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Figure 1: Hand action recognition ecosystem for intelligent mixed reality (MR) applications. (a) MR-guided data collection app
with various modes of instruction and automated annotation support for efficient dataset generation. (b) Training collected dataset
with our robust and efficient action recognition model. (c) Deploying the trained model either on a headset directly or a remote
server for enhanced performance and flexibility. (d) Targeted MR app supported by real-time action understanding capability.

ABSTRACT

Understanding user actions from egocentric videos is crucial in de-
veloping intelligent mixed reality (MR) systems. One key aspect
is the recognition of hand actions and gestures, which enables user
interaction and adaptation of the system to real-world user actions.
In this paper, we present a comprehensive pipeline for egocentric
hand action recognition in mixed reality applications. Our approach
incorporates an MR-guided data collection method that eliminates
the need for explicit manual annotation and guidance. We also pro-
pose a robust and efficient skeleton-based hand action recognition
model specifically designed for real-time MR use cases. To validate
our proposed framework and demonstrate its effectiveness, we con-
ducted a case study involving industrial precision inspection tasks.
Utilizing our MR-guided data collection system, we efficiently col-
lected hand inspection action data and built a comprehensive dataset.
We then trained our proposed model on this dataset, employing a
feature refinement strategy. We conducted extensive evaluations,
including standard offline analysis and real-time inference in an
MR system, to thoroughly test the model. Our experimental results
showcase the efficacy of our proposed pipeline and its potential for
practical use in various scenarios. The source code and the dataset
are publicly available on [anonymous link].

Index Terms: Human-centered computing—Human-computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Computing methodologies—Artificial intelligence—Computer
vision—Action recognition
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1 INTRODUCTION

Hand action recognition plays a crucial role in enabling an intelli-
gent and adaptive mixed reality system by helping it understand the
user’s current activity state and dynamically adapt to their needs. By
accurately recognizing and analyzing hand gestures, the system can
interpret the user’s intentions, preferences, and level of expertise.
This information allows the system to provide adaptive guidance
and intervention in mixed reality applications. For instance, in ed-
ucational scenarios, hand action recognition can assist in real-time
feedback and guidance, correcting the user’s actions and providing
instructional cues based on their hand movements. In professional
scenarios, such as industrial training, hand action recognition can
enable the system to detect errors or unsafe practices, intervening
with appropriate warnings or instructions to enhance learning out-
comes and ensure user safety [8,9,32,37]. Overall, by understanding
the user’s hand actions, an intelligent mixed reality system can dy-
namically adjust its responses, optimizing the user’s experience, and
enhancing the effectiveness of mixed reality applications.

In recent years, various approaches have been proposed for hand
action recognition, utilizing different modalities such as RGB-D
video feeds and skeleton data. While RGB-D data provide rich
visual information, it requires substantial processing costs due to
its high-dimensional nature. Conversely, skeleton data provides a
high-level, compact representation of hand actions, enabling fast
processing and achieving high accuracy in prediction. Additionally,
skeleton data can be a suitable choice in scenarios where security
and privacy risks associated with sharing RGB data need to be
minimized. Using skeleton data, the focus is shifted to the high-level
representation of hand actions, while reducing the transmission of
sensitive visual information.

In the context of MR, a significant advantage arises from the
utilization of hand skeleton data captured by MR headsets. Unlike
general systems that require additional processing to obtain hand
skeleton data from RGB-D video feeds using 3D pose estimation
algorithms [21, 38], MR headsets inherently process and provide
skeleton data for basic interaction with the MR user interface. This
inherent availability of hand skeleton data in MR headsets mini-
mizes the need for extra processing, facilitating efficient hand action



recognition within the MR environment.
Despite the proliferation of research on skeleton-based action

recognition (discussed in Section 2), few studies have focused specif-
ically on the unique requirements of hand action recognition for MR
systems. Consequently, there is a gap in the literature regarding effi-
cient data collection methodologies, appropriate recognition models,
deployment strategies, and integration of hand action recognition
into MR applications.

In this paper, we propose a comprehensive framework for hand ac-
tion recognition in MR applications, addressing the aforementioned
research gap from an ecosystem perspective. Our framework serves
as a plug-and-play solution, providing users with the flexibility to
customize and scale it for various MR purposes. Key contributions
of our work include:

• An efficient MR-guided hand action data collection app that
eliminates the need for explicit data annotation or curation, em-
powering users to collect high-quality data without requiring
external supervision.

• A comprehensive hand action recognition dataset, leveraging
our proposed data collection app for a representative use case,
facilitating benchmarking and further advancements in the
field.

• A robust and compact hand action recognition model that in-
corporates state-of-the-art training and deployment techniques,
ensuring accurate and real-time recognition performance.

• Rigorous experiments and ablation studies to evaluate the pro-
posed components, demonstrating the effectiveness and appli-
cability of our framework.

2 RELATED WORKS

In the rapidly evolving field of mixed reality, extensive research has
been conducted on hand data analysis, hand gesture recognition,
and action recognition, paving the way for intuitive and interactive
user interfaces and facilitating intelligent user interaction in mixed
reality environments. Several notable contributions have emerged
in this space. Malik et al. [19] pioneered hand tracking techniques
for interactive pattern-based augmented reality (AR), while Xie et
al. [34] developed a lightweight and efficient online gesture recogni-
tion network tailored for embedded AR devices. Capece et al. [1]
focused on devising an easy hand gesture recognition system for col-
laborative experiences in extended reality, and Khurshid et al. [13]
explored hand gesture recognition to improve user interaction in
AR settings. Murhij et al. [20] devised a dedicated hand gesture
recognition model specifically targeted at AR robotic applications.
Furthermore, Wang et al. [30] and Che et al. [2] made significant
contributions by designing gesture recognition algorithms to aug-
ment interaction in driving systems and mobile devices, respectively.
Ryu et al. [25] proposed methods for recognizing and correcting
actions in virtual and augmented reality, while Patil et al. [23] fo-
cused on human action recognition utilizing skeleton features. Lu et
al. [18] developed techniques to automate editing processes in mixed
reality videos based on hand-object interactions. Furthermore, the
availability of datasets such as FirstPiano (Voillemin et al. [29]) has
facilitated research in hand action recognition for AR applications.
Furthermore, Wolf et al. [33] utilized gaze tracking to predict and
prevent erroneous hand movements during AR-supported manual
tasks. Although these contributions have significantly advanced the
field, there is still considerable room for further advancements in
hand action recognition for intelligent mixed reality applications to
address the evolving requirements of this new era.

Hand Action Recognition Datasets. Hand action recogni-
tion research has witnessed remarkable progress in recent years,
driven by the availability of diverse and well-annotated datasets.
These datasets play a crucial role in the advancement of the field

by providing researchers with valuable resources to develop and
evaluate algorithms. In this regard, several notable datasets have
emerged, each catering to specific aspects of hand action recognition.
The First-Person Hand Action (FPHA) dataset [12] offers RGB-D
videos and 3D hand pose annotations, facilitating first-person per-
spective hand action recognition. The SHREC’17 track dataset [7]
focuses on dynamic hand gestures captured by the Intel RealSense
depth camera. The Dynamic Hand Gesture 14/28 (DHG-14/28)
dataset [6] provides sequences of hand gestures along with depth
images and hand skeleton coordinates. The H2O dataset [14] empha-
sizes two-handed manipulation of objects for first-person interaction
recognition, encompassing RGB-D and 3D hand pose data. For
human-robot interaction, the HRI gesture dataset [11] combines
RGB, depth, and 3D skeleton data. The Handicraft Dynamic Hand
Gesture dataset [17] employs the Leap Motion controller and the
hand skeleton data, specifically targeting hand gestures in handi-
craft activities. Lastly, the AssemblyHands dataset [22] offers a
large-scale benchmark with accurate 3D hand pose annotations,
focusing on challenging hand-object interactions in egocentric activ-
ities. These datasets collectively contribute to the advancement of
hand action recognition research and enable researchers to develop
robust algorithms across a wide range of applications. However,
while these datasets have contributed significantly to the field, there
is a need for a systematic data collection mechanism, which is often
lacking or not explicitly described in the literature. Moreover, the
majority of existing datasets primarily employ static cameras or
sensors such as Intel RealSense and Leap Motion. Therefore, there
is a lack of exploration regarding the utilization of sensors or direct
hand skeleton data from mixed reality headsets. This unexplored
area has the potential for significant advancements in hand action
recognition research.

Skeleton-based Action Recognition Models. In the realm of
skeleton-based action recognition, previous work has approached
the task as a sequence classification problem, employing various
techniques to extract meaningful features from the skeletal data. One
of these approaches focused on the use of recurrent neural networks
(RNNs) within auto-encoders to capture high-level features from
skeleton sequences [28]. Additionally, some researchers employed
convolutional neural networks (CNNs) by converting skeleton data
into image-like representations through hand-crafted schemes [9,
37], while others explored temporal convolutional network (TCN)
architectures [26, 36]. However, these methods did not explicitly
exploit the inherent spatial structure of the skeleton. To address
this, researchers turned to graph convolutional networks (GCNs)
that take advantage of the natural graph-like structure formed by the
joints and bones of the hand or human body. Pioneering work by
Yan et al. [35] defined spatial and temporal connections, Zhang et
al. [39] introduced a two-stream architecture, and Chen et al. [3]
improved upon the GCN design. Recently, Zhou et al. [40] proposed
a GCN-based framework that refines features and enhances discrimi-
native representation to alleviate confusion in ambiguous actions for
skeleton-based action recognition. In the domain of skeleton-based
gesture recognition, Liu et al. [16] proposed a Temporal Decoupling
Graph Convolutional Network (TD-GCN) that applies different ad-
jacency matrices for skeletons from different frames to effectively
model temporal information. Furthermore, Peng et al. [24] devel-
oped an Efficient Graph Convolutional Network (EGCN) for solving
the Travelling Salesman Problem (TSP) on 2D Euclidean graphs,
leveraging the power of GCNs in constructing efficient graph rep-
resentations and generating optimal tours in a non-autoregressive
manner through highly parallelized beam search. Despite recent
advancements, there remains scope for further improvement, par-
ticularly in the context of real-time mixed reality applications that
require highly accurate, reliable, and fast inference models.



3 METHOD

This section provides a comprehensive discussion of our method,
offering detailed insights into our hand action recognition pipeline.
Figure 1 presents an overview of the pipeline from an ecosystem
perspective.

3.1 Mixed Reality-Guided Data Collection

To efficiently collect hand action recognition data without the need
for explicit data annotation and curation effort, we propose a novel
MR-guided data collection app. This application leverages text,
video, and 3D model/animation instruction modes to guide users
in performing various actions. It offers a smooth user experience,
allowing individuals to follow instructions and record their actions
without requiring external supervision. Figure 2 presents a user-
centric flowchart of the app, outlining the step-by-step process, while
Figure 1(a) provides a visual depiction of the app, offering glimpses
into its interface.

The user begins by opening the app and selecting the first action
or choosing a specific action from the available options. They then
review the step-by-step instructions provided, which may include
textual descriptions, video demonstrations, and animated 3D models.
Once familiar with the instructions, the user initiates the recording
by tapping the start record button or using a corresponding voice
command. During the recording, the user performs the action as
instructed. Upon successful completion of the action, the recording
can be saved by stopping the recording process. In the event of an
undesired mistake or error during the action, the user has the option
to cancel the recording by tapping a designated button or issuing a
voice command. They can then proceed to the next action following
the same process.

Since the app follows a sequential instruction approach, each
recorded data segment corresponds to a specific action category.
This inherent logging mechanism annotates the action sequence as
the user progresses through the app. The comprehensiveness of the
instructions, which combine multiple mediums such as text, video,
and animation, allows users to independently collect their own data
effectively and flawlessly without requiring external supervision.

Figure 2: The MR-guided data collection process.

Additionally, the voice interaction feature enhances the user experi-
ence by enabling hands-free interaction, allowing users to focus on
following instructions and performing actions with their hands.

Our app provides a user-friendly and scalable solution, allow-
ing users to easily customize instructions and generate annotated
datasets without manual effort. This flexible approach has great po-
tential to advance hand action recognition through large-scale data
collection, offering users the ability to obtain high-quality datasets
tailored to their specific needs. By simplifying the data collection
process, our app empowers researchers and practitioners in the field
to accelerate their work and explore new possibilities.

3.2 Skeleton-Based Hand Action Recognition Model

The proposed hand action recognition model is presented in Figure 3,
providing a simplified overview of its architecture. In the sequel, we
dive into the specific details and components of the model, offering
a more comprehensive understanding of its inner workings.

3.2.1 Input Data

The input data for our model consist of hand skeleton data acquired
from a mixed reality headset (e.g., HoloLens 2 in this study). The
raw input data is represented as a three-dimensional tensor with
dimensions T × J × 3, where T denotes the number of frames, J
represents the number of hand joints, and 3 signifies the joint position
values for the three dimensions (x,y,z). To prepare the raw input
for our model, we employ a preprocessing technique similar to the
approach described in [4]. To ensure a consistent input size for our
main model, we transform the data dimensions to T ′

× J×3, where
T ′ denotes a fixed number of frames. We achieve this by sampling
T ′ frames from the original action sequences. In our study, we set T ′

to be 52 frames. Considering the hand joint information provided by
the HoloLens 2 headset, we extract 26 hand joints for our analysis.
These joints are illustrated in Figure 4, providing a visual reference
for the specific hand joints considered in our study.

3.2.2 Backbone Neural Network Architecture

Our backbone architecture is constructed based on [40] and has
been modified to meet the real-time demands of our application.
The model consists of 7 core units referred to as Temporal Graph
Networks (TGNs). These TGNs are created by combining Temporal
Convolutional Networks (TCNs) and Graph Convolution Networks
(GCNs). TCNs extract temporal features by utilizing 1D Convolu-
tional Neural Networks (CNNs) along the temporal dimension, while
GCNs capture spatial features by leveraging a learnable topological
graph defined on the spatial dimension.

Among the 7 fundamental units, one of them is implemented as
strided TGNs using strided 1D CNNs. This specific unit facilitates
the generation of multi-scale features by reducing the temporal
dimension while simultaneously increasing the channel dimension.
Following this, a pooling layer is applied to obtain high-level 1D
feature vectors. Finally, these features are mapped to a probability
distribution over K candidate categories using a fully connected (FC)
layer with softmax activation.

It is worth noting that the architecture intentionally maintains a
generic structure, allowing for the substitution of the basic unit’s
implementation with other GCN-based networks [3, 15, 27, 31, 35].
By incorporating this flexibility, our approach encourages the explo-
ration and utilization of various GCN-based architectures within our
framework.

3.2.3 Feature Refinement

We adopt an innovative training strategy from [40] and implemented
it in the context of hand action recognition to enhance our fea-
ture representation. Our goal is to improve the performance of the
skeleton-based model, specifically for ambiguous actions that are
easily misclassified due to their similarities. To address this, we



Figure 3: Proposed hand action recognition model.

Figure 4: Joint locations in a hand skeleton.

incorporate an independent module for feature refinement within the
backbone network. This module decouples hidden feature maps into
spatial and temporal components and applies a contrastive learning
loss with global class prototypes and ambiguous samples. Notably,
the feature refinement module is utilized only during training, with-
out incurring any additional computational or memory costs during
inference. In Figure 5, we provide a visual representation of our
feature refinement strategies, which we discuss in further detail in
subsequent parts.

Multi-Stage Feature Selection To improve the discrimina-
tive power of the feature representations learned by the backbone
network, we employ a feature refinement (FR) module at three dif-
ferent stages within the network: the 1st, 5th, and 7th layers of
the TGN. Each FR module is responsible for refining the hidden
features produced by its corresponding stage. At the 5th layer, a
strided operation is applied to reduce the spatial resolution of the fea-
tures. This reduction helps to capture more abstract and higher-level
features that are crucial for discriminative representation learning.
To refine hidden features, we employ contrastive learning (CL) loss
follwing [40]. The CL loss helps optimize the feature representations
by encouraging similar samples to be closer in the learned feature
space while pushing dissimilar samples apart.

To ensure a balanced contribution from each stage, we introduce
a weighting parameter, αi, for each stage i. These parameters allow
us to control the relative importance of each stage in the multi-stage
CL loss calculation. The multi-stage CL loss, denoted as LCL, is
computed as the weighted average sum of the local CL losses, L i

CL,
calculated by each stage. The formulation for the multi-stage CL
loss is given by Equation 1.

(a) Spatial-Temporal Decoupling

(b) Contrastive Feature Refinement

Figure 5: Feature Refinement Method.

LCL =
3

∑
i=1

αi ·L
i

CL (1)

Spatial-Temporal Decoupling To address the challenges
posed by the complexity of hand joint motion, where coarse-type
features can lead to confusion between similar actions with ambigu-
ous spatial appearances or temporal changes, we utilize a spatial-
temporal decoupling module. This module aims to simultaneously
capture spatial and temporal information to enhance the discrimina-
tive ability of hand action representations.

For instance, consider the actions “pick something up” and “put
something down.” These actions can be easily distinguished using
temporal clues. However, when it comes to actions like “attach
something to something,” more focus on spatial information is re-
quired. Therefore, our proposed approach leverages both spatial and
temporal cues to accurately differentiate between these actions.

As depicted in Figure 5a, we employ two parallel branches for
efficient feature enhancement. Each branch consists of a spatial or



temporal pooling layer, which retains the average value of the related
dimension, and a 1×1 convolution layer that compresses the feature
into a fixed size. The output features are then flattened to create a
unified representation with a channel size of Ch. To further improve
the discriminative power, contrastive learning (CL) loss is applied to
each branch.

To accomplish the proposed spatial-temporal decoupling feature
refinement, we sum the losses from the two branches as follows:

L
i

CL =CL( f i
s)+CL( f i

t ) (2)

Here, f i
s stands for the spatial feature, and f i

t corresponds to the
temporal feature vector for stage i. Furthermore, the function CL(.)
is responsible for computing the contrastive learning loss using
these features. This dual-brach decoupling approach allows us to
effectively capture and utilize both spatial and temporal information,
enabling a more accurate representation of the actions.

Contrastive Feature Refinement We incorporate contrastive
feature refinement into the training of our hand action recognition
model, following the approach proposed by [40]. This technique
leverages contrastive learning to enhance feature representation at a
higher level. Our focus is on addressing the challenge of ambiguous
samples by identifying misclassified samples that exhibit similarities
to other categories. To overcome this challenge, we gather these mis-
classified samples and adjust their representations. The adjustments
are designed to encourage false negative (FN) samples to be closer
to confident samples, reducing the occurrence of false negatives. Si-
multaneously, we ensure that false positive (FP) samples are pushed
away from confident samples, reducing the risk of incorrect classifi-
cations. Figure 5b illustrates the process of gathering and adjusting
these ambiguous samples at a higher level. By applying contrastive
refinement to their features, we enhance the discriminative power
and robustness of the learned representation. This technique proves
valuable for accurate and reliable action recognition and classifica-
tion in various domains. For a more detailed understanding of this
method, please refer to the supplementary material.

3.2.4 Training Objective

During the training process, our network aims to optimize its perfor-
mance by minimizing a combined loss function that consists of two
components: cross-entropy (CE) loss and a proposed multi-stage
contrastive learning (CL) loss.

Cross-entropy loss measures the dissimilarity between predicted
probabilities and ground truth labels. It quantifies the inconsistency
between the predicted probability scores and the true labels. The
CE loss is calculated for each sample in a batch, and the individual
losses are averaged to obtain the overall CE loss. The formula for
CE loss is as follows:

LCE =−
1

N
∑

i
∑
c

yic log(pic) (3)

where, N represents the number of samples in a batch. yic is the one-
hot encoded representation of the label for sample i, where yic = 1
only when c is the target class for sample i. The probability score
pic is the predicted likelihood of sample i belonging to class c.

Finally, the CE loss and the previously introduced multi-stage CL
loss are combined using a weighted sum to form the full learning
objective function as follows:

L = LCE +β ·LCL (4)

where LCE and LCL are defined in Equations 1 and 3. β is a
hyperparameter that supports tuning the relative importance of the
CL loss compared to the CE loss, thereby impacting the training
process.

3.2.5 Deployment and Inference

In our deployment setup, we chose to host our hand action recogni-
tion model on a remote server1 rather than directly on the MR (mixed
reality) headset due to compatibility issues and resource limitations.
Many MR headsets are equipped with low-resource specifications,
making them unsuitable for hosting complicated deep learning mod-
els. Additionally, not all headsets support every machine learning
framework, and even if they do, model format conversion can be
problematic. By hosting the model on a remote server, we ensured
access to ample computational resources and eliminated compat-
ibility concerns. This allowed us to process the incoming hand
skeleton data efficiently. We established a TCP connection between
the server and the Hololens 2 client app, enabling real-time com-
munication. The client app continuously captured hand skeleton
data and transmitted it to the server, where the model was deployed
and processed the data in real-time. The predicted action class was
then sent back to the client app via the TCP connection, providing
seamless feedback and interaction on the MR system. This approach
provided a more generalized and universal solution that addressed
the compatibility and resource limitations associated with hosting
complex models directly on the headset.

4 EXPERIMENT

4.1 Case Study: Precision Hand Inspection

MR has found diverse applications across various fields. One partic-
ularly important application is its use in industrial settings. In the
industrial domain, there is a growing demand for intelligent training
and task guidance systems. These systems are based on automatic
and real-time understanding of user actions, which heavily involve
user hands [5, 8–10]. Therefore, accurate hand action recognition is
crucial for the success of such intelligent mixed reality systems.

Given the significance of intelligent MR applications in the in-
dustry, we have selected industrial precision inspection tasks [37]
as a representative use case to assess the efficacy of our proposed
hand action recognition pipeline. These tasks require precise and
subtle hand movements, making them an ideal choice to showcase
the capabilities of our system. To evaluate our pipeline with the use
case, we first build a dataset for hand actions specifically tailored to
the hand inspection task by leveraging our developed MR-guided
data collection app. This dataset serves as the foundation for training
our hand action recognition model. Once trained, we deploy the
model and thoroughly test its performance.

Through evaluation of the entire pipeline, including data collec-
tion, model training, deployment, and testing, we can determine the
efficacy of our approach and its suitability for industrial precision
inspection tasks. Additionally, since this use case represents a wide
range of domains, the performance of our pipeline will showcase
its applicability in other fields as well. Furthermore, the success-
ful implementation of this pipeline demonstrates its potential to be
scaled and adapted for any intelligent and adaptive MR system that
requires an accurate understanding of hand actions.

4.2 Implementation Details

We developed our MR application for the HoloLens 2 headset, using
Unity 2020.3.42f1 and the Mixed Reality Toolkit (MRTK) version
2.7.3. For hand action recognition, we employed PyTorch 1.12.0
as our deep learning framework. The action recognition model was
trained and hosted on a single Nvidia GeForce RTX 3080 Laptop
GPU. The training process followed the same configuration as de-
scribed in [40]. In our implementation, we carefully selected hyper-
parameters to optimize the performance of our methods. Specifically,
we set the hyperparameters as follows: α1 = 0.1, α2 = 0.2, α3 = 1,

1in a local network



Table 1: Skeleton-Based Hand Action Recognition Datasets.

Dataset Action Type Subjects No. of Joints No. of classes No. of sequences View Device

SHREC’17 [7] Gesture 28 22 14/28 2800 Third Person Intel RealSense

DHG-14/28 [6] Gesture 20 22 14/28 2800 Third Person Intel RealSense

FPHA [12] Social, Office, Kitchen 6 21 45 1175 Ego/FP Intel RealSense

PHI-16 (Ours) Hand Inspection 6 26 16 1402 Ego/FP Microsoft Hololens 2

and β = 0.1. These values were determined through rigorous exper-
imentation and fine-tuning to achieve the best results in our training
dataset.

4.3 Data Collection

Participants Our dataset comprises action sequences collected
from a diverse group of 6 participants, consisting of 4 male and 2
female individuals. Among the participants, two had prior familiarity
with MR headsets, two had tried them at least once before, and the
remaining two had never experienced MR headsets before. Prior
to participating, the participants without experience with Hololens
2 went through the Microsoft Tips app to become familiar with
basic interactions. Additionally, all participants were provided an
introductory video on our data collection app’s functionality.

Dataset The dataset encompasses a total of 1,402 action se-
quences2, categorized into 16 action classes. The classes were
specifically designed to encompass the most common hand actions
involved in precision hand inspection [37], which include working
with three precision measuring tools (slide caliper, anvil micrometer,
and height gage) and two distinct parts (O-ring plug and guide block).
Each action class may involve multiple objects, adding complexity
to the dataset. Some of the action classes are subtle and closely
resemble each other, making the dataset challenging. The action
classes are depicted in Figure 6 with representative examples. Table
1 provides a comparison between our dataset and other well-known
skeleton-based hand action datasets. Our dataset is unique as it per-
tains to precision hand inspection and includes the highest recorded
number of hand joints (26) compared to existing datasets. Moreover,
to our knowledge, it is the only publicly available skeleton-focused
hand action dataset collected using an MR headset.

To ensure reliable evaluation and generalization of our proposed
methods, we divided the dataset into training and test sets. The
training set consists of 892 action sequences, contributed by four
subjects. In contrast, the test set comprises 510 action sequences,
collected from the remaining two subjects.

Figure 6: 16 action classes in our hand inspection dataset.

4.4 User Experience Analysis

Here, we present an analysis of the user experience with our MR data
collection app based on responses obtained from a questionnaire.

2Actions are performed exclusively by the dominant hand, specifically

the right hand.

Figure 7: Summary of user survey responses on a 5-point Likert
scale.

The questionnaire included a series of questions aimed at gathering
feedback on different aspects of the app’s usability, specifically
focusing on its ability to seamlessly collect high-quality data while
ensuring user-friendliness. The responses were collected using a 5-
point Likert scale, where 1 represented the lowest level of agreement
or satisfaction and 5 represented the highest level. The summarized
result is shown in Figure 7, and we discuss it in more detail in the
following part, along with its implications.

The participants were asked to evaluate the helpfulness of differ-
ent modes of instruction in mixed reality (MR), namely text, video,
and 3D animation. The findings revealed a clear preference for video
instructions, followed by text, while 3D animation was regarded as
the least favored. Further exploration through follow-up questions
indicated that videos were deemed more effective in providing visual
understanding, whereas text alone was considered insufficient. Par-
ticipants also mentioned that the simplicity of the tasks led them to
perform them immediately after watching the videos without relying
on the animations. However, for more complex tasks, animations
were seen as potentially more useful. Regarding the app’s usability,
participants rated their level of independence as high, indicating that
it was perceived as intuitive and user-friendly, requiring minimal
external supervision. When asked about their confidence in the
quality of their performance, participants expressed a moderate level
of confidence, suggesting that receiving feedback during the task
would enhance their assurance and confidence. In terms of comfort
with the HoloLens 2 headset, the majority of participants reported a
high level of comfort, suggesting that it is ergonomically suitable for
conducting long data collection sessions without causing significant
discomfort.

In addition to gathering feedback from participants, we conducted
interviews and app demonstrations with two experienced experi-
menters to gain their perspectives on our data collection app. Both



interviewees noted that using the app could significantly decrease
their workload during data collection studies, as participants could
collect their own data with minimal supervision. They also high-
lighted the app’s ability to facilitate the collection of a larger quantity
of high-quality data in less time and with less effort. These insights
underscore the potential benefits our app offers experimenters, in-
cluding increased participant independence, improved data quality,
and enhanced research efficiency.

4.5 Hand Action Recognition Model Analysis

In this section, we present a comprehensive evaluation of our pro-
posed hand action recognition architecture. We conduct various
experiments to select the optimal backbone network, explore hyper-
parameters, compare against baseline models, and evaluate real-time
performance. The experiments aim to demonstrate the superiority of
our approach in terms of accuracy and inference speed for real-time
use cases in MR applications.

4.5.1 Backbone Network Selection

To determine the best backbone network for our hand action recog-
nition architecture, we compare four state-of-the-art backbones:
2s-AGCN, TCA-GCN, CTR-GCN, and ST-GCN. We evaluate these
backbones individually and with the inclusion of the feature refine-
ment (FR) module. The results are summarized in Table 2.

Upon analyzing the results, we observe that the ST-GCN back-
bone achieves the highest accuracy and fastest inference speed, mak-
ing it the most suitable choice for our framework. Furthermore,
incorporating the FR module during training improves the accuracy
of the ST-GCN backbone. Interestingly, although ST-GCN has more
parameters than CTR-GCN, it exhibits significantly higher inference
speed. This can be attributed to the complex operations and branches
involved in CTR-GCN compared to the relatively simpler structure
of ST-GCN, making it more suitable for real-time applications.

Moreover, we notice that the FR module helps the model distin-
guish between ambiguous actions. Figure 8 illustrates representative
examples where our framework without the FR module confuses
similar-looking actions, whereas the FR-enhanced model accurately
predicts the correct action.

Based on these findings, we select the ST-GCN backbone for
further experimentation in our proposed framework.

Figure 8: Model with Feature Refinement (FR) module accurately
distinguishes similar actions.

4.5.2 Hyperparameter Exploration

During our previous experiments, we conducted the analysis with
initial hyperparameters, α1 = 0.1, α2 = 0.2, α3 = 1, β = 0.1, but
these may not be the best fit for our specific use case or dataset.
To address this, we decided to explore different hyperparameter
configurations in order to enhance our model’s performance. The
results of our exploration are summarized in Table 3. We initially
set α3 = 1, based on prior research [40] putting the most weight
on the last stage as it directly influences the final output. With α3

Table 2: Performance evaluation of the proposed architecture with
different GCN backbones on our hand action dataset.

Backbone Params. Acc (%) Inference

Speed

2s-AGCN [27] 2.3M 93.3 260 FPS
+ Refinement 2.7M 93.7

TCA-GCN [31] 3.2M 92.9 59 FPS
+ Refinement 3.5M 92.8

CTR-GCN [3] 0.9M 92.8 73 FPS
+ Refinement 1.2M 93.5

ST-GCN [35] 1.3M 93.5 352 FPS
+ Refinement 1.7M 93.7

Table 3: Exploring hyperparameters for the proposed architecture
with ST-GCN backbone on our hand action dataset.

α1 α2 α3 β Acc (%)

0 0 1 1 92.3
0 0 1 0.1 92.6
0 0 1 0.01 91.4

1 1 1 92.0
1 0.5 1 92.9
1 0.2 1 93.3
1 0.1 1 0.1 92.5
0.5 0.2 1 93.5
0.2 0.2 1 93.5
0.1 0.2 1 93.7

fixed, we focused on exploring the remaining hyperparameters. By
keeping α1 = α2 = 0 and varying β , we first explored the value
of β and discovered that a value of 0.1 yielded the best results.
We observed that larger values and very small values for β had a
detrimental effect. So, we choose an optimal value in the middle.
Subsequently, we proceeded to investigate the impact of α1 and α2,
experimenting with different combinations to determine the balance
of importance between the first and second stages. Our results
revealed that assigning a higher weight to previous layers could have
a negative influence, suggesting a gradual increase in importance
from the early to the final stage resulted in optimal outcomes. We
concluded that refining high-level features in the last stage played
the most significant role, while low-level features moderately assist
in the refinement process. Finally, after thorough exploration, we
decided to revert back to our initial hyperparameter configuration of
α1 = 0.1, α2 = 0.2, α3 = 1, and β = 0.1.

5 COMPARISON WITH BASELINE MODELS

In this study, we select two baseline models for comparison. The
first model, referred to as FRC-GCN, is a cutting-edge GCN-based
model proposed by [40]. Our proposed framework is built upon this
state-of-the-art model. The second baseline model is DD-Net, which
is a CNN-based model [36]. FRC-GCN is known for its superior ac-
curacy, whereas DD-Net is recognized for its exceptional inference
speed. Our primary objective was twofold: to surpass FRC-GCN in
terms of accuracy and to outperform DD-Net in terms of inference
speed. Ultimately, our aim was to achieve state-of-the-art perfor-
mance, surpassing both models, to meet the need for real-time action
recognition use cases in MR applications, as discussed in Sections
1 and 2. Table 4 presents a comprehensive comparison of our pro-
posed model with the two baseline models, FRC-GCN and DD-Net.
Our model achieves state-of-the-art performance, demonstrating an
impressive accuracy of 93.7% and an exceptional inference speed of
352 FPS. This indicates that our model outperforms FRC-GCN in



Table 4: Performance comparison of skeleton-based action recogni-
tion models on our hand action dataset.

Method Params. Acc (%) Inference

Speed

DD-Net [36] 1.8M 75.4 267 FPS
CTR-GCN [3] 1.5M 93.1 45 FPS
FRC-GCN [40] 1.5M 93.3 45 FPS
(FR + CTR-GCN)

Ours 1.3M 93.7 352 FPS

terms of accuracy, while utilizing fewer parameters, and exhibits sig-
nificantly higher inference speed. Furthermore, we surpass DD-Net
in terms of inference speed, while also achieving improved accu-
racy with fewer parameters. These results highlight the robustness
of our proposed model and its applicability in real-time scenarios,
particularly in mixed reality applications.

In addition to comparing our model with the baselines, we present
the results of our model across different action classes using a con-
fusion matrix (Figure 9). The confusion matrix demonstrates the
robustness and reliability of our model, as it achieves near-perfect
accuracy for most of the action classes. However, despite incorpo-
rating a feature refinement method to distinguish ambiguous actions,
there are a few instances where our model encounters challenges
in correctly classifying similar-looking actions. Specifically, we
observe misclassifications where samples of the “holding” action are
incorrectly classified as “pressing a button”. This misclassification
arises from the fact that participants actually press a button while
holding a specific gauge, and the subtle finger movement may not be
accurately captured by the sensors, leading to the misclassification
as “holding”. Additionally, there are instances where the “attaching”
action is misclassified as “close” due to the similarity in the hand tra-
jectory between attaching a gauge to a part and closing a gauge box
lid. These observations indicate that while our model has achieved
state-of-the-art performance outperforming other models, there is
still room for improvement, particularly in addressing these specific
cases.
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Figure 9: Confusion matrix depicting the performance of the pro-
posed model on our hand action dataset.

5.1 Real-Time Qualitative Analysis

To evaluate the real-time performance of our model, we deploy it in
our proposed system and conduct extensive testing. In this real-time
setting, we perform various actions and assess whether the model
accurately predicts the corresponding actions. Figure 10 shows
samples of the real-time testing. During the tests, we observe that
our model successfully predicts the correct actions in most cases,
demonstrating its robustness in real-time recognition tasks. Although
our model achieves a high inference speed of approximately 350 FPS,
we notice a slight delay of ∼ 1 second when transitioning from one
action to another. This delay is primarily due to the temporal window
we employed for processing the input data stream, as well as other
inherent system latency in the setup. Nevertheless, we anticipate that
this slight latency will be acceptable for the majority of mixed reality
use cases. Additionally, we acknowledge that our model occasionally
generates noisy outputs during action transitions, presenting an
area for future improvement. Overall, our proposed model exhibits
robustness in real-time hand action recognition, considering the
complexity of the task and the intended use case.

Figure 10: Testing the hand action recognition model in real-time.

6 CONCLUSION

This paper presents a comprehensive framework for hand action
recognition in mixed reality applications. The framework encom-
passes mixed reality guided data collection, a robust and efficient
hand action recognition model, its training and deployment strate-
gies, and testing in a mixed reality system. Through exhaustive
experiments and validation, we have demonstrated the effectiveness
of our framework, making it suitable for a wide range of intelligent
mixed reality use cases. Our mixed reality guided data collection
app has been proven to be user-friendly, independent, and efficient
in collecting high-quality data. The introduced model is robust, ef-
ficient, and highly suitable for real-time applications. The training
strategies that we have implemented effectively distinguish between
ambiguous hand actions. Additionally, by testing the model in a real-
time mixed reality system, we have confirmed its ability to perform
well in real-time scenarios.

Despite the success of our framework, we have identified areas
for improvement. One such area is the data collection app, where
incorporating a feedback mechanism during user action performance
would enhance user confidence and assurance. Moreover, in real-
time inference testing, we have observed occasional noisy outputs,
particularly during transitions between actions. Introducing a mech-
anism to preserve long-term temporal information and utilize it for
real-time action prediction would lead to more stable predictions.
Looking ahead, our future plans involve addressing these areas of
improvement to further enhance the robustness of our framework.
By implementing the suggested enhancements, we aim to make our
framework even more reliable and capable of meeting the demands
of various mixed reality applications.
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gesture recognition system for xr-based collaborative purposes. In 2022

IEEE International Conference on Metrology for Extended Reality,

Artificial Intelligence and Neural Engineering (MetroXRAINE), pp.

121–126. IEEE, 2022.

[2] Y. Che, Y. Qi, and Y. Song. Real-time 3d hand gesture based mobile

interaction interface. In 2019 IEEE International Symposium on Mixed

and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 228–232. IEEE,

2019.

[3] Y. Chen, Z. Zhang, C. Yuan, B. Li, Y. Deng, and W. Hu. Channel-

wise topology refinement graph convolution for skeleton-based action

recognition. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 13359–13368, 2021.

[4] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu. Skeleton-

based action recognition with shift graph convolutional network. In

Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 183–192, 2020.

[5] C.-H. Chu and C.-H. Ko. An experimental study on augmented reality

assisted manual assembly with occluded components. Journal of

Manufacturing Systems, 61:685–695, 2021.

[6] Q. De Smedt, H. Wannous, and J.-P. Vandeborre. Skeleton-based

dynamic hand gesture recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops, pp. 1–9,

2016.

[7] Q. De Smedt, H. Wannous, J.-P. Vandeborre, J. Guerry, B. L. Saux,

and D. Filliat. 3d hand gesture recognition using a depth and skeletal

dataset: Shrec’17 track. In Proceedings of the Workshop on 3D Object

Retrieval, pp. 33–38, 2017.

[8] J. Dong, Z. Tang, and Q. Zhao. Gesture recognition in augmented

reality assisted assembly training. In Journal of Physics: Conference

Series, vol. 1176, p. 032030. IOP Publishing, 2019.

[9] J. Dong, Z. Xia, and Q. Zhao. Augmented reality assisted assembly

training oriented dynamic gesture recognition and prediction. Applied

Sciences, 11(21):9789, 2021.

[10] W. Fang and J. Hong. Bare-hand gesture occlusion-aware interac-

tive augmented reality assembly. Journal of Manufacturing Systems,

65:169–179, 2022.

[11] Q. Gao, Y. Chen, Z. Ju, and Y. Liang. Dynamic hand gesture recog-

nition based on 3d hand pose estimation for human–robot interaction.

IEEE Sensors Journal, 22(18):17421–17430, 2021.

[12] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim. First-person

hand action benchmark with rgb-d videos and 3d hand pose annotations.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 409–419, 2018.

[13] A. Khurshid, R. Grunitzki, R. G. Estrada Leyva, F. Marinho, and

B. Matthaus Maia Souto Orlando. Hand gesture recognition for user

interaction in augmented reality (ar) experience. In Virtual, Augmented

and Mixed Reality: Design and Development: 14th International Con-

ference, VAMR 2022, Held as Part of the 24th HCI International Con-

ference, HCII 2022, Virtual Event, June 26–July 1, 2022, Proceedings,

Part I, pp. 306–316. Springer, 2022.

[14] T. Kwon, B. Tekin, J. Stühmer, F. Bogo, and M. Pollefeys. H2o: Two

hands manipulating objects for first person interaction recognition. In

Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 10138–10148, 2021.

[15] J. Lee, M. Lee, D. Lee, and S. Lee. Hierarchically decomposed graph

convolutional networks for skeleton-based action recognition. arXiv

preprint arXiv:2208.10741, 2022.

[16] J. Liu, X. Wang, C. Wang, Y. Gao, and M. Liu. Temporal decoupling

graph convolutional network for skeleton-based gesture recognition.

IEEE Transactions on Multimedia, 2023.

[17] W. Lu, Z. Tong, and J. Chu. Dynamic hand gesture recognition with

leap motion controller. IEEE Signal Processing Letters, 23(9):1188–

1192, 2016.

[18] Y. Lu and W. W. Mayol-Cuevas. The object at hand: Automated

editing for mixed reality video guidance from hand-object interactions.

In 2021 IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), pp. 90–98. IEEE, 2021.

[19] S. Malik, C. McDonald, and G. Roth. Hand tracking for interactive

pattern-based augmented reality. In Proceedings. International Sympo-

sium on Mixed and Augmented Reality, pp. 117–126. IEEE, 2002.

[20] Y. Murhij and V. Serebrenny. Hand gestures recognition model for

augmented reality robotic applications. In Proceedings of 15th Inter-

national Conference on Electromechanics and Robotics” Zavalishin’s

Readings” ER (ZR) 2020, Ufa, Russia, 15–18 April 2020, pp. 187–196.

Springer, 2021.

[21] M. Oberweger and V. Lepetit. Deepprior++: Improving fast and accu-

rate 3d hand pose estimation. In Proceedings of the IEEE international

conference on computer vision Workshops, pp. 585–594, 2017.

[22] T. Ohkawa, K. He, F. Sener, T. Hodan, L. Tran, and C. Keskin. Assem-

blyhands: Towards egocentric activity understanding via 3d hand pose

estimation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 12999–13008, 2023.

[23] A. A. Patil, A. Swaminathan, R. Gayathri, et al. Human action recogni-

tion using skeleton features. In 2022 IEEE International Symposium on

Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 289–296.

IEEE, 2022.

[24] S.-H. Peng and P.-H. Tsai. An efficient graph convolution network for

skeleton-based dynamic hand gesture recognition. IEEE Transactions

on Cognitive and Developmental Systems, 2023.

[25] J. Ryu, D. Kim, and Y. Chai. Corrigible action recognition system

through motion-sphere trajectories for standard metaverse actions. In

2022 IEEE International Symposium on Mixed and Augmented Reality

Adjunct (ISMAR-Adjunct), pp. 542–547. IEEE, 2022.

[26] A. Sabater, I. Alonso, L. Montesano, and A. C. Murillo. Domain

and view-point agnostic hand action recognition. IEEE Robotics and

Automation Letters, 6(4):7823–7830, 2021.

[27] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Two-stream adaptive graph

convolutional networks for skeleton-based action recognition. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pp. 12026–12035, 2019.

[28] K. Su, X. Liu, and E. Shlizerman. Predict & cluster: Unsupervised

skeleton based action recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 9631–

9640, 2020.

[29] T. Voillemin, H. Wannous, and J.-P. Vandeborre. Firstpiano: A new

egocentric hand action dataset oriented towards augmented reality

applications. In Image Analysis and Processing–ICIAP 2022: 21st

International Conference, Lecce, Italy, May 23–27, 2022, Proceedings,

Part III, pp. 170–181. Springer, 2022.

[30] J. Wang, J. Chen, Y. Qiao, J. Zhou, and Y. Wang. Online gesture

recognition algorithm applied to hud based smart driving system. In

2019 IEEE International Symposium on Mixed and Augmented Reality

Adjunct (ISMAR-Adjunct), pp. 289–294. IEEE, 2019.

[31] S. Wang, Y. Zhang, F. Wei, K. Wang, M. Zhao, and Y. Jiang. Skeleton-

based action recognition via temporal-channel aggregation. arXiv

preprint arXiv:2205.15936, 2022.

[32] Z. Wang, Y. Wang, X. Bai, X. Huo, W. He, S. Feng, J. Zhang, Y. Zhang,

and J. Zhou. Sharideas: a smart collaborative assembly platform based

on augmented reality supporting assembly intention recognition. The

International Journal of Advanced Manufacturing Technology, 115(1-

2):475–486, 2021.

[33] J. Wolf, Q. Lohmeyer, C. Holz, and M. Meboldt. Gaze comes in handy:

Predicting and preventing erroneous hand actions in ar-supported man-

ual tasks. In 2021 IEEE International Symposium on Mixed and Aug-

mented Reality (ISMAR), pp. 166–175. IEEE, 2021.

[34] H. Xie, J. Wang, B. Shao, J. Gu, and M. Li. Le-hgr: A lightweight and

efficient rgb-based online gesture recognition network for embedded

ar devices. In 2019 IEEE International Symposium on Mixed and

Augmented Reality Adjunct (ISMAR-Adjunct), pp. 274–279. IEEE,

2019.

[35] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional

networks for skeleton-based action recognition. In Proceedings of the

AAAI conference on artificial intelligence, vol. 32, 2018.

[36] F. Yang, Y. Wu, S. Sakti, and S. Nakamura. Make skeleton-based

action recognition model smaller, faster and better. In Proceedings of

the ACM multimedia asia, pp. 1–6. 2019.

[37] D. W. Yoo, S. Reza, N. Wilson, K. Jona, and M. Moghaddam. Augment-



ing learning with augmented reality: Exploring the affordances of ar in

supporting mastery of complex psychomotor tasks. In International

Society of the Learning Sciences, 2023.

[38] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Y. Chang, K. M.

Lee, P. Molchanov, J. Kautz, S. Honari, L. Ge, et al. Depth-based 3d

hand pose estimation: From current achievements to future goals. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2636–2645, 2018.

[39] X. Zhang, C. Xu, X. Tian, and D. Tao. Graph edge convolutional neural

networks for skeleton-based action recognition. IEEE transactions on

neural networks and learning systems, 31(8):3047–3060, 2019.

[40] H. Zhou, Q. Liu, and Y. Wang. Learning discriminative representations

for skeleton based action recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 10608–

10617, 2023.


	Introduction
	Related Works
	Method
	Mixed Reality-Guided Data Collection
	Skeleton-Based Hand Action Recognition Model
	Input Data
	Backbone Neural Network Architecture
	Feature Refinement
	Training Objective
	Deployment and Inference


	Experiment
	Case Study: Precision Hand Inspection
	Implementation Details
	Data Collection
	User Experience Analysis
	Hand Action Recognition Model Analysis
	Backbone Network Selection
	Hyperparameter Exploration


	Comparison with Baseline Models
	Real-Time Qualitative Analysis

	Conclusion

