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Abstract

Microbiome sequencing data normalization is crucial for eliminating technical bias and ensur-

ing accurate downstream analysis. However, this process can be challenging due to the high

frequency of zero counts in microbiome data. We propose a novel reference-based normaliza-

tion method called normalization via rank similarity (RSim) that corrects sample-specific

biases, even in the presence of many zero counts. Unlike other normalization methods, RSim

does not require additional assumptions or treatments for the high prevalence of zero counts.

This makes it robust and minimizes potential bias resulting from procedures that address zero

counts, such as pseudo-counts. Our numerical experiments demonstrate that RSim reduces

false discoveries, improves detection power, and reveals true biological signals in downstream

tasks such as PCoA plotting, association analysis, and differential abundance analysis.

Author summary

Technical factors, such as sequencing depth, can introduce biases in analyzing and inter-

preting microbiome sequencing data. Data normalization is critical to mitigate these

biases and enable reliable downstream analysis. However, numerous zero counts in the

data pose significant challenges in developing effective normalization methods. Inspired

by the experiments with spike-in bacteria, we propose a novel computational framework

to address the bias resulting from technical factors. Our method identifies a set of non-dif-

ferentially abundant taxa based on pairwise rank similarity of observed counts and subse-

quently scales the counts to ensure the same coverage within this set. By adopting this

innovative approach, our method robustly handles zero counts and avoids introducing

new biases associated with zero handling. Comprehensive evaluations demonstrate that

our method helps downstream analysis effectively detect subtle yet biologically important

signals and leads to a reduction in false discoveries. The new method offers promising

prospects for advancing our understanding of microbial communities.

Introduction

High-throughput sequencing technology has revolutionized the study of microbiome commu-

nities, providing biologists with a powerful tool to investigate and understand biological events
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and mechanisms. However, analyzing and interpreting the data generated by high-throughput

sequencing can be challenging due to technical factors that can confound results [1–3]. One

major limitation of high-throughput sequencing is that the observed sequencing count data

can only reflect the relative abundance of taxa rather than their absolute abundance, as the

observed sequencing depth can vary significantly across samples and is unrelated to the abso-

lute abundance [4–6]. In mathematical terms, the observed sequencing count data can be

expressed as:

Ni;j � ciAi;j;

where Ni,j and Ai,j are the observed count and absolute abundance of taxon j in the ith sample,

and ci is the unobserved sampling fraction of the ith sample. The unobserved sampling fraction

is typically sample-specific and can vary due to technical factors such as sequencing depth and

capture efficiency. Because of this unobserved sampling fraction, applying classical statistical

methods to the observed count data can result in false-positive scientific discoveries and

invalid analysis results [2, 7]. This paper refers to the bias resulting from the unobserved sam-

pling fraction as compositional bias.

Normalizing the observed sequencing count data is a critical step in removing composi-

tional bias and ensuring accurate and reliable downstream analysis. To this end, many normal-

ization methods have been proposed for different types of sequencing data sets [4, 8–16].

These methods can be broadly classified into three computational frameworks: rarefying, scal-

ing, and log-ratio based methods [2, 3]. The rarefying method subsamples the taxa of each

sample to ensure that all samples have the same sequencing depth. Although this method is

popular in practice, it may lead to a loss of statistical power in downstream analysis and does

not correct compositional bias [17]. Besides rarefying method, the scaling method is another

widely used normalization strategy that estimates the unobserved sampling fraction and scales

the observed count by this estimated sampling fraction. Scaling methods include Cumulative-

Sum Scaling (CSS) [12], Median (MED) [18], Upper Quartile (UQ) [10], Trimmed Mean of

M-values (TMM) [4], Geometric Mean of Pairwise Ratios (GMPR) [19] and Total-Sum Scal-

ing (TSS) normalization. However, accurately estimating the sampling fraction can be chal-

lenging when prevalent zero counts exist in the microbiome data [2]. Finally, log-ratio based

methods, which are motivated by classical compositional data analysis [20, 21], have been pro-

posed. Although log-ratio transformation can alleviate the compositional effect, it is still

unclear how to apply log-ratio transformation when zero counts are present and how to inter-

pret the results [22–24]. These challenges lead us to question whether a new normalization

method can be developed that is both robust to the prevalent zero counts and corrects the

compositional bias.

Here, we introduce a novel normalization method, which we call RSim (normalization via

Rank Similarity), to correct the compositional bias in the sequencing data set. The RSim nor-

malization is a scaling method motivated by the normalization method in the experiment with

spike-in bacteria. Instead of estimating sampling fraction directly, RSim first identifies a set of

non-differential abundant taxa via the pairwise rank similarity of taxa and then scales the

counts to ensure that the total sum of coverage in this estimated set is the same across samples.

To accurately identify non-differential abundant taxa, RSim employs a new empirical Bayes

approach to control the misclassification rate. Unlike existing methods, RSim does not need

any assumption or extra treatment to the prevalent zero counts because the Spearman’s rank

correlation coefficient used for measuring rank similarity is robust to zero counts. Besides

being robust to zero, RSim outperforms existing methods in estimating the sampling fraction

and correcting the compositional bias. We demonstrate the efficacy of RSim by comparing it
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with several state-of-the-art methods using synthetic and real data sets. Our results show that

RSim can help reduce false discoveries, improve detection power, and reveal true biological

signals in various downstream analyses, such as PCoA plotting, association analysis, and differ-

ential abundance analysis. RSim normalization is implemented in an R package, freely avail-

able at https://github.com/BoYuan07/RSimNorm.

Results

Overview of RSim normalization

We present a concise summary of the RSim normalization method, with a more detailed expla-

nation provided in the Method section. While we focus on the microbiome data in this paper,

it is worth noting that RSim may be applicable to other sequencing data, such as bulk RNA-seq

and single-cell RNA-seq [1]. The RSim method is inspired by the normalization approach

used in experiments with spike-in bacteria [25–28]. When spike-in bacteria are available, the

count of each taxon is rescaled by the reciprocal of the count of the spike-in taxa, as follows:

~Ni;j ¼
Ni;j

P
j2J ∗Ni;j

:

Here, Ni,j represents the observed count of taxon j in the ith sample, and J ∗ is the set of

spike-in taxa. We refer to this method as reference-based normalization since it treats J ∗
as a

reference set. The reference-based method can correct compositional bias when spike-in bac-

teria are available [25]. The efficacy of the reference-based method is contingent on the

assumption that the absolute abundance of spike-in taxa is identical across samples, as

expressed by the equation:
X

j2J ∗

Ai1 ;j ¼
X

j2J ∗

Ai2 ;j; i1 6¼ i2:

Here, Ai,j represents the absolute abundance of taxon j in the ith sample. Given the success

of the spike-in based normalization, one might wonder whether it is feasible to identify a refer-

ence set of taxa that satisfies the above equality and use it to correct compositional bias without

employing spike-in bacteria. Our paper shows that this is possible when we can identify a set

of non-differential abundant taxa, denoted by Ĵ 0, and replace the spike-in taxa with these esti-

mated non-differential abundant taxa.

The RSim normalization method is primarily aimed at identifying a set of non-differential

abundant taxa in microbiome data, even in the presence of zero counts. This identification

process has two steps: first, we construct statistics for the differential abundance level of each

taxon by using pairwise rank similarity of taxa; second, we use a new empirical Bayes method

to identify non-differential abundant taxa based on the statistics obtained in the first step (see

Fig 1). To explain the intuition behind the first step, we note that the count of a non-differen-

tial abundant taxon is approximately proportional to the unknown sampling fraction, whereas

the count of a differential abundant taxon lacks this correspondence to the sampling fraction.

Thus, the rank correlation between two non-differential abundant taxa should be higher than

between a non-differential abundant taxon and a differential abundant taxon. Assuming that

the majority of taxa are non-differential abundant, we use the median of rank correlation coef-

ficients between a taxon and other taxa as the statistics for the level of differential abundance.

In the second step, we use an empirical Bayes method to identify non-differential abundant

taxa based on the statistics obtained in the first step. The new empirical Bayes method allows

choosing a threshold to control the misclassification error. Since most identified taxa are non-
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differential abundant, they can serve as the reference set for the reference-based normalization

in RSim. Notably, the RSim procedure treats zero entries the same way as non-zero entries,

allowing it to work consistently with zero counts. In the following sections, we demonstrate

the effectiveness of RSim normalization in correcting compositional bias, even in the presence

of many zeros in the data set.

Correcting compositional bias via RSim normalization

This section presents a series of numerical experiments to assess the ability of RSim normaliza-

tion to correct compositional bias. We generate synthetic data using a microbiome dataset col-

lected in [29], where 97% of entries are zeros. We first investigate whether the taxa in the

estimated reference set of RSim normalization are mostly non-differentially abundant. Specifi-

cally, we design several numerical experiments to determine if the empirical Bayes method in

RSim can control the misclassification rate in the estimated reference set at a desired level. S1

Fig shows that RSim successfully controls the empirical misclassification rate at the target level

for different levels of misclassification rate. We further evaluate the robustness of the estimated

reference set by varying the signal strength of differential abundant taxa, the balance of group

size in differential abundant taxa, the proportion of differential abundant taxa, and sample size

change (S3 Fig). Our experiments demonstrate that RSim can robustly identify a reference set

that consists mostly of non-differential abundant taxa.

Fig 1. Illustration demonstrating the procedure of RSim normalization. Step 1: median of pairwise rank similarity

of taxa is evaluated to construct the statistics for the differential abundance level of each taxon. Step 2: a new empirical

Bayes method provides misclassification rate control in identifying non-differential abundant taxa. Estimated non-

differential abundant taxa are used as the reference set in reference-based normalization.

https://doi.org/10.1371/journal.pcbi.1011447.g001
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The next set of numerical experiments aims to investigate whether RSim normalization can

recover the sampling fraction of each sample via reference-based normalization. To this end,

we compare RSim normalization with six state-of-art normalization methods, including TSS,

UQ implemented in edgeR, CSS implemented in metagenomeSeq, MED implemented in

DESeq2, TMM implemented in edgeR, and GMPR implemented in GMPR. We also include

an oracle reference-based normalization where the reference set consists of true non-differen-

tial abundant taxa. Using synthetic data generated from a microbiome dataset collected in

[29], we randomly divided the samples into two groups and inserted signals to the differential

abundant taxa of one group. We then estimated the sampling fraction of each sample using the

seven normalization methods and compared their performance. Fig 2 presents the results of

Fig 2. Comparisons of normalization methods in estimating sampling fraction. The numerical experiments are performed when the

signal strength of differential abundant taxa is (a) weak, (b) moderate, and (c) strong. In (a), (b), and (c), the x-axis represents true sampling

fractions, while the y-axis represents the estimated sampling fraction from normalization methods. We scale the estimated sampling

fractions so that their average is the same as the average of true sampling fractions. The black line in these figures represents equality

between the estimated and true sampling fractions and the color of points represent which group the differential abundant taxa belong to.

The bias in sampling fraction estimation by different normalization methods is compared in (d) when the signal strength and proportion

(p = 0.1, 0.2, 0.3) of differential abundant taxa vary. It is clear that the reference-based method can better correct the compositional bias than

existing methods, especially when there is a large proportion of strong differential abundant taxa.

https://doi.org/10.1371/journal.pcbi.1011447.g002
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these experiments. We found that when the signal strength of differential abundant taxa is

weak, most normalization methods can recover the sampling fraction well and do not exhibit

significant bias in their estimates. However, in the presence of strong differential abundant

taxa, existing normalization methods suffer from a systematic bias in sampling fraction estima-

tion, while reference-based normalization is robust to this bias. Notably, RSim normalization

performs similarly to the oracle method, indicating that the reference set selected by RSim con-

tains mostly non-differential abundant taxa and can effectively normalize the data. Overall,

our numerical experiments demonstrate that RSim normalization corrects the sample-specific

bias resulting from technical variations in the sequencing process.

We also compare these computation-based normalization methods with the spike-in-based

normalization method when spike-in bacteria are available. Specifically, we consider a dataset

collected in [25], where a fixed quantity of Salinibacter ruber is introduced into gut micro-

biome samples to calibrate unknown sampling fractions. Since spike-in bacteria are available,

we treat the results of spike-in-based normalization as the ground truth and compare the

seven computation-based normalization methods. The discrepancies in the estimated sam-

pling fractions are reported in S4 Fig. We observed that the sampling fractions estimated by

RSim are more similar to the spike-in-based normalization method than the other six meth-

ods, confirming again that RSim normalization can better correct the sample-specific bias. In

the next three sections, we investigate how RSim normalization improves the performance of

commonly used downstream analyses, including PCoA plotting, association analysis, and dif-

ferential abundance analysis.

RSim normalization reveals biological pattern in PCoA plot

This section aims to investigate the effects of different normalization methods on the PCoA

plots. Specifically, we compare the PCoA plots on the normalized data after applying normali-

zation methods, namely TSS, UQ, CSS, MED, TMM, GMPR, rarefaction and RSim, to a

microbiome data set collected in [29]. The compositional bias can create false clusters or pat-

terns in the PCoA plot if the count data is not appropriately normalized. We randomly split

the samples into two groups, and no cluster structure is observed in the PCoA plots, regardless

of the normalization method used (Fig 3a). However, when we rarefy the count data of one

group of samples through subsampling, the difference in the sequencing depth results in two

clusters in some of the PCoA plots (Fig 3b). In particular, RSim, TMM, GMPR, rarefaction

and TSS can remove such false clusters through normalization, while CSS, MED, and UQ can-

not. We also conduct a similar numerical experiment on another dataset collected in [30]. The

samples in the KarenThai category are divided into two groups based on the sequencing depth

(>10000 belongs to the first group, and <5000 belongs to the second group). The two clusters

separated by sequencing depth are present in the PCoA plots of all normalization methods

except RSim normalization (Fig 3c). Through these two examples, we conclude that RSim nor-

malization is more effective in mitigating the issue of false clusters or patterns in PCoA plots

than existing normalization methods.

The presence of false patterns resulting from compositional bias can lead to erroneous

interpretations of data, highlighting the importance of proper normalization. S6a Fig shows

the PCoA plots of right palm samples in a data set collected in [31], colored by days since the

experiment started. The PCoA plot exhibits a clear time-related pattern in the raw data, imply-

ing a possible shift in microbial abundance during the 15-month study period. Similar patterns

are also observed in the PCoA plots after applying all normalization methods except RSim.

However, further examination reveals a strong correlation between time and sequencing

depth (S6c Fig), and a similar pattern is also present in the PCoA plots colored by sequencing
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depth (S6b Fig). This suggests that sequencing depth is a confounding factor and is likely

responsible for the observed time-related pattern. RSim normalization can effectively remove

this false pattern, and as a result, the pattern of time and sequencing depth in the PCoA plots is

no longer apparent, demonstrating the effectiveness of RSim normalization in removing con-

founding effects.

Appropriate normalization not only helps avoid false clusters but also aids in detecting true

biological patterns resulting from microbial abundance shifts. Following a similar approach as

in the previous section, we generated data with differentially abundant taxa from a data set in

[29]. The absolute abundance of these taxa depends on a latent variable characterizing the bio-

logical structure. When this latent variable is binary, a two-cluster structure is expected in the

PCoA plot, but compositional bias confounds such a structure (S5a Fig). After applying nor-

malization methods, only RSim normalization helps detect a two-cluster structure in the

PCoA plot. We observed a similar phenomenon in the numerical experiment when the latent

variable is continuous (S5b Fig). These examples suggest that compositional bias can obscure

biological signals of interest, and RSim normalization can help reveal the true biological pat-

tern in the data set.

RSim normalization increases efficiency of association analysis

This section investigates the impact of normalization on association analysis, which aims to

detect an association between microbiome data and a specific outcome, such as age or BMI.

To compare the performance of different normalization methods, we consider two commonly

used association analysis methods, PERMANOVA [32, 33] and MiRKAT [34]. Similar to the

Fig 3. Compositional bias can create false clusters in PCoA plots. In (a) and (b), samples are randomly divided into two groups. No modification is

applied to (a), while the count data in group 1 is rarefied in (b). In (c), samples are divided into two groups based on the sequencing depth (>10000

belongs to the first group, and <5000 belongs to the second group). In these figures, RSim normalization can help remove the false clusters resulting

from compositional bias. Euclidean distance with log transformation is used in all PCoA plots.

https://doi.org/10.1371/journal.pcbi.1011447.g003
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previous sections, we generate synthetic data from the microbiome data set in [29]. In the first

set of experiments, we examine the effect of normalization on the type I error of association

analysis. We randomly divide samples into two groups and rarefy the first group via subsam-

pling. The type I error is highly inflated when we directly apply association analysis to the

unnormalized count data due to the difference in sequencing depth. After applying eight dif-

ferent normalization methods, only TSS, rarefaction and RSim normalization can effectively

control the type I error. We also apply PERMANOVA to samples of Karen individuals living

in Thailand, as collected in [30], using the same experiment settings as in the previous section.

The P-values are reported in Fig 3c. PERMANOVA finds a significant association between the

microbiome data and the group defined by the sequencing depth when the count data is nor-

malized by the existing normalization method. However, the association is no longer signifi-

cant when we apply RSim normalization, indicating that RSim normalization can correct the

compositional bias resulting from the confounding sequencing depth. These results further

confirm that RSim normalization can reduce false discoveries in association analysis.

The second set of numerical experiments investigates the effect of different normalization

methods on the power of association analysis. As in the previous two sections, we generated

synthetic data with differential abundant taxa from the microbiome data set in [29]. Applying

PERMANOVA and MiRKAT directly to the unnormalized data resulted in power loss, while

RSim normalization improved their power more effectively than existing methods in most set-

tings (see Fig 4b and S7 Fig). In addition to the synthetic data, we also compared different nor-

malization methods using the data set collected in [30]. Specifically, we applied

PERMANOVA and MiRKAT to examine the global association between BMI and the human

gut microbiome in Karen individuals living in Thailand. When the microbiome data was nor-

malized using RSim and GMPR, we observed a significant association with P-values smaller

than 0.05. However, when other existing normalization methods were used, no significant dis-

covery was reported (see Table 1). This discovery aligns with previous literature that shows the

significant impact of gut microbiota on nutrient metabolism and energy expenditure [35].

These findings highlight the importance of appropriate normalization in association analysis

to avoid false discoveries and improve power, and RSim normalization is a superior choice to

existing methods.

RSim normalization improves accuracy of differential abundance analysis

This section focuses on the effect of normalization on differential abundance analysis, which

aims to identify taxa with different abundances across conditions. Classical tests, such as the

two-sample t-test and Pearson correlation test, are commonly used for this analysis, but apply-

ing them directly to unnormalized count data can lead to inflated false discoveries. Proper nor-

malization is, therefore, essential to mitigate this issue. We conducted experiments on

synthetic data generated from the dataset in [29] to study how the normalization impacts dif-

ferential abundance analysis. Specifically, we apply seven normalization methods (TSS, UQ,

CSS, MED, TMM, GMPR and RSim) and conduct differential abundance analysis using the

two-sample t-test for binary outcomes and Pearson correlation test for continuous outcomes.

The results in Fig 5 showed that inappropriate normalization could introduce bias, resulting in

an inflated false discovery rate (FDR) and reduced power. However, RSim normalization was

effective in controlling FDR and maintaining sufficient power, thereby mitigating composi-

tional bias. These results confirm the importance of appropriate normalization for differential

abundance analysis and suggest that RSim normalization is a reliable choice.

In addition to the synthetic data, we also applied RSim normalization to real datasets to fur-

ther elucidate the effect of normalization on differential abundance analysis. First, we used the

PLOS COMPUTATIONAL BIOLOGY RSim normalization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011447 September 1, 2023 8 / 20

https://doi.org/10.1371/journal.pcbi.1011447


dataset from [31] to compare the seven normalization methods. The samples were divided

into two groups based on sequencing depth, and we applied the two-sample t-test equipped

with seven normalization methods as well as four state-of-the-art differential abundance tests

designed for compositional data: ANCOM [36], edgeR [37], LinDA [38], and RDB [24]. The

results, as summarized in Fig 6, showed that inappropriate normalization could lead to inflated

FDR when the sequencing count data is analyzed. However, RSim normalization successfully

Fig 4. Normalization can reduce false discovery and improve the power of association analysis. In (a), the samples

are randomly divided into two groups, and the count data in the first group is rarefied. In (b), the synthetic data

include differential abundant taxa. The significance level is 0.05 in both (a) and (b). Normalization is an essential step

to avoid false discovery and improve power.

https://doi.org/10.1371/journal.pcbi.1011447.g004

Table 1. Normalization can make more scientific discoveries through improving the power of association analysis.

RSim Unnormalized CSS MED TMM TSS UQ GMPR

PERMANOVA 0.018 0.380 0.205 0.296 0.607 0.122 0.176 0.029

MiRKAT 0.021 0.359 0.193 0.270 0.581 0.132 0.167 0.030

P-values of PERMANOVA and MiRKAT are reported in the study of association between the gut microbiome and BMI.

https://doi.org/10.1371/journal.pcbi.1011447.t001
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corrected for compositional bias and improved the two-sample t-test to control FDR and

detect significant differences.

We also applied RSim normalization and the two-sample t-test to a gut microbiome data

set from an immigration effect study [30]. This analysis compared two groups: Karen (Karen

female individuals living in Thailand) vs. Karen1st (Karen female individuals born in South-

east Asia and moved to the US). We detected six significant phyla in the comparison (S1

Table). It is noteworthy that the RDB test, which is designed to remove compositional bias and

has the best false discovery control in the previous experiment, also detected these six phyla.

However, applying the two-sample t-test to the unnormalized data led to the detection of three

different phyla. This discovery is consistent with previous results indicating that Bacteroidota,

Firmicutes, Actinobacteriota, and Fusobacteriota are associated with obesity and that the obe-

sity rate is significantly higher for immigrants than for people living in Thailand [39–41]. Fur-

thermore, Desulfobacterota is shown to be related to inflammatory bowel diseases [42], and the

incidence of these diseases is much higher in Western countries compared to Asian countries,

especially Thailand [43], which is also consistent with our findings. These results again suggest

that RSim normalization can improve the ability of differential abundance tests to control false

Fig 5. Comparison of different normalization methods’ effect on the differential abundance analysis. (a) and (b) are the FDR and sensitivity plots

of the t-test after applying seven normalization methods. (c) and (d) are the FDR and sensitivity plots of the Pearson correlation test after applying seven

normalization methods. The x-axis is the signal strength of differential abundant taxa. RSim can help t-test and Pearson correlation test control FDR

and maintain detection power.

https://doi.org/10.1371/journal.pcbi.1011447.g005
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discoveries and detect significant differences more effectively than existing normalization

methods.

Discussion

In this study, we present RSim, a novel normalization method that corrects sample-specific

bias in microbiome data with many zeros. RSim normalization is robust to the prevalent zeros

because each step can work with zeros without making extra assumptions or treatments. RSim

first identifies a set of non-differential abundant taxa by evaluating the pairwise rank similarity

of taxa, then uses the estimated set as a reference set in reference-based normalization. This

approach effectively corrects the compositional bias, even when microbiome data consists of

many zero counts. Furthermore, while our discussion primarily focused on microbiome

sequencing data, the ideas in this algorithm could potentially be applied to single-cell RNA

sequencing data, where one major obstacle in normalization is also the zero counts problem.

Our comprehensive investigation into how normalization results can affect downstream

analysis shows that the unobserved sampling fraction is a common confounder in high

throughput sequencing data analysis. Compositional bias may confound the results of almost

all types of downstream analysis, ranging from data visualization to statistical testing. This con-

founding factor creates false clusters or discoveries and obscure signals of interest in data anal-

ysis and interpretation. Our numerical experiments demonstrate that RSim normalization can

eliminate compositional bias better than existing methods, reducing false discovery and

increasing detection power in downstream analysis, including PCoA plotting, association anal-

ysis, and differential abundance analysis. We hope this new normalization method can

improve the current data analysis pipeline and enable biological researchers to make more sci-

entific discoveries.

One major assumption of RSim normalization is that more than half of the taxa are non-

differential abundant, which is also used in developing differential abundance analysis in com-

positional data. This assumption may appear strong, but it is necessary for model identification

when the sampling fraction is not observed [24]. In other words, the set of non-differential

abundant taxa cannot be determined from the observed sequencing count when less than half

are non-differential abundant. We recommend applying RSim normalization on high-

Fig 6. RSim normalization helps two-sample t-test control false discovery. Samples are divided into two groups based on the sequencing depth

(<10000 belongs to the first group, and >20000 belongs to the second group), and the FDR is shown when the different significance levels are used. In

(a), seven normalization methods are compared. In (b), a two-sample t-test equipped with RSim normalization is compared with state-of-art differential

abundance tests.

https://doi.org/10.1371/journal.pcbi.1011447.g006
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resolution data, such as at ASV or OTU level, to satisfy this assumption. When ASVs/OTUs

are aggregated into taxa at a higher taxonomic level, like class or order level, there could be

much fewer non-differential abundant taxa because aggregation of non-differential and differ-

ential abundant ASVs results in differential abundant taxa [44].

Finally, the development of RSim normalization shows that reference-based normaliza-

tion can successfully correct compositional bias when identifying a set of non-differential

abundant taxa. While RSim normalization only suggests one way to detect a set of non-dif-

ferential abundant taxa, there could be alternative approaches to achieve the same goal. For

example, Spearman’s rank correlation coefficient can be replaced by other correlation coeffi-

cients, such as the Pearson and Kendall rank correlation coefficients. It would also be inter-

esting to explore if there is a better way to control the misclassification rate than our

empirical Bayes method.

Materials and methods

Reference-based normalization

In order to correct for compositional bias in sequencing data, various methods have been pro-

posed in the literature for experiments both with and without spike-in bacteria. One of the

most commonly used approaches is to calibrate the count data using the count of a control

sequence, in cases where spike-in bacteria are available [25–28]. In experiments with spike-in

bacteria, exogenous taxa of known concentration are introduced to each sample in equal

amounts, and the count data is then rescaled using the count of these exogenous taxa. Specifi-

cally, suppose we have n samples and each sample has d taxa. Let Ai,j be the true absolute abun-

dance of taxon j of the ith sample, and let Ni,j be the corresponding observed sequence counts.

If we denote the collection of spike-in taxa as J ∗, then we can rescale the count data as follows:

~Ni;j ¼
Ni;j

P
j2J ∗Ni;j

:

The aim of this scaling is to convert relative abundance to absolute abundance by ensuring

that the rescaled count of the spike-in taxa is the same across samples. Experiments have

shown that this scaling can successfully recover absolute abundance, with the error in recovery

reduced by using multiple spike-in taxa (i.e., a larger J ∗) [25]. However, using spike-in bacte-

ria can be limited by the availability of reliable taxa, as well as potential amplification biases

[45, 46]. Given these challenges, it is natural to ask whether this idea can be generalized to

experiments without spike-in bacteria.

A new computational normalization method can be inferred from the way of scaling in

experiments with spike-in taxa: first, we identify a data-driven reference set J0 whose absolute

abundance remains stable across samples, and then normalize the count data with respect to

this set:

~Ni;j ¼
Ni;j

P
j2J0

Ni;j
:

In the experiment with spike-in bacteria, the reference set is simply the set of spike-in taxa

with the same absolute abundance across different samples. This normalization method is

referred to as reference-based normalization in this paper. A reference-based approach is also

widely employed in compositional data analysis [20, 21]. For instance, the additive log-ratio

transformation uses the last taxon as the reference set, while the centered log-ratio transforma-

tion uses the geometric mean of all taxa as the reference set. The reference-based hypothesis is

PLOS COMPUTATIONAL BIOLOGY RSim normalization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011447 September 1, 2023 12 / 20

https://doi.org/10.1371/journal.pcbi.1011447


also employed in differential abundance analysis of compositional data [23, 24, 44]. Unlike

standard compositional data analysis, we utilize the sum of abundance in a set as the reference.

To perform efficient normalization in the absence of prior knowledge of spike-in taxa, we

need to select an appropriate reference set, denoted by J0. In the presence of spike-in taxa, the

reference set is simply the set of taxa with known absolute abundance that is constant across

samples. However, for experiments without spike-in taxa, we can instead use a large set of

non-differentially abundant taxa as the reference set. We assume that there exists a set of non-

differentially abundant taxa called J0, such that their absolute abundance is similar across

samples. When this is the case, the sum of the absolute abundance of these taxa is also similar

across samples
X

j2J0

Ai1;j �
X

j2J0

Ai2 ;j; 8 i1 6¼ i2;

making the sum of abundance a suitable reference for normalization. Moreover, the sum of

abundance of many taxa is generally more stable than that of a single taxon, due to the concen-

tration of measure phenomenon [47, 48]. This observation suggests that normalization based

on the set of non-differential abundant taxa can be effective in recovering the absolute abun-

dance. In the next section, we will discuss how we estimate the reference set J0 from the data.

Reference set identification by rank similarity

In the previous section, we proposed using reference-based normalization to convert relative

abundance to absolute abundance by identifying a large set of non-differential abundant taxa.

In this section, we introduce a new method for detecting this set by comparing the count simi-

larity between pairs of taxa. Before we present the method, we introduce some notation and

assumptions. We partition the taxa into two groups based on absolute abundance: the collec-

tion of differential abundant taxa, denoted by J1, and the collection of non-differential abun-

dant taxa, denoted by J0. To simplify the analysis, we assume that the absolute abundance of

non-differential abundant taxa is the same across samples

Ai1 ;j ¼ Ai2 ;j; i1 6¼ i2; j 2 J0;

while the absolute abundance of differential abundant taxa varies between samples

Ai1 ;j 6¼ Ai2 ;j; i1 6¼ i2; j 2 J1:

This model is only for illustrative purposes, but the method we introduce here can work in

a more general setting, as long as the variance of absolute abundance for non-differential

abundant taxa is much smaller than that for differential abundant taxa. In practice, we observe

the count of each taxon, which only reflects relative abundance, and assume that it is drawn

from a multinomial distribution

ðNi;1; . . . ;Ni;dÞ � Multinomial N∗
i ;

Ai;1P
j Ai;j

; . . . ;
Ai;dP
j Ai;j

 ! !

;

where N∗
i is the total sequence number in the ith sample. A similar model is also considered in

[23, 44]. Equivalently, we assume that the observed count of taxa is approximately equal to the

absolute abundance multiplied by some unobserved sampling fraction ci

Ni;j � ciAi;j; 1 � i � n; 1 � j � d:
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To make the model identifiable, we assume that jJ0j > d=2, where d is the number of taxa.

See more discussion on model identification in [24]. After introducing these notations and

assumptions, we present a two-step method for identifying the reference set.

Step 1: Differential abundance level statistics. In the first step, we use the pairwise simi-

larity of taxa to construct the statistics for the differential abundance level of each taxon (i.e.,

belonging to J0 or J1). The key observation we use in this step is that the observed count of

two non-differential abundant taxa is much more similar than that of a non-differential abun-

dant taxon and a differential abundant taxon. We represent the count of the jth taxon in all

samples as ~Nj ¼ ðN1;j; . . . ;Nn;jÞ and the sampling fraction of all samples as~c ¼ ðc1; . . . ; cnÞ.

Since the absolute abundance of non-differential abundant taxa is stable across samples, we

can expect that the count vectors of two non-differential abundant taxa, ~Nj1
and ~Nj2

, are almost

proportional to the sampling fraction vector~c, so the correlation between ~Nj1
and ~Nj2

is close

to 1. However, since the absolute abundance of differential abundant taxa varies across sam-

ples, we can expect the correlation between ~Nj1
and ~Nj2

to be much smaller than 1 when j1 is a

non-differential abundant taxon and j2 is a differential abundant taxon. If we use Spearman’s

rank correlation coefficient to measure correlation, then

rj1 ;j2
¼ rð~Nj1

; ~Nj2
Þ ¼

� 1; j1; j2 2 J0

< 1; j1 2 J0; j2 2 J1

;

(

where r(�, �) is Spearman’s rank correlation coefficient. How do we use the difference in the

pairwise similarity to distinguish non-differential and differential abundant taxon? Since we

assume that more than half of the taxa are non-differentially abundant, we can look at the

median of the rank correlation coefficients between a taxon and other taxa. More concretely, if

we denote the median as

Mj ¼ Median
j0¼1;::;d

rj;j0 ;

we can expect

Mj ¼
� 1; j 2 J0

< 1; j 2 J1

:

(

This observation suggests that the median Mj can be used to distinguish non-differential

and differential abundant taxa.

Step 2: Taxa classification. The second step of our method uses Mj to classify each taxon

based on the empirical Bayes framework. The first step suggests that Mj is larger in non-differ-

ential abundant taxa than in differential abundant taxa. A natural classification rule is that we

can choose a threshold T such that all taxa with Mj > T are classified as non-differential abun-

dant taxa, i.e., Ĵ0 ¼ fj : Mj > Tg is the estimator for J0. The threshold T should help ensure

that most taxa in Ĵ 0 are non-differential abundant, since our goal is to find a reference set Ĵ0

that satisfies the condition

X

j2Ĵ 0

Ai1;j �
X

j2Ĵ 0

Ai2 ;j; 8 i1 6¼ i2;
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To achieve this, we choose the threshold T to control the misclassification error rate in Ĵ 0,

i.e.,

Pðj 2 J1jMj > TÞ � Z;

where η > 0 is the target misclassification rate that users select (e.g., η = 0.01). We estimate T
using the empirical Bayes framework [49, 50]. To facilitate this, we write F0 and F1 as the

cumulative distribution functions of Mj when j is the non-differential and differential abun-

dant taxa, respectively, and F as the cumulative distribution functions of Mj, i.e.,

FðtÞ ¼ p0F0ðtÞ þ ð1 � p0ÞF1ðtÞ;

where π0 is the proportion of non-differential abundant taxa. Following these notations, we

can rewrite the misclassification error in Ĵ 0 as

P j 2 J1jMj > T
� �

¼
PðMj > Tjj 2 J1ÞPðj 2 J1Þ

PðMj > TÞ
¼ 1 �

p0ð1 � F0ðTÞÞ

1 � FðTÞ
:

The idea in the empirical Bayes framework is to estimate π0, F0, and F from observed Mj,

j = 1, . . ., d, and then we can estimate the misclassification error by plugging in these estima-

tors. The cumulative distribution function F can be naturally estimated by its empirical ver-

sion

F̂ðtÞ ¼
1

d

Xd

j¼1

IðMj � tÞ;

where Ið�Þ is an indicator function. Before estimating F0 and π0, we choose γ > 0 such that

PðMj > gjj 2 J1Þ � 0, indicating that j is likely a non-differentially abundant taxon when

Mj > γ. After choosing γ, we adopt a resampling method to estimate F0. 1) Find all taxa with

Mj > γ and define ~J 0 ¼ fj : Mj > gg, which is a subset of non-differential abundant taxa with

high probability. 2) Repeat subsampling the taxa from ~J0 and recalculate the median on the

subsampled data as in Step 1. In other words, the subsampled dataset only includes taxa from

~J0. When all the taxa in the subsampled dataset are non-differential abundant, we can expect

the median of the Spearman correlation coefficient to be approximately drawn from F0. 3) The

empirical cumulative distribution function of these resampled medians is our estimator F̂0.

After finding F̂0 and F̂ , we can estimate π0 by

p̂0 ¼ argmin
p0

X

j:Mj>g

ð1 � F̂ðMjÞ � p0ð1 � F̂0ðMjÞÞ
2
:

Here, we use the fact that 1 − F(t) � π0(1 − F0(t)) when t > γ. With the estimators p̂0, F̂0,

and F̂ in hand, we choose the threshold T̂ and estimated reference set as

T̂ ¼ inf T : 1 �
p̂0ð1 � F̂0ðTÞÞ

1 � F̂ðTÞ
� Z

� �

and Ĵ0 ¼ fj : Mj > T̂g:

Choices of tuning parameters. RSim normalization has two main parameters: the target

misclassification rate η and the threshold for differential abundance level statistics γ. The

choice of η affects the empirical misclassification rate and the size of the estimated reference

set, which in turn affects the performance of downstream analysis and sampling fraction
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recovery. A smaller η leads to a less significant bias but higher variance in sampling fraction

recovery. Therefore, we recommend a smaller η for downstream analysis that is sensitive to

sampling fraction recovery bias, such as differential abundance analysis. Conversely, a larger η
is suitable for downstream analysis that requires an estimated sampling fraction with inflated

bias and low variation, such as PCoA plotting. S1a Fig shows that the empirical misclassifica-

tion rate is well-controlled when varying η.

The threshold γ should ideally be at the lowest level where statistics of differential abundant

taxa cannot achieve. The choice of γ depends on the microbiome data characteristics, such as

taxonomic rank and proportion of differential abundant taxa. Our experience suggests that at

an ASV or OTU level, the statistics of at least 90% of non-differential abundant taxa are greater

than 0.8. Therefore, we recommend using γ = 0.8 and use it in all experiments. As discussed, it

is better to apply RSim normalization at an ASV/OTU level and then convert the data into

higher taxonomic ranks, such as genus and family. S1b Fig shows the empirical misclassifica-

tion rate is always under-controlled when γ is varied from 0.5 to 0.95.

We also conduct numerical experiments to investigate the impact of parameter choices on

downstream analysis, including association analysis and differential abundance analysis. The

results are presented in S2 Fig. Through S2 Fig, we can observe that the performance of down-

stream analysis is more sensitive to η than γ, and having appropriate choices of parameters is

crucial to achieving high power and low false discovery.

Computation complexity. The computation complexity of RSim normalization is

O(d2n), where d is the number of taxa, and n is the sample size. We perform a numerical exper-

iment to compare the computation complexity of popular normalization methods. The results

are shown in S2 Table. As expected, RSim normalization requires more computational time

than most normalization methods because searching for non-differential abundant taxa is

time-consuming. S2 Table also suggests that the computation time of different normalization

methods is comparable when microbiome data sets have relatively moderate values of d (less

than 5000) and n (less than 500).

Supporting information

S1 Text. Detailed description of simulation. Descriptions of how the datasets were generated

in simulations.

(PDF)

S1 Fig. Misclassification rate control when the target misclassification rate η and parameter

γ vary. In Fig (a), the x-axis is the target misclassification rate, while the y-axis represents the

empirical misclassification rate of the estimated reference set. In all settings, the misclassification

error rate of the estimated reference set can be well controlled. In Fig (b), we vary the value of γ
from 0.5 to 0.95. All three settings are the same for both figures. Setting 1: 10% taxa are randomly

selected as differential abundant taxa, and the latent variable of differential abundant taxa is

binary; Setting 2: the differential abundant taxa are top 10% most abundant taxa, and the latent

variable of differential abundant taxa is binary; Setting 3: the differential abundant taxa are top

10% most abundant taxa, and the latent variable of differential abundant taxa is continuous.

(PNG)

S2 Fig. Sensitivity analysis. (a) and (b) show how the tuning parameter choices influence

association analysis. Small η and large γ will lead to a higher power. (c) and (d) show how the

tuning parameter choices will influence the Pearson correlation test and t-test, respectively.

FDR of Pearson correlation test and t-test results has inflation if η value is large.

(PNG)
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S3 Fig. Misclassification rate control when the signal strength of differential abundant

taxa, the balance of group size, proportion of differential abundant taxa, and sample size

are different. The empirical misclassification rate in RSim is well controlled despite the

choices of the signal strength of differential abundant taxa, the balance of group size, propor-

tion of differential abundant taxa, and sample size.

(PNG)

S4 Fig. Comparison of sampling fraction estimations with the results of spike-in-based

normalization as the ground truth. The discrepancies from the spike-in-based normalization

method are compared, and it is observed that RSim exhibited the closest results to the spike-

in-based normalization method.

(PNG)

S5 Fig. Normalization can reveal biological pattern in PCoA plots. In (a), samples are ran-

domly divided into two groups, and the top 10% most abundant taxa are differential abundant

taxa with a binary latent variable. In (b), the top 10% most abundant taxa are differential abun-

dant taxa with a continuous latent variable. In these figures, RSim normalization can reveal the

structure of the latent variable. Euclidean distance with log transformation is used in all PCoA

plots.

(PNG)

S6 Fig. False pattern caused by compositional bias leads to a misleading conclusion. (a)

shows the PCoA plots colored by days after the experiment started. (b) presents the PCoA plots

colored by sequencing depth. (c) show the relationship between time and sequencing depth.

The pattern of time in PCoA plots is highly overlapped with pattern of the sequencing depth,

which can be explained by the deterministic relationship between time and sequencing depth.

(PNG)

S7 Fig. Normalization can improve the power of association analysis. In (a) and (b), samples

are randomly divided into two groups, and the top 25% most abundant taxa are differential

abundant taxa with a binary or continuous latent variable. The significance level is 0.05. RSim

can improve the power of association analysis.

(PNG)

S1 Table. Differential abundant phyla detected by different differential abundance analysis

methods. Three methods are considered: t-test on unnormalized data, t-test on data normal-

ized by RSim, and RDB test on unnormalized data.

(PDF)

S2 Table. Computational time of different normalization methods (in seconds). d is the

number of taxa, n is the sample size. All the experiments are conducted in iMac M1/8GB. Data

are subsampled from the dataset collected in [30].

(PDF)
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