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ABSTRACT A of students benefits more from teaching method 1 than method

Contextual multi-armed bandits have previously been used to per-
sonalize student support messages given to learners by supplying a
model with relevant context about the user, problem, and available
student supports. In this work, we propose using careful feature
selection with relevant domain knowledge to improve the qual-
ity of student support recommendations. By providing Bayesian
Knowledge Tracing mastery estimates to a contextual multi-armed
bandit as user-level context in a simulated environment, we demon-
strate that using domain knowledge to engineer contextual features
results in higher average cumulative reward, and significant im-
provement over randomly selecting student supports. The data
used to simulate sequential recommendations are available at https:
/lost.io/sfyzv/?view_only=351fb8781d2c4f3bbc9d7486762d563a.
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1 INTRODUCTION

The drive towards personalization has been a foundational tenet
in advancing the research and methodologies within the Learning
Analytics community [28]. While personalized learning research is
a broad sub-field, one core aspect of personalized learning research
involves the tailoring of instruction and remediation to individ-
ual students’ needs [23]. More specifically, personalized learning
involves a qualitative interaction between two or more groups of
students who benefit from different kinds of instruction (i.e. group
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2, while group B of students benefits more from method 2 than
method 1). Finding and exploiting these qualitative interactions to
benefit students is a desirable goal, and randomized experiments
comparing different educational interventions have been incorpo-
rated into a number of online learning platforms to attempt to find
these qualitative interactions [20-22]. In an ideal setting, these in-
teractions can be exploited to improve student learning as soon as
they are found, but due to the nature of A/B testing, students are
held in condition for the duration of an experiment, meaning that
if one intervention proves to be more effective, students in other
conditions are at a disadvantage through no fault of their own.

Reinforcement learning (RL) is a common machine learning ap-
proach that is well-suited to many different personalization tasks,
including instructional sequencing [7] and feedback generation [1].
It also provides a potential solution to unfair treatment of students
during A/B testing through adaptive experimentation [24]. Specifi-
cally, the use of multi-armed bandit algorithms (MABs) can both
learn these qualitative interactions and make use of them to im-
prove student learning outcomes. This is often done by supplying
a MAB with context about the learner and learning environment.
Contextual multi-armed bandit algorithms (CMABs) require side in-
formation about students, problems, and potential interventions in
order to both learn which interventions are better in what contexts,
and to identify the appropriate intervention to give in a provided
context. The question of what features to supply to a CMAB as
context is vital.

In this paper, we explore the effects of different features on the
quality of CMAB recommendations in a simulated environment. We
propose the use of expert features as context to a student support
recommendation CMAB, namely the output of another well-studied
technique for evaluating student knowledge: Bayesian Knowledge
Tracing (BKT). We then conducted multiple simulations of CMABs
using standard average features and BKT knowledge estimates to
explore the effectiveness of expert features on recommendation
quality.

2 BACKGROUND
2.1 Contextual Multi-Armed Bandit Algorithms

Multi-armed bandit algorithms are RL agents which choose one
action out of an available set of actions. A reward function is defined
in relation to these actions as a way to incentivize "good" behavior
by the agent, which learns over time the relationships between
actions and their rewards. A key assumption of MABs is that actions
are independent: the sequence of actions has no impact on potential
rewards. This makes MABs less computationally complex than
other RL decision-making agents.
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Depending on the nature of the problem, supplying a MAB with
side information can allow the agent to make more informed de-
cisions. These Contextual Multi-Armed Bandits have been stud-
ied in a number of content recommendation environments [13],
and have been utilized to great effect in multiple contexts within
intelligent tutoring systems (ITS), including problem sequencing
[5], tutoring action recommendation [14], and student support
(hint/explanation) recommendation [18].

Supplying MABs with context introduces a host of additional
challenges. Different modeling techniques can be used to predict
future rewards, ranging from linear regression to deep learning [26].
The trade-offs between these modeling techniques are much the
same for CMABs as for other domains: regressions require less com-
putational power and are more easily explainable, while neural net-
works can exploit nonlinear relationships that are missed by a one-
layer model. CMABs must also balance exploration of the relation-
ship between context and reward with exploiting previously learned
information, the well-studied exploration/exploitation trade-off [3].

2.2 Expert Features

While the choice of which CMAB to implement is clearly important,
the specific context provided to a bandit algorithm is equally worthy
of consideration. Previous implementations of CMABs in ITS have
incorporated student-level features about how students interact
with the ITS such as prior exercise performance [5], median first
response time, and problem completion percentage [18, 19]. If avail-
able, student demographic information or problem-specific context
may also be encoded as features. However, including unnecessary
features has the potential to not only decrease model performance,
but to disadvantage students with less-common feature values [12].
Thus, the benefits and risks of adding or changing features of a
CMAB algorithm must be carefully considered.

The use of expert engineered features in other machine learning
domains has often yielded similar results to deep learning meth-
ods when applied to student modeling problems [2, 9]. The idea of
utilizing engineered features as context in a CMAB recommender
system has yet to be explored based on the available literature, but
the primary barrier to using feature engineering for this problem is
domain knowledge. What features should be provided to a model
to allow for personalization? Empirical studies of student support
recommendation systems have found that context related to prior
knowledge was the most critical for achieving qualitative interac-
tions between different student supports and groups of students
[19]. Features which encode information about prior knowledge,
then, are vital context to achieve personalization.

2.2.1 Knowledge Tracing. Previous models have encoded prior
knowledge as an average of prior problem correctness [18, 19].
While this is a rough measure of a student’s general knowledge,
predicting student knowledge of particular knowledge concepts, or
Knowledge Tracing (KT), is a well-established problem in educa-
tional data mining. Techniques for assessing student knowledge
states have involved Hidden Markov Models [6], logistic regression
[4, 16, 25], recurrent neural networks [17], dynamic key-value mem-
ory networks [27], and attention-based transformer models [15].
Explainability is a key concern in student support recommender
systems. Given its interpretability and cognition-based model of
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knowledge acquisition and retention, Bayesian Knowledge Tracing
(BKT), which models student knowledge of skills as a latent (hid-
den) variable in a Markov chain, could potentially serve as a better
feature of student knowledge than an average. Moreover, since
BKT makes predictions on a per-skill basis, student knowledge of
different skills is modeled independently.

2.3 ASSISTments

The data used in this work came from ASSISTments. ASSISTments
is a free-to-use online learning platform which allows teachers to
assign problem sets from open-source curricula to their students.
Students must correctly answer a given exercise before continuing
on, and students are able to request help in the form of written
hints and explanations.

2.3.1  Problem-Level Support. Most problems within ASSISTments
are associated with between two to four problem-level supports in
the form of either sets of hints or explanations. Hint sets contain
multiple smaller bits of tutoring that the student can request in
sequence, forfeiting a portion of their final score on a question with
each requested hint. Explanations are full, complete solutions to
the given problem and contain the correct answer. Requesting an
explanation forfeits all credit for the exercise.

2.3.2  Student Support Delivery Service. At the beginning of a prob-
lemset, the Student Support Delivery Service determines student
supports to be made available to the student based on a variety of
factors. Relevant to this study, sometimes a student will be given
a random selection of the available student supports for a given
problem set. Students can receive a set of hints, an explanation, or
simply the correct answer for each problem within the problem
set, but only one of these options will be made available to the
student on each problem. Hint sets usually contain several parts
which attempt to break down the problem into smaller parts, while
explanations contain the answer to the problem, often in the form
of a worked example.

3 METHODS

We propose the use of expert features as contextual input to a CMAB
recommender agent. Specifically, the use of Bayesian Knowledge
Tracing with a forgetting parameter to estimate student knowledge
of the relevant skill. This knowledge estimation is given as a user-
level feature to a CMAB agent, alongside problem and tutoring
strategy-level features. To examine the impact of BKT state pre-
dictions as contextual input, a simulation study based on random
student support recommendations was conducted.

3.1 Data Collection

Data for this study was collected from the Student Support Delivery
Service within the ASSISTments platform between May 2021 and
September 2023. The primary data used to simulate a recommen-
dation agent came from these randomly assigned tutor strategies
merged with relevant problem, user, and skill information. These
random instances were then filtered by whether or not the stu-
dent requested help on the associated problem, and whether or not
the student had completed another question as part of the same
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assignment. The final simulation dataset yielded 330,071 rows rep-
resenting 40,711 students interacting with 5,767 different problems
tagged with 190 distinct skills. Each row represents a student view-
ing a student support on a single problem. A full description of
the information available in the simulation dataset can be found
in appendix A. Since every tutor strategy in each row of the final
simulation dataset was given at random, we can use this data as a
representation of the population distribution of the ASSISTments
userbase.

3.2 Model Selection

Multiple CMAB algorithms were considered for implementation in
this study. In order to make the impact of feature selection more
apparent, only one CMAB was simulated, with the differences be-
tween simulated runs being limited to the features considered by
a variant of the same underlying model. In the context of student
support recommendation, model explainability was prioritized, lim-
iting our search space to regression-based approaches to CMABs.
Due to its efficacy in previous simulations and its prior empirical
study in Prihar, Sales, & Heffernan [19], Dynamic Linear Epsilon
Greedy was chosen.

Since one of the simulations required state predictions from
a BKT model as context, a BKT model with an enabled forget-
ting parameter was trained on available student performance data
collected during the 2020-2021 school year in the ASSISTments
platform. While forgetting parameters have often been manually
disabled in BKT models since their inception, explicitly modeling
forgetting behavior often grants a sizable performance boost [10].
Performance data from the 20-21 year was chosen for two reasons.
First, since the simulation data contains data from the 2021-2022
school year onwards, the 20-21 school year performance data is
disjoint from the data used in simulation. Second, prior work has
demonstrated BKT models to retain sufficient generalizability in
the short-medium term [11], meaning a BKT model trained on the
20-21 school year would likely be transferable to future years. The
final BKT model had an accuracy of 0.733 and an AUC of 0.757
when evaluated on its training data.

After fitting the BKT model, all problem logs containing a (stu-
dent, skill) pair found in the simulation data were collected. BKT
state predictions were computed at every relevant timestep, and
then merged with the simulation data to provide the BKT state
estimation on the associated skill for every row of the simulation
data.

3.3 Simulation Design

The following protocol was used to simulate each CMAB making a
series of sequential recommendations:

(1) Initialize the CMAB.

(2) Select a single instance of a student recieving and viewing
support from the SSDS.

(3) Provide relevant user, problem, and support features to the
CMAB.

(4) Have the CMAB recommend a support for the hypothetical
student to receive.
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Table 1: A comparative analysis of the three models (Random,
DLEG, and DLEG & BKT) based on average, maximum, and
minimum

‘ Minimum Average Maximum
DLEG + BKT | 339,285 340,867 343,132
DLEG 335,986 338,031 340,704
Random 336,016 336,461 336,813

(5) If the support given by the CMAB matches the support given
by the SSDS, update the CMAB using the next problem cor-
rectness as the reward. Otherwise, repeat from step 2.

(6) Continue repeating steps 2-4 until the desired number of
recommendations have been made by the CMAB.

One run of a simulation consists of 1,000,000 sequential recom-
mendations with updates. Three different models were simulated:
one DLEG bandit using prior percent correct as the user feature, one
DLEG bandit using BKT state predictions as the user feature, and
one random selection model. Each model was simulated five times
to evaluate the significance of any differences in the cumulative
reward distributions of each model.

4 RESULTS

Figure 1 illustrates a comparative analysis of three models - ran-
dom, DLEG, and DELG & BKT - with 95% confidence intervals.
These intervals depict the variability in the mean of each model,
highlighting the potential range of performance outcomes. Wider
intervals, as observed in the DLEG model, signify greater uncer-
tainty, while narrower intervals, as seen in the random model,
suggest less uncertainty and more reliable results.

The 95% confidence interval for the random model spans from
336,050.17 to 336,871.03, indicating a high level of precision. In
contrast, the DLEG model exhibits a broader interval, ranging from
335,767.87 to 340,293.73, suggesting increased uncertainty. Similarly,
the 95% confidence interval for the DLEG & BKT model extends
from 338,986.75 to 342,748.05, indicating a considerable degree of
uncertainty.

Notably, a slight overlap in the confidence intervals exists for
the DLEG & BKT model and the DLEG model. This overlap, though
small, suggests enough significant difference to further investigate
the models. Thus, we aggregated the reward to find the average,
maximum, and minimum for the three models.

Table 1 shows the average, maximum, and the minimum rewards
for the models. For instance, the DLEG & BKT model demonstrated
an average reward of 340,867, a maximum of 343,132, and a min-
imum of 339,285 across the five simulation runs. In context, this
means that out of the 1 million recommendations that were given
as part of a simulation, the student got their next exercise correct
343,132 times in one of the simulations running the DLEG & BKT
model.

To further investigate the differences between the simulation
types, we conducted an ANOVA to try and detect a difference
between the mean cumulative rewards. The results of this analysis
are in table 2. The test concludes that at least one of the simulation
types has a mean that differs from the other two. To investigate
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Model Comparison with 95% Confidence Intervals

DLEG & BKT KModel 1

DLEG Model 4

Random Model 1

95% Cl

336000 337000 338000

339000 340000 341000 342000 343000

Reward

Figure 1: An error bar plot comparing the mean reward and 95% confidence intervals of the three models (Random, DLEG, and

DLEG & BKT) to provide overview of their performance.

this further, we conducted a Tukey multiple comparisons test to
examine the differences between each simulation type. The results
of the Tukey test can be found in table 3. We found that the DLEG
+ BKT model was significantly different than both the random
model and the standard DLEG model, while the difference between
standard DLEG and random was not significant. A plot of these
mean differences and their respective confidence intervals can be
found in figure 2.

5 DISCUSSION

In this study, we examined the influence of various features on the
quality of recommendations generated by CMAB algorithms within
a simulated environment. Our findings reveal the advantages of
using DLEG & BKT together: we found a statistically significant
difference between the standard DLEG model and DLEG with BKT
as a user feature. Though this difference is statistically significant,
it is a marginal one: we estimate that DLEG+BKT only outper-
forms DLEG by around 3000 cumulative reward. Stated another
way, students in a DLEG+BKT simulation got their next problem
correct after looking at a student support 3000 more times than
students in a standard DLEG simulation. The differences between
DLEG+BKT and random selection were larger, but still only amount
to a difference of around 4500 cumulative reward.

However, it is important to acknowledge the limitations of our
work, which offer avenues for future research. First, our features
were static, and not computed at every timestep. Future work can
dynamically compute features at each timestep, which could en-
hance the adaptability of the model. Given that users differ at every
timestep, tailoring features to individual users could significantly
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contribute to the model’s efficacy. Implementing a dynamic feature
computation would be beneficial because we’d be able to assess each
user’s features at each timestep. Additionally, our simulation relied
on randomly sampled data, and students’ support assignments were
random.

Furthermore, integrating the Item Response Theory (IRT) model
as a measure of difficulty holds promise [8]. At the moment, the
best measure of difficulty we have is relying on the average cor-
rectness/incorrectness of a problem. Incorporating IRT could help
elicit more accurate and reliable insights, and improve the overall
performance of the recommendation system.

Finally, while our simulation’s results show promise, and our
simulations were conducted by resampling actual student data, our
results were in a simulation. It remains to be seen if the gains seen
in simulation could transfer to actual students, and an empirical
study implementing DLEG+BKT would be necessary to fully assess
the effectiveness of this method.

As discussed in the Background section, the exploration of us-
ing engineered features in the context of CMAB recommendation
system is an underexplored area. However, our work has shown
promising results by incorporating expert features using the BKT
model with CMAB, instead of a traditional average-based approach.
These preliminary results validate the advantages of using domain-
specific features, and pave the way for further exploration. We
anticipate the results could enhance the reinforcement learning
system and contribute to a more personalized and effective recom-
mendation system.
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Table 2: ANOVA table comparing different simulation types

‘ Degrees of Freedom Sum of Squares Mean Square F Value p-value

Simulation Type 2 49886190 24943095 13.07  0.00097
Residuals 12 22899305 1908275

Table 3: Results from a Tukey multiple comparisons test

Simulation Type ‘ Difference in Means Lower Bound Upper Bound p-value (adjusted)
(DLEG+BKT) - DLEG 2836.6 505.7509 5167.4491 0.0178
Random - DLEG -1570.2 -3901.0491 760.6491 0.2120
Random - (DLEG+BKT) -4406.8 -6737.6491 -2075.9509 0.0008

95% family-wise confidence level

dleg+bkt-dleg

random-dleg
|

-6000 -4000  -2000

I I
2000 4000

i
0

random-dleg+bkt

Differences in mean levels of sim_type

Figure 2: Confidence intervals for the differences between simulation type means.

6 CONCLUSION possible problem-level feature. Future work examining expert fea-
tures for CMAB algorithms can expand on this concept by running
adaptive experiments to empirically validate the phenomena seen
in simulation.

In this work, we proposed the use of BKT mastery estimations
as a user-level feature in a CMAB to recommend student support
messages to learners. Through multiple simulations, we demon-
strated that using BKT predictions as a feature significantly im-
proves model performance over random selection and averages as ACKNOWLEDGMENTS
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A FEATURE DESCRIPTION

A.1 Simulation Dataset

e user_xid: id associated with a particular student user

e assignment_log_id: id associated with one student attempt-

ing one assignment

problem_id: id associated with a particular problem

selected_strategy_id: id for the tutor strategy assigned by

the SSDS

o alt_strategy_ids: ids for other tutor strategies that could

have been assigned by the SSDS for the given problem

problem_log_id: id associated with one student attempting

one problem

e hint_count: the number of hints accessed by the student
on the given problem

e bottom_hint: true if the student was shown the problem’s

answer by a support, false otherwise

skill_id: id of the skill which tags the current problem

start_time: timestamp of when the student was first shown

the current problem

o discrete_score: 1 if the student answered the problem cor-
rectly on the first attempt, 0 otherwise

e correct_predictions: probability that the student will an-

swer their next exercise correctly BEFORE the current exer-

cise was completed, as calculated by a BKT model

state_predictions: probability that the student has the cur-

rent problem’s skill mastered BEFORE the current exercise

was completed, as calculated by a BKT model

e assignment_complete: true if the student completed every

problem in the assignment, false otherwise

next_problem_correctness: discrete_score for the next

problem of the student’s current assignment

A.2 User Features

user_xid: id associated with a particular student user

n: number of problems completed by the given student
correct: average discrete_score across all problems com-
pleted by the given user
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A.3 Problem Features

e problem_id: id associated with a particular problem

e n: number of times the given problem has been completed
by students

correct: average discrete_score across all users who have
completed the given problem

subject_nbt: 1 if the problem is about numbers and opera-
tions in base 10, 0 otherwise

subject_ee: 1 if the problem is about equivalent expressions,
0 otherwise

e subject_g: 1 if the problem is about geometry, 0 otherwise
e subject_ns: 1 if the problem is about the number system, 0
otherwise

subject_oa: 1 if the problem is about operations and alge-
braic thinking, 0 otherwise

subject_nf: 1 if the problem is about numbers and opera-
tions with fractions, 0 otherwise

subject_sp: 1 if the problem is about statistics and probabil-
ity, 0 otherwise
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subject_rp: 1 if the problem is about ratios and proportional
relationships, 0 otherwise

subject_md: 1 if the problem is about measurement and
data, 0 otherwise

Tutor Strategy Features

tutor_strategy_id: id associated with a particular tutor strat-
egy

answer_given: 1 if the tutor strategy contains the problem’s
answer, 0 otherwise

message_count: normalized representation of the number
of messages in a chain of hints

In_character_length: natural logarithm of the length of
the tutor strategy in characters

contains_equation: 1 if the tutor strategy contains an equa-
tion, 0 otherwise

contains_image: 1 if the tutor strategy contains an image,
0 otherwise

contains_video: 1 if the tutor strategy contains a video, 0
otherwise
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