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Abstract 

Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven 

challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules 

and flexible peptides using conventional Molecular Dynamics (cMD), due to limited simulation 

timescales. Based on our previously developed Ligand Gaussian accelerated Molecular Dynamics 

(LiGaMD) method, we present a new approach, termed “LiGaMD3”, in which we introduce triple 

boosts into three individual energy terms that play important roles in small-molecule/peptide 

dissociation, rebinding and system conformational changes to improve the sampling efficiency of 

small-molecule/peptide interactions with target proteins. To validate the performance of 

LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI 

and P53) were chosen as model systems. LiGaMD3 could efficiently capture repetitive small-

molecule/peptide dissociation and binding events within 2 microsecond simulations. The predicted 

binding kinetic constant rates and free energies from LiGaMD3 agreed with available experimental 

values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient 

approach to capture dissociation and binding of both small-molecule ligand and flexible peptides, 

allowing for accurate prediction of their binding thermodynamics and kinetics. 

 

Keywords: Ligand binding kinetics, Ligand binding free energy, Peptide binding, Enhanced 

sampling, Ligand Gaussian accelerated Molecular Dynamics. 
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Introduction 

Both small molecules and peptides are important sources of novel drugs targeting many important 

biological processes1. It is critical to understand the binding mechanisms of small molecules and 

peptides to their target proteins, which not only deepens our understanding of fundamental 

biological processes but also facilitates the development of more potent and selective drugs for 

treating human diseases2, 3. Several experimental techniques4-6 have been developed to explore the 

binding interactions between the protein and small molecule or peptide. For example, structural 

biology techniques including X-ray crystallography and cryo-electron microscopy (cryo-EM) have 

been widely used to determine the complex structures of protein-small molecule and protein-

peptide complexes5. Recently, significant advancements in Deep Learning methodologies such as 

AlphaFold7 and RoseTTAFold All-Atom (RFAA)8 have led to  accurate prediction of protein-

small molecule or protein-peptide complex structures. However, such techniques provide only 

static snapshots of protein-small molecule or protein-peptide interactions. It is still challenging to 

capture small-molecule/peptide binding and dissociation processes and determine potential 

intermediate states of small-molecule/peptide binding to their target proteins, which are also 

important for drug design9.   

Recently, drug binding kinetics has been recognized to be valuable for drug design10-15. 

The drug dissociation rate (koff) appears to correlate with drug efficacy better than the binding free 

energy10-15. However, drug binding kinetic rates have proven more challenging to predict, due to 

the slow processes of drug dissociation and binding11, 16.With remarkable advancements in 

computer hardware and methodological developments, conventional Molecular Dynamics (cMD) 

simulations are now able to capture spontaneous small-molecule/peptide binding to their target 

proteins and predict corresponding association rates (kon)17-20. However, it remains a difficult 
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challenge in applying cMD to capture repetitive small-molecule/peptide dissociation and rebinding 

processes within accessible timescales, thereby hindering the accurate prediction of small-

molecule/peptide binding kinetic rates17. Shan et al.17 successfully captured spontaneous binding 

of the Dasatinib drug to its target Src kinase and accurately predicted the ligand association rate 

based on tens-of-microsecond cMD simulations. Tens-of-microsecond cMD simulations20 have 

successfully captured repetitive binding and dissociation events of six small-molecule fragments 

with very weak millimolar binding affinities to the protein FKBP, allowing accurate prediction of 

fragment binding free energies. However, no dissociation events have been observed for typical 

ligand molecules in the cMD simulations. Furthermore, capturing peptide dissociation and 

rebinding processes poses an even more challenging task for cMD, given that peptides are known 

to induce significant conformational changes upon binding21 and the timescales for the peptide 

dissociation are even longer22. For example, cMD simulations with elevated temperature 

conducted for 200 μs using the Anton specialized supercomputer have captured 70 binding and 

unbinding events between an intrinsically disordered protein fragment of the measles virus 

nucleoprotein and the X domain of the measles virus phosphoprotein complex, shedding light on 

the detailed understanding of the peptide's "folding-upon-binding" mechanism23. Despite these 

advancements, it is still rather challenging for cMD to effectively simulate binding and 

dissociation of typical small molecule or peptide to their target proteins.  

Enhanced sampling methods24, 25 have been developed to extend the accessible timescales of 

MD simulations. These methods include Metadynamics26-31, Steered MD32-34, Umbrella 

Sampling32, 35-37, Replica Exchange MD 38-41, Random Acceleration Molecular Dynamics (RAMD) 

42-44, Scaled MD 45, 46, accelerated MD (aMD) 47, Gaussian accelerated MD (GaMD) 48, 49, Markov 

State Model (MSM)50-52, Weighted Ensemble53, 54 , and so on. Metadynamics21, 55 simulations 
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utilizing carefully chosen collective variables (CVs) have successfully predicted the peptide 

binding and dissociation rates in the systems. Particular, 27 μs Metadynamics simulations of the 

peptide P53 binding to the MDM255 predicted values of (kon, koff) at (0.43±0.22x107M-1s-1, 

0.7±0.4s-1), showing good agreement with the corresponding experimental values of (0.92x107M-

1s-1, 2.06s-1). Similarly, Weighted Ensemble56 of a total amount of ~120 μs cMD simulations with 

implicit solvent model for the P53-MDM2 system predicted a highly consistent binding kinetic 

rate (kon) of 7 s-1. MSM57 analysis based on a total of 831 μs cMD simulations for peptide P53 

binding to MDM2 accurately predicted values of kon and koff at 0.019x107 M-1s-1 and 2.5 s-1, 

respectively. Another MSM built on hundreds-of-microsecond cMD and Hamiltonian replica 

exchange simulations has been implemented to characterize binding and dissociation of the PMI 

peptide to the MDM222. The predicted values of (kon, koff) were (300x107M-1s-1, 0.125-1.13s-1), 

being comparable to the corresponding experimental values of (52.7x107M-1s-1, 0.037s-1). 

Nevertheless, MSM and Weighted Ensemble require expensive and exceedingly long simulations. 

GaMD was developed to provide both unconstrained enhanced sampling and free energy 

calculations of large biomolecules48, 49.  It works by applying a harmonic boost potential to reduce 

system energy barriers. The boost potential exhibits a near Gaussian distribution, which enables 

accurate reweighting of the free energy profiles through cumulant expansion to the second order48, 

49. Recently, novel Ligand GaMD (LiGaMD)58 and LiGaMD259 approaches have been developed 

to more efficiently sample small-molecule dissociation and rebinding processes, offering accurate 

prediction of ligand binding thermodynamics and kinetics. In LiGaMD, a selective boost is 

specifically applied at the ligand’s non-bonded interaction potential energy58. In LiGaMD2, the 

selective boost extended to the essential potential energy of both the ligand and surrounding 

residues in the protein pocket, which significantly improved the sampling of ligand dissociation 
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and rebinding in a closed binding pocket59. An increasing amount of studies41, 52, 60-63 demonstrated 

the pivotal role of non-bonded interaction potentials in ligand binding, along with the crucial 

structural flexibility of proteins and peptides52, 64-69. Building upon the successes of LiGaMD and 

LiGaMD2, which primarily focused on small-molecules, here we introduce a more general 

approach, termed LiGaMD3, for binding simulations of both small-molecules and flexible peptides. 

In LiGaMD3, three distinct boosts are applied: one on the non-bonded interaction energy of the 

substrate, the second one on the remaining non-bonded potential energy of the system, and a third 

one on the system bonded potential energy. These boosts are designed to accelerate the substrate 

dissociation, facilitate substrate rebinding, and promote the system conformational changes, 

respectively. MDM270, a well-known oncology protein involved in regulating diverse cellular 

signaling pathways, serves as an ideal model system for investigating the binding and dissociation 

of both small molecules and highly flexible peptides. Notably, this system has been extensively 

explored through experimental studies and simulations as mentioned above, highlighting its 

critical role in drug discovery. Therefore, MDM2 bound by small-molecule drugs and peptides 

were chosen as model systems in this study. Through two microsecond LiGaMD3 simulations, we 

successfully captured repetitive ligand and peptide binding and dissociation processes across all 

MDM2 systems. LiGaMD3 facilitated highly efficient and accurate predictions of ligand and 

peptide binding thermodynamics and kinetics, being consistent with experimental binding free 

energies and kinetic rates.  

 

Methods 

LiGaMD3: Triple boost for ligand dissociation and rebinding 
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We consider a system of small-molecule/peptide L binding to a protein P in a biological 

environment E. The system comprises of N atoms with their coordinates 𝑟 ≡ {𝑟!, ⋯ , 𝑟"}	and 

momenta 𝑝 ≡ {𝑝⃑!, ⋯ , 𝑝⃑"}	. The system Hamiltonian can be expressed as: 

 𝐻(𝑟, 𝑝) = 𝐾(𝑝) + 𝑉(𝑟), (1) 

where 𝐾(𝑝)  and 𝑉(𝑟)  are the system kinetic and total potential energies, respectively. We 

decompose the potential energy into the following terms: 

𝑉(𝑟) = 𝑉#,%(𝑟#)+𝑉&,%(𝑟&) + 𝑉',%(𝑟') +	𝑉##,(%(𝑟#) + 𝑉#&,(%(𝑟#&) 	+

																											𝑉#',(%(𝑟#')+𝑉&&,(%(𝑟&)+𝑉&',(%(𝑟&') + 𝑉'',(%(𝑟')                       (2) 

where	𝑉#,%, 𝑉&,% and 𝑉',% are the bonded potential energies of protein P, small-molecule/peptide L 

and environment E, respectively. 	𝑉#,(% , 	𝑉&&,(%  and 𝑉'',(%  are the self non-bonded potential 

energies in the protein P, small-molecule/peptide L and environment E, respectively. 𝑉#&,(%, 𝑉#',(% 

and 𝑉&',(%  are the non-bonded interaction energies between P-L, P-E and L-E, respectively. 

According to classical molecular mechanics force fields71, 72, the non-bonded potential energies 

are usually calculated as: 

 𝑉(% = 𝑉)*)+ + 𝑉,-., (3) 

where 𝑉)*)+  and 𝑉,-.  are the system electrostatic and van der Waals potential energies. The 

bonded potential energies are usually calculated as 

                                                     𝑉% = 𝑉%/(- + 𝑉0(1*) + 𝑉-23)-40*                                 (4) 

where	𝑉%/(-, 𝑉0(1*) 	and  𝑉-23)-40* are the system bond, angle and dihedral potential energies. In 

LiGaMD3, the essential non-bonded interaction potential energy of the ligand is defined as: 
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                     							𝑉&(𝑟) = 𝑉&&,(%(𝑟&) + 𝑉#&,56(𝑟#&).                                           (5) 

We add a boost potential selectively to the 𝑉&(𝑟) according to the GaMD algorithm: 

                                      ∆𝑉&(𝑟) = 2
!
7
𝑘&4𝐸& − 𝑉&(𝑟)7

7, 𝑉&(𝑟) < 𝐸&
0, 𝑉&(𝑟) ≥ 𝐸& ,

                            (6) 

where EL is the threshold energy for applying boost potential and kL is the harmonic constant. The 

LiGaMD3 simulation parameters are derived similarly as in the previous GaMD48,  LiGaMD58, 

and LiGaMD259. The subscript L is omitted for simplicity hereafter. When E is set to the lower 

bound as the system maximum potential energy (E=Vmax), the effective harmonic force constant	𝑘8 

can be calculated as: 

 																																									𝑘8 = min(1.0, 𝑘89 ) = min	(1.0, :!
:"

;#$%<;#&'
;#$%<;$()

),                         (7) 

where 𝑉=0>, 𝑉=2(, 𝑉0,1 and 𝜎; are the maximum, minimum, average and standard deviation of the 

boosted system potential energy, and 𝜎8 is the user-specified upper limit of the standard deviation 

of ∆𝑉  (e.g., 10kBT) for proper reweighting. The harmonic constant 𝑘 is calculated as 𝑘 = 𝑘8 ∙

!
;#$%<;#&'

  with 0 < 𝑘8 ≤ 1 . Alternatively, when the threshold energy E is set to its upper bound 

	𝐸 = 𝑉=2( +
!
?
, 	𝑘8 is set to: 

                                                  𝑘8 = 𝑘8" ≡ (1 − :!
:"
) ;#$%<;#&'
;$()<;#&'

 ,                                  (8) 

if 𝑘8"  is found to be between 0 and 1. Otherwise, 	𝑘8 is calculated using Eqn. (7). 

In addition to selectively boosting the essential non-bonded interaction potential energy of 

the ligand, another boost potential is applied on the remaining non-bonded potential energy of the 

system (𝑉A(𝑟)) to facilitate ligand rebinding: 
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𝑉A(𝑟) = 𝑉(% − 𝑉&(𝑟) = 𝑉##,(%(𝑟#) + 𝑉#',(%(𝑟#')+𝑉&',(%(𝑟&') + 𝑉'',(%,       (9) 

    ∆𝑉A(𝑟) = 2
!
7
𝑘A4𝐸A − 𝑉A(𝑟)7

7, 𝑉A(𝑟) < 𝐸A
0, 𝑉A(𝑟) ≥ 𝐸A

   (10) 

where VD is the total system potential energy other than the essential non-bonded ligand potential 

energy ligand, ED is the corresponding threshold energy for applying the second boost potential 

and kD is the harmonic constant. The third boost potential is applied to the total bonded potential 

energy of the system as:  

      𝑉B(𝑟) = 𝑉#,%(𝑟#)+𝑉&,%(𝑟&) + 𝑉',%(𝑟')													                  (11)    

∆𝑉B(𝑟) = 2
!
7
𝑘B4𝐸B − 𝑉B(𝑟)7

7, 𝑉B(𝑟) < 𝐸B
0, 𝑉B(𝑟) ≥ 𝐸B

                      (12) 

This leads to LiGaMD3 with a triple-boost potential ∆𝑉(𝑟) = ∆𝑉&(𝑟) + ∆𝑉A(𝑟) + ∆𝑉B(𝑟).  

Energetic Reweighting of LiGaMD3 

To calculate potential of mean force (PMF)73 from LiGaMD3 simulations, the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴). Given the boost potential ∆𝑉(𝑟)
 
of 

each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝4𝐴D7 = 𝑝∗4𝐴D7
〈)*∆"(-..⃑ )〉1

∑ 〈H∗(J&))*∆"(-..⃑ )〉&3
&45

, 𝑗 = 1,… ,𝑀,  (13) 

where M is the number of bins, 𝛽 = 𝑘B𝑇 and 〈𝑒L∆;(4⃑)〉D  
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

 〈𝑒L∆;(4⃑)〉 = 𝑒𝑥𝑝 M∑ L6

?!
𝐶?P

?Q! P, (14) 
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where the first two cumulants are given by 

 
𝐶! = 〈∆𝑉〉,

𝐶7 = 〈∆𝑉7〉 − 〈∆𝑉〉7 = 𝜎,7.
 (15) 

The boost potential obtained from LiGaMD3 simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor24, 74. The reweighted free energy 𝐹(𝐴) = −𝑘B𝑇	ln	𝑝(𝐴)  is 

calculated as: 

 𝐹(𝐴) = 𝐹∗(𝐴) − ∑ L6

?!
𝐶?7

?Q! + 𝐹+,   (16) 

where 𝐹∗(𝐴) = −𝑘B𝑇	ln	𝑝∗(𝐴) is the modified free energy obtained from LiGaMD2 simulation 

and 𝐹+ is a constant. 

Ligand binding kinetics obtained from reweighting of LiGaMD3 Simulations 

Reweighting of ligand binding kinetics from LiGaMD3 simulations followed a similar protocol 

using Kramers’ rate theory that has been recently implemented in kinetics reweighting of the 

GaMD58, 75-77. Provided sufficient sampling of repetitive ligand dissociation and binding in the 

simulations, we record the time periods and calculate their averages for the ligand found in the 

bound (tB) and unbound (𝜏R ) states from the simulation trajectories. The 𝜏B  corresponds to 

residence time in drug design14. Then the ligand dissociation and binding rate constants (koff and 

kon) were calculated as: 

 𝑘/SS =
!
T7
.  (17) 

 𝑘/( =
!

T8∙[&]
,  (18) 
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where [L] is the ligand concentration in the simulation system. 

For a particle climbing over potential energy barriers, Kramers showed that the reaction 

rate depends on temperature and viscosity of the host medium. The reaction rates were derived for 

both limiting cases of small and large viscosity. In the context of biomolecular simulations in 

aqueous medium, it is relevant for us to focus on the large viscosity limiting case. Biomolecules 

move in the high friction (“overdamping”) regime and energy barriers are much greater than kBT 

(kB is the Boltzmann’s constant and T is temperature). In this case, the reaction rate is calculated 

as77: 

 𝑘X ≅
Y#Y9
7Z[

𝑒<\] ?7^⁄ ,  (19) 

where 𝑤= and 𝑤% are frequencies of the approximated harmonic oscillators (also referred to as 

curvatures of free energy surface78, 79) near the energy minimum and barrier, respectively, 𝜉 is the 

frictional rate constant and Δ𝐹 is the free energy barrier of transition.  

Without the loss of generality, we consider a 1D potential of mean force (PMF) free energy 

profile of a reaction coordinate F(A). Near minimum at Am, the free energy can be approximated 

by a harmonic oscillator of frequency 𝑤=, i.e., 𝐹(𝐴) =
!
7
(2𝜋𝑤=)7(𝐴 − 𝐴=)7. Near barrier at Ab, 

the free energy is approximated as 𝐹(𝐴) = 𝐹% −
!
7
(2𝜋𝑤%)7(𝐴 − 𝐴%)7  , where 𝐹%  is the free 

energy at Ab and 𝑤%  is the frequency of the approximated harmonic oscillator. Then we can 

calculate 𝑤= and 𝑤% as: 

                                                  𝑤 = Z|]"(J)|
7Z

,                                                            (20) 

where 𝐹"(𝐴) is the second-order derivative of the PMF profile. 
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The friction constant 𝜉 or diffusion coefficient D with 𝜉 = 𝑘B𝑇/𝐷 can be estimated as 

follows. First, we calculate a survival function S(t) as the probability that the system remains in an 

energy well longer than time t. In a direct approach, we count the events that the system visits the 

energy well throughout a simulation. We record and measure the time intervals of each visiting 

event until the system escapes over an energy barrier. Then we have a time series Ti, where i=1, 

2, …, N, and N is the total number barrier transitions observed in the simulation. The time series 

is subsequently ordered such that 𝑇̂! ≤ 𝑇̂7 ≤ ⋯ ≤ 𝑇̂". With that, the survival function is estimated 

as 𝑆4𝑇̂27 ≈ 	1 − 𝑖/𝑁, which is the probability that the system is trapped in the energy well for time 

longer than 𝑇̂2. Alternatively, we can numerically calculate the time-dependent probability density 

of reaction coordinate A, 𝜌(𝐴, 𝑡)	by solving the Smoluchowski equation along 1D PMF profile of 

the reaction coordinate:  

               ab(J,c)
ac

= 𝐷 a
aJ
e𝑒<](J) ?7^⁄ a

aJ
4𝑒](J) ?7^⁄ 𝜌7f                          (21) 

Then the survival function is calculated as 𝑆(𝑡) = 	∫ ∫ 𝜌(𝐴, 𝑡)𝑑𝐴𝑑𝑡J9:
J95

∞
c , where 𝐴%! and 𝐴%7	are 

two boundaries of the energy well. The initial condition is often set as the Boltzmann distribution 

of reaction coordinate A in the energy well, i.e., 𝜌(𝐴, 0) = 𝑒<](J) ?7^⁄ . 

Second, using the above survival functions, we estimate the effective kinetic rates as the 

negative of the slopes in linear fitting of the ln[S(t)] versus t, i.e., 𝑘 = −𝑑ln[𝑆(𝑡)]/𝑑𝑡	. This is 

based on the assumption that the survival function exhibits exponential decay as observed in earlier 

studies. Finally, the apparent diffusion coefficient D is obtained by dividing the kinetic rate 

calculated directly using the transition time series collected from the simulation by that using the 

probability density solution of the Smoluchowski equation80. In order to reweight ligand kinetics 

from the LiGaMD3 simulations using the Kramers’ rate theory, the free energy barriers of ligand 



 13 

binding and dissociation are calculated from the original (reweighted, ∆F) and modified (no 

reweighting, ∆F*) PMF profiles, similarly for curvatures of the reweighed (w) and modified (𝑤∗, 

no reweighting) PMF profiles near the ligand bound (“B”) and unbound (“U”) low-energy wells 

and the energy barrier (“Br”), and the ratio of apparent diffusion coefficients from simulations 

without reweighting (modified, 𝐷∗) and with reweighting (D). The resulting numbers are then 

plugged into Eq. (17) to estimate accelerations of the ligand binding and dissociation rates during 

LiGaMD3 simulations77, which allows us to recover the original kinetic rate constants. 

System Setup 

The complex structures of MDM2 bound by the Nutlin 3 drug, P53 and PMI were obtained from 

the 5C5A, 1YCR and 3EQS PDB files, respectively. The AMBER ff14SB force field81  was used 

for the protein and peptide. The GAFF2 force field82 with AM1-BCC charge was used for the 

Nutlin 3 small molecule.  Each system was solvated in a periodic box of TIP3P water molecules 

with a distance of 18 Å from the solute to the box edge using tleap. Therefore, the ligand/peptide 

concentration was 0.00335 M in the simulation system. Appropriate number of Na+/Cl- ions were 

added to achieve system neutrality.  

Simulation Protocol 

Each system was energy minimized and gradually heated to 300 K in 1 ns with the Langevin 

thermostat and harmonic restraints of 1.0 kcal/mol/Å2 on all non-hydrogen atoms of the protein 

and the ligand using the AMBER23 software83. The simulation system was firstly energy 

minimized with 1.0 kcal/mol/Å2 constraints on the heavy atoms of the proteins, including the 

steepest descent minimization for 50,000 steps and conjugate gradient minimization for 50,000 

steps. The system was then heated from 0 K to 300 K for 200 ps. It was further equilibrated using 
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the NVT ensemble at 300 K for 200 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1 

kcal/mol/Å2 constraints on the heavy atoms of the protein, followed by 2 ns short cMD without 

any constraint. The LiGaMD3 simulations proceeded with 2 ns short cMD to collect the potential 

statistics, 50.0 ns LiGaMD3 equilibration after adding the boost potential and then three 

independent 2,000 ns production runs. It provided more powerful sampling to set the threshold 

energy for applying the boost potential to the upper bound (i.e., E = Vmin+1/k) in our previous study 

ligand dissociation and binding using LiGaMD76. Therefore, the threshold energy for applying the 

ligand essential non-bonded potential (first boost) and the remaining non-bonded potential energy 

of the system (second boost) were set to the upper bound in the LiGaMD3 simulations. The 

threshold energy for applying the third boost to the system bonded energy potential was set to the 

lower bound. In order to observe ligand/peptide dissociation during LiGaMD3 production 

simulations while keeping the boost potential as low as possible for accurate energetic reweighting, 

the (σ0P, σ0D, σ0B) parameters were set to (2.0 kcal/mol, 6.0 kcal/mol, 6.0 kcal/mol) for the 

LiGaMD3 simulations of the MDM2 bound by the Nutlin 3, PMI and P53. LiGaMD3 production 

simulation frames were saved every 0.4 ps for analysis. In the LiGaMD simulations performed for 

comparison, the (σ0P, σ0D) parameters were set to (4.8 kcal/mol, 6.0 kcal/mol) for simulations of 

the MDM2-Nutlin 3 system and (8.0 kcal/mol, 6.0 kcal/mol) for MDM2-PMI system, respectively. 

The threshold energies for applying the boosts in the LiGaMD simulations were set to the upper 

bound. Example simulation files of the LiGaMD3 simulations of the MDM2-Nutlin 3 system are 

included in the Supporting Information.  

Simulation Analysis 

The VMD84 and CPPTRAJ85 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand/peptide binding and unbinding time 
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periods (tB and tU) were recorded from individual simulations (Tables 1 & S1). With high 

fluctuations, tB and tU were recorded for only the time periods longer than 1 ns. The 1D and 2D 

free energy profiles, as well as the ligand binding free energy, were calculated through energetic 

reweighting of the LiGaMD3 simulations. The center-of-mass distance between the small-

molecule/peptide and the protein pocket (defined by protein residues within 5 Å of the ligand, 

denoted as dMDM2-substrate) and small-molecule heavy atom or peptide backbone RMSDs relative to 

the PDB structures with the protein aligned were chosen as the reaction coordinates. The bin size 

was set to 1.0 Å. The cutoff for the number of simulation frames in one bin was set to 500. The 

ligand binding free energies (DG) were calculated using the binding kinetic rates as ∆𝐺 =

−RTLn4𝑘/SS/𝑘/(7 . The ligand dissociation and binding rate constants (kon and koff) were 

calculated from the LiGaMD3 and LiGaMD simulations with their accelerations analyzed using 

the Kramers’ rate theory (Table S2). 

Table 1. Summary of LiGaMD3 simulations performed on small molecule and peptide binding to 

the MDM2. DV is the total boost potential. ND and NB are the number of observed ligand 

dissociation and binding events, respectively. DGsim and DGexp are the ligand-MDM2 binding free 

energies obtained from LiGaMD3 simulations and experiments, respectively. a The simulation 

binding free energy is estimated using ∆Gsim=-RT Ln(koff/kon). 

System Method ID NB ND 
∆V 

(kcal/mol) 
∆𝐺!"#$   

(kcal/mol) 
∆𝐺%&'  

(kcal/mol) 

MDM2-Nutline3 LiGaMD 
Sim1 5 6 

94.92±4.01 -10.18±2.22 

-10.96 

Sim2 3 3 
Sim3 3 4 

MDM2-Nutline3 LiGaMD3 
Sim1 6 5 

12.94±4.05 -11.02±0.59 Sim2 7 7 
Sim3 5 5 

MDM2-PMI LiGaMD3 
Sim1 4 4 

45.11±7.04 -11.86±1.16 -12.02 Sim2 6 5 
Sim3 6 6 

MDM2-P53 LiGaMD3 
Sim1 5 6 

45.59±7.03 -10.59±0.11 -9.27 Sim2 4 5 
Sim3 5 6 
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Results 

Microsecond LiGaMD3 simulations captured repetitive small-molecule and peptide 

dissociation and rebinding to the MDM2 

Both LiGaMD and LiGaMD3 have effectively captured the binding and dissociation processes of 

the Nutlin 3 small molecule to the MDM2 protein across all three independent 2,000 ns simulations 

(Figs. 1B & 1C). However, LiGaMD encountered difficulty in capturing the rebinding of the PMI 

peptide to the protein, as no frames with peptide RMSD < 5 Å were observed in all three 2,000 ns 

simulations (Fig. 1F). In contrast, LiGaMD3 demonstrated consistent performance in successfully 

capturing the repetitive binding and dissociation of the PMI peptide in the MDM2 (Fig. 1E). 

Moreover, an additional system wherein MDM2 is bound by the peptide P53 was included to 

further evaluate the performance of LiGaMD3 (Fig. 2). LiGaMD3 could capture multiple times of 

P53 binding and dissociation in 2000ns simulations (Fig. 2).  
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Figure 1. Comparison of LiGaMD and LiGaMD3 simulations on the MDM2 protein bound by the Nutlin 

3 small molecule and PMI peptide: Computational models of the MDM2 bound by the Nutlin 3 small 

molecule (A) and PMI peptide (D); Time courses of ligand root-mean-square deviation (RMSD) relative to 

the experimental bound structure (PDB ID: 5C5A) in the MDM2-Nutlin 3 system calculated from 

LiGaMD3 (B) and LiGaMD (C) simulations, respectively. Time courses of peptide RMSD relative to the 

experimental bound structure (PDB ID: 3EQB) in the MDM2-PMI calculated from LiGaMD3 (E) and 

LiGaMD2 (F) simulations, respectively.    
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Figure 2.  (A) Computational model of the MDM2 bound by the P53 peptide; (B) Time courses of peptide 

P53 RMSD relative to the experimental bound structure (PDB ID: 1YCR) in the MDM2-P53 system 

calculated from LiGaMD3 simulations.    

    The LiGaMD3 simulations of the MDM2-Nutlin 3 system yielded an average boost potential of 

12.92 kcal/mol with a standard deviation of 4.05 kcal/mol (Table 1). In contrast, achieving ligand 

dissociation and binding required a significantly larger boost in LiGaMD, with an average boost 

potential of 94.92 kcal/mol and a standard deviation of 4.01 kcal/mol (Table 1). For the MDM2-

PMI and MDM2-P53 systems, LiGaMD3 simulations recorded average boost potentials of 

45.11±7.04 kcal/mol and 45.59±7.03 kcal/mol, respectively (Table 1). Notably, the boost 

potentials applied in simulations of peptide-protein systems are much higher compared to that of 

small molecule-MDM2 system. LiGaMD3 required substantially smaller boosts than LiGaMD 

simulations, indicating its enhanced efficiency in sampling, which was also advantageous for 

accurate energetic and kinetic reweighting.  
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    RMSDs of the small-molecule/peptide relative to their experimental bound structures with the 

MDM2 protein aligned were computed (Figs. 1, 2 & Table 1) to calculate the number of small-

molecule/peptide dissociation (ND) and binding (NB) events in each of the 2,000 ns LiGaMD3 

simulations. With close examination of the ligand/peptide binding trajectories, RMSD cutoffs of 

the ligand unbound and bound states were set to >15 Å and <5.0 Å, respectively. Due to 

fluctuations in small-molecule/peptide-protein interactions, we recorded only the corresponding 

binding and dissociation events that lasted for more than 1.0 ns. In 2,000 ns simulations of the 

MDM2-Nutlin 3 system, LiGaMD3 consistently captured 5-7 binding and 5-7 dissociation events, 

whereas LiGaMD captured only 3-5 binding and 3-6 dissociation events (Fig. 1 & Table 1). The 

total number of binding events recorded in LiGaMD3 was 18, compared to 11 in LiGaMD. The 

total number of dissociation events in LiGaMD3 and LiGaMD was 17 and 13, respectively. Hence, 

LiGaMD3 demonstrated improved efficiency in capturing both binding and dissociation events 

compared to LiGaMD. Additionally, no rebinding events were observed in LiGaMD simulations 

of PMI to MDM2 (Fig. 1F), whereas each 2,000 ns LiGaMD3 simulation successfully captured 4-

6 binding and 4-6 dissociation events, indicating its superior capability in capturing flexible 

peptide-protein interactions (Fig. 1E & Table 1). Similar numbers of peptide dissociation (5-6) 

and binding (4-5) events were observed in simulations of the MDM2-P53 system (Fig. 2 & Table 

1). In summary, LiGaMD3 simulations successfully captured repetitive dissociation and rebinding 

events of both small-molecules and flexible peptides to the MDM2 on three model systems: Nutlin 

3 bound to MDM2 (MDM2-Nutlin 3), PMI bound to MDM2 (MDM2-PMI), and P53 bound to 

MDM2 (MDM2-P53) (Figs. 1, 2 & S1).  
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Ligand and peptide binding kinetic rates and free energies calculated from LiGaMD3 

agreed with experimental data. 

The successful simulations of repetitive small-molecule and flexible peptide binding and 

dissociation in LiGaMD3 allowed us to predict the small-molecule and peptide binding kinetic 

rate constants (Fig. S2 & Table 2). We recorded the time periods for the small-molecule and 

peptide found in the bound (tB) and unbound (tU) states throughout the LiGaMD and LiGaMD3 

simulations. Without reweighting, the binding rate constant (kon*) and dissociation rate constant 

(koff*) for Nutlin 3 were directly calculated from the LiGaMD trajectories as 1.69 ± 0.28´109 M-

1×s-1 and 3.68 ± 2.10´106 s-1 (Table 2). In comparison, in LiGaMD3, these rate constants were 

calculated as 1.16 ± 0.28´109 M-1×s-1 and 2.77 ± 0.75´107 s-1, respectively (Table 2). The peptide 

binding rate constants (kon*) were directly calculated from the LiGaMD3 trajectories as 8.57 ± 

1.37´108 M-1×s-1 and 1.02±0.29 ´ 109 M-1×s-1 for the MDM2-PMI and MDM2-P53 systems, 

respectively (Table 2). 

Table 2 Comparison of kinetic rates obtained from experimental data and LiGaMD3 simulations 

for ligand binding to MDM2. kon and koff are the kinetic dissociation and binding rate constants, 

respectively, from experimental data or LiGaMD3 simulations with reweighting using Kramers’ 

rate theory.𝑘/(∗  and 𝑘/SS∗  are the accelerated kinetic dissociation and binding rate constants 

calculated directly from LiGaMD3 simulations without reweighting. Δ log 𝑘/( = log 𝑘/(d2= −

log 𝑘/(
)>H,Δ log 𝑘/SS = log 𝑘/SSd2= − log 𝑘/SS

)>H 

System Method kon (M-1·s-1) Δlog(kon) koff (s-1) Δlog(koff) 𝑘/(∗  (M-1·s-1) 𝑘/SS∗  (s-1) 

MDM2-
Nutlin 

Experiment 3.3 × 107 - 0.48 - - - 
LiGaMD 5.26±0.65×109 1.82 69.51±58.37 1.36 1.69±0.28×109 3.68±2.10×106 
LiGaMD3 8.29±4.80×108 1.37 15.45±4.69 1.39 1.16±0.31×109 2.77±0.75×107 

MDM2-
PMI 

Experiment 5.27× 108 - 0.037 - - - 
LiGaMD3 5.76±4.80×108 0.04 2.66±1.73 1.85 8.51±1.37×108 3.41±0.96×107 

MDM2-
P53 

Experiment 9.2×106 - 2.06 -     
LiGaMD3 8.03±7.42× 108 1.94 28.0±19.2 1.13 1.02±0.29×109 1.95±0.73×107 
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Next, we performed reweighting on the LiGaMD and LiGaMD3 simulations of ligand-MDM2 

systems to calculate acceleration factors for the small-molecule/peptide binding and dissociation 

processes (Table S2) and to recover the original kinetic rate constants using the Kramers’ rate 

theory (Table 2). In the LiGaMD simulations, the dissociation free energy barrier (∆Foff) 

significantly decreased from 9.10±1.26 kcal/mol in the reweighted PMF profiles to 2.77±1.76 

kcal/mol in the modified PMF profiles for the system of MDM2-Nutlin 3 (Fig. S1 and Table S2). 

Similarly, for the MDM2-Nutlin 3, MDM2-PMI, and MDM2-P53 systems, the dissociation free 

energy barrier (∆Foff) significantly decreased from 9.65±0.76, 9.05±0.23, 7.23±0.40 kcal/mol in 

the reweighted PMF profiles to 0.79±0.10, 0.89±0.07, 0.67±0.18 kcal/mol in the modified PMF 

profiles in LiGaMD3 simulations, respectively (Table S1 and Fig. S1).  Curvatures of the 

reweighed (w) and modified (𝑤∗, no reweighting) free energy profiles were calculated near the 

ligand Bound (“B”) and Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well 

as the ratio of apparent diffusion coefficients calculated from LiGaMD and LiGaMD3 simulations 

with reweighting (D) and without reweighting (modified, 𝐷∗ ) (Table S2). According to the 

Kramers’ rate theory, the association and dissociation of the Nutline 3 small molecule in LiGaMD 

were accelerated by 0.32 and 5.30´104 times. In contrast, in LiGaMD3, the association and 

dissociation of the Nutlin 3 were accelerated by 1.40 and 1.79´106 times, respectively. Moreover, 

the association of the peptide in the LiGaMD3 was accelerated by 1.47 and 1.27 times for the 

MDM2-PMI and MDM2-P53 systems, respectively. While the peptide dissociation was 

significantly accelerated by 1.28´107 and 6.96´105 times for the MDM2-PMI and MDM2-P53 

systems, respectively. Therefore, the reweighted kon in the MDM2-Nutlin 3 system with LiGaMD 

and LiGaMD3 were calculated as 5.26±0.65×109 M-1×s-1 and 8.29±4.80×108 M-1×s-1, respectively, 

being in consistent with the experimental values of 3.3×107 M-1×s-1. Similarly, for the MDM2-PMI 
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and MDM2-P53 systems, the reweighted kon values were predicted as 5.76±4.80×108 and 

8.03±7.42×108,  respectively, being consistent with the corresponding experimental values76 of 

5.27×108 and 9.20×106 M-1×s-1(Table 2). The reweighted koff values for the Nutlin 3 in the MDM2-

Nutline 3 with LiGaMD and LiGaMD3 were calculated as 69.51±58.37 s-1 and 15.45±4.69 s-1, 

being in accordance with the experimental of 0.48 s-1. For the peptide in the MDM2-PMI and 

MDM2-P53 systems, the reweighted peptide koff were calculated from LiGaMD3 simulations as 

2.66±1.73, 28.0±19.2 s-1, in agreement with the corresponding experimental values76 of 0.037 and 

2.06 s-1, respectively.   

Based on the ligand binding kinetic rates (kon and koff), we calculated the ligand binding free 

energies as ∆𝐺 = −RTLn4𝑘/SS/𝑘/(7. The resulting binding free energies in the MDM2-Nutlin 3 

system with LiGaMD and LiGaMD3 were -10.18±2.22 kcal/mol and -11.02±0.59 kcal/mol, 

respectively, demonstrating high consistency with the experimental value of -10.96 kcal/mol. In 

the MDM2-PMI and MDM2-P53 systems (Table 1), the calculated peptide binding free energy 

values were -11.86±1.16 kcal/mol and -10.59±0.11 kcal/mol, exhibiting strong agreement with the 

corresponding experimental values of -12.02 kcal/mol and -9.27 kcal/mol respectively. The root-

mean square error (RMSE) of binding free energy for the three systems was only 0.94 kcal/mol. 

Hence, LiGaMD3 simulations achieved both efficient sampling and accurate small-

molecule/peptide binding thermodynamics and kinetics calculations. 

 

Multiple ligand binding and dissociation pathways were identified from LiGaMD3 

simulations. 
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We closely examined the LiGaMD3 trajectories to explore the pathways involved in the small-

molecule/peptide binding and dissociation of the MDM2. Two primary pathways were identified 

for the binding and dissociation, denoted as “pathway 1” (residues 65-95, including motifs β3, β1’, 

α1’ and β2’) and “pathway 2” (residues 97-106, α2’ helix) (Figs. 3 and S2). These pathways were 

consistently observed in the binding and dissociation of Nutlin 3, PMI and P53. Binding of Nutlin 

3 via pathways 1 and 2 were observed 13 times and 5 times, respectively (Fig. 3B). The same 

pathways 1 and 2 were identified in the simulations of the MDM2-PMI and MDM2-P53 systems. 

Peptide binding in the MDM2-PMI and MDM2-P53 systems occurred along pathways 1 and 2 for 

9 and 7 times, respectively (Fig. 3B). Similarly, peptide P53 binding events along pathways 1 and 

2 were 8 and 6, respectively (Fig. 3B). The same pathways were identified for the dissociation of 

the MDM2-Nutlin 3, MDM2-PMI and MDM2-P53 systems (Fig. 3C). Dissociation of Nutlin-3 

via pathways 1 and 2 were observed 11 and 6 times, respectively (Fig. 3C). Peptide dissociation 

in the MDM2-PMI system along pathways 1 and 2 occurred 9 and 9 times, respectively (Fig. 3C). 

Similarly, peptide P53 dissociation along pathways 1 and 2 occurred 6 and 8 times, respectively 

(Fig. 3C). Note that the number of binding/dissociation events along different pathways were 

counted directly from the simulations without reweighting. Nevertheless, with GaMD enhanced 

sampling formula, the overall shape of the system free energy profiles should be maintained even 

with the boost potential49. This suggests that the absolute number of the binding and dissociation 

events may not be meaningful, but the relative preference of the pathways derived from the 

LiGaMD3 simulations could be still used. Moreover, one can use the reweighted free energy 

profiles (e.g., those in Fig. 4) to examine the energetic preference of the ligand pathways. 
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Figure 3. Pathways of ligand/peptide binding and dissociation in the MDM2 protein. (A) Cartoon 

representation of the protein. Binding and dissociation pathways are denoted by the arrow lines. Number 

of binding (B) and dissociation (C) events through the different pathways captured by the LiGaMD3 

simulations. 
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Figure 4. 2D Potential of Mean Force (PMF) free energy profiles and low-energy conformational states of 

ligand/peptide binding to the MDM2: (A) 2D PMF profile regarding the ligand heavy atom RMSD and the 

number of contacts between the ligand and residues 65-95 of MDM2 in the LiGaMD3 simulations of Nutlin 

3 binding to the MDM2 protein; (B) Low-energy “Intermediate” conformations “I1” (blue) and “I2” (red) 

as identified from the 2D PMF profiles of Nutlin 3 binding to MDM2 protein; (C-D) Important ligand-

MDM2 interactions in the low-energy conformations “I1” (C) and I2 (D).  (E) 2D PMF profile regarding 

the peptide backbone RMSD and the number of contacts between the PMI and residues 65-95 of the MDM2 

in the LiGaMD3 simulations of PMI binding to the MDM2 protein; (F) Low-energy “Intermediate” 

conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF profiles of PMI binding to MDM2 

protein; (G-H) Important PMI-MDM2 interactions in the low-energy conformations “I1” (G) and I2 (H). 

(I) 2D PMF profile regarding the peptide backbone RMSD and the number of contacts between the P53 

and residues 65-95 of the MDM2 in the LiGaMD3 simulations of P53 binding to the MDM2 protein; (J) 

Low-energy “Intermediate” conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF 

profiles of P53 binding to MDM2 protein; (K-L) Important P53-MDM2 interactions in the low-energy 

conformations “I1” (K) and I2 (L). 

Small-molecule and Peptide binding to the MDM2 involved Induced Fit 

After identifying the pathway 1, which involves motifs β3-β1’-α1’-β2’ (residues 65-95), we further 

investigated the relationship between conformational changes within this region upon small-

molecule/peptide binding. Therefore, the ligand RMSD and the number of contacts between the 

ligand and residues 65-95 in MDM2 (denoted as Ncontact) were used as reaction coordinates to 

calculate 2D PMF profiles (Figs. 4A-4C). Four low-energy states were identified in the 2D PMF 

profile of the MDM2-Nutlin 3 system including the Bound (“B”), Intermediate (“I1” and “I2”), 

and Unbound (“U”) (Fig. 4A). The ligand RMSD and Ncontact of these states centered around (3.0 

Å, 24), (9.0 Å, 37), (20.1 Å, 0), and (50.0 Å, 0), respectively (Fig. 4A). In the MDM2-PMI system, 
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four low-energy states were identified: Bound (“B”), Intermediate (“I1” and “I2”), and Unbound 

(“U”) (Fig. 4E), with the PMI peptide RMSD and Ncontact centered around (3.5 Å, 60), (9.7 Å, 85), 

(27.5 Å, 0), and (50 Å, 0), respectively (Fig. 4E). Similarly, in the MDM2-P53 system, four low-

energy states were observed: Bound (“B”), Intermediate (“I1” and “I2”), and Unbound (“U”) states 

(Fig. 4I), with the P53 peptide RMSD and Ncontact centered around (4.0 Å, 64), (8.5 Å, 78), (30.5 

Å, 0), and (60.8 Å, 0), respectively (Fig. 4I).Compared to the Bound state, the intermediate “I1” 

and “I2” states exhibited significant conformational alterations in the MDM2-Nutlin 3, MDM2-

PMI, and MDM2-P53 systems (Figs. 4B, 4F & 4J). In the intermediate “I1” and “I2” states, motifs 

β3-β1’-α1’-β2’ (residues 65-95) in the MDM2-Nutlin3 system moved outward significantly 

compared to the X-ray Bound structures, resulting in the opening of the binding pocket (Fig. 4B). 

Two critical interactions were identified in “I1” state: a hydrogen bond interaction between 

MDM2:Q72 and Nutlin 3 and aromatic interaction between MDM2:Y67 and Nutlin 3 (Fig. 4C). 

While in the “I2” state, Π-Π interactions were observed between MDM2:Y77 or MDM2:Y81 and 

Nutlin 3 (Figs. 4C&4D). In the MDM2-PMI system, significant conformational changes occurred 

upon peptide PMI binding, involving particularly motifs β3-β1’-α1’-β2’ (residues 65-95), resulting 

in distinct open and closed conformations in the “I1” and “I2” states, respectively (Fig. 4F). In the 

“I1” state, hydrogen bonds were formed between MDM2:Q72 and PMI:W7, MDM2:Q72 and 

PMI:D5 (Figs. 4G). In the “I2” state, Π-Π interactions were formed between MDM2:Y77- 

PMI:Y6, MDM2:Y81 and PMI: W7 (Figs. 4H). In the MDM2-P53 system, significant 

conformational changes occurred upon peptide P53 binding, involving particularly motifs β3-β1’-

α1’-β2’ (residues 65-95), resulting in a more closed conformation in the “I1” and “I2” states (Fig. 

4J). In the “I1” state, hydrogen bonds were formed between MDM2:Q72 and P53:L22, 

MDM2:Y67 and P53:D21 (Fig. 4K). In the “I2” state, Π-Π interactions were formed between 
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MDM2:Y77 and P53:F19, MDM2:Y81 and P53:F18 (Figs. 4K&4L). Hence, residues Q72, Y67, 

Y77 and Y81 in the MDM2 protein play pivotal roles during ligand binding in the intermediate 

conformational states. 

In order to further explore the mechanism of ligand binding to the MDM2, we computed 2D PMF 

free energy profiles to characterize conformational changes of both the protein and ligand during 

binding. The intermediate “I1” and “I2” states showed quite large conformational changes in the 

motifs β3-β1’-α1’-β2’ (residues 65-95). Therefore, we calculated 2D PMF profiles regarding the 

RMSD of the ligand and the MDM2 motifs β3-β1’-α1’-β2’ (residues 65-95) RMSD (denoted as 

Loop RMSD) relative to the experimental bound structures with the protein aligned (Figs. 5A-5C).  

For the MDM2-Nutlin 3 system, three low-energy states were identified from the 2D PMF profile, 

including the Bound, Intermediate “I2” and Unbound (Figs. 5A). The protein motifs β3-β1’-α1’-

β2’ at the peptide-binding site adopted the “Open” conformation in the I2 state (Figs. 5A and 5B). 

The peptide and loop RMSDs centered around (4.5 Å, 1.0 Å), (18.0 Å, 2.9 Å) and (59.0 Å, 2.0 Å) 

in the Bound “B”, Intermediate “I2” and Unbound “U” states, respectively (Fig. 5A).  For the 

MDM2-PMI system, three low-energy states were identified from the 2D PMF profile, including 

the Bound “B”, Intermediate “I1” and Unbound “U”. The peptide and loop RMSDs centered 

around (5.0 Å, 0.8 Å), (10.2 Å, 3.0 Å) and (58.2 Å, 2.0 Å) in the “B”, “I1” and “U” states, 

respectively (Figs. 5B). Four low-energy conformational states were identified in the MDM2-P53 

system. The peptide and loop RMSDs centered around (5.2 Å, 0.8 Å), (10.5 Å, 3.9 Å), (31.0 Å, 

4.0 Å) and (61.0 Å, 1.9 Å) in the Bound “B”, Intermediate “I1” and “I2”, and Unbound “U” states, 

respectively (Fig. 5C).  
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Figure 5. (A-C) 2D PMF profiles regarding the ligand heavy atom RMSD or peptide backbone RMSD and 

the MDM2 loop (residues 65-95) RMSD relative to their corresponding experimental bound structure in 

the LiGaMD3 simulations of Nutlin 3(A), PMI peptide (B) and P53 peptide (C)  binding to the MDM2 

protein; (D-F) 2D PMF profiles regarding the distance between the ligand/peptide and MDM2 binding 

pocket and the Rg of the substrates in the LiGaMD3 simulations of Nutlin 3 (D), PMI peptide (E) and P53 

(F) binding to the MDM2 protein. 

In addition, we examined the conformational dynamics exhibited by the small molecule 

and peptides during their binding processes. In this regard, the ligand radius of gyration (Rg) was 

calculated and monitored for possible conformational changes. The small-molecule/peptide Rg and 

the center-of-mass distance between protein pocket and ligand (denoted as dMDM2-substrate) were 

used as reaction coordinates to calculate 2D PMF profiles. From the reweighted 2D PMF profiles 

(Fig. 5D-5F), we identified a low-energy “Bound” state in all three systems, for which the dMDM2-

substrate and Rg in the MDM2-Nutlin3, MDM2-PMI and MDM2-P53 systems centered around (8.6 
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Å, 4.4 Å), (14.0 Å, 6.3 Å) and (13.0 Å, 8.3 Å), respectively. This suggested that successful 

sampling of complete small-molecule/peptide binding was captured in the LiGaMD3 simulations. 

Notably, in the intermediate states, the peptides sampled a wider range of Rg and the protein motifs 

β3-β1’-α1’-β2’ exhibited higher RMSDs compared with the bound states. Therefore, the small-

molecule and peptides binding to the MDM2 protein showed predominantly an “induced-fit” 

mechanism. 

 
Discussions 

We have presented a new LiGaMD3 method to improve sampling efficiency and accurately predict 

thermodynamic and kinetic properties associated with the binding of small molecules and highly flexible 

peptides. LiGaMD3 works by selectively boosting the essential non-bonded interaction potential energy of 

the ligand, as well as the remaining non-bonded potential energy and all the bonded potential of the system. 

Non-bonded potential interactions play a critical role in ligand dissociation and rebinding, while the bonded 

potentials mainly contribute to conformational changes of the system. Utilizing microsecond timescale 

simulations, LiGaMD3 effectively captures repetitive dissociation and rebinding processes of both small 

molecules and peptides in three model systems of MDM2 bound by different small molecules and flexible 

peptides. These simulations allowed for simultaneous predictions of ligand/peptide binding free energies 

and kinetic rate constants. However, it remains challenging to achieve highly accurate predictions of ligand 

binding kinetics. The prediction errors of binding (∆logkon) and dissociate (∆logkoff) rate constants 

calculated form LiGaMD3simulations are mostly in the range of -2 to 2 (Table 1), which fall within the 

acceptable accuracy 9. 

In order to achieve proper acceleration levels, six key parameters need to be fine-tuned in LiGaMD3, 

including the iEP, iED, iEB, σ0P, σ0D, and σ0B. It generally provides more powerful sampling to set the 

threshold energy for applying the boost potential to the upper bound (iE=2) than to the lower bound (iE=1). 

Due to typically high energy barriers for ligand dissociation and binding, the upper-bound mode (iEP=2 
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and iED=2) are usually recommended for the first and second boosts in LiGaMD3 in effective sampling of 

both ligand dissociation and rebinding. The third boost in LiGaMD3 focuses on conformational changes, 

which require lower boost in most cases. Consequently, the lower-bound mode (iEB=1) is generally 

recommended for this purpose. The energy barrier for ligand dissociation is typically higher than that for 

ligand binding. Starting from the bound state, once the applied boost allows the ligand to overcome the 

dissociation energy barrier, the same boost will likely overcome the energy barrier for ligand rebinding. 

However, if the boost is too high, it could become challenging for the ligand rebinding. Therefore, one rule 

for choosing the parameter values is that the acceleration should be sufficient to overcome the dissociation 

energy barrier but not too high to prevent rebinding. For σ0P, one may start with a large value (e.g., 8.0 

kcal/mol) and then decrease it gradually to find one that enables ligand dissociation while maintaining the 

ligand rebinding ability in LiGaMD3 testing equilibration simulations, for which default values could be 

used for σ0D, and σ0B (6.0 kcal/mol). Once a final set of the parameters is determined, one can proceed to 

the LiGaMD3 production simulations. 

LiGaMD3 simulations revealed the critical role of nonbonded potentials in governing 

ligand dissociation and rebinding process, being consistent with previous computational findings41, 

54, 86. Non-bonded interactions have been recognized as one of the main factors that govern the 

ligand binding to its target protein66-68. Furthermore, our simulations identified multiple pathways 

for ligand binding and dissociation and revealed an “induced-fit” mechanism of ligand binding, 

being consistent with earlier simulation results22, 55, 87. Compared with the cMD88, Metadynamics28, 

29, Weighted Ensemble,25 MSM52 and Replica Exchange MD simulations64, LiGaMD3 offers a 

more efficient and  user-friendly approach. LiGaMD3 also shows advantages over previous 

LiGaMD, particularly in its ability to accurately capture peptide binding to proteins. While 

microsecond cMD simulations have proven effective in capturing small molecule and highly 

flexible peptide binding to target proteins, the slower kinetics of ligand dissociation remain beyond 

the accessible timescale of cMD. Weighted Ensemble54 and MSM52 methods have shown promise 
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in accurately predicting small molecule and peptide binding kinetics, but typically require 

extensive computational resources, often involving tens-of-microsecond simulations52. 

Metadynamics, with carefully designed CVs, can efficiently capture both ligand binding and 

unbinding. However, the predefined CVs may impose constraints on binding pathways and 

conformational space. The approach may also encounter challenges such as the “hidden energy 

barrier” problem and slow convergence if important CVs are omitted.89, 90 Overall, previous 

methods have been computationally demanding, necessitating significantly longer simulations to 

adequately characterize ligand binding thermodynamics and kinetics. LiGaMD3 captures the 

repetitive small-molecule and peptide dissociation and binding events within only microsecond 

simulations, offering an efficient approach to characterizing ligand binding dynamics and 

extending the capabilities of the LiGaMD methodology to binding of highly flexible peptides.  
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Table S1 The ligand bound and unbound time periods (τB and τU) recorded from LiGaMD3 
simulations of the ligand/peptide-MDM2 binding systems. 

System Method ID τB (ns) τU (ns) 

MDM2-
Nutlin 

LiGaMD Sim1 74,321,19,172,146 42.4,395,56,97,36,632 
Sim2 187,1026,209 87,317,184 
Sim3 397,334,706 26,66,67,404 

MDM2-
Nutlin 

LiGaMD3 Sim1 14,55.7,23,83,23,115 25,240.9,196,600,623 
Sim2 61.6,53,87,12,65,47,8 272,137,338,20,219,137,164 
Sim3 14,30,30,24,23 189,628,551,119,392 

MDM2-
PMI 

LiGaMD3 Sim1 360.7,191.6,64.29,10.5,32.9,17.1 85.2,17.1,26.3,40.5,43.3,101.5 
Sim2 456.4,47.2,18.4 261.1,110.6,96.3 
Sim3 68.17,147.0,57.6,10.5,9.8,45.0,8.9 129.8,35.4,56.6,45.4,108.2,59.2,221.0 

MDM2-
P53 

LiGaMD3 Sim1 60,17,29,25,30 250,136,249,153.7,534,380 
Sim2 379,41,30,17 306,201,390,197,434 
Sim3 38.5,23.7,88,24,84 100.7,115,118,207,407,787 

 
 

Table S2 Energy barriers of ligand/peptide-MDM3 dissociation (“off”) and binding (“on”) 
calculated from the reweighed (∆F) and modified (no reweighting, ∆F*) free energy profiles, 
curvatures of the reweighed (w) and modified (𝑤𝑤∗) free energy profiles near the ligand/peptide 
Bound (“B”), Barrier (“Br”) and Unbound (“U”) states, and the ratio of apparent diffusion 
coefficients calculated from the LiGaMD3 simulations without reweighting (modified, 𝐷𝐷∗) and 
with reweighting (D).  

Sim 
 ∆F 

(kcal/mol) 
∆F* 

(kcal/mol) w w* D*/D 

 Off On Off On B Br U B Br U Off On 

MDM2-
Nutlin 

LiGaMD 9.10±
1.26 

2.77 
±1.76 

2.68 
±0.25 

0.63 
±0.16 

1.54 
±0.36 

0.30 
±0.30 

0.22 
±0.17 

0.78 
±0.028 

0.069 
±0.009 

0.020 
±0.005 

1.43 
±0.44 

0.16 
±0.03 

LiGaMD3 9.65 
±0.76 

0.79 
±0.10 

0.76 
±0.18 

0.33 
±0.15 

10.28 
± 0.60 

0.12 
±0.07 

0.012 
±0.006 

1.16 
±0.27 

0.14 
±0.05 

0.032 
±0.009 

0.96 
±0.81 

0.18 
±0.05 

MDM2-
PMI 

LiGaMD3 9.05±
0.23 

0.89 
±0.07 

1.38 
±0.12 

0.23 
±0.06 

0.94±0
.53 

0.0097 
±0.0043 

0.048 
±0.020 

7.21 
±0.30 

0.066 
±0.010 

0.025 
±0.003 

0.13 
±0.03 

0.17 
±0.004 

MDM2-
P53 

LiGaMD3 7.23±
0.40 

0.67 
±0.18 

1.16 
±0.04 

0.093 
±0.031 

0.43 
±0.20 

0.023 
±0.012 

0.023 
±0.018 

7.04 
±0.10 

0.062 
±0.018 

0.026 
±0.002 

0.25 
±0.08 

0.23 
±0.20 
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Figure S1. LiGaMD3 simulations captured repetitive dissociation and binding of the Nutlin 3 
small molecule and highly flexible PMI and P53 peptides to the MDM2 protein: (A-B) time 
courses of the distance between the MDM2 and small molecule Nutlin 3 calculated from three 
independent 2 μs LiGaMD (A) and LiGaMD3 (B) simulations; (C-D) time courses of the distance 
between the MDM2 and peptide from three independent 2 μs LiGaMD3 simulations of (C) PMI 
and (D) P53 binding to MDM2; (E-F) The corresponding reweighted (black) and non-reweighted 
(red) PMF profiles of the distance between MDM2 and ligand averaged over three LiGaMD (E) 
and LiGaMD3 (F) simulations of Nutlin 3 binding to MDM2; (G-H) )The corresponding PMF 
profiles of the MDM2-peptide distances averaged over three LiGaMD3 simulations of (G) PMI 
and (H) P53 binding to MDM2. Error bars are standard deviations of the free energy values 
calculated from three LiGaMD and LiGaMD3 simulations. 
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Figure S2. Cartoon representation of the MDM2 with each motif labeled. Residues predominantly 
involved in “pathway 1” were colored in red, including the β3, β1’ and β2’ strands and the α1’ 
helix (residues 65-95). Residues mainly involved in “pathway 2” were colored in blue, including 
the α2’ helix (residues 97-106).  
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