four-levels: overall, did not acquire mastery, did not start post-test and did not complete post-test.

All Fill-In MCQ |𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 | IES Threshold 𝜒2 p

Overall attrition 27.07% 27.02% 27.13% 0.11% 5.40% 1.24 0.266
Did not reach mastery 18.02% 18.93% 17.18% 1.75% 5.70% 3.37 0.066
Did not start post-test 9.05% 8.09% 9.95% 1.86% 6.00% 1.44 0.231
Did not complete post-test 8.45% 7.92% 8.93% 1.01% 6.30% 1.72 0.190

Table 3: Model estimating the effect of Fill-In Problems on
Post-Test Performance

Model 1

Predictors Log-Odds SE p

Intercept -1.02 0.27 <0.001
Fill-In 0.23 0.06 <0.001

Random Effects
𝜎2 3.29
𝜏00 0.83𝑖

0.60𝑐
0.25𝑗

ICC 0.34
N 4940𝑖

363𝑐
4𝑗

Observations 9657

𝑙𝑜𝑔𝑖𝑡 (Student 𝑖 Gets Post-Test Problem 𝑗 Correct) = (3)
𝛾0 + 𝛾1Fill-In𝑖 + 𝛾2Fill-In𝑖Prior Performance𝑖 + 𝜇𝑖 + 𝜇𝑐 + 𝜇 𝑗

6.2 Results
Table 4 displays the results for Model 5. The main effect (𝛾1) is
the effect of the Fill-In problem for the students who received the
average score because scaled prior performance is centered at the
mean. The effect of Fill-In on the likelihood of getting the post-test
correct for students with average prior performance effect is non-
significant (𝛾1 = 0.13, SE = 0.09, p = 0.156). The interaction between
the prior performance and the Fill-In problem set is significant and
positive (𝛾3 = 0.20, SE = 0.10, p = 0.042). To ensure that this effect was
not a spurious product of our number of prior problems completed
cut point of 10, we ran model 3 varying outputs ranging from one
prior problem through ten, which did not change the significance
or direction of the effects. Therefore, the effect of Fill-In problems
compared to MCQs appears to depend on the student’s prior math
ability–especially for high-performing students. Fill-In problems
led to better post-test performance, while for lower-performing
students, the effect was smaller and possibly negative.

Table 4: Exploring potential heterogeneity in the students’
performance on the transfer item across problem-types.

Model 3

Predictors Log-Odds SE p

Intercept -3.45 0.24 0.001
Fill-In 0.13 0.09 0.156
Prior Performance (Z-score) 0.55 0.08 <0.001
Fill-In x Prior Performance 0.20 0.10 0.042
(Z-score)

Random Effects
𝜎2 3.29
𝜏00 0.61𝑖

0.77𝑐
0. 𝑗

ICC 0.32

N 1643𝑖
100𝑐
4𝑗

Observations 3253

We visualize the interaction between Fill-In problems and prior
performance in Figure 4 by plotting the predicted probability of a
correct response on the post-test for each post-test attempt by Prior
Performance for both Fill-In and MCQ conditions. These probabili-
ties were predicted using Model 3. Notably, the visualization shows
a negative effect of Fill-In problems for students with lower prior
scores. To test whether this effect is significant, we ran a post-hoc2
model based on Model 5 with prior performance low-end centered
so that the main effect will be for the effect of Fill-Ins for students
with the lowest prior performance scores. The main effect was not
significantly significant 𝛾10 = -0.61, SE = 0.38, p = 0.114). In sum-
mary, we have strong evidence that the effect of Fill-In problems is
greater for students with higher prior performance compared with
students with lower prior performance. However, there is insuffi-
cient evidence that the effect of MCQs is negative for students with
lower performance.

2The full model output is available in the supplemental materials.
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Figure 4: Interaction between prior performance(%) and the likelihood of a correct response on the transfer item on the post-test.

7 DISCUSSION AND FUTURE WORKS
Our analysis found that, on average, problem sets with Fill-In prob-
lems were more difficult and led to better learning outcomes than
MCQs. However, we observed that the benefits of Fill-In problems
have certain contextual constraints. The impact of Fill-In problems
on learning was only significant for higher-knowledge students,
and there is some evidence that MCQs may be more beneficial for
lower-knowledge students. In sum, despite the nuances exposed
by our analyses, Fill-In problems have a more positive effect on
student learning than MCQs.

One possible explanation for why Fill-In problems were more
effective at improving learning than MCQs is that they increase the
likelihood that students will participate in productive struggle. In-
ducing productive struggle has been shown to increase learning [7].
Often this is done by creating desirable difficulties—such as varying
presentation of content [45], interweaving knowledge components
instead of presenting them sequentially [41], spacing content deliv-
ery [11] and retrieval practice [24]-–during instruction and practice.
ORP problems in non-mathematical problem-solving settings are
often associated with retrieval practices. Although mathematical
Fill-In problems don’t solely rely on retrieval, they do require the
student to generate their answers independent of any prompts and,
therefore, might have a similar benefit to retrieval activities. Taken
together, the findings of higher difficulty and greater post-test per-
formance caused by Fill-In problems also align with findings of
desirable difficulties, which are often associated with lower stu-
dents’ performance, even as these design choices can positively
affect learning as measured by distal outcomes [40, 43, 46].

Further evidence that the interplay between problem type, dif-
ficulty, and learning may be inducing productive struggle can be
found in the other differences in student behavior across conditions.
In Table 1, we reported that the students in the Fill-In problems
invested more time presumably thinking before taking their first ac-
tion than those in theMCQs because they perceived the problems to
be more difficult. They were also more likely to utilize hints. These
differences may indicate that Fill-In problems are producing better
learning behaviors in students, which may be underlying causal
mechanisms producing the differences in learning outcomes. Future
research should study these potential processes by which problem
types impact student learning. One way of doing this would be to
use multiple mediation analysis, to evaluate causal paths that lead
from problem type to mastery demonstration to discern and assess
how problem types influence student behaviors which, ultimately,
cause differences in learning outcomes.

Furthermore, the analysis in Section 6 exploring the heterogene-
ity of the Fill-In effects indicates that not all students benefit equally
from Fill-In problems. We observed that students with higher prior
performance benefited more than students with lower prior perfor-
mance. Although this finding implies that students with lower prior
performance might benefit more from MCQs than Fill-In problems;
however, we cannot make more substantial claims due to the spar-
sity of students with low prior performance in the data. Despite this
uncertainty, our analysis shows impact differentials for Fill-In based
on students’ knowledge before beginning the activity. There are
some plausible explanations for this phenomenon. High-knowledge
students may have the ability to learn the concept addressed in
the problem sets but may need the challenge of having to produce
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the answers themselves without the MCQ options to truly benefit
from the activity. Alternatively, lower-knowledge students may
benefit from the options in the MCQs but are less likely to learn
the concepts well enough to transfer their knowledge to problems
where they must provide the answer independently. Regardless
of the underlying mechanisms behind the penalization effect, the
finding provides evidence that LX designers and instructors may
have to consider adapting problem types to students’ needs.

8 LIMITATIONS
There are a few key limitations of our work. First, we conducted
experiments on two very specific content areas, where we found ev-
idence that content may influence the effect of the problem type on
learning. This research should be replicated using different content
areas across different subjects to fully understand the heterogeneity
of the impact the problem types can have on student learning. A
further limitation of the current study is the lack of student de-
mographic information. The CBLP platform we used in this study
does not collect personally identifiable information about the stu-
dents, per the IRB Protocol; thus, we cannot make any advances in
understanding the more fine-grained differences within our sample.

Our work has an experimental design limitation as we only used
Fill-In problems for our post-test. Concerns regarding this design
limitation are valid, yet, we argue that knowledge, by nature, should
be transferable upon mastery and, as such, would be independent
of the instrument used during evaluation. While such assumptions
regarding transferability can be problematic, the balanced post-
test completion rates across conditions indicate that students from
both conditions were comfortable with the design of the post-test.
However, we feel that using the Fill-In problem is justifiable as
Fill-In problems are an accurate measure of student ability. Further
exploration using a combination of both MCQs and Fill-In prob-
lems would help establish the optimal approach in the design of
assignments as the combination of both activities could enhance
learning outcomes or, conversely, the switch between problems in
the post-test could cause cognitive load leading to higher dropout
rates. Similarly, additional work exploring the benefits and draw-
backs of other types of close and open-ended activity design would
be beneficial to understand their assessment and learning value.

9 CONCLUSION
Overall, findings from the present study present causal evidence
that problem types influence how and whether students learn. We
observed that, on average, students had better learning outcomes
when using mastery-based assignments with Fill-In problems com-
pared to MCQs. We also demonstrated the robustness of our find-
ings by evaluating them across various contextual scenarios, i.e.,
pre-pandemic, pandemic, and summer sessions. We took a compre-
hensive approach and evaluated the heterogeneity effects of the
two methods, where we observed that high-performing students
benefited more from Fill-In problems.

We hope that the findings of this paper can help inform the
design of learning experiences on CBLPs, as we provide evidence
that problem types have an impact on learning outcomes. While
our findings present the potential benefit of using Fill-In problems
in designing learning activities, it is important to highlight that

different students, as indicated by their prior performance, may
require different types of activity design in order to facilitate more
effective learning. We believe that LX designers and instructors will
benefit from our findings when designing learning and assessment
activities where they are continually required to balance the trade-
offs between the use of open and close-ended activities to facilitate
learning while assessing student knowledge.
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