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ABSTRACT

In observational studies, balancing covariates in different treatment groups is es-
sential to estimate treatment effects. One of the most commonly used methods for
such purposes is weighting. The performance of this class of methods usually de-
pends on strong regularity conditions for the underlying model, which might not
hold in practice. In this paper, we investigate weighting methods from a functional
estimation perspective and argue that the weights needed for covariate balancing
could differ from those needed for treatment effects estimation under low regu-
larity conditions. Motivated by this observation, we introduce a new framework
of weighting that directly targets the treatment effects estimation. Unlike existing
methods, the resulting estimator for a treatment effect under this new framework
is a simple kernel-based U -statistic after applying a data-driven transformation to
the observed covariates. We characterize the theoretical properties of the new es-
timators of treatment effects under a nonparametric setting and show that they are
able to work robustly under low regularity conditions. The new framework is also
applied to several numerical examples to demonstrate its practical merits.

1 INTRODUCTION

In order to infer causal relations in an observational study, a major difficulty is to reduce the bias
brought by the confounding covariates related to both the treatment assignment and the outcome
of interest (Imbens & Rubin, 2015). This task can be accomplished by balancing the empirical
distributions of observed covariates in different treatment groups. One common strategy to adjust
imbalances of confounders is weighting (Rosenbaum, 1987; Robins et al., 1994; 2000; Hirano &
Imbens, 2001; Hirano et al., 2003), which seeks a weight for each sample so that covariates distri-
butions are similar between the weighted groups.

A conventional approach widely employed in the literature for estimating weights is the inverse-
probability weighting (IPW) method, where the weight of each sample is the corresponding inverse
probability of receiving the treatment (Horvitz & Thompson, 1952; Hahn, 1998; Robins et al., 2000;
Hirano & Imbens, 2001; Hirano et al., 2003). It has been shown that this method can entirely remove
the bias in the estimation of treatment effects when the true propensity score, defined as the condi-
tional probability of receiving treatment given the covariates (Rosenbaum & Rubin, 1983), is used.
Practical applications of IPW usually require estimating the propensity score based on a presumed
model, as the true propensity score is typically unknown in advance. However, misspecification
of the propensity score model can induce large biases in estimating treatment effects using IPW
(Kang & Schafer, 2007). This observation motivates recent works to develop more robust weighting
methods, aiming to estimate the propensity score or the weight itself by directly comparing some
prespecified moments/basis functions of covariates between the treatment groups (Graham et al.,
2012; Hainmueller, 2012; Imai & Ratkovic, 2014; Zubizarreta, 2015; Chan et al., 2016; Zhao &
Percival, 2016; Wong & Chan, 2018; Zhao, 2019; Wang & Zubizarreta, 2020; Kallus, 2020; Hirsh-
berg & Wager, 2021; Singh, 2021; Bruns-Smith et al., 2023; Fan et al., 2023). These direct balancing
weighting methods have been shown to work more robustly than the IPW method in practice.

The good performance of the inverse-probability weighting or direct balancing weighting methods
usually relies on strong regularity conditions for either the propensity score or the response func-
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tions. Specifically, the smoothness levels of the propensity score and the response functions must
be at least as large as half of the covariate dimension in these methods (Chan et al., 2016; Fan et al.,
2023; Wong & Chan, 2018; Wang & Zubizarreta, 2020). However, it is not immediately clear how
to construct the weights when these criteria are not met and to what extent the treatment effects
could be estimated by the weighting method in such non-smooth cases. Therefore, this paper aims
to address these issues and develop a new framework of weighting methods to fill these needs.

We first investigate the weighting methods from a functional estimation perspective as a treatment
effect is essentially a functional of the response and density functions. Through this perspective, we
argue that the best way to estimate the ideal weights does not necessarily lead to the most efficient
weighting estimator for treatment effects in the non-smooth case. In other words, the weights needed
for covariate balancing could be different from the weights needed to estimate treatment effects
when the response and density functions are non-smooth. Then, a natural question arises: how can
we design a weighting method that directly targets the treatment effects estimation?

To address this question, we introduce a new weighting framework called Weighting by Uniform
Transformer (WUNT). Note that the term “transformer” here differs from its conventional usage as
neural network architecture (Vaswani et al., 2017). Our motivation for this new framework stems
from a noteworthy insight into the uniform transformer, defined as a transformation mapping the
covariate distribution in the control group to a uniform distribution. The uniform transformer gives
us a clean form of the weighting method, allowing us to directly make an accurate trade-off between
the bias and variance for the treatment effects estimation. In addition, we show how to construct
a data-driven uniform transformer from the covariates of control samples in a computationally effi-
cient way. With the data-driven uniform transformer, the weights in WUNT are customized for the
treatment effects estimation, and the resulting weighting estimator is a kernel-based U -statistic.

To demonstrate the merits of the newly proposed framework WUNT and the corresponding estima-
tors , we study the theoretical properties under a nonparametric setting, especially when the response
and density functions are non-smooth. Specifically, we show that the proposed estimator is consis-
tent under very mild conditions. In addition, if the covariate density in the control group is known
or can be estimated accurately, the minimax optimal converge rate for the mean square error of
estimating the average treatment effect on the treated group is

n−
4(α+β)
d+2(α+β) + n−1,

where n is the sample size, d is the dimension of covariates, and α and β are the smoothness levels of
the response surfaces and density functions of the covariates, respectively. This result suggests that
estimation of the treatment effects becomes more difficult when the response and density functions
are less smooth. The converge rate presented here also appears in Robins et al. (2008; 2009; 2017),
where an accurate trade-off between bias and variance is achieved by semi-parametric methods with
additional bias reduction techniques. Our result shows that the newly proposed weighting method
is also able to do so because of the uniform transformer. To our best knowledge, this is the first
minimax rate-optimal weighting method when the response and density functions are non-smooth.
Practical merits of WUNT are further demonstrated through simulation experiments in Appendix B.

2 PROBLEM SETTING AND WEIGHTING METHODS

2.1 PROBLEM SETTING AND NOTATIONS

Suppose that the observed data ( ~Xi, Zi, Yi), i = 1, . . . , n are independent and identically distributed
observations of ( ~X,Z, Y ), where ~X ∈ Rd are the observed covariates, Z is a binary indicator
variable for the treatment and Y is the outcome of interest. Under the potential outcome framework
for causal inference (Rubin, 1974; Imbens & Rubin, 2015), Y 0 and Y 1 are the potential outcomes
if the individual is assigned to the treated (Z = 1) or control group (Z = 0). Then, the observed
outcome can be written as Y = (1 − Z)Y 0 + ZY 1. Throughout this paper, we always assume the
strong ignorability of the treatment assignment (Rosenbaum & Rubin, 1983)

{Y 0, Y 1} ⊥ Z | ~X and 0 < P(Z = 1| ~X) < 1. (1)
It is of interest to estimate the average treatment effect (ATE), τATE, or the average treatment effect
on the treated group (ATT), τATT. Let µT ( ~X) = E(Y 1| ~X) and µC( ~X) = E(Y 0| ~X), we have

τATE = E(µT ( ~X)− µC( ~X)) and τATT = E(µT ( ~X)− µC( ~X)|Z = 1).
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For the sake of concreteness, we focus primarily on the average treatment effect on the treated group
τATT in this paper. The techniques are also applicable to more generalized cases, e.g., Section C.1
of the Appendix discusses the robust estimation for the average treatment effect τATE under the new
framework. Let fT ( ~X) = P( ~X|Z = 1) and fC( ~X) = P( ~X|Z = 0), then τATT can be written as

τATT = µTT − µCT =

∫
µT ( ~X)fT ( ~X)d ~X −

∫
µC( ~X)fT ( ~X)d ~X.

It is natural to estimate the first term µTT by
∑n
i=1 YiZi/

∑n
i=1 Zi. The second term µCT is the

major challenge in estimating τATT since the data with both response function µC( ~X) and sampling
distribution fT ( ~X) are inaccessible. Therefore, the main parameter of interest in this paper is µCT .

2.2 WEIGHTING METHODS: A FUNCTIONAL ESTIMATION PERSPECTIVE

In general, a weighting method (Rosenbaum, 1987; Hirano et al., 2003) seeks weights for each
control sample so that covariates of the weighted control samples are more similar to those of the
treated samples. Given the weights wi for each sample, µCT is estimated by the weighted mean

µ̂CT =
n∑
i=1

wi(1− Zi)Yi. (2)

In this section, we discuss the weighting methods from a functional estimation perspective as µCT =∫
µC( ~X)fT ( ~X)d ~X is essentially a bilinear functional of the response and density functions. The

main intuition behind weighting is that the functional µCT can be rewritten as

µCT =

∫
µC( ~X)

fT ( ~X)

fC( ~X)
fC( ~X)d ~X =

∫
µC( ~X)fC( ~X)w( ~X)d ~X, (3)

where the weighting function w( ~X) is

w( ~X) =
fT ( ~X)

fC( ~X)
=

π( ~X)

1− π( ~X)

P(Z = 0)

P(Z = 1)
.

Here, the weighting function at each ~Xi can be treated as ideal weights for the weighting methods
since w( ~X) can make the distributions in the treated and control groups perfectly balanced. In
practice, the weighting methods aim to estimate the weighting function at each ~Xi by some estimator
ŵ( ~Xi) and then replace w( ~X) by ŵ( ~X) in equation 3. Despite the difference between IPW and
direct balancing weighting, the common goal is to estimate the ideal weights w( ~X).

On the other hand, the ultimate goal in treatment effects estimation is to estimate µCT rather than
w( ~X), so the weighting methods focusing on estimating the ideal weights can be seen as a plug-in
estimator for µCT since w( ~X) is replaced by ŵ( ~X) in equation 3. However, such a plug-in strategy
does not necessarily lead to an efficient estimator for the functional µCT (Lepski et al., 1999; Newey
et al., 2004; Cai & Low, 2011; Robins et al., 2017) because the best estimator for w( ~X) might not
be the most suitable choice for estimating µCT . An explicit example is given to illustrate this point
in Section 2.3. Therefore, a natural question arises: can we design the weights in equation 2 aiming
at estimating µCT directly? In this paper, we demonstrate that this is indeed possible; in fact, the
weights needed for estimating µCT are over-debiased and variance-inflated estimators for w( ~X)
when the response function in the control group is not smooth.

2.3 A WARM-UP EXAMPLE

To illustrate the idea, we start with a special case where the covariate ~X is one-dimensional (d = 1)
and the distribution of ~X in the control group fC( ~X) is the uniform distribution on [0, 1]. For
simplicity, we assume fT ( ~X) = 0 at ~X = 0 and 1 to avoid boundary bias. In this case, the weighting
function w( ~X) becomes fT ( ~X), so estimating the weights is equivalent to estimating the density of
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covariates in the treated group. To estimate the density fT without assuming any parametric form,
consider using one of the most commonly used density estimators – the kernel density estimator

f̂T (x) =
1

n1h

n∑
i=1

K

(
x− ~Xi

h

)
Zi =

1

n1

n∑
i=1

Kh

(
x− ~Xi

)
Zi,

where K(·) is a one-dimensional kernel function and h is the bandwidth. Standard analysis for
kernel density estimators suggests that

E(f̂T (x)− fT (x))2 . h2β︸︷︷︸
Bias

+ 1/(nh)︸ ︷︷ ︸
V ariance

if we assume fT (x) belongs to Hölder class Hβ([0, 1]); the formal definition of Hölder class is
introduced in Section 4. See Tsybakov (2008) for a detailed proof. Therefore, if we aim to estimate
the weighting function w( ~X), the bandwidth h should be chosen as h � n−1/(1+2β), i.e., h is of the
same order as n−1/(1+2β). Is this bandwidth also the most suitable one for estimating µCT ?

It seems reasonable to expect that the best way to estimate the weighting function w( ~X) leads
naturally to the best weighting estimator for µCT and hence the ATT. However, we now show that
the bias and variance trade-off for estimating the weighting function w( ~X) can be very different
from that for estimating µCT . If the weights in equation 2 are replaced by the above kernel density
estimator, the resulting weighting estimator for µCT is then

µ̂CT =

∑n
i1,i2=1 Yi1(1− Zi1)Kh

(
~Xi1 − ~Xi2

)
Zi2∑n

i1,i2=1(1− Zi1)Kh

(
~Xi1 − ~Xi2

)
Zi2

.

Since µ̂CT is a U -statistics, our analysis in Section 4 shows that

E(µ̂CT − µCT )2 . h2(α+β)︸ ︷︷ ︸
Bias

+ 1/n+ 1/(n2h)︸ ︷︷ ︸
V ariance

,

if we further assume the response surface in the control group µC(x) belongs to Hölder class
Hα([0, 1]). The proof is omitted here since the result is a special case of Theorem 1. Unlike es-
timating the weighting function w( ~X), the bias in estimating µCT also relies on the smoothness of
the response function. The new bias and variance trade-off suggests that the optimal choice of the
bandwidth h for estimating µCT is

h �
{
n−2/(1+2(α+β)), α+ β ≤ 1

2

[n−1, n−1/2(α+β)], α+ β > 1
2

,

where h � [a, b] means h � c for arbitrary c ∈ [a, b]. When the response function in the control
group µC(x) is smooth enough, i.e., α ≥ 1/2, the optimal bandwidth for estimating the weighting
function is also optimal for estimating µCT . This explains why we can estimate the ATT efficiently
through targeting the covariate balancing in this case. On the other hand, if the response function
µC(x) is non-smooth, i.e., α < 1/2, the optimal bandwidth for estimating µCT is much smaller
than the optimal choice for estimating w( ~X). In particular, we need to take the smoothness of the
response function into account when we choose the optimal bandwidth for estimating µCT . Putting
differently, the optimal choice of h for estimating µCT can result in a suboptimal estimator for
w( ~X), which is over-debiased and variance-inflated. The similar phenomenon is also observed in
estimation of integrated squared density (Bickel & Ritov, 1988; Laurent, 1996; Giné & Nickl, 2008).
This example not only illustrates that the optimal estimator for w( ~X) does not necessarily lead to an
efficient estimator for µCT but also suggests a potential strategy to design the weights tailored for
treatment effects estimation.

3 WEIGHTING BY UNIFORM TRANSFORMER

3.1 A WEIGHTING FRAMEWORK FOR TREATMENT EFFECTS ESTIMATION

The warm-up example above suggests that the weights targeting the weighting function w( ~X) may
not lead to an efficient estimator for µCT and hence the ATT. In this section, we build upon these
insights and introduce a new weighting framework tailored for treatment effects estimation.
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A unique feature of the warm-up example in Section 2.3 is that the covariate follows a uniform dis-
tribution in the control group. Because of this property, the weights estimation problem is reduced
to a density estimation problem. To apply this technique to covariates with any distribution, we can
map the covariate distribution in the control group to a uniform distribution. Any such transforma-
tion Φ is referred to as a “uniform transformer” in this paper. We assume the uniform transformer is
known in the current section and leave the discussion on the construction of a uniform transformer
to the next section. Let ~U = Φ( ~X) denote the data after transformation. Since fΦ

C (~U) is a uniform
distribution density, we can rewrite the propensity score-based weight wi as

wi ∝
π( ~Xi)

1− π( ~Xi)
∝ fT ( ~Xi)

fC( ~Xi)
∝ fΦ

T (~Ui)

fΦ
C (~Ui)

∝ fΦ
T (~Ui).

That is, to estimate the weightswi, we only need to estimate the density fΦ
T (~U) at each ~Ui. However,

as demonstrated in the warm-up example, the density estimation should be done carefully since the
optimal tuning parameters targeting the density estimation itself can differ from the optimal choices
for estimating the treatment effects. In other words, the key difference between our framework
and the classical density estimation problems is the choice of tuning parameters. Under this new
framework, the weights in equation 2 can be constructed in two steps: (i) transform the covariates
~Xi by a uniform transformer Φ, (ii) estimate the weights by any density estimator with tuning
parameters targeting the treatment effects estimation. The framework is summarized in Algorithm 1,
and we call it “weighting by uniform transformer” (WUNT).

Data: {( ~Xi, Zi, Yi)}ni=1.
Result: Weights wi and an estimator of µCT .
Construct the uniform transformer by { ~Xi}i:Zi=0 and apply transformation for all data
~Ui = Φ( ~Xi);

Estimate f̂Φ
T (~U) from {~Ui}i:Zi=1;

Evaluate the weights by wi = f̂Φ
T (~Ui)/

∑
i:Zi=0 f̂

Φ
T (~Ui) for Zi = 0;

Assign the weights wi = 1/n1 for Zi = 1;
Estimate µCT by equation 2;
Algorithm 1. Weighting by Uniform Transformer (WUNT)

For the density estimation in the second step, we introduce two of the most popular nonparametric
density estimators in the literature. The first density estimator is the kernel density estimator, which
has been widely used in many applications. The kernel density estimator is defined as

f̂Φ
T (~U) =

1

n1

∑
i:Zi=1

1

det(H)
K
(
H−1(~U − ~Ui)

)
=

1

n1

∑
i:Zi=1

KH

(
~U − ~Ui

)
,

where K(·) is a kernel function and H = diag(h1, . . . , hd) is a diagonal matrix of the bandwidths
which controls the amount of smoothing. Let KH denote the scaled kernel with bandwidth matrix
H and write KH as Kh when h1 = . . . = hd = h. In particular, we assume K( ~X) = G(X(1)) ×
. . . × G(X(d)), where G(·) is a univariate kernel

∫
G(x)dx = 1. We call kernel K an α order

kernel if
∫
xtG(x)dx = 0 for any integer t ≤ α and

∫
|xαG(x)|dx < ∞. With the kernel density

estimator, the final estimator of µCT in Algorithm 1 can be written as

µ̂CT =

∑n
i1,i2=1 Yi1(1− Zi1)KH(Φ( ~Xi1)− Φ( ~Xi2))Zi2∑n
i1,i2=1(1− Zi1)KH(Φ( ~Xi1)− Φ( ~Xi2))Zi2

. (4)

Another popular nonparametric density estimator is the projection density estimator. Given a se-
ries of orthonormal basis functions ψl(·), l = 1, . . . ,∞, fΦ

T (~U) can be decomposed as fΦ
T (~U) =∑∞

l=1 rlψl(
~U), where the coefficients are defined as rl =

∫
fΦ
T (~U)ψl(~U)d~U . The projection

method seeks to estimate fΦ
T (~U) with the first L basis functions, i.e.,

f̂Φ
T (~U) =

L∑
l=1

r̂lψl(~U), where r̂l =
1

n1

∑
i:Zi=1

ψl(~Ui).
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The projection density estimator then lead to the final estimator of µCT

µ̂CT =

∑n
i1,i2=1 Yi1(1− Zi1)KL(Φ( ~Xi1),Φ( ~Xi2))Zi2∑n
i1,i2=1(1− Zi1)KL(Φ( ~Xi1),Φ( ~Xi2))Zi2

, (5)

where KL(~x, ~y) =
∑L
l=1 ψl(~x)ψl(~y) denotes a projection kernel defined by the orthonormal basis

{ψl(·) : l = 1, . . . , L} (Giné & Nickl, 2016).

Although Algorithm 1 seems to suggest that f̂Φ
T is designed to estimate fΦ

T at first glance, we would
like to emphasize again that our ultimate goal is to estimate µCT instead of fΦ

T , so the choice of
tuning parameters, H in equation 4 and L in equation 5, shall rely on the bias and variance trade-off
in the final estimator µ̂CT . The straightforward form of the estimators for µCT after applying the
uniform transformer allows a more accurate trade-off between the bias and variance in estimating
µCT . We leave the detailed discussion of the tuning parameters H and L to Section 4.

3.2 ROSENBLATT’S UNIFORM TRANSFORMER WITH EMPIRICAL DENSITIES

There are various options to transform a distribution into a uniform distribution. In this section, we
focus on a uniform transformer proposed by Rosenblatt (1952). More concretely, given the density
of covariates in the control group, fC( ~X), we consider the following transformation Φ : Ω→ [0, 1]d

Φ(~x)(1) =PC(X(1) ≤ x(1)),

Φ(~x)(2) =PC(X(2) ≤ x(2)|X(1) = x(1)),

...
Φ(~x)(d) =PC(X(d) ≤ x(d)|X(d−1) = x(d−1), . . . , X(1) = x(1)),

(6)

where ~x = (x(1), . . . , x(d)) ∈ Rd is a vector, ~X = (X(1), . . . , X(d)) is a random vector with
density fC( ~X) and the corresponding probability PC . When ~X is a continuous random vector,
Φ( ~X) follows a uniform distribution on [0, 1]d. It is worth noting that the uniform transformer relies
on the condition that ~X is continuous. If some component of ~X is discrete, a random perturbation
can be added to the observed covariates in the preprocessing step, as discussed in Brockwell (2007).
In the following discussion, we assume ~X is a continuous random vector; for more discussions
on discrete random variables, see Section C.2 in the Appendix. Clearly, the Rosenblatt’s uniform
transformer relies on the choice of the order X(1), . . . , X(d). In practical applications, one could
randomly select permutations of the orders and take the average of results.

In practice, we usually do not have much knowledge about the density fC( ~X), so we have no access
to the uniform transformer Φ defined in equation 6 and need to construct the uniform transformer
from the data. One natural way to construct the uniform transformer is to first estimate the density
of covariates in the control group fC( ~X) by some estimator f̃C( ~X) and then define the uniform
transformer based on f̃C( ~X) following the transformation in equation 6.

Furthermore, the construction of uniform transformers becomes easier if the covariates have a spe-
cial correlation structure. For instance, equation 6 suggests that the uniform transformer Φ only
relies on each marginal distribution of fC( ~X) if components of ~X are mutually independent. In
other words, suppose fC( ~X) can be decomposed as fC( ~X) = fC,1(X(1))× . . .× fC,d(X(d)), then
it is sufficient to construct the uniform transformer by estimating each marginal distribution. In this
special case, we refer to the uniform transformer as a marginal uniform transformer. This idea can
also be extended to densities with a group-wise mutually independent structure.

Moreover, the construction of the uniform transformer in WUNT only relies on the covariates of
control samples. This feature enables the integration of a substantial amount of extra ‘unlabeled’
control samples (outcome of interest is not observed) which is available in a lot of applications, such
as analysis of electronic health record data (Gronsbell & Cai, 2018; Chakrabortty & Cai, 2018).
In such scenarios, a large amount of unlabeled data can be used to accurately estimate the density
fC( ~X) using any suitable density estimator. Subsequently, the uniform transformer can be con-
structed based on this estimate and applied to the ’labeled’ data set to compute the weights designed
for treatment effects estimation.
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3.3 ADAPTIVE UNIFORM TRANSFORMER

Section 3.2 mainly focuses on Rosenblatt’s uniform transformer and its empirical version with a
density estimator. We provide a different angle to construct an empirical version of Rosenblatt’s
uniform transformer in this section. To illustrate the idea, we start with a one-dimensional case.
When d = 1, Rosenblatt’s transformation is defined by the cumulative distribution function of ~X in
the control group. The cumulative distribution function can naturally be estimated by its empirical
distribution, i.e., P̂C,n(~x) = 1

n0

∑
i:Zi=0

~I( ~Xi ≤ ~x), where ~I(·) is an indicator function. If we

plug P̂C,n in Rosenblatt’s transformation Φ, the resulting transformation maps { ~Xi : Zi = 0} to
{1/n0, . . . , 1}. In other words, P̂C,n help transform { ~Xi : Zi = 0} to the grid points between
0 and 1. The benefit of this transformation is that it does not rely on estimating fC( ~X), so it is
computationally simple. Can we construct a uniform transformer in a similar fashion for a multi-
dimensional case?

To apply this idea for a d-dimensional covariate ~X , we need to partition the data points evenly to
d-dimensional grids. Without loss of generality, we assume the support of density is Ω = [0, 1]d and
n0 = Nd

0 for some positive integerN0 in this section. Based on { ~Xi}i:Zi=0, we define the following
data-driven partition of Ω, Ω =

⋃N0

j1,...,jd=1Qj1,j2,...,jd =
⋃N0

j1,...,jd=1 Ij1×Ij1,j2× . . .×Ij1,j2,...,jd .
Here, each Qj1,j2,...,jd is a cube and each Ij1,j2,...,jk for k ≤ d is an interval. We construct the data-
driven interval Ij1,j2,...,jk in a hierarchical way. We first construct {Ij1}

N0
j1=1, which is a partition of

[0, 1] such that there are exactlyNd−1
0 points in each Ij1×[0, 1]d−1. After construction of {Ij1}

N0
j1=1,

we are ready to construct {Ij1,j2}
N0
j1,j2=1. For each j1, {Ij1,j2}

N0
j2=1 is a partition of [0, 1] such that

there are exactlyNd−2
0 points in each Ij1×Ij1,j2×[0, 1]d−2. The rest of Ij1,j2,...,jk can be defined in

a similar way. In doing so, each cube Qj1,j2,...,jd contains exactly one point. The idea is illustrated
with an example of 9 data points on [0, 1]2 in Figure 1 in Appendix A.

Then, we can easily approximate the cumulative distribution function and conditional cumulative
distribution functions based on the partition to form an empirical Rosenblatt’s uniform transformer.
With this construction, we can put exactly mass 1/n0 for each cube Qj1,j2,...,jd . The formal result
is summarized in the following proposition. The proof is included in Appendix D.

Proposition 1. Let Φ̂D be the uniform transformer defined in equation 6 by replacing fC( ~X) with

f̈( ~X) = 1
|Qj1,...,jd |n0

S
(
X(1)−M(Ij1 )

|Ij1 |

)
× . . . × S

(
X(d)−M(Ij1,...,jd )

|Ij1,...,jd |

)
, for any ~X ∈ Qj1,j2,...,jd ,

where ~X = (X(1), . . . , X(d)), | · | represent the volume of a cube or the length of an interval and
M(·) is the middle point of an interval. Here, S(·) is a smooth kernel function defined on [-0.5,0.5]
such that S(−0.5) = S(0.5) = 0, S(x) > 0 if x ∈ (−0/5, 0.5) and

∫ 0.5

−0.5
S(x)dx = 1. Then

Φ̂D satisfies the following properties: 1) For each cube Qj1,j2,...,jd , 1 ≤ j1, . . . , jd ≤ N0, we have

Φ̂D(Qj1,j2,...,jd) =
[
j1−1
N0

, j1N0

)
× . . .×

[
jd−1
N0

, jdN0

)
; 2) Φ̂D is a smooth map.

This proposition suggests that Φ̂D is able to map the covariates in the control group to an approxi-
mately uniform distribution on [0, 1]d, and we call it an adaptive uniform transformer. In particular,
when Ω is on the real line (d = 1), Φ̂D can been seen as a smoothed version of the empirical cu-
mulative distribution function of { ~Xi}i:Zi=0. When there is no integer N0 such that n0 = Nd

0 , we
can choose N0 as the largest integer such that Nd

0 < n0 and follow a similar procedure as above to
distribute the data points evenly in the grids.

4 THEORETICAL PROPERTIES

We now turn to analyze the theoretical properties of our newly proposed framework. In this section,
we consider uniform transformers introduced in Section 3 (either a uniform transformer constructed
with a separate data set or an adaptive uniform transformer) and study the performance of both kernel
and projection density estimators. In particular, our investigation focuses on Hölder class (van der

Vaart & Wellner, 1996), Hα(Ω) =

{
f : Ω → R

∣∣‖f‖α,H ≤ M

}
, where the norm ‖f‖α,H is

7
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defined as ‖f‖α,H = max|k|≤bαc sup~x∈Ω |Dkf(~x)| + max|k|=bαc sup~x1 6=~x2∈Ω
|Dkf(~x1)−Dkf(~x2)|
‖~x1−~x2‖α−bαc

.

Here, k = (k1, . . . , kd) with |k| = k1 + . . . + kd and the differential operator is defined as Dk =
∂|k|

∂x
k1
(1)
...∂x

kd
(d)

. We assume the basis functions {ψl : l = 1, . . . ,∞} in the projection density estimator

form an orthonormal basis and satisfy

|rl| ≤M1l
−(α/d+1/2) and sup

~x
|ψl(~x)| ≤M2

√
l, for any l, (7)

where M1 and M2 are some constants and rl is the coefficient of some given function g ∈
Hα([0, 1]d), i.e., g(~x) =

∑∞
l=1 rlψl(~x). For example, the wavelet basis satisfies this property (Giné

& Nickl, 2016; Liang, 2019). When Zi = 0, we write Yi = µC( ~Xi) + εi, where E(εi| ~Xi) = 0.
Through this section, we assume

E(ε2i ) := σ( ~Xi)
2 ≤ σ2, for some constant σ2. (8)

We first investigate the performance of the proposed estimator when the uniform transformer in
equation 6 is defined by some fixed density f̃C( ~X), which might be different from fC( ~X). The
following theorem characterizes the convergence rate of the estimator.
Theorem 1. Let µ̂CT be the estimator defined in equation 4 with an α + β order kernel or the one
defined in equation 5 with basis function satisfying equation 7. Suppose the uniform transformer is
defined in equation 6 with some density f̃C( ~X). Assume µΦ

C ∈ Hα([0, 1]d), fΦ
T ∈ Hβ([0, 1]d) and

fΦ
C ∈ Hγ([0, 1]d) with 0 < α, β < γ. We further assume conditions equation 1 and equation 8 hold

and fT ( ~X) = 0 when ~X is at boundary of [0, 1]d if we use estimator defined in equation 4. If we
choose h1 = . . . = hd = h = n−2/(d+2(α+β)) in equation 4 or L = n2d/(d+2(α+β)) in equation 5,
then there exists a constant C0 such that

E(µ̂CT − µCT )2 ≤ C0

(
n−

4(α+β)
d+2(α+β) + n−1 + ∆2

)
,

where ∆ is the difference between f̃C( ~X) and fC( ~X) in L2 norm, i.e., ∆ = ‖f̃C( ~X)− fC( ~X)‖2.

Theorem 1 suggests that the performance of new estimators depends on the sum of smoothness levels
of the response and density functions. Notably, they can still work well even when the response
function is non-smooth (α < d/2). In addition, it is worth noting that the optimal choice of tuning
parameter h or L relies on the levels of smoothness of both the response and density functions. The
optimal choice for estimating fΦ

T (h = n−1/(d+2β) or L = nd/(d+2β)) can lead to a suboptimal
convergence rate in estimating µCT . In other words, the best way to estimate fΦ

T (hence the weights
wi) may not necessarily lead to the best estimator for µCT .

An immediate result of Theorem 1 characterizes the performance of the proposed estimators when
the density of covariates in the control group fC( ~X) is known. Specifically, with a known fC( ~X),
the convergence rate of the estimator in equation 4 or equation 5 is

n−
4(α+β)
d+2(α+β) + n−1. (9)

If the density of covariates in the control group fC( ~X) is not known, it can be estimated by some
density estimator f̃C( ~X) with a separate data set, as discussed in Section 3.2. In this case, the
uniform transformer is constructed with this separate data set. The following corollary can further
characterize the performance of the new estimators.

Corollary 1. Let f̃C( ~X) in Theorem 1 be a density estimated by N = cnt control samples for some
t ≥ 1 and constant c > 0. If ‖f̃C( ~X)− fC( ~X)‖2 ≤ N−κ/(d+2κ) for some constant κ, we have the
following results. When α+ β ≤ d/2 and κ > 2(α+ β)d/(td+ (2t− 4)(α+ β)), then

E(µ̂CT − µCT )2 ≤ Cn−
4(α+β)
d+2(α+β) .

When α+ β > d/2 and κ > d/2(t− 1), then
√
n(µ̂CT − µCT )√

V
→ N(0, 1),

where N(0, 1) is standard normal distribution, P = P(Z = 1) and the variance V is V =∫ µ2
C(~x)fT (~x)

P d~x+
∫ (σ2(~x)+µ2

C(~x))f2
T (~x)

(1−P )fC(~x) d~x− 4
(∫
µC(~x)fT (~x)d~x

)2
.

8



Published as a conference paper at ICLR 2024

We can conclude from this corollary that the converge rate in equation 9 is still achievable as long as
fC( ~X) can be estimated accurately. Similar to many other popular weighting methods (Hahn, 1998;
Hirano et al., 2003; Chan et al., 2016; Fan et al., 2023), µ̂CT is a

√
n-consistent estimator when α+

β > d/2. Now, we show that the converge rate in equation 9 is actually sharp in terms of minimax
optimality. More specifically, we consider the following family of data distribution ( ~X,Z, Y ) ∼ F
in Fα,β := {F : µΦ

C ∈ Hα([0, 1]d), fΦ
T ∈ Hβ([0, 1]d) and equation 1, equation 8 hold}.

Theorem 2. Assume fC( ~X) is known in advance so that Φ is defined based on fC( ~X). Consider
estimating µCT on Fα,β with α, β > 0. Then there exists a constant c0 such that

inf
µ̂CT

sup
F∈Fα,β

E(µ̂CT − µCT )2 ≥ c0
(
n−

4(α+β)
d+2(α+β) + n−1

)
.

Theorem 2 characterizes the difficulty of estimating the treatment effects in the ideal case when
fC( ~X) is known. In general, if fC( ~X) is unknown, the problem becomes harder, so the convergence
rate will be lower bounded by the result in Theorem 2. Notably, Theorems 1 and 2 together show
that the converge rate in equation 9 is the minimax optimal for estimating µCT with a known fC( ~X).
That is, if we know the density fC( ~X) beforehand, the minimax optimal rate of estimating τATT is

inf
τ̂ATT

sup
F∈Fα,β

E(τ̂ATT − τATT)2 � n−
4(α+β)
d+2(α+β) + n−1.

We now show that the new estimator is still reliable without assumptions on fC( ~X) if the uniform
transformer is constructed as in Proposition 1.

Theorem 3. Let µ̂CT be the estimator defined in equation 4 with an α + β order kernel or the one
defined in equation 5 with basis function satisfying equation 7. Assume the uniform transformer is
defined in Proposition 1. Suppose µΦ

C ∈ Hα([0, 1]d), fΦ
T ∈ Hβ([0, 1]d) with arbitrary α, β > 0 and

conditions equation 1, equation 8 hold. For the kernel estimator, we choose bandwidth h1 = . . . =
hd = h satisfying n2hd → ∞ and h → 0. For the projection estimator, we choose the number of
basis L satisfying n2L−1 →∞ and L→∞. Then,

µ̂CT →p µCT , as n→∞.

Theorem 3 shows that this new uniform transformer can help build a consistent treatment effect
estimator with no assumption on fC( ~X) and very mild conditions on fΦ

T and µΦ
C . Proofs can be

found in Appendix D. In this section, we focus mainly on the estimation of µCT . All these results can
naturally lead to the conclusion for the average treatment effect on the treated group, τATT. Besides
the theoretical results, we also conduct the numerical experiments in Section B of the Appendix.

5 CONCLUDING REMARKS

In this paper, we propose a novel framework of weighting methods for treatment effects estima-
tion, named Weighting by Uniform Transformer (WUNT). Unlike the existing weighting methods,
WUNT employs a data-driven uniform transformer to the observed covariates, effectively transform-
ing the control group’s covariate distribution to a uniform distribution. This transformation allows
us to design the weights in WUNT specifically tailored for treatment effects estimation, resulting in
a straightforward kernel-based U -statistic as the final estimator. We delve into the theoretical prop-
erties of the newly proposed framework under a nonparametric setting. Our investigation shows
that, with weights chosen by WUNT, the weighting method can achieve the minimax optimal rate of
estimating the average treatment effect on the treated group, even under low regularity conditions.
Notably, the tuning parameter in WUNT needs to be chosen based on the smoothness levels of both
the response and density functions to achieve an accurate trade-off between bias and variance un-
der low regularity conditions. In cases where the smoothness levels are unknown, Lepski method
(Lepski, 1991; 1992) can help WUNT select the tuning parameter in a data-driven way. Additional
implementation guidelines are provided in Section C.3 of the Appendix.
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convergence estimates. Sankhyā: The Indian Journal of Statistics, Series A, pp. 381–393, 1988.

A. E. Brockwell. Universal residuals: A multivariate transformation. Statistics & Probability Let-
ters, 77(14):1473–1478, 2007.

D. Bruns-Smith, O. Dukes, A. Feller, and E. L. Ogburn. Augmented balancing weights as linear
regression. arXiv preprint arXiv:2304.14545, 2023.

T. T. Cai and M. G. Low. Testing composite hypotheses, hermite polynomials and optimal estimation
of a nonsmooth functional. Annals of statistics, 39(2):1012–1041, 2011.

A. Chakrabortty and T. Cai. Efficient and adaptive linear regression in semi-supervised settings. The
Annals of Statistics, 46(4):1541–1572, 2018.

K. C. G. Chan, S. C. P. Yam, and Z. Zhang. Globally efficient non-parametric inference of average
treatment effects by empirical balancing calibration weighting. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(3):673–700, 2016.

J. Fan, K. Imai, H. Liu, Y. Ning, and X. Yang. Optimal covariate balancing conditions in propensity
score estimation. Journal of Business & Economic Statistics, 41(1):97–110, 2023.
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A APPENDIX – EXAMPLE FOR THE CONSTRUCTION OF ADAPTIVE UNIFORM
TRANSFORMER

In this section, we illustrate the construction of an adaptive uniform transform using a toy example
with 9 data points on [0, 1]2 in Figure 1.

X(1)

X(2)

Figure 1: An illustrative example for the construction of an adaptive uniform transformer when
d = 2.

B APPENDIX – NUMERICAL EXPERIMENTS

In this section, we study the numerical performance of our proposed framework by carrying out
several simulation studies to estimate the average treatment effect on the treated group (ATT).

B.1 COMPARISON OF UNIFORM TRANSFORMERS

In the first set of simulation studies, we compare four ways to construct the uniform transformer
Φ from the control samples. More specifically, the adaptive uniform transformers are constructed
in four different ways according to the following: if extra ‘unlabeled’ control samples are used
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or not, and if the uniform transformers are based on joint or marginal distribution. To simu-
late the observed data, we draw (W1, ...,W5) ∼ N((0.5, ..., 0.5),Σ) in the treated group and
(W1, ...,W5) ∼ N((0, ..., 0),Σ) in the control group, where N represents the normal distribution
and each entry of the covariance matrix Σ is defined as Σij = ρ|i−j|. We vary ρ from 0, 0.1, 0.2
and 0.3. The observed covariates of each sample is ~X = (X1, ..., X5) that Xi = exp(Wi) + Wi.
We consider two models for the outcome of interest: Y1 = W 2

1W
2
2 − 2W 2

3W
2
4 +

∑5
i=1Wi + ε1

and Y2 = 10
∑3
i=1Wi + 100

∏2
i=1 sin(2πWi) + 100

∏5
i=3 cos(πWi/2) + ε2, where εi ∼ N(0, 1)

follows independent standard normal distribution. We consider two density estimators – the kernel
density estimator and the projection density estimator, and denote their corresponding estimators of
the ATT by τ̂KATT and τ̂PATT, respectively. The sample size is 500 for the treated group and 1000 for
the control group. The extra ‘unlabeled’ control samples are drawn in the same way with sample
size 10000. The performances of different uniform transformers are evaluated by bias and root mean
squared error (RMSE), calculated from 500 replications of simulation experiments.

The results are summarized in Table 1. These results show that when the covariate distribution of
control samples is independent, the marginal uniform transformer works slightly better than the joint
uniform transformer. This observation makes sense because when fC is an independent distribution,
it is sufficient to construct the uniform transformer for each marginal distribution, as discussed in
Section 3.2. On the other hand, the joint uniform transformer is more robust when the observed
covariates are correlated. In addition, the uniform transformer works in a better way when extra data
is available.

Table 1: Comparison of uniform transformers under different covariance matrices.
No extra data With extra data

Joint Marginal Joint Marginal
ρ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Y1

τ̂KATT

0 -0.09 0.49 -0.11 0.47 0.06 0.48 -0.03 0.45
0.1 -0.16 0.56 -0.26 0.59 0.00 0.53 -0.18 0.54
0.2 -0.22 0.64 -0.36 0.74 -0.06 0.60 -0.3 0.67
0.3 -0.30 0.71 -0.36 0.88 -0.13 0.68 -0.37 0.80

τ̂PATT

0 0.18 0.56 -0.06 0.51 0.03 0.53 -0.06 0.52
0.1 0.13 0.61 -0.11 0.58 0.00 0.58 -0.11 0.58
0.2 0.11 0.68 -0.14 0.66 -0.01 0.66 -0.14 0.66
0.3 0.09 0.75 -0.16 0.75 -0.02 0.74 -0.16 0.75

Y2

τ̂KATT

0 1.15 4.31 1.46 4.16 1.74 4.36 0.82 3.96
0.1 1.24 4.22 0.47 4.08 1.84 4.43 0.28 3.98
0.2 1.13 4.14 -0.82 4.17 1.77 4.32 -0.55 4.02
0.3 0.88 4.05 -2.31 4.61 1.46 4.10 -1.59 4.19

τ̂PATT

0 2.19 4.61 1.98 4.70 1.83 4.48 1.96 4.69
0.1 2.24 4.57 1.86 4.57 1.74 4.42 1.84 4.56
0.2 2.23 4.57 1.71 4.44 1.65 4.31 1.69 4.43
0.3 2.13 4.43 1.51 4.19 1.55 4.16 1.49 4.18

B.2 COMPARISON OF ATT ESTIMATORS

The second set of simulation studies compares the newly proposed estimators with other existing
methods under the above model. The four new estimators we consider here are: uniform transformer
on joint distribution + kernel density estimator, uniform transformer on marginal distribution + ker-
nel density estimator, uniform transformer on joint distribution + projection density estimator, and
uniform transformer on marginal distribution + projection density estimator. We compare them with
the inverse probability weighting estimator (IPW) with the propensity score estimated by random
forests with R package randomForest, covariate balancing propensity score (CBPS) proposed by
Imai & Ratkovic (2014) with R package CBPS, empirical balancing calibration weighting (CAL) by
Chan et al. (2016) with R package ATE, and stable weights (SBW) proposed by Zubizarreta (2015)
with R package sbw. We still adopt bias and RMSE, calculated from 500 replications of simulation
experiments again, as our measure of performance of these estimators for ATT. The data is generated
in the same way as the first set of simulation studies with ρ = 0. Results summarized in Table 2
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suggest that our new proposed estimators perform better than the other methods in terms of bias and
RMSE.

Table 2: Comparison of different ATT estimators on model Y1 and Y2.
Y1 Y2

Bias RMSE Bias RMSE
Kernel+Joint -0.10 0.51 0.94 4.38

Kernel+Marginal -0.11 0.47 1.29 4.21
Projection+Joint 0.20 0.58 2.01 4.57

Projection+Marginal -0.04 0.53 1.85 4.65
IPW 0.71 0.85 6.18 7.15

CBPS 1.11 1.96 3.49 6.00
CAL 1.07 1.64 3.93 5.99
SBW 0.45 0.84 3.4 5.41

B.3 COMPARISON OF ATT ESTIMATORS WITH DIFFERENT SAMPLE SIZES

In the third set of simulation studies, we further compare the eight estimators of ATT in the second
set of simulation studies and assess their performance with different sample sizes. In this set of
simulation experiments, the data is simulated based on the example in Kang & Schafer (2007). More
concretely, we draw W = (W1,W2,W3,W4) from N((0, 0, 0, 0), I), where I is a 4 × 4 identity
matrix and consider the following two models of the outcome of interest: Y3 = 210 + 27.4W1 +
13.7W2 + 13.7W3 + 13.7W4 + ε3 (the same with Kang & Schafer (2007)) and Y4 = (4W1 +

2W2)/(exp(W3) + 4
√
|W4|) + 2W3 +W4 + ε4. Here, εi also follows independent standard normal

distribution. Each sample is assigned to the treated group with probability (i.e., true propensity
score) 1/(1 + exp(W1 − 0.5W2 + 0.2523 + 0.1W4)). Instead of observing the covariates W , we
are able to observe only the transformed data X1 = exp(W1/2), X2 = W2/(1 + exp(W1)) + 10,
X3 = (W1W3/25 + 0.6)3 and X4 = (W2 + W4 + 20)2. In order to assess the effect of sample
size, we vary it from 1000, 2000, and 5000. Similar to the previous two simulation studies, bias and
RMSE based on 500 replications of simulation experiments are summarized in Table 3. The results
show that our new estimators generally outperform other existing methods. The only exception is the
kernel density estimator equipped with a uniform transformer based on marginal distribution. The
reason is that the observed covariates are highly dependent and the kernel density estimator seems
to be sensitive to the correlation among covariates. Table 3 also suggests that the new estimators
based on the kernel density estimator can constantly reduce the bias as the sample size increases.

B.4 COMPARISON OF COMPUTATION COMPLEXITY

We compare the computation time of these eight methods in the last set of simulation studies. In
particular, we consider two optimization solvers for SBW: quadpros (the default choice) and mosek
(a commercial solver available from https://www.mosek.com/). We record the average time
from 10 replications of the model Y3 with sample sizes 1000, 2000, 5000, and 10000 and summa-
rize them in Table 4. All these algorithms are evaluated with the same laptop (Intel Core i5 @2.3
GHz/8GB). From Table 4, we can conclude that the new estimators based on the projection density
estimator can be computed efficiently. The main computation obstacle of the new estimators based
on the kernel density estimator is the kernel U statistics which have O(n2) computation complexity.
It is also interesting to note that the uniform transformer can be constructed in a very short time
(< 0.66s even when n = 10000) and thus can be applied on a larger scale dataset.

C APPENDIX – DISCUSSIONS

C.1 AVERAGE TREATMENT EFFECT

In the paper, we mainly focus on the estimation of average treatment effect on the treated group. All
the methodology and theoretical properties can be readily generalized to average treatment effect.
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Table 3: Comparison of different ATT estimators on model Y3 and Y4.

Y3
n = 1000 n = 2000 n = 5000

Bias RMSE Bias RMSE Bias RMSE
Kernel+Joint -7.90 8.21 -6.32 6.51 -4.50 4.62

Kernel+Marginal -9.88 10.16 -9.46 9.62 -8.88 8.96
Projection+Joint -4.26 4.48 -4.39 4.49 -4.27 4.30

Projection+Marginal -4.00 4.15 -4.01 4.09 -3.98 4.00
IPW -10.13 10.26 -9.96 10.02 -9.61 9.64

CBPS -5.35 5.56 -5.40 5.51 -5.31 5.37
CAL -4.36 4.49 -4.43 4.49 -4.37 4.40
SBW -7.22 7.32 -7.40 7.44 -7.4 7.42

Y4
n = 1000 n = 2000 n = 5000

Bias RMSE Bias RMSE Bias RMSE
Kernel+Joint -0.40 0.44 -0.31 0.34 -0.22 0.24

Kernel+Marginal -0.67 0.71 -0.66 0.68 -0.65 0.66
Projection+Joint -0.38 0.41 -0.38 0.39 -0.37 0.38

Projection+Marginal -0.38 0.4 -0.38 0.39 -0.39 0.39
IPW -0.63 0.64 -0.61 0.62 -0.58 0.59

CBPS -0.56 0.59 -0.57 0.59 -0.57 0.58
CAL -0.46 0.49 -0.47 0.49 -0.48 0.48
SBW -0.64 0.66 -0.66 0.67 -0.66 0.67

Table 4: Comparison of different ATT estimators in terms of the computation time, which is shown
in seconds.

n = 1000 n = 2000 n = 5000 n = 10000
Kernel+Joint 0.40 1.36 7.98 31.08

Kernel+Marginal 0.36 1.31 8.01 32.19
Projection+Joint 0.06 0.12 0.30 0.66

Projection+Marginal 0.04 0.11 0.49 1.85
IPW 0.33 0.73 2.24 4.61

CBPS 0.31 0.64 1.67 4.23
CAL 0.14 0.27 0.67 1.41

SBW(quadpros) 0.14 1.19 20.60 152.18
SBW(mosek) 0.03 0.04 0.08 0.19

Recall the average treatment effect is

τATE = µTA − µCA =

∫
µT ( ~X)f( ~X)d ~X −

∫
µC( ~X)f( ~X)d ~X.

In order to estimate µTA and µCA separately, we can construct two uniform transformers based on
treated samples { ~Xi}i:Zi=1 and control samples { ~Xi}i:Zi=0, respectively, which are named ΦT and
ΦC . After applying transformation ΦT and ΦC on all data, we can pick suitable density estimators
for fΦT ( ~X) and fΦC ( ~X), which are density of ΦT ( ~X) and ΦC( ~X). The corresponding algorithm is
summarized in Algorithm 2. For example, if we adopt the projection density estimator, the resulting
estimator is

τ̂ATE =

∑
i1 6=i2 Yi1Zi1KL(ΦT ( ~Xi1),ΦT ( ~Xi2))∑
i1 6=i2 Zi1KL(ΦT ( ~Xi1),ΦT ( ~Xi2))

−
∑
i1 6=i2 Yi1(1− Zi1)KL(ΦC( ~Xi1),ΦC( ~Xi2))∑
i1 6=i2(1− Zi1)KL(ΦC( ~Xi1),ΦC( ~Xi2))

.

C.2 UNIFORM TRANSFORMER FOR DISCRETE VARIABLES

Most of this paper focuses on when the observed covariates are continuous random variables. How-
ever, we also observe some discrete or categorical covariates in practice. Motivated by Brockwell
(2007), we can first transform the discrete random variable to a continuous random variable. For the

15



Published as a conference paper at ICLR 2024

Data: {( ~Xi, Zi, Yi)}ni=1.
Result: Weights wi and an estimator of τATE.
Construct the uniform transformer ΦT and ΦC by { ~Xi}i:Zi=1 and { ~Xi}i:Zi=0;
Estimate fΦT ( ~X) and fΦC ( ~X) from {ΦT ( ~Xi)} and {ΦC( ~Xi)};
Evaluate the weights by

wi =

{
−f̂ΦC (ΦC( ~Xi))/

∑
i:Zi=0 f̂

ΦC (ΦC( ~Xi)) Zi = 0

f̂ΦT (ΦT ( ~Xi))/
∑
i:Zi=1 f̂

ΦT (ΦT ( ~Xi)) Zi = 1

Estimate τATE by

τ̂ATE =
n∑
i=1

wiYi

Algorithm 2. Weighting by Uniform Transformer for Average Treatment Effect

sake of concreteness, we assume ~X is a binary variable in this section, i.e., ~X ∈ {0, 1}. In order to
construct a continuous variant of ~X , we add a random perturbation to ~X

~̃X =

{
~X +R ~X = 0
~X + aR ~X = 1

,

where R is an independent uniform random variable on [0, 1] and a is some positive number. It

is clear that ~̃X is a continuous random variable and satisfies strong ignorability of the treatment
assignment in equation 1 if ~X satisfies it. If we choose a = P( ~X = 1)/P( ~X = 0), the resulting

distribution of ~̃X is also a smooth one. Therefore, it is sufficient to consider a uniform transformer
constructed by ~̃X . It is clear that the resulting uniform transformer from data ~̃X and the resulting
weight and estimator highly rely on particular realization of R. In order to reduce the effect of
particular realization of R, we also suggest considering multiple independent copies of R (i.e.,

independent copies of ~̃X given ~X), evaluating the weight on each copy of ~̃X and taking the average
of these weights as the final weight.

Based on the above discussion, we consider a very simple preprocessing step for discrete variable
in practice. Specifically, we transform the discrete variable to its rank by breaking ties randomly. In

this way, we obtain a similar variant of ~̃X with a = #{ ~X = 1}/#{ ~X = 0}, where # represents
the number of elements in a set. Then, we can regard these ranks as continuous random variable and
evaluate uniform transformer and weights on them directly. Again, in order to reduce the effect of
randomly breaking ties, we can repeat the process multiple times and take the average of the results.

C.3 IMPLEMENTATION SUGGESTIONS

We present several uniform transformers and density estimators in Section 3 and now would like
to give some practical suggestions on them. In terms of uniform transformer, we recommend the
newly proposed adaptive uniform transformer defined in Proposition 1, because a) its computational
complexity is O(n); b) there is no need for sample splitting and c)the resulting estimator does not
rely on strong assumptions of fC( ~X). We can apply the adaptive uniform transformer in two differ-
ent ways based on the knowledge of fC( ~X). More concretely, if we know fC( ~X) is approximately
mutually independent, then construction of the adaptive uniform transformer based on marginal dis-
tributions is suggested. On the other hand, if the distribution is not mutually independent, we suggest
constructing the adaptive uniform transformer based on the joint distribution directly.

We can choose different density estimators according to our knowledge of µΦ
C( ~X) and fΦ

T ( ~X). If the
specific form of response function and density is not known, we suggest the kernel density estimator.
The reason is that a) its implementation is easy; b) there is no need to choose basis functions and
c) it performs relatively robustly. If we know µΦ

C( ~X) or fΦ
T ( ~X) can be represented by a few simple
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basis functions in advance, we suggest choosing the projection estimator for density. Based on a
few basis functions, the resulting projection estimator is simple and accurate, and can be rapidly
computed. We summarize the choice of uniform transformers and density estimators in Table 5.

Independence of fC
Yes No

Knowledge of µΦ
C , fΦ

T
Yes Marginal+Projection Joint + Projection
No Marginal + Kernel Joint + Kernel

Table 5: Summary of implementation suggestion.

When smoothness levels are unknown, we introduce a data-driven way to select tuning parameter
by following Lepski method (Lepski, 1991; 1992). See also Giné & Nickl (2008). Write µ̂CT (h)
as the estimator defined in equation 4 when the bandwidth is h, σ(h, n) = 1/(nhd/2) and d(h) =√

log(h1/h). Define a grid of bandwidths

H̃ =

{
h ∈

[
log n

n2/d
,

log n

n1/d

]
: h1 =

log n

n1/d
, hk+1 = hk/ρ, k = 1, 2, . . .

}
,

where ρ > 1. The bandwidth estimator is

ĥ = max
{
h ∈ H̃ : |µ̂CT (h)− µ̂CT (g)| ≤ σ(g, n)d(g), ∀g < h, g ∈ H̃

}
.

Similarly, we can also define a data-driven way to select the number of basis function in the estimator
defined in equation 5, but omit the details.

D APPENDIX – PROOFS

To distinguish from the constants that appeared in the previous sections, we shall use the capital
letter C and lower case letter c to denote generic positive constants that may take different values at
each appearance.

D.1 PROOF OF PROPOSITION 1

To study the properties of Φ̂D, we first calculate the marginal distribution of f̈( ~X). For anyX ∈ Ij1 ,
the marginal distribution is

f̈1(X) =

∫
f̈( ~X)dX(2) . . . dX(d) =

Nd−1
0

|Ij1 |n0
S

(
X −M(Ij1)

|Ij1 |

)
.

Similarly, for any ~Xk = (X(1), . . . , X(k)) ∈ Qj1,...,jk := Ij1×Ij1,j2× . . .×Ij1,...,jk , where k ≤ d,
the marginal distribution can be written as

f̈k( ~Xk) =

∫
f̈( ~X)dX(k+1) . . . dX(d)

=
Nd−k

0

|Qj1,...,jk |n0

k∏
s=1

S

(
X(s) −M(Ij1,...,js)

|Ij1,...,js |

)
.

It is clear that ∫
Qj1,...,jk

f̈k( ~Xk)d ~Xk =
1

Nk
0

.

Then, we can define its conditional cumulative distributional function

F̈1(X(1)) =

∫ X(1)

0

f̈1(X)dX

and

F̈k(X(k)|X(1), . . . , X(k−1)) =

∫ X(k)

0

f̈k(X(1), . . . , X(k−1), X)

f̈k−1(X(1), . . . , X(k−1))
dX.
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The transformation Φ̂D is then defined as

Φ̂D( ~X) = (F̈1(X(1)), . . . , F̈d(X(d)|X(1), . . . , X(d−1))).

We are now ready to verify the first property. Suppose ~X ∈ Qj1,...,jd . Since X(1) ∈ Ij1 ,

j1 − 1

N0
=

j1−1∑
r=1

∫
Ir

f̈1(X)dX ≤ F̈1(X(1)) <

j1∑
r=1

∫
Ir

f̈1(X)dX =
j1
N0

.

Similarly, because X(k) ∈ Ij1,...,jk ,∫ X(k)

0

f̈k(X(1), . . . , X(k−1), X)dX

<

jk∑
r=1

∫
Ij1,...,jk−1,r

f̈k(X(1), . . . , X(k−1), X)dX

=

jk∑
r=1

(
Nd−k

0

|Qj1,...,jk−1
|n0

k−1∏
s=1

S

(
X(s) −M(Ij1,...,js)

|Ij1,...,js |

))

=
Nd−k

0 jk
|Qj1,...,jk−1

|n0

k−1∏
s=1

S

(
X(s) −M(Ij1,...,js)

|Ij1,...,js |

)
.

Similarly, we have∫ X(k)

0

f̈k(X(1), . . . , X(k−1), X)dX ≥ Nd−k
0 (jk − 1)

|Qj1,...,jk−1
|n0

k−1∏
s=1

S

(
X(s) −M(Ij1,...,js)

|Ij1,...,js |

)
.

Since

f̈k−1(X(1), . . . , X(k−1)) =
Nd−k+1

0

|Qj1,...,jk−1
|n0

k−1∏
s=1

S

(
X(s) −M(Ij1,...,js)

|Ij1,...,js |

)
,

we have
jk − 1

N0
≤ F̈k(X(k)|X(1), . . . , X(k−1)) <

jk
N0

Thus, the first property is satisfied. It is easy to check the second property as f̈( ~X) is a smooth
function.

D.2 PROOF OF THEOREM 1

Proof for kernel density estimator

Recall estimator can be written as

µ̂CT =

∑n
i1,i2=1 Yi1(1− Zi1)Kh(Φ( ~Xi1)− Φ( ~Xi2))Zi2∑n
i1,i2=1(1− Zi1)Kh(Φ( ~Xi1)− Φ( ~Xi2))Zi2

.

In this proof, we write ~Ui = Φ( ~Xi). Then, we can define P = P(Z = 1),

θU = P (1− P )

∫
fΦ
C (~U)µΦ

C(~U)fΦ
T (~U)d~U and θL = P (1− P )

∫
fΦ
C (~U)fΦ

T (~U)d~U

We can also define

TU =
1

n(n− 1)

n∑
i1,i2=1

Yi1(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2

and

TL =
1

n(n− 1)

n∑
i1,i2=1

(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2 .
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The proof is divided into three steps.

Step 1. In this step, we show that

E(TU − θU )2 ≤ C
(

1

n2hd
+

1

n
+ h2(α+β)

)
and

TU−θU =
1

n

n∑
i=1

(
(1−P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi+PYi(1−Zi)fΦ

T (~Ui)−2θU

)
+Op

(
1

nhd/2
+ hα+β

)
.

TU is actually a U-statistic, so we decompose TU as

TU − θU

=
1

n(n− 1)

∑
i1 6=i2

Yi1(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2 − θU

=
1

n(n− 1)

∑
i1 6=i2

(
Yi1(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2 − (1− P )

∫
µΦ
C(~U)fΦ

C (~U)Kh(~U − ~Ui2)Zi2d
~U

− P
∫
Yi1(1− Zi1)Kh(~Ui1 − ~U)fΦ

T (~U)d~U + θ̃U

)
+

1

n

n∑
i2=1

(
(1− P )

∫
µΦ
C(~U)fΦ

C (~U)Kh(~U − ~Ui2)Zi2d
~U − θ̃U − (1− P )µΦ

C(~Ui2)fΦ
C (~Ui2)Zi2 + θU

)

+
1

n

n∑
i1=1

(
P

∫
Yi1(1− Zi1)Kh(~Ui1 − ~U)fΦ

T (~U)d~U − θ̃U − PYi1(1− Zi1)fΦ
T (~Ui1) + θU

)

+
1

n

n∑
i2=1

(
(1− P )µΦ

C(~Ui2)fΦ
C (~Ui2)Zi2 − θU

)
+

1

n

n∑
i1=1

(
PYi1(1− Zi1)fΦ

T (~Ui1)− θU
)

+ θ̃U − θU
=A1 +A2 +A3 +A4 +A5 +A6,

where θ̃U = P (1− P )
∫
µΦ
C(~U)fΦ

C (~U)Kh(~U − ~U ′)fΦ
T (~U ′)d~Ud~U ′. We now bound each term. For

A1, we have

E(A2
1) ≤ C

n(n− 1)
E(Yi1Kh(~Ui1 − ~Ui2))2 ≤ C

n(n− 1)hd
.

In terms of A2, we have

E(A2
2) ≤C

n
E
(∫

µΦ
C(~U)Kh(~U − ~Ui2)fΦ

C (~U)d~U − µΦ
C(~Ui2)fΦ

C (~Ui2)

)2

≤C
n
E
(
µΦ
Cf

Φ
C ⊗Kh(~Ui2)− µΦ

C(~Ui2)fΦ
C (~Ui2)

)2

≤Ch
2α

n
.
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Here, we use the fact that α < γ and ⊗ represents convolution. With similar techniques, we have

E(A2
3) ≤C

n
E
(∫

Yi1Kh(~Ui1 − ~U)fΦ
T (~U)d~U − Yi1fΦ

T (~Ui1)

)2

≤C
n
E
(
Yi1(fΦ

T ⊗Kh(~Ui1)− fΦ
T (~Ui1))

)2

≤C
n
E(Y 2

i1)E(fΦ
T ⊗Kh(~Ui1)− fΦ

T (~Ui1))2

≤Ch
2β

n

Applying the central limit theorem to A4 and A5 yields

√
n(A4 +A5) =

1√
n

n∑
i=1

(
(1− P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi + PYi(1− Zi)fΦ

T (~Ui)− 2θU

)
→ N(0, V (µΦ

C , f
Φ
C , f

Φ
T )),

where

V (µΦ
C , f

Φ
C , f

Φ
T ) = P 2(1− P )2

(∫
µΦ
C

2
fΦ
C

2
fΦ
T

P
+

∫
(σ2 + µΦ

C
2
)fΦ
C f

Φ
T

2

1− P
− 4

(∫
µΦ
Cf

Φ
C f

Φ
T

)2
)
.

For the A6, we apply the similar technique in Giné & Nickl (2008; 2016).∫
µΦ
C(~U)fΦ

C (~U)Kh(~U − ~U ′)fΦ
T (~U ′)d~Ud~U ′ −

∫
µΦ
C(~U)fΦ

C (~U)fΦ
T (~U)d~U

=

∫
µΦ
C(~U)fΦ

C (~U)Kh(~U − ~U ′)[fΦ
T (~U ′)− fΦ

T (~U)]d~Ud~U ′

=

∫
µΦ
C(~U)fΦ

C (~U)K(~V )[fΦ
T (~U − h~V )− fΦ

T (~U)]d~Ud~V

=

∫
K(~V )[f̄Φ

T ⊗ µΦ
Cf

Φ
C (h~V )− f̄Φ

T ⊗ µΦ
Cf

Φ
C (0)]d~V .

Here, f̄Φ
T (~x) = fΦ

T (−~x) and ⊗ represents convolution. Since µΦ
C(~x)fΦ

C (~x) ∈ Hα([0, 1]d) and
f̄Φ
T (~x) ∈ Hβ([0, 1]d), we can know f̄Φ

T ⊗ µΦ
Cf

Φ
C (~x) ∈ Hα+β([0, 1]d). Then,

|A6| ≤ hα+β .

Putting Ai, i = 1, . . . , 6 together yields the conclusion.

Step 2. In this step, we work on TL to obtain

E(TL − θL)2 ≤ C
(

1

n2hd
+

1

n
+ h2(β+γ)

)
and

P

(
|TL − θ̃L| > Cη

(√
log n

n
+

log n

nhd/2

))
≤ 1

nη
,
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where θ̃L = P (1−P )
∫
fΦ
C (~U)Kh(~U − ~U ′)fΦ

T (~U ′)d~Ud~U ′ and η is an arbitrary large constant. We
decompose TL as

TL − θL =
1

n(n− 1)

∑
i1 6=i2

(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2 − θL

=
1

n(n− 1)

∑
i1 6=i2

(
(1− Zi1)Kh(~Ui1 − ~Ui2)Zi2 − (1− P )

∫
Kh(~U − ~Ui2)fΦ

C (~U)d~UZi2

− P
∫

(1− Zi1)Kh(~Ui1 − ~U)fΦ
T (~U)d~U + θ̃L

)
+

1

n

n∑
i1=1

(
P

∫
(1− Zi1)Kh(~Ui1 − ~U)fΦ

T (~U)d~U − P (1− Zi1)fΦ
T (~Ui1)

)

+
1

n

n∑
i2=1

(
(1− P )

∫
Kh(~U − ~Ui2)fΦ

C (~U)d~UZi2 − (1− P )Zi2f
Φ
C (~Ui1)

)

+
1

n

n∑
i=1

(
(1− P )Zif

Φ
C (~Ui) + P (1− Zi)fT (~Ui)− 2θ̃L

)
+ θ̃L − θL

where θ̃L = P (1− P )
∫
fΦ
C (~U)Kh(~U − ~U ′)fΦ

T (~U ′)d~Ud~U ′. If we apply a similar proof in the last
step, we can get

E(TL − θL)2 ≤ C
(

1

n2hd
+

1

n
+ h2(β+γ)

)
.

Since TL is a U-statistics, we can apply concentration inequality in Giné et al. (2000) (also see
Lemma 9 in Shen et al., 2020). By following the notation of Lemma 9 in Shen et al. (2020), we
have

B1 ≤ C, B2 ≤ C
√
nh−d/2, B3 ≤ Ch−d, v2

1 ≤ C, v2
2 ≤ Ch−d,

which leads to

P

(
|TL − θ̃L| > Cη

(√
log n

n
+

log n

nhd/2

))
≤ 1

nη
,

where η is an arbitrary large constant.

Step 3. In this step, we put the results of steps 1 and 2 together. Define the event

A =

{
|TL − θ̃L| > Cη

(√
log n

n
+

log n

nhd/2

)}
.

Recall θU and θL are

θU = P (1− P )

∫
fΦ
C (~U)µΦ

C(~U)fΦ
T (~U)d~U and θL = P (1− P )

∫
fΦ
C (~U)fΦ

T (~U)d~U.

By variable transformation, we can rewrite them as

θU = P (1− P )

∫
fC( ~X)

f̃C( ~X)
µC( ~X)fT ( ~X)d ~X and θL = P (1− P )

∫
fC( ~X)

f̃C( ~X)
fT ( ~X)d ~X.

If we define θ0
U and θ0

L as

θ0
U = P (1− P )µCT and θ0

L = P (1− P ),

then we can know that

(θ0
U − θU )2, (θ0

L − θL)2 ≤ C‖f̃C( ~X)− fC( ~X)‖22.
This immediately suggests that

E(TU − θ0
U )2 ≤ C

(
1

n2hd
+

1

n
+ h2(α+β) + ‖f̃C( ~X)− fC( ~X)‖22

)
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and

E(TL − θ0
L)2 ≤ C

(
1

n2hd
+

1

n
+ h2(β+γ) + ‖f̃C( ~X)− fC( ~X)‖22

)
.

Then, we have

E(µ̂CT − µCT )2 =E
(
TU
TL
− µCT

)2

=E

((
TU
TL
− µCT

)2

IA

)
+ E

((
TU
TL
− µCT

)2

IAc
)
.

We work on above two terms separately. For the first one, when n is large enough, we have

TL ≥
θ0
L√
2

on event A.

Thus,

E

((
TU
TL
− µCT

)2

IA

)
≤ 2

θ0
L

2E(TU − TLµCT )2

≤ 2

θ0
L

2

(
E(TU − θ0

U )2 + µ2
CTE(TL − θ0

L)2
)

≤ C
(

1

n2hd
+

1

n
+ h2(α+β) + ‖f̃C( ~X)− fC( ~X)‖22

)
≤ C

(
n−

4(α+β)
d+2(α+β) + n−1 + ‖f̃C( ~X)− fC( ~X)‖22

)
.

The last step is due to h = n−
2

d+2(α+β) . For the second term, we have

E

((
TU
TL
− µCT

)2

IAc
)
≤ 2E(µ̂2

CT IAc) + 2µ2
CTE(IAc)

≤ 2E( max
i:Zi=0

Y 2
i IAc) + 2µ2

CTP(Ac)

≤ 4E( max
i:Zi=0

ε2i IAc) + (2µ2
CT + 4 sup

~X

µ2
C( ~X))P(Ac)

≤ (4E( max
i:Zi=0

ε2i ) + 2µ2
CT + 4 sup

~X

µ2
C( ~X))P(Ac)

≤ Cn1−η

Here, we use the fact that

E( max
i:Zi=0

ε2i ) =

∫ ∞
0

P( max
i:Zi=0

ε2i > t)dt ≤ n
∫ ∞

0

P(ε2i > t)dt = nE(ε2i ).

If we choose η > 2, we can conclude that

E(µ̂CT − µCT )2 ≤ C
(
n−

4(α+β)
d+2(α+β) + n−1 + ‖f̃C( ~X)− fC( ~X)‖22

)
.

Proof for projection density estimator

Similar with the proof for kernel density estimator, we define

TU =
1

n(n− 1)

n∑
i1,i2=1

Yi1(1− Zi1)KL(~Ui1 ,
~Ui2)Zi2

and

TL =
1

n(n− 1)

n∑
i1,i2=1

(1− Zi1)KL(~Ui1 ,
~Ui2)Zi2 .
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Similarly, we use the same notation of P , θU and θL.

Step 1. In this step, we show that

E(TU − θU )2 ≤ C
(
L

n2
+

1

n
+ L−

2(α+β)
d

)
and

TU−θU =
1

n

n∑
i=1

(
(1−P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi+PYi(1−Zi)fΦ

T (~Ui)−2θU

)
+Op

(
L

n2
+ L−

2(α+β)
d

)
.

TU is actually a U-statistics, so we decompose TU as

TU − θU

=
1

n(n− 1)

∑
i1 6=i2

Yi1(1− Zi1)KL(~Ui1 ,
~Ui2)Zi2 − θU

=
1

n(n− 1)

∑
i1 6=i2

(
Yi1(1− Zi1)KL(~Ui1 ,

~Ui2)Zi2 − (1− P )

∫
µΦ
C(~U)fΦ

C (~U)KL(~U, ~Ui2)Zi2d
~U

− P
∫
Yi1(1− Zi1)KL(~Ui1 ,

~U)fΦ
T (~U)d~U + θ̃U

)
+

1

n

n∑
i2=1

(
(1− P )

∫
µΦ
C(~U)fΦ

C (~U)KL(~U, ~Ui2)Zi2d
~U − θ̃U − (1− P )µΦ

C(~Ui2)fΦ
C (~Ui2)Zi2 + θU

)

+
1

n

n∑
i1=1

(
P

∫
Yi1(1− Zi1)KL(~Ui1 ,

~U)fΦ
T (~U)d~U − θ̃U − PYi1(1− Zi1)fΦ

T (~Ui1) + θU

)

+
1

n

n∑
i2=1

(
(1− P )µΦ

C(~Ui2)fΦ
C (~Ui2)Zi2 − θU

)
+

1

n

n∑
i1=1

(
PYi1(1− Zi1)fΦ

T (~Ui1)− θU
)

+ θ̃U − θU
=A1 +A2 +A3 +A4 +A5 +A6,

where θ̃U = P (1 − P )
∫
µΦ
C(~U)fΦ

C (~U)KL(~U, ~U ′)fΦ
T (~U ′)d~Ud~U ′. We now bound each term. For

A1, we have

E(A2
1) ≤ C

n(n− 1)
E(Yi1KL(~Ui1 ,

~Ui2))2 ≤ C

n(n− 1)

∫
KL(~Ui1 ,

~Ui2)2d~Ui1d
~Ui2 ≤

CL

n(n− 1)
.

Since ψl is the basis function, we can write

µΦ
C(~U)fΦ

C (~U) =
∞∑
l=1

alψl(~U) and fΦ
T (~U) =

∞∑
l=1

blψl(~U),

where

|al| ≤ l−(α/d+1/2), |bl| ≤ l−(β/d+1/2).
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Here, we use the fact that α < γ. In terms of A2, we have

E(A2
2) ≤C

n
E
(∫

µΦ
C(~U)KL(~U, ~Ui2)fΦ

C (~U)d~U − µΦ
C(~Ui2)fΦ

C (~Ui2)

)2

≤C
n
E

(
L∑
l=1

alψl(~Ui2)− µΦ
C(~Ui2)fΦ

C (~Ui2)

)2

≤C
n
E

( ∞∑
l=L+1

alψl(~Ui2)

)2

≤CL
−2α/d

n
.

Similarly, we have

E(A2
3) ≤C

n
E
(∫

Yi1KL(~Ui1 ,
~U)fΦ

T (~U)d~U − Yi1fΦ
T (~Ui1)

)2

≤C
n
E
(
Yi1

(
L∑
l=1

blψl(~Ui1)− fΦ
T (~Ui1)

))2

≤C
n
E(Y 2

i1)L−2β/d

≤CL
−2β/d

n

With the same argument in the proof of kernel density estimator, we have

√
n(A4 +A5) =

1√
n

n∑
i=1

(
(1− P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi + PYi(1− Zi)fΦ

T (~Ui)− 2θU

)
→ N(0, V (µΦ

C , f
Φ
C , f

Φ
T )).

For the A6, we have∫
µΦ
C(~U)fΦ

C (~U)KL(~U, ~U ′)fΦ
T (~U ′)d~Ud~U ′ −

∫
µΦ
C(~U)fΦ

C (~U)fΦ
T (~U)d~U

=
L∑
l=1

albl −
∞∑
l=1

albl

=−
∞∑

l=L+1

albl.

Because |albl| ≤ l−(α+β)/d,

|A6| ≤ L−(α+β)/d.

Putting Ai, i = 1, . . . , 6 together yields the conclusion.

Step 2. In this step, we work on TL to obtain

E(TL − θL)2 ≤ C
(
L

n2
+

1

n
+ L−2(β+γ)/d

)
and

P

(
|TL − θ̃L| > Cη

(√
log n

n
+

log n
√
L

n

))
≤ 1

nη
,
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where θ̃L = P (1 − P )
∫
fΦ
C (~U)KL(~U, ~U ′)fΦ

T (~U ′)d~Ud~U ′ and η is an arbitrary large constant. We
decompose TL as

TL − θL =
1

n(n− 1)

∑
i1 6=i2

(1− Zi1)KL(~Ui1 ,
~Ui2)Zi2 − θL

=
1

n(n− 1)

∑
i1 6=i2

(
(1− Zi1)KL(~Ui1 ,

~Ui2)Zi2 − (1− P )

∫
KL(~U, ~Ui2)fΦ

C (~U)d~UZi2

− P
∫

(1− Zi1)KL(~Ui1 ,
~U)fΦ

T (~U)d~U + θ̃L

)
+

1

n

n∑
i1=1

(
P

∫
(1− Zi1)KL(~Ui1 ,

~U)fΦ
T (~U)d~U − P (1− Zi1)fΦ

T (~Ui1)

)

+
1

n

n∑
i2=1

(
(1− P )

∫
KL(~U, ~Ui2)fΦ

C (~U)d~UZi2 − (1− P )Zi2f
Φ
C (~Ui1)

)

+
1

n

n∑
i=1

(
(1− P )Zif

Φ
C (~Ui) + P (1− Zi)fT (~Ui)− 2θ̃L

)
+ θ̃L − θL

where θ̃L = P (1 − P )
∫
fΦ
C (~U)KL(~U, ~U ′)fΦ

T (~U ′)d~Ud~U ′. If we apply a similar proof in the last
step, we can get

E(TL − θL)2 ≤ C
(
L

n2
+

1

n
+ L−2(β+γ)/d

)
.

Since TL is a U-statistics, we can apply concentration inequality in Giné et al. (2000) (also see
Lemma 9 in Shen et al., 2020). By following the notation of Lemma 9 in Shen et al. (2020), we
have

B1 ≤ C, B2 ≤ C
√
nL1/2, B3 ≤ CL1/2, v2

1 ≤ C, v2
2 ≤ CL,

which leads to

P

(
|TL − θ̃L| > Cη

(√
log n

n
+

log n
√
L

n

))
≤ 1

nη
,

where η is an arbitrary large constant.

Step 3. In this step, we put the results of steps 1 and 2 together. Recall θU and θL are

θU = P (1− P )

∫
fC( ~X)

f̃C( ~X)
µC( ~X)fT ( ~X)d ~X and θL = P (1− P )

∫
fC( ~X)

f̃C( ~X)
fT ( ~X)d ~X.

If we define θ0
U and θ0

L as

θ0
U = P (1− P )µCT and θ0

L = P (1− P ),

then we can know that

E(TU − θ0
U )2 ≤ C

(
L

n2
+

1

n
+ L−2(α+β)/d + ‖f̃C( ~X)− fC( ~X)‖22

)
and

E(TL − θ0
L)2 ≤ C

(
L

n2
+

1

n
+ L−2(β+γ)/d + ‖f̃C( ~X)− fC( ~X)‖22

)
.

As L = n
2d

d+2(α+β) , an application of the same argument in the proof of kernel estimator yields

E(µ̂CT − µCT )2 ≤ C
(
n−

4(α+β)
d+2(α+β) + n−1 + ‖f̃C( ~X)− fC( ~X)‖22

)
.
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D.3 PROOF OF COROLLARY 1

We follow the notation in the proof of Theorem 1. Now, we prove the first part of the corollary. By
Theorem 1, we have

E
(

(µ̂CT − µCT )2
∣∣∣f̃C( ~X)

)
≤ C

(
n−

4(α+β)
d+2(α+β) + n−1 + ‖f̃C( ~X)− fC( ~X)‖22

)
.

Due to α+ β ≤ d/2, we have

E(µ̂CT − µCT )2 ≤ C
(
n−

4(α+β)
d+2(α+β) +N−

2κ
d+2κ

)
.

If we apply κ > 2(α+ β)d/(td+ (2t− 4)(α+ β)), we can get

E(µ̂CT − µCT )2 ≤ Cn−
4(α+β)
d+2(α+β) .

We turn to the second part of the corollary now. By the Step 1 in the proof of Theorem 1,

TU−θU =
1

n

n∑
i=1

(
(1−P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi+PYi(1−Zi)fΦ

T (~Ui)−2θU

)
+Op

(
1

nhd/2
+ hα+β

)
.

By α+ β ≥ d/2, the choice of h suggests that

TU − θU =
1

n

n∑
i=1

(
(1− P )µΦ

C(~Ui)f
Φ
C (~Ui)Zi + PYi(1− Zi)fΦ

T (~Ui)− 2θU

)
+ op

(
n−1/2

)
.

Because of κ > d/2(t− 1), we can know that

θ0
U − θU = op

(
n−1/2

)
.

Thus, we can conclude that √
n(TU − θ0

U )√
V (µΦ

C , f
Φ
C , f

Φ
T )
→ N(0, 1),

where

V (µΦ
C , f

Φ
C , f

Φ
T ) = P 2(1− P )2

(∫
µΦ
C

2
fΦ
C

2
fΦ
T

P
+

∫
(σ2 + µΦ

C
2
)fΦ
C f

Φ
T

2

1− P
− 4

(∫
µΦ
Cf

Φ
C f

Φ
T

)2
)
.

The variable transformation suggests that

V (µΦ
C , f

Φ
C , f

Φ
T )

P 2(1− P )2

=
1

P

∫
µ2
C(~x)f2

C(~x)fT (~x)

f̃2
C(~x)

d~x+
1

1− P

∫
(σ2(~x) + µ2

C(~x))fC(~x)f2
T (~x)

f̃2
C(~x)

d~x

− 4

(∫
µC(~x)fC(~x)fT (~x)

f̃C(~x)
d~x

)2

→ 1

P

∫
µ2
C(~x)fT (~x)d~x+

1

1− P

∫
(σ2(~x) + µ2

C(~x))f2
T (~x)

fC(~x)
d~x− 4

(∫
µC(~x)fT (~x)d~x

)2

=V

This leads to √
n(TU − θ0

U )√
V P (1− P )

→ N(0, 1).

The proof of Theorem 1 also suggests that

TL →p θ
0
L = P (1− P ).

Therefore, we can conclude that
√
n(µ̂CT − µCT )√

V
→ N(0, 1).
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D.4 PROOF OF THEOREM 2

Without loss of generality, we can assume fC( ~X) is uniform distribution and Φ is identity transfor-
mation. We prove the two parts of the lower bound by considering the two cases. Case I: In order
to construct the worst case, we consider the following model where Y only take values from {0, 1},
i.e., Y is a binary variable. The distribution of this model can be written as

P( ~X,Z, Y )

=P(Z)P( ~X|Z)P(Y | ~X,Z)

=
(
PfT ( ~X)µT ( ~X)Y (1− µT ( ~X))1−Y

)Z (
(1− P )fC( ~X)µC( ~X)Y (1− µC( ~X))1−Y

)1−Z
,

where P = P(Z = 1). Let L be the integer closest to n2d/(d+2(α+β)) and H be a smooth function
defined on [0, 1]d such that

∫
H(~x)d~x = 0 and

∫
H2(~x)d~x = 1. The space [0, 1]d can be divided

into L non-overlap cubes of size L−1/d × . . . × L−1/d. We name these small cubes Q1, . . . , QL.
On each cube Ql, we can insert a scaled and shifted version of H , i.e., define the following function

ψl(~x) = H
(

(~x−M(Ql))L
1/d
)
,

where M(·) is the bottom left point of the cube. Clearly, we know ψl is supported on Ql and have∫
ψl = 0 and

∫
ψ2
l = 1/L. Now, we construct the least favorable hypothesis separately when α < β

and α ≥ β.

α < β The hypothesis we consider are

H0(η) :P = 1/2; fC = 1, fT = 1 +
∑
l

ηlrfψl;µC = 1/2, µT = 1/2

H1(η) :P = 1/2; fC = 1, fT = 1 +
∑
l

ηlrfψl;µC = 1/2 +
∑
l

ηlrµψl, µT = 1/2.

Here, η = (η1, . . . , ηl, . . . , ηL) is a sequence taking value from {−1, 1}L, rf = L−β/d and rµ =

L−α/d. By construction, we can know that fT ∈ Hβ([0, 1]d) and µC ∈ Hα([0, 1]d). Let P0(η) be
distribution of ( ~X,Z, Y ) under H0(η) and P1(η) be distribution of ( ~X,Z, Y ) under H1(η). The null
and alternative hypothesis we consider here are mixture distributions P0 = 2−L

∑
η∈{−1,1}L P0(η)

and P1 = 2−L
∑
η∈{−1,1}L P1(η). Simple calculation suggests that

µCT = 1/2 under H0(η) and µCT = 1/2 + n−
2(α+β)
d+2(α+β) under H1(η).

In order to calculate Hellinger distance between P0 and P1, we adopt Theorem 2.1 in Robins et al.
(2009) to obtain

H(Pn0 ,Pn1 ) ≤ Cn2 1

L
(r4
µ + r2

µr
2
f ) ≤ C.

By applying Theorem 2.15 in Tsybakov (2008), we have

inf
µ̂CT

sup
F∈Fα,β

E(µ̂CT − µCT )2 ≥ cn−
4(α+β)
d+2(α+β) .

α ≥ β Now we consider the hypothesis

H0(η) :P = 1/2; fC = 1, fT = 1;µC = 1/2 +
∑
l

ηlrµψl, µT = 1/2

H1(η) :P = 1/2; fC = 1, fT = 1 +
∑
l

ηlrfψl;µC = 1/2 +
∑
l

ηlrµψl, µT = 1/2.

We use the same notation as when α < β. We can know that

µCT = 1/2 under H0(η) and µCT = 1/2 + n−
2(α+β)
d+2(α+β) under H1(η).

and
H(Pn0 ,Pn1 ) ≤ Cn2 1

L
(r4
f + r2

µr
2
f ) ≤ C.
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So we can conclude that

inf
µ̂CT

sup
F∈Fα,β

E(µ̂CT − µCT )2 ≥ cn−
4(α+β)
d+2(α+β) .

Case II: In this case, we consider the same model in the previous case and the following hypothesis

H0 :P = 1/2; fC = 1, fT = 1;µC = 1/2, µT = 1/2

H1 :P = 1/2; fC = 1, fT = 1;µC = 1/2 + r, µT = 1/2.

Here, r = n−1/2. P0 is distribution of ( ~X,Z, Y ) under H0 and P1 is distribution of ( ~X,Z, Y ) under
H1. Calculation suggests that

µCT = 1/2 under H0 and µCT = 1/2 + n−1/2 under H1.

and ∫
(dPn1 )2

dPn0
=
(
1 + r2

)n
.

This implies

χ2(Pn1 ,Pn0 ) =
(
1 + r2

)n − 1 ≤ exp
(
nr2
)
− 1 ≤ C.

By applying Theorem 2.2 in Tsybakov (2008), we have

inf
µ̂CT

sup
F∈Fα,β

E(µ̂CT − µCT )2 ≥ cn−1.

D.5 PROOF OF THEOREM 3

Proof for kernel density estimator Through the proof , we define A := {Zi, ~Xi(1 − Zi)}i=1,...,n

and conduct the proof conditioned on A. Conditioned on A, the map Φ̂D can be seen as fixed.
Recall

µ̂CT =

∑n
i1,i2=1 Yi1(1− Zi1)Kh(Φ̂D( ~Xi1)− Φ̂D( ~Xi2))Zi2∑n
i1,i2=1(1− Zi1)Kh(Φ̂D( ~Xi1)− Φ̂D( ~Xi2))Zi2

.

We write θU = µCT , θL = 1,

TU =
1

n0n1

n∑
i1,i2=1

Yi1(1− Zi1)Kh(Φ̂D( ~Xi1)− Φ̂D( ~Xi2))Zi2

and

TL =
1

n0n1

n∑
i1,i2=1

(1− Zi1)Kh(Φ̂D( ~Xi1)− Φ̂D( ~Xi2))Zi2 .

The proof is divided into three steps.

Step 1. In this step, we show that

E((TU − θU )2|A) ≤ C

(
1

n0n1hd
+

1

n0
+

1

n1
+

1

n
2α0/d
0

+ h2(α+β)

)
,

where α0 = α ∧ 1. Denote ~Ui = Φ̂D( ~Xi) for i = 1, . . . , n. We decompose the TU into two parts

TU =
1

n0n1

n∑
i1,i2=1

Yi1(1− Zi1)Kh(Φ̂D( ~Xi1)− Φ̂D( ~Xi2))Zi2

=
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

εi1Kh(~Ui1 − ~Ui2) +
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

µΦ̂D
C (~Ui1)Kh(~Ui1 − ~Ui2),
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where εi = Yi − µΦ̂D
C (~Ui) when Zi = 0. We work these two terms separately. The first term can be

written as

1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

εi1Kh(~Ui1 − ~Ui2)

=
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

(
εi1Kh(~Ui1 − ~Ui2)− εi1

∫
Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U

)

+
1

n0

∑
i1:Zi1=0

εi1

∫
Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U

:=A1 +A2

In terms of A1, we have

E(A2
1|A) ≤ E

 4

n2
0n

2
1

∑
i1:Zi1=0,i2:Zi2=1

ε2i1Kh(~Ui1 − ~Ui2)2

∣∣∣∣∣∣A


≤ C

n0n1hd

For the A2, note that εi1 are independent given A, which yields

E(A2
2|A) ≤ E

 C

n2
0

∑
i1:Zi1=0

ε2i1

∣∣∣∣∣∣A
 ≤ C

n0

The second term in TU can then be decomposed as

1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

µΦ̂D
C (~Ui1)Kh(~Ui1 − ~Ui2)− θU

=
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

(
µΦ̂D
C (~Ui1)Kh(~Ui1 − ~Ui2)−

∫
µΦ̂D
C (~Ui1)Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U

)

+
1

n0

∑
i1:Zi1=0

(∫
µΦ̂D
C (~Ui1)Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U −
∫
µΦ̂D
C (~U)Kh(~U − ~U ′)f Φ̂D

T (~U ′)d~Ud~U ′
)

+

∫
µΦ̂D
C (~U)Kh(~U − ~U ′)f Φ̂D

T (~U ′)d~Ud~U ′ −
∫
µΦ̂D
C (~U)f Φ̂D

T (~U)d~U

=A3 +A4 +A5

Define

R(~Ui2) =
1

n0

∑
i1:Zi1=0

(
µΦ̂D
C (~Ui1)Kh(~Ui1 − ~Ui2)−

∫
µΦ̂D
C (~Ui1)Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U

)
.

Simple calculation yields

E(R(~Ui2)) = 0 and E(R2(~Ui2)) ≤ C

Since A3 =
∑
i2:Zi2=1R(~Ui2)/n1, we can have

E(A2
3|A) ≤ C

n1
.

Because of property 1 in Proposition 1, we have

|A4| ≤
C

n
α0/d
0

.

29



Published as a conference paper at ICLR 2024

In other words, we have

E(A2
4|A) ≤ C

n
2α0/d
0

.

For the A5, we apply the similar technique in the proof of Theorem 1

|A5| ≤ hα+β .

Putting Ai, i = 1, . . . , 5 together suggests that

E((TU − θU )2|A) ≤ C

(
1

n0n1hd
+

1

n0
+

1

n1
+

1

n
2α0/d
0

+ h2(α+β)

)
.

Step 2. In this step, we show

E((TL − θL)2|A) ≤ C

(
1

n1
+

1

n
2/d
0

)
.

We write TL as

TL − θL =
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

Kh(~Ui1 − ~Ui2)− θL

=
1

n0n1

∑
i1:Zi1=0,i2:Zi2=1

Kh(~Ui1 − ~Ui2)−
∫
Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U

+
1

n0

∫
Kh(~Ui1 − ~U)f Φ̂D

T (~U)d~U −
∫
Kh(~U ′ − ~U)f Φ̂D

T (~U)d~Ud~U ′

+

∫
Kh(~U ′ − ~U)f Φ̂D

T (~U)d~Ud~U ′ − θL.

With the similar techniques in Step 1, we can conclude that

E((TL − θL)2|A) ≤ C

(
1

n1
+

1

n
2/d
0

)
.

Step 3. In the last step, we put the result of Steps 1 and 2 together, leading to the final conclusion.
As h is chosen as h→ 0 and n2hd → 0, we can know that

TU →p θU and TL →p θL.

Therefore, we can conclude that
µ̂CT →p µCT .

Proof for projection density estimator We omit the proof here, as we can apply the same parallel
argument in the proof of Theorem 1.
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