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Information-Theoretic Approach for Subgrid-Scale Modeling for
High-Speed Compressible Wall Turbulence

Emily Williams* and Adridn Lozano-Duran’
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139

The problem of modeling for turbulent flows is investigated within the framework of
information theory. A wall-modeled large-eddy simulation (WMLES) of a compressible
turbulent channel flow is conducted using an equilibrium wall model and either the dynamic
Smagorinsky (DSM) or information-preserving (IP) subgrid-scale (SGS) model. The IP SGS
model is formulated using the Kullback-Leibler (KL) divergence. The model aims at minimizing
the information lost between the probability mass distribution of the interscale energy transfer
and viscous dissipation at different scales. The statistical quantities of interest are the mean
velocity and mean temperature profiles. It is found that the IP SGS model matches or exceeds
the accuracy of the DSM SGS model when compared to direct numerical simulation (DNS) data
for the compressible channel.

I. Introduction

URBULENT flows for external aerodynamic applications cannot be simulated by solving all the fluid motions of

the Navier-Stokes equations because the range scales involved is large enough such that the computational cost
becomes prohibitive. Thus, current state-of-the-art computational fluid dynamics (CFD) algorithms solve a modified set
of Navier-Stokes equations for large-eddy simulation (LES). In LES, the large eddies are resolved, and the effect of
the small scales on the larger eddies is modeled through a subgrid-scale (SGS) model. Recently, E. Williams and A.
Lozano-Durén [1] analyzed the error scaling in predicting statistical quantities of interest with Mach number, Reynolds
number, and grid resolution of various SGS models for LES of high-speed channel flows. The errors in the prediction
of statistical quantities of interest informed by this analysis were estimated to be at least 10% to 20% in the mean
temperature profile and 1% to 3% in the mean velocity profile for real-world applications, such as the Lockheed Martin
X-59 QueSST (Quiet SuperSonic Technology). These findings further motivate investigation toward improving the
models in order to predict statistical quantities of interest for external aerodynamic applications within the accuracy
required by industry and academia.

Significant ongoing efforts have been devoted to capturing the essential flow physics in the form of reduced-order
models. Modeling techniques to date have disregarded an essential principle of physics: the conservation of information,
which may aid in the development of a new class of models. Information theory is the science about the laws governing
information and relies on the notion of information as a fundamental property of physical systems [2]. Reduced-order
modeling of chaotic systems can be posed as a problem of conservation of information. Lozano-Durdn and Arranz [3]
formulated the problem of modeling for high-dimensional, chaotic dynamical systems in information-theoretic terms.
Modeled systems contain a smaller number of degrees of freedom than the original system, which in turn entails a loss
of information. Therefore, the primary goal of modeling is to preserve the maximum amount of useful information from
the original system. To this end, we will explore the potential of information theory in modeling these flows.

Lozano-Duran et al. [4] applied an information-theoretic approach of causality to study the dynamics of energy-
containing eddies for wall turbulence and discussed the potential of information transfer in the design of reduced-order
models. Particularly noteworthy is the work by Akaike [5], where competing models are selected on the basis of
the relative amount of information from observations similar to Bayesian inference. Shavit and Falkovich [6] used
information capacity to couple information and modeling to study the turbulence cascade. However, studies coupling the
concept of information theory specifically toward advancing modeling techniques for turbulent flows are not abundant.
The objective of this work is to assess this formulation of modeling for a high-speed compressible turbulent channel flow.
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I1. Technical Approach

A. Preliminaries

We introduce preliminary concepts of information theory required to formulate the problem of modeling. Consider
the discrete random variable X taking values equal to x with probability mass function p(x) = Pr{X = x} over the finite
set of outcomes X of X. The information of observing the event X = x is defined as [7]

I (x) = =logy [p(x)]. (1)

The units of 7 (x) are bits, as set by the base chosen for this case. If we consider tossing a fair coin such that
p(heads) = p(tails) = 0.5, the information of getting heads after one flip is 7 (heads) = —1log,(0.5) = 1 bit. In other
words, observing the outcome of flipping a fair coin provides one bit of information. If the coin is completely biased
toward heads, no information is gained since the outcome was already known before flipping the coin. Thus, information
is the statistical notion of how unlikely it is to observe an event. The information 7 (x) is the number of bits required to
unambiguously determine the state x.

The average information in X is given by the expectation (-) over all the possible outcomes, defined as

H(X) =(T(x)) = > =p(x)log,[p(x)] = 0. @)

xeX

Equation (2) is referred to as the Shannon entropy. In flipping a fair coin  times, the entropy H = — 3, 0.5" log,(0.5") = n
bits. Thus, Eq. (2) corresponds to the minimum average number of bits needed to encode a source of n states with
probability distribution p [7]. So, H is zero when the process is completely deterministic, with no uncertainty in the
outcome.

Interpreting information in the form of bits in terms of uncertainty is used in the formulation of the Kullback-Leibler
(KL) divergence. If we consider two probability mass distributions, p(x) and ¢g(x), the KL divergence is defined as

@)=Y pliog 2,
KL(p.q) ;{pu) 02 3)

which is a measure of the average number of bits required to recover p(x) using the information in g(x). The KL.
divergence also represents the information lost when g(x) is used to approximate p(x). Note that Eq.(3) is an extension
of Eq.(2) and can be referred to as relative entropy [8]. Thus, the KL divergence is equal to zero when the probability
mass distributions are exactly the same. These definitions are applicable to scalar random variables, but can be
generalized to a vector of random variables with a joint probability.

B. Information Theory for Modeling
The goal of modeling is to preserve the maximum amount of useful information from the original system [3].
Consider a dynamical system governed by

"' = f(q"), 4)

where we have ¢" = [¢7,. .., q;.’, .. -»q'y] as the state vector at time #, with N being the total number of degrees of
freedom in Eq. (4). We define f as the function that advances the state of the system through time. We consider the
partition of the phase-space of the full system

q"=19".q9"]. (5)
We aim to model the subset of the phase-space denoted by ¢" = lq},-- > q’;\.]] in Eq. (5), where N < N are the degrees

of freedom of the model. Since ¢" is the state to be modeled, q’" represents the inaccessible degrees of freedom that
must be accounted for by the model. The dynamics of the modeled state is governed by

T =@, (6)

where } are the components of f corresponding to the states ¢"'. We now consider a model with access to the information
contained in ¢" but not to the information in ¢””*. The governing equation for the model is denoted by

qugt)ldel = fmodel(zin)v (7)



Downloaded by Adrian Lozano-Duran on June 28, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2022-3326

where g'"*l | is the model prediction, which does not need to match the exact solution g"*' from Eq. (6). We want to
find f 0401 that predicts the future state to within some error & defined as

~n+1 ~n+l
||¢I$;de| n+ || <e, ()
where || - || is the L; norm. This error constraint can be relaxed to
~n+l ~n+l
P (@eaer) = (@I < &, ©)

where p(g"*") is the true probability distribution of the system state and p(g'=*L ) is the probability distribution of the
model state. Note that this constraint is weaker in that it is possible that a model can replicate the statistics of the actual
state, yet the dynamics of the model may not coincide with the true state. Nevertheless, the error defined by Eq. (9)
yields an estimated upper bound for the expectation of the modeling error of probabilities.

We reintroduce the KL divergence between (@) and P(ag1:he1) as

n+l)

_ @
KL Ghe) = Y 0@ log L2 (10)
p(qmodel

with KL(g"*!, ’J&;éel = 0 if and only if the model predictions are statistically identical to those from the original system.
It can be shown via the Pinsker’s inequality [9] that

KL@" Tieha) = 575 1P @sit) ~ p@ DI (11)
Substituting to reintroduce the prescribed error for the upper bound gives
~n+l —n+l &
KL( qmodel) =912 (12)

Equation (12) therefore yields a connection between information loss and probabilistic model performance. The model
S mode that we seek will minimize Eq. (10), thus containing the coherent information in the data, while disregarding the
incoherent noise. This formulation can be extended to the problem of modeling for turbulent flows.

C. Information-Preserving Subgrid-Scale Model for Large-Eddy Simulation

In LES, only the large eddies are resolved by the grid, whereas the information from the small-scale eddies is lost.
Instead, the effect of the small scales on the larger eddies is modeled through an SGS model. This approach reduces
computational cost while still capturing statistical quantities of interest. The previous formulation can therefore be
applied in devising an SGS model for LES. The governing equations for LES for compressible flows are formally derived
by applying a spatial filter to the Navier-Stokes equations for mass and momentum

dp  Opu;j
= =0, 13
ar " ox, (132)
dpu; Opuiu; op (90',]
_ 13b
ar " ox; | ax | oxg (130)

where p is the density, u; is the velocity component in the i direction, p is the pressure, and o;j is the stress-tensor.
We then employ the filter operator on a variable ¢ for scale separation, defined as

o(x,1) = / G(x —x"; A)p(x’, 1)dx’, (14)
14

where G is the filter kernel with filter size A and V is the domain of integration. Applying this spatial filter to Eq. (13)
yields the governing equations for LES for compressible flows as

dp Opi,

= =0, 15

ar " ox, (132)
opi;  Opiii; __9p 1 07y aT0s (15b)
ot dx;j T 9x; Re dxj dxj ’
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where () denotes spatially filtered quantity and TSJGS is the effect of the subgrid scales on the resolved eddies, which has

to be modeled. The system in Eq. (15) is assumed to have a severely truncated number of degrees of freedom with
respect to Eq. (13). The objective of LES is to model the SGS tensor as a function of known filtered quantities defined by
08 = 1505(815, Qi) A3 6), (16)
where S; ; and Q; ; are the filtered rate-of-strain and rate-of-rotation tensors, respectively, and 6 are model parameters.
The map f in Eq. (4) corresponds to a discrete version of Eq. (13), resolving all the space and time scales. The state
vector " is given by the discretization of the velocities and pressure in a grid fine enough to capture all the relevant
scales of motion. The map f .4 for the model is derived from the discretization of Eq. (4). The model state vector
G model therefore corresponds to the filtered velocities and pressure.
We start from the general expansion of the SGS tensor in terms of E,-.,- and ﬁij proposed by Lund and Novikov [10].
Retaining the two leading terms for the functional form considered for the SGS stress tensor results in

1 = —
,SJGS 3 EIE}S(S” - glA Sl] SnmSnm "'02A (Slkgkj ikSkj)s (17)

where ¢;; is the Kronecker delta, and 6; and 6, are modeling parameters to be determined. We also introduce the
interscale energy transfer and viscous dissipation in the case of LES at the filter cut-off A given by

F: (Tuj—ﬁiﬁj)gij —2V§ij§ij+Tl-stsSij. (18)

We invoke the modeling assumption that the information content content of p(I';) must be equal to the information
content of p(ng), where T’y and T» are T at scale A; and A, respectively, and y = (A /A)*3 is a scaling factor. The
model aims at minimizing the information lost when p(T'}) is used to approximate p(I»y) in the LES solution. Thus,
it follows that the model is formulated using the KL divergence, ensuring that the average information required for
reconstructing p(T'2y) is minimum given the information in p(T';) given by

0 = arg II(I;H KL(T,y,T), (19)

where 6 = (01, 6;) from Eq. (17). This model will be referred to as the information-preserving (IP) SGS model. For
more details on the technical approach outlined above, the reader is referred to Lozano-Duran and Arranz [3] for an
in-depth exposition of the information-theoretic formulation of modeling for high-dimensional, chaotic dynamical
systems.

I1I. Computational Setup

A. Compressible Channel

The simulation is performed using wall-modeled large-eddy simulation (WMLES) with the code charLES from
Cascade Tech., Inc. The validation of the algorithm can be found in Fu et al. [11]. The solver integrates the filtered
Navier-Stokes equations using a second-order accurate finite volume formulation. The numerical discretization relies
on a flux formulation that is approximately entropy preserving in the inviscid limit, thereby limiting the amount of
numerical dissipation added into the calculation. The time integration is performed with a third-order Runge-Kutta
explicit method. The mesh generator is based on a Voronoi hexagonal close packed point-seeding method which
automatically builds high-quality meshes for arbitrarily complex geometries with minimal user input.

An equilibrium wall model (EQWM) is used to overcome the restrictive grid-resolution requirements to resolve the
small-scale flow motions in the vicinity of the walls. The wall stress is obtained from an algebraic wall model derived
from the integration of the one-dimensional equilibrium stress model along the wall-normal direction. The EQWM is
an ODE-based wall-stress-model with simplified momentum and total energy equations given by [12]

0 0
3y [(u +ﬂz)£} =0, (20a)
u oT
(;1 +p,)u y+cp (Pr+Prt) ay} 0, (20b)
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where y is the dynamic viscosity, Pr is the Prandtl number, and the subscript “z”” denotes a turbulent quantity. The
eddy-viscosity is taken from a mixing-length model as

112
He =pr,/T—w [1 —eXp(y—+)] , 2D
P A

7KL

where T,, is the instantaneous wall stress and the superscript “+” denotes “plus” units (i.e., normalization by viscous
wall quantities). The model parameters «, Pr, and A™ are constants. More details on this wall model can be found in the
work by Larsson and Kawai [12]. Effectively, given an instantaneous velocity at some height above the wall, the model
estimates the instantaneous wall stress and heat flux. The no-slip boundary condition at the walls is replaced instead by
a wall-stress boundary condition. The wall is assumed to be isothermal.

The simulation is performed in a canonical compressible channel flow at the bulk Reynolds number Re;, = 24K and
bulk Mach number M}, = 3.0 such that results can be compared to direct numerical simulation (DNS) data from Trettel
and Larsson [13]. The simulation has an isotropic grid resolution of approximately 26§/24, where 6 is the channel
half-height, with 243 total points. Figure 1 shows a schematic for channel flow, where (u) is the mean velocity along the
x-direction.

=

4
RIS

Fig.1 Canonical channel flow.

The statistical quantities of interest are the mean velocity and temperature profiles. The performance of the IP SGS
model is evaluated in the prediction of these statistical quantities of interest of DNS results and compared against the
predictions provided by the dynamic Smagorinsky (DSM) SGS model.

IV. Results
The mean velocity and temperature profiles predicted by the WMLES are given in Fig. 2a and Fig. 2b, respectively.
DNS data is plotted as a black dashed line for a reference. The profiles are predicted using an equilibrium wall model and
either IP or DSM SGS model. The velocity is normalized using the centerline velocity value u., while the temperature
is normalized using the temperature at the wall 7,,.

! —o—1IP
—o—DSM
- - DNS
0.8F e 0.8F i
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Fig.2 (a) Mean velocity profiles. (b) Mean temperature profiles.
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The results show that the IP SGS model offers an accuracy comparable to the DSM SGS model in the prediction of
the mean velocity profile. For the mean temperature profile, the prediction given by the IP SGS model is improved
compared with the DSM SGS model. The error for each statistical quantity of interest can be systematically quantified
as the average difference between the LES and DNS solutions defined as [1]

12
_ /0.625 ({qLEs) — {gpns))* dy
Jostapns)2dy

q (22)

Note that Eq. (22) excludes the region close to the wall below 0.26 [14]. Table 1 shows the percent error in the prediction
of the mean velocity and temperature profiles as calculated using Eq. (22). Indeed, it is found that the IP and DSM SGS
models both yield predictions of the mean velocity profile within 1% of DNS data. Further, there is 5% improvement in
accuracy in the prediction of the temperature profile using the IP SGS model compared to the DSM SGS model.

Table 1 Percent error in mean velocity and temperature profiles

DSM Ip

eu (%) 0.4 0.8
er (%) 124 13

V. Conclusion

The information-theoretic formulation presented in this work is shown to be an effective framework for reduced-order
modeling of highly chaotic systems with a large number of degrees of freedom. In the case of LES, an SGS model
was developed based on minimizing the KL divergence between the probabilities of the model state and the true state,
enabling the accurate prediction of the statistical quantities of interest. The model aims at minimizing the information
lost between the probability mass distribution of the interscale energy transfer and viscous dissipation at different scales.
We have shown that the IP SGS model offers comparable accuracy as the DSM SGS model in the prediction of the mean
velocity profile given by DNS data. We have also shown that the IP SGS model yields an improved prediction of the
mean temperature profile given by DNS data compared to the DSM SGS model.
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