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Figure 1: Overview of the study apparatus (left), gaze tracking and pupillometry data (middle), and research questions (right).

ABSTRACT

Augmented reality (AR) technologies have recently gained substan-
tial attention within the industry due to their potential applications in
on-the-job training and assistance across diverse industrial settings.
However, personalizing AR instructions and feedback interventions
that cater to individual user needs and skill levels remains a rela-
tively less explored area of research. This paper aims to bridge this
gap by utilizing eye tracking data coupled with computer vision to
examine the gaze and pupil behaviors of individuals with various
levels of expertise performing AR-guided procedural tasks. The
main goal is to investigate the relationship between eye tracking
data, visual attention, and expertise by exploring four research ques-
tions associated with (1) differences in fixation and saccade duration
between novices and experts, (2) variations in visual attention allo-
cation to action-relevant areas of interest (AOI) between novices and
experts, (3) the influence of expertise on scanpath and transitions
between AOlIs, and (4) the correlation between pupil size variations
and fixation/saccade behaviors. The findings of a study on humans
that focused on two procedural tasks are reported. The study uses
synchronized gaze, pupillometry, and egocentric videos to analyze
gaze interactions with AOIs and background stimuli based on object
detection models. This research advances our understanding of the
relationship between gaze behaviors, visual attention, and expertise,
thus offering new insights into enabling adaptive and personalized
interventions in AR. These insights are specifically relevant to AR
use cases centered on training or on-the-job assistance.

Index Terms: Eye tracking—Pupillometry—Visual attention—
Expertise

1 INTRODUCTION

Augmented reality (AR) technologies have garnered considerable
attention in recent years due to their potentially transformative ca-
pabilities for training and assistance in diverse industrial environ-
ments [1]. However, a relatively less explored avenue is how AR
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can effectively customize instructions and feedback interventions
to accommodate the specific needs and skill levels of individual
users during training or task execution. Personalized scaffolding
is crucial [2] as it aligns with users’ attention and expertise levels
to help them construct knowledge [3]. However, current methods
largely offer generic “one-size-fits-all” instructions, disregarding
the unique needs and knowledge of the individual. The potential
of AR to provide personalized and adaptive learning experiences is
evident, especially when visual gaze overlays and instructional cues
are used in real time to improve learning and task performance. To
dynamically adapt interventions according to users’ unique needs
and preferences in AR, it is essential to ascertain their level of task-
specific expertise and attention patterns in real-time. This paper
delves into the gaze and pupil behaviors of users equipped with
AR headsets to differentiate between novices and experts during
AR-guided execution of procedural tasks. The primary objective
is to link eye-tracking metrics with task performance, paving the
way for algorithms that adaptively guide user attention in AR based
on expertise. For example, in surgery, distinct visual attention pat-
terns emerge between novices and experts as the complexity of the
task increases [4]. Another surgical study revealed how the level of
expertise of a surgeon dictates the distribution of attention during
procedures [5]. Similarly, in aviation, the correlation between a pi-
lot’s gaze and performance has been studied, spotlighting the role of
experience in flight attention [6,7]. Furthermore, innovative research
in various fields has underscored the value of gaze-centric displays
in the construction of intuitive, attention-aware systems [8,9]. This
study focuses on using these insights to enhance AR experiences
tailored to individual skill levels.

Despite significant recent progress in AR eye tracking research,
there is still a lack of systematic modeling of gaze and pupil be-
havior during AR-guided tasks. Drawing on data from advanced
eye-tracking technology in AR, the findings presented in this paper
will serve as the basis for intelligent and adaptive AR systems for
training and task assistance. These systems, designed with the capa-
bility to dynamically adjust in real-time based on the user’s expertise
and attention, promise to offer robust and reliable results that can
further augment the existing body of knowledge.

1.1 Research Questions

Previous research in this field has made some advances in under-
standing and evaluating visual attention and expertise using various
eye-tracking technologies [5,7,10]. Yet, current knowledge lacks a



comprehensive understanding of the intricate details regarding gaze
interactions with areas of interest (AOISs), as well as pupil dilation or
contraction at the action level, and their correlation with the user’s
attention and skill level during task execution. Driven by this motiva-
tion, our objective is to advance the understanding of the following
research questions.

RQ1. Fixation and Saccade Duration Do novices and
experts demonstrate significant differences in the average
duration of fixations and saccades while performing AR-
guided procedural tasks?

The eye-mind hypothesis posits a direct connection between
the visual fixation of the eyes and the cognitive processing of the
mind [10]. That is, fixation is known to be correlated with cognitive
workload and attention. On the other hand, saccades are commonly
attributed to the degree of uncertainty or hesitation exhibited by
an individual while tackling complex tasks, where a longer dura-
tion of saccades indicates a greater degree of indecisiveness [11].
However, there is a lack of agreement on the relationship between
expertise and the durations of fixation and saccade. According to
the hypothesis of long-term working memory, it is anticipated that
more skilled individuals will exhibit shorter fixation durations com-
pared to novices [12]. This is attributed to the experts’ ability to
efficiently and quickly retrieve the necessary information from their
long-term working memory, thanks to their domain-specific knowl-
edge and extensive experience [13]. However, there is an opposing
viewpoint that suggests longer fixation durations provide more sta-
bility for information processing, potentially leading to improved
outcomes. That is, the relationship between gaze behaviors and
expertise is influenced by the learners’ familiarity with the task and
its complexity. This provides a strong impetus to delve deeper into
this research question to gain a more comprehensive understanding
of how fixation and saccade behaviors are related to the level of
expertise.

RQ2. Distribution of Visual Attention Is there a sig-
nificant difference in the level of visual attention experts
allocate to action-relevant AOIs compared to novices?

The distribution of visual attention refers to how the user’s gaze
points are spread across various sources of information, indicating
the general allocation of visual focus [14]. There is evidence that
experts tend to focus more on relevant information, while novices
are frequently distracted by irrelevant information [7]. Specifically,
according to the information reduction hypothesis, experts aim to
concentrate their processing efforts on task-relevant AOIs while
minimizing the allocation of visual attention to redundant informa-
tion [15]. An AOI refers to a specific portion of a stimulus that
captures the user’s visual attention and plays a crucial role in in-
vestigating the disparities between experts and novices using eye
tracking techniques [7]. The information reduction hypothesis also
explains the inconsistent findings regarding differences in fixation
duration between experts and novices. Experts may deliberately
extend their fixation duration on AOISs relevant to the task, while
reducing their processing time on less important areas. However, in
the context of AR-guided task execution, it is crucial to verify this
relationship, as AQOIs are not predetermined and must be identified
and examined in tandem with action-level gaze patterns. This allows
for an understanding of the duration of user fixation on AOIs that
are relevant to the task, as well as those that are irrelevant to the task
and background stimuli.

RQ3. Scanpath and Gaze Sequence. Does the level of
expertise influence the frequency and temporal sequence
of transitions between AOIs?

A scanpath refers to the sequential pattern of fixations and sac-
cades, represented by the temporal sequence of gaze coordinates [16].
Assessing the expertise level of an individual based on their gaze
behavior during a specific action is heavily based on this crucial
metric. Experts are expected not only to be familiar with the rel-
evant AOIs but also to demonstrate a clear understanding of the
sequential order in which these AOIs are utilized during the action.
According to the holistic image perception model, experts exhibit
superior efficiency compared to novices in processing stimuli at both
the global and local levels [17]. They possess the ability to quickly
analyze the overall scene at a glance, enabling them to distinguish
important information from irrelevant details. Experts possess ad-
vanced visual recognition skills, which enable them to rapidly and
accurately recognize meaningful information and their relationship
compared to novices. But a greater understanding of this hypothesis
is still required, particularly within the context of AR-guided task
execution in unstructured and dynamically evolving environments.

RQ4. Pupil Size Variation. Is there a correlation be-
tween changes in pupil size and fixation or saccade be-
haviors?

The pupil diameter, as a physical attribute, can serve as a valuable
component in user modeling for AR. It is influenced by various
factors, from lighting conditions to emotions, cognitive workload,
and attention [18]. By monitoring the changes in pupil diameter,
an AR system can gather information about the user’s level of at-
tention and potentially even their emotional state. Also, it can be
utilized to detect the user’s focal point on specific AOIs, enabling
the AR system to deliver more pertinent information or engage with
virtual objects more seamlessly and intuitively. However, there is
insufficient evidence on the potential correlation between variations
in pupil size and the durations and patterns of fixations or saccades.
This lack of evidence hinders our understanding of whether longer
fixations during a specific action truly indicate cognitive processing
and attention.

1.2 Proposed Work

This paper presents the findings of exploratory research conducted to
address the aforementioned research questions. The study examined
the gaze behavior of a group of participants while performing two
procedural tasks: cooking and making coffee. These tasks were
specifically designed by the MIT Lincoln Laboratory to evaluate
DARPA’s Percentually Enabled Task Guidance (PTG) program [19].
Specifically, we collected synchronized gaze, pupillometry, and
egocentric videos from the participants, and implemented an object
detection model to analyze frame-wise interactions between gaze
and AOIs as well as background stimuli. A pre-study questionnaire
was administered to collect participants’ self-reported expertise in
performing the two tasks. In this context, expertise was characterized
as the level of experience and proficiency attained in the tasks,
considering both the quality and the quantity of experience [20]. All
participants received initial training on the two tasks, the AR app
and the HoloLens 2 headset. Data were collected and then used to
quantify several metrics required to answer RQs 1-4.
The key contributions of this paper are summarized as follows:

* We propose a new framework for data-driven modeling of user
attention and expertise level in AR based on gaze and pupil
tracking data captured from commercial AR headsets, as well
as a computer vision method for the study of fixation on task-
related and action-related stimuli. We validate the framework
through a study of human subjects.

* We contribute to the understanding of fixation and the dura-
tion of saccades. Experts exhibit longer fixation durations and



more accurate saccades compared to novices, indicating differ-
ences in attentional concentration and information processing
efficiency.

* Our study contributes to the field of visual attention by re-
vealing that experts allocate their attention more effectively
to action-relevant AOIs compared to novices. This highlights
the role of expertise in guiding attentional skills and has im-
plications for training programs targeting visual attentional
skills.

* We provide insights into scanpath and gaze sequences, showing
that experts display more efficient and deliberate scanpaths
with fewer revisits and smoother transitions between tasks.
This emphasizes the importance of expertise in organizing
gaze behavior and suggests the need for improved attention
guidance strategies for novices.

Our study addresses the correlation between pupil size vari-
ation and gaze behaviors, revealing significant associations
between changes in pupil size and fixation or saccade behav-
iors. This highlights the role of cognitive processes, attentional
demands, and expertise in shaping pupil responses during task
performance.

2 MATERIALS AND METHODS

In this section, a detailed description of the study materials and
methods is presented. This includes a detailed description of the
user study and the procedures implemented for data collection, as
well as the computational techniques developed for data analysis
and synthesis. Additionally, the metrics established to tackle the
research questions specified in Section 1 are described.

2.1 User Study

Participants. 15 students were recruited to participate in the
study; 5 participants were experts (1 woman, 4 men) and 10 novices
(5 women, 5 men), all graduate students. Prior to the experiments,
a pre-study questionnaire was conducted to collect their perceived
level of expertise in performing the two tasks. In this context, “ex-
pertise” refers to individuals who have the necessary knowledge and
significantly more extensive and superior experience to perform the
two tasks [20]. Also, all participants received preliminary training
on the tasks, the AR app, and the HoloLens 2 headset through the
HoloLens Tips App.

Apparatus. The study involved the execution of two procedural
tasks of making pour-over coffee and pinwheels with the help of an
AR app (see Figure 1). Participants manually interacted with the AR
app instructions, using hand gestures to navigate through the training
content. The app offered a variety of instructions for each step,
including guides, checklists, safety instructions, and videos (Figure
2.1). To collect data, we use the HoloLens 2 headset equipped with
the Pupil Labs add-on, enabling the capture of gaze and pupillometry
data (Figure 2.2). In addition, egocentric videos were recorded to
identify AOIs within each frame. Participants’ interactions with AR
content were recorded and gaze data was collected using the built-in
eye tracker of the HoloLens 2 headset to investigate their visual
engagement with AR content. The eye trackers of the Pupil Labs
add-on operate at a sampling rate of 120 Hz, while the world camera
records at 200 Hz and were synchronized using Unix timestamps.

Tasks. The sequence of actions for the two tasks is described as
follows: [19]. Pour-over coffee task: (1) Measure 12 ounces of cold
water. (2) Transfer the water to a kettle. (3) Place the dripper in the
mug. (4) Take the paper filter and fold it in half, creating a semicircle.
(5) Fold it in half again to form a quarter-circle shape. (6) Position
the paper filter inside the dripper and shape it into a cone. (7) Empty
the coffee beans from the bag. (8) Weigh 25 grams of coffee beans.
(9) Add the coffee beans to the coffee grinder. (10) Grind the coffee

Figure 2: Data collection setup. (1) The AR interface provides guid-
ance, a checklist, safety instructions, videos, animations, and a timer
per step. (2) HoloLens 2 equipped with a Pupil Labs add-on to collect,
gaze, and pupil as well as wide-POV egocentric videos.

for a duration of 20 seconds. (11) Transfer the ground coffee to the
filter cone. (12) Verify the temperature of the water. (13) Pour a
small amount of water over the coffee grounds. (14) Slowly pour
the remaining water in circular motion. (15) Dispose of the paper
filter and the coffee grounds used. (16) Hold the cup of coffee in
front of you. Pinwheels task: (1) Place the tortilla on a cutting board.
(2) Use a knife to gather the peanut butter. (3) Spread the butter on
the tortilla. (4) Clean the knife. (5) Use the knife to gather jelly. (6)
Spread the jelly on the nut butter. (7) Roll the tortilla. (8) Insert a
toothpick. (9) Trim the end of the roll. (10) Discard both ends. (11)
Place the floss underneath the tortilla and cut using the floss. (12)
Place the pinwheels on a plate.

Procedure. After completing the prestudy questionnaire, the
participants received a brief introduction to the task and the AR
app from the researchers. To ensure their familiarity with head
mounted AR, particularly HoloLens 2, participants underwent a 10-
15-minute training session using the HoloLens Tips app. They will
also perform a standard calibration process for the Pupil Labs add-on
eye trackers to ensure accurate measurements. Following this initial
preparation, each participant performed each task once, following
the instructions provided by the AR app. We considered unchanged
laboratory lighting throughout the experiments. Additionally, the
AR app did not include any large or shiny holograms that could affect
pupil size. We recorded their interactions with the user interface
and captured gaze data using the HoloLens, as well as the gathered
gaze, pupillometry, and egocentric videos using the Pupil Labs add-
on. The logged data from the HoloLens were used to label and
segment gaze, pupillometry, and egocentric video data according
to task steps (i.e., fine-grained actions), enabling us to calculate the
completion time for each step. At the end of the session, participants
completed a post-study questionnaire that included reporting their
cognitive load (NASA-TLX) (Table 2), self-efficacy, experience
with the HoloLens/AR app, and providing general feedback through
structured and open-ended questions.

Figure 3: Materials for the pour-over coffee task (left) and the pin-
wheels task (right). Courtesy of DARPA PTG [19].



2.2 Modeling and Analysis

Data Preprocessing and Synchronization. Data from eye
tracking and egocentric videos were synchronized to study visual
behavior in AR tasks. Eye-tracking data were filtered for precision
and then calibrated to the AR coordinates. The pupil data, including
variations and timestamps, was aligned with the eye-tracking data.
Egocentric videos helped to pinpoint AOIs and background stimuli.
We utilized an object detection model to identify objects in each
video frame and aligned this with gaze and pupil data. The resulting
comprehensive dataset contained gaze positions, fixations, saccade
durations, pupil size variations, and related AOIs and stimuli. The
quality-aligned data facilitated a deep exploration of gaze behavior
during AR tasks. AOIs were selected based on their relevance to
each step of the task, guided by a previously established task model
with detailed instructions.

Object Detection Model. Using the egocentric camera on the
AR headset, we used a top-tier computer vision model [21]. This
model, Faster R-CNN, efficiently detects objects. Comprising two
parts: the region proposal network (RPN) and a region-based convo-
lutional network, it identifies potential objects and classifies them
with precision. Trained on the extensive COCO dataset, the model
can recognize a wide array of object categories. During live AR
operations, the model assesses each video frame and predicts ob-
ject presence and locations, seamlessly merging with gaze data to
observe user interactions with AOIs and stimuli.

AFD and ASD Estimation. AFD captures the average time that
participants’ gaze stays fixated on a specific area during AR tasks.
In our study, the data were classified by subject, video, and step.
Using Pupil Lab software, we confirmed fixations and determined
the average fixation duration for each step. We then averaged these
durations to obtain the AFD for each video. The AFD was computed
separately for both experts and novices.

ASD measures the average duration between rapid eye move-
ments at different focal points. This metric reflects the participants’
visual scanning speed and efficiency during task transitions. Using
Pupil Lab data, we identified each fixation’s duration and calculated
the time between consecutive fixations to determine the saccade
length. The mean of these lengths gave the ASD for each video. The
study also derived separate ASD averages for experts and novices.

Gaze Distributions and Scanpaths Inference. To understand
participants’ visual attention and cognitive approaches during AR-
guided tasks, we analyzed gaze distributions and scanpaths using
eye tracking data. This revealed the areas that most captured the
participants’ focus and how they distributed their attention. We
sourced gaze positions from a Pupil Lab file, which offered times-
tamps, gaze coordinates (x,y), and a confidence value for accuracy.
The timestamp with the highest confidence was used per frame.

Using an object detection model, we identified collisions between
gaze positions and objects in each frame. This enabled analysis of
gaze interactions with both step-related and nonstep-related objects,
facilitating comparisons between novices and experts.

For scanpath creation, we observed changes in gaze direction
between object pairs. A 2D list documented transitions of gaze
between object IDs. By analyzing this data, we generate a scan path
showing the sequence of gaze movements across objects.

Pupillometry. We analyze pupil diameter changes to gauge
participants’ cognitive processing and arousal. Pupil dilation indi-
cates cognitive load, while constriction suggests focused attention
or familiarity with the task. We used pupillometry data to better
understand participants’ visual and cognitive reactions, enhancing
our evaluation of their task expertise. The data was sourced from
Pupil Lab’s exported file, which contains timestamps, confidence
percentages, and pupil dilation durations. Only data with a confi-
dence level above 60 % (as per Pupil Lab’s recommendation) was
considered. Post-filtering, we computed the average and standard
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Figure 4: AFD and ASD results for the two tasks (RQ1).

deviation for pupil sizes, then incorporated these findings into our
main analysis.

2.3 Metrics

Average Fixation Duration (AFD). Guided by the eye-mind
hypothesis [10], we studied the average fixation duration, consider-
ing the fatigue of the eye from the AR headset interactions.

Average Saccade Duration (ASD). We assessed learner in-
decisiveness through saccade durations, factoring in potential eye
fatigue from AR headset use [11].

Visual Distribution. We analyzed gaze distribution
among various stimuli [14], measuring the AFD on action-
relevant/irrelevant/background sources using object detection and
gaze positioning.

Scanpath Transitions. Our scanpath analysis, derived from
fixation and saccade sequences, delves into transitions between
stimuli types and discerns cognitive strategies from gaze patterns
[16]. This paper [4] highlighted its relevance in distinguishing
between expert and novice surgeons.

Pupil Size Variation. Through eye-tracking, we examined vari-
ations in pupil size, shedding light on cognitive load, arousal, and
attentional engagement levels. Changes in pupil size are indicative
of cognitive demands and emotional responses during the execution
of the task.

3 RESULTS

This section presents the findings obtained from the analysis of
the collected data, focusing on addressing the research questions
outlined in the study.

Data quality control measures are designed to maintain the in-
tegrity and reliability of the dataset and minimizing potential con-
founding factors.

3.1 RQ1: Fixation and Saccade Duration

Figure 4 details the measurements for the coffee and pinwheel tasks,
differentiating between novices and experts. For each task, we note
the AFD and ASD metrics and summarize the data for the two levels
of expertise. Our t-test analysis uncovers significant differences
in fixation durations (AFD: ¢ =-10.68, p = 0.0087) and saccade
durations (ASD: 1 = -12.28, p = 0.0066) between the groups.

The analysis highlights that experts tend to have longer and more
focused fixations, paired with efficient gaze transitions. On the
contrary, novices show briefer fixations and saccades, indicative of
less precise attention and gaze patterns. These distinctions underline
the impact of expertise on attention efficiency and offer insights
for crafting specialized training programs. Such findings can boost
novice performance and accelerate their transition to expert levels,
enriching overall skill growth.



Table 1: Frequency of visits between AOQls.

Task Novices  Experts
Pour-over coffee task 2822 520
Pinwheels task 2797 2266.6

3.2 RQ2: Distribution of Visual Attention

Figure 5 illustrates that experts and novices differ in their focus
during tasks. The t-test showed that experts and novices allocate
visual attention differently to action-relevant AOI (p = 0.0121).
However, for fixed frames without step-related steps, both groups
were similar (p = 0.8136). Similarly, the attention given to fixated
frames related to steps was comparable between both groups (p
=0.4226). In essence, while experts and novices differ in overall
attention to action-relevant AOlIs, they show no difference for non-
step or step-related frames. In the coffee task, the results of the t-test
reveal negligible differences between the groups in the distribution
of attention to background stimuli, non-step-related AOIs and step-
related AOIs, suggesting that both groups allocate attention similarly
in this task.

3.3 RQ3: Scanpath

The scanpath analysis brings insights into the sequential gaze behav-
ior exhibited by the participants. The findings reveal that experts
exhibit a lower number of gaze transitions in both the coffee and
pinwheel tasks (Table 1). This suggests that novices engage in active
scanning and exploration of objects on average, potentially indicat-
ing a more thorough allocation of attention. Conversely, the reduced
frequency of gaze transitions among experts implies a more focused
or selective attention strategy. The greater frequency and rapidity
of gaze transitions between objects in novices may signify a height-
ened cognitive load, as users process and integrate information from
multiple sources, like AR instructions. On the contrary, the reduced
number of gaze transitions may indicate a lower cognitive load,
suggesting a task that is comparatively simpler or less demanding.

3.4 RQ4: Pupil Size Variation

The accuracy and precision of video-based gaze estimation are
known to be influenced by the fluctuations in pupil size observed
during fixation [22]. Fixation of pupil dilation introduces errors
in estimating the gaze direction, reducing accuracy and precision.
This study [23] found that pupil dilation was more pronounced for
familiar stimuli, indicating its potential as an objective measure of
cognitive familiarity. The data presented in Figures 6 and 7 illustrate
variations in pupil size between novices and experts during coftee
and pinwheel tasks. Notably, experts exhibited a significant peak in
pupil size when searching for the garbage disposal location (Steps
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Figure 5: Distribution of visual attention between different stimuli:
step-related, non-step-related, and background (RQ2).

9-10 of the Pinwheels task), which involved nonstep related AOIs.
This observation suggests that cognitive familiarity influenced the
variation in pupil size among experts. The ANOVA in Figure 8
highlights the link between pupil size during tasks and cognitive
familiarity, with dilation suggesting increased cognitive engagement.

Table 2: Average NASA TLX responses per group.

Question (0: Very Low - 10: Very High) Novices  Experts
How mentally demanding were the tasks? 0.912 1.622
How physically demanding were the tasks? 2.316 1.277
How hurried or rushed was the pace of the tasks? 0.824 1.255
How successful were you in accomplishing what you were 3.698 7.012
asked to do?

How hard did you have to work to accomplish your level 1.774 1535
of performance?

How insecure, discouraged, irritated, stressed, and an- 0.502 0.4

noyed were you?

4 LIMITATIONS AND FUTURE WORK

Despite the promising findings reported, this research has certain
limitations. It focuses on two procedural tasks, questioning its ap-
plicability to various AR settings. The precision of eye tracking,
especially during fast eye movements, could affect the reliability of
the data. Classifying participants as 'novices’ and ’experts’ could
overlook nuanced gaze behaviors of intermediate skill levels. The
limited sample size and task-specific focus mean findings may not
be universally applicable. Future studies should include diverse sam-
ples, diverse tasks, and deeper measures to better understand gaze
behavior and cognitive correlations. The proposed data-driven exper-
tise modeling approach will lay the foundation for future AR-based
industrial training systems to allow adaptive and personalized inter-
ventions tailored to the level of expertise of individual users. Novices
may need more support, while experts need fewer interventions to
prevent distraction or overreliance on AR. Future AR-based indus-
trial training systems can facilitate personalized, proficiency-based,
dynamic training and on-the-job assistance.

5 CONCLUSIONS

The exploratory study presented in this paper shows that the gaze and
pupillometry behaviors of users during AR-guided task performance
can be used effectively to estimate their level of expertise. Specifi-
cally, experts demonstrated more efficient gaze strategies, marked
by longer fixation duration associated with task/step-relevant areas
of interest (AOIs) as well as more intentional saccades between
the AOIs. That is, experts demonstrated fewer transitions between
AOIs compared to novices. Experts also showed higher variations
in pupil size during less familiar steps, which may correspond to
variations in cognitive load. This is a preliminary effort that aims to
automate the process of estimating the level of expertise based on
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Figure 6: Variations in pupil diameter throughout different steps of the
Pour-Over Coffee task for novices versus experts (RQ4).



(Pinwheel Task) Step Number vs. Pupil Size
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Figure 7: Variations in pupil diameter throughout different steps of the
Pinwheels task for novices versus experts (RQ4).

eye tracking data in AR to effectively adapt the level of guidance and
instructions to the individual needs of the user and their familiarity
with different steps of the task. Future research will build on the
findings reported in this paper to develop new objective metrics and
data-driven models to estimate expertise and integrate them into AR
systems designed for training and assistance.

ACKNOWLEDGMENTS

This work is supported by the DARPA Perceptually Enabled Task
Guidance (PTG) Grant No. HR00112220001 and the NSF Grant
No. FW-HTF-2128743. Any opinions, findings, and conclusions
expressed in this material are those of the authors and do not neces-
sarily reflect the views of the NSF or DARPA.

REFERENCES

[1] Mohsen Moghaddam, Nicholas C Wilson, Alicia Sasser Modestino,
Kemi Jona, and Stacy C Marsella. Exploring augmented reality for
worker assistance versus training. Advanced Engineering Informatics,
50:101410, 2021.

[2] Tzu-Chiang Lin, Ying-Shao Hsu, Shu-Sheng Lin, Maio-Li Changlai,
Kun-Yuan Yang, and Ting-Ling Lai. A review of empirical evidence
on scaffolding for science education. International Journal of Science
and Mathematics Education, 10:437-455, 2012.

[3] Maria-Blanca Ibafiez and Carlos Delgado-Kloos. Augmented reality
for stem learning: A systematic review. Computers & Education,
123:109-123, 2018.

[4] Shan Li, Melissa C Duffy, Susanne P Lajoie, Juan Zheng, and Kevin
Lachapelle. Using eye tracking to examine expert-novice differences

Coffee - Step Number
p=<0.001

Coffee - Pupil Size

p =<0.001

o
@

p = <0.001

Normalized F-value
Normalized F-value
o
o

&
o
&

2

>

@ -
& &
F

e\/
&
IS ©
e 0@

sV
[<ie &

Pinwheel - Step Number
p =<0.001

Pinwheel - Pupil Size
p =<0.001

Normalized F-value
Normalized F-value

p = 4.1299e-02

Figure 8: ANOVA results for variations in pupil size (RQ4).

(3]

[6]

(7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

during simulated surgical training: A case study. Computers in Human
Behavior, 144:107720, 2023.

Tony Tien, Philip H Pucher, Mikael H Sodergren, Kumuthan Sriskan-
darajah, Guang-Zhong Yang, and Ara Darzi. Differences in gaze
behaviour of expert and junior surgeons performing open inguinal
hernia repair. Surgical endoscopy, 29:405—413, 2015.

Gal Ziv. Gaze behavior and visual attention: A review of eye tracking
studies in aviation. The International Journal of Aviation Psychology,
26(3-4):75-104, 2016.

Stephanie Brams, Gal Ziv, Oron Levin, Jochim Spitz, Johan Wagemans,
A Mark Williams, and Werner F Helsen. The relationship between
gaze behavior, expertise, and performance: A systematic review. Psy-
chological bulletin, 145(10):980, 2019.

Andrew P Bayliss, Emily Murphy, Claire K Naughtin, Ada Kritikos,
Leonhard Schilbach, and Stefanie I Becker. “gaze leading”: Initiating
simulated joint attention influences eye movements and choice behavior.
Journal of Experimental Psychology: General, 142(1):76, 2013.
Alexander Toet. Gaze directed displays as an enabling technology for
attention aware systems. Computers in Human Behavior, 22(4):615—
647, 2006.

Marcel A Just and Patricia A Carpenter. A theory of reading: from eye
fixations to comprehension. Psychological review, 87(4):329, 1980.
Eric Castet and Guillaume S Masson. Motion perception during sac-
cadic eye movements. Nature neuroscience, 3(2):177-183, 2000.

KA Ericsson and W Kintsch. Long-term working memory. Psycholog-
ical review, 102(2):211-245, 1995.

Gonca Gokce Menekse Dalveren and Nergiz Ercil Cagiltay. Insights
from surgeons’ eye-movement data in a virtual simulation surgical
training environment: effect of experience level and hand conditions.
Behaviour & Information Technology, 37(5):517-537, 2018.
Jan-Louis Kruger, Esté Hefer, and Gordon Matthew. Attention distri-
bution and cognitive load in a subtitled academic lecture: L1 vs. 12.
Journal of Eye Movement Research, 7(5), 2014.

Andreas Gegenfurtner, Erno Lehtinen, and Roger Séljo. Expertise
differences in the comprehension of visualizations: A meta-analysis of
eye-tracking research in professional domains. Educational psychology
review, 23:523-552, 2011.

Shivsevak Negi and Ritayan Mitra. Fixation duration and the learning
process: An eye tracking study with subtitled videos. Journal of Eye
Movement Research, 13(6), 2020.

Harold L Kundel, Calvin F Nodine, Emily F Conant, and Susan P
Weinstein. Holistic component of image perception in mammogram
interpretation: gaze-tracking study. Radiology, 242(2):396-402, 2007.
Siyuan Chen and Julien Epps. Using task-induced pupil diameter
and blink rate to infer cognitive load. Human—Computer Interaction,
29(4):390-413, 2014.

Bruce Draper. Perceptually-enabled Task Guidance. https://www.
darpa.mil/program/perceptually-enabled-task-guidance,
2021. [Online; accessed 1-June-2023].

Norbert M Seel. Encyclopedia of the Sciences of Learning. Springer
Science & Business Media, 2011.

Zekun Zhang and Minh Hoai. Object detection with self-supervised
scene adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 21589-21599,
June 2023.

Kyoung Whan Choe, Randolph Blake, and Sang-Hun Lee. Pupil size
dynamics during fixation impact the accuracy and precision of video-
based gaze estimation. Vision research, 118:48-59, 2016.

Léon Franzen, Amanda Cabugao, Bianca Grohmann, Karine Elalouf,
and Aaron P Johnson. Individual pupil size changes as a robust indi-
cator of cognitive familiarity differences. PloS one, 17(1):¢0262753,
2022.


https://www.darpa.mil/program/perceptually-enabled-task-guidance
https://www.darpa.mil/program/perceptually-enabled-task-guidance

	Introduction
	Research Questions
	Proposed Work

	Materials and Methods
	User Study
	Modeling and Analysis
	Metrics

	Results
	RQ1: Fixation and Saccade Duration
	RQ2: Distribution of Visual Attention
	RQ3: Scanpath
	RQ4: Pupil Size Variation

	Limitations and Future Work
	Conclusions

