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Abstract

Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven
challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules
and flexible peptides using conventional Molecular Dynamics (cMD), due to limited simulation
timescales. Based on our previously developed Ligand Gaussian accelerated Molecular Dynamics
(LiGaMD) method, we present a new approach, termed “LiGaMD3”, in which we introduce triple
boosts into three individual energy terms that play important roles in small-molecule/peptide
dissociation, rebinding and system conformational changes to improve the sampling efficiency of
small-molecule/peptide interactions with target proteins. To validate the performance of
LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI
and P53) were chosen as model systems. LiGaMD3 could efficiently capture repetitive small-
molecule/peptide dissociation and binding events within 2 microsecond simulations. The predicted
binding kinetic constant rates and free energies from LiGaMD3 agreed with available experimental
values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient
approach to capture dissociation and binding of both small-molecule ligand and flexible peptides,

allowing for accurate prediction of their binding thermodynamics and kinetics.

Keywords: Ligand binding kinetics, Ligand binding free energy, Peptide binding, Enhanced

sampling, Ligand Gaussian accelerated Molecular Dynamics.



Introduction
Both small molecules and peptides are important sources of novel drugs targeting many important
biological processes!. It is critical to understand the binding mechanisms of small molecules and
peptides to their target proteins, which not only deepens our understanding of fundamental
biological processes but also facilitates the development of more potent and selective drugs for
treating human diseases? . Several experimental techniques*® have been developed to explore the
binding interactions between the protein and small molecule or peptide. For example, structural
biology techniques including X-ray crystallography and cryo-electron microscopy (cryo-EM) have
been widely used to determine the complex structures of protein-small molecule and protein-
peptide complexes®. Recently, significant advancements in Deep Learning methodologies such as
AlphaFold’ and RoseTTAFold All-Atom (RFAA)® have led to accurate prediction of protein-
small molecule or protein-peptide complex structures. However, such techniques provide only
static snapshots of protein-small molecule or protein-peptide interactions. It is still challenging to
capture small-molecule/peptide binding and dissociation processes and determine potential
intermediate states of small-molecule/peptide binding to their target proteins, which are also
important for drug design’.

Recently, drug binding kinetics has been recognized to be valuable for drug design!®-'°,
The drug dissociation rate (k.z) appears to correlate with drug efficacy better than the binding free
energy!*15. However, drug binding kinetic rates have proven more challenging to predict, due to
the slow processes of drug dissociation and binding!!> '®. With remarkable advancements in
computer hardware and methodological developments, conventional Molecular Dynamics (cMD)
simulations are now able to capture spontaneous small-molecule/peptide binding to their target

proteins and predict corresponding association rates (kon)'’?°. However, it remains a difficult



challenge in applying cMD to capture repetitive small-molecule/peptide dissociation and rebinding
processes within accessible timescales, thereby hindering the accurate prediction of small-
molecule/peptide binding kinetic rates'’. Shan et al.!” successfully captured spontaneous binding
of the Dasatinib drug to its target Src kinase and accurately predicted the ligand association rate
based on tens-of-microsecond ¢cMD simulations. Tens-of-microsecond ¢cMD simulations?® have
successfully captured repetitive binding and dissociation events of six small-molecule fragments
with very weak millimolar binding affinities to the protein FKBP, allowing accurate prediction of
fragment binding free energies. However, no dissociation events have been observed for typical
ligand molecules in the cMD simulations. Furthermore, capturing peptide dissociation and
rebinding processes poses an even more challenging task for cMD, given that peptides are known
to induce significant conformational changes upon binding?!' and the timescales for the peptide
dissociation are even longer?>. For example, cMD simulations with elevated temperature
conducted for 200 ps using the Anton specialized supercomputer have captured 70 binding and
unbinding events between an intrinsically disordered protein fragment of the measles virus
nucleoprotein and the X domain of the measles virus phosphoprotein complex, shedding light on
the detailed understanding of the peptide's "folding-upon-binding" mechanism??. Despite these
advancements, it is still rather challenging for cMD to effectively simulate binding and

dissociation of typical small molecule or peptide to their target proteins.

Enhanced sampling methods®* 2° have been developed to extend the accessible timescales of
MD simulations. These methods include Metadynamics?®3!, Steered MD?**-34, Umbrella
Sampling®? 3337 Replica Exchange MD *-*!, Random Acceleration Molecular Dynamics (RAMD)
42-44 'Scaled MD 4346, accelerated MD (aMD) 47, Gaussian accelerated MD (GaMD) 4% 4° Markov

State Model (MSM)*%-32, Weighted Ensemble®® * | and so on. Metadynamics?! >° simulations



utilizing carefully chosen collective variables (CVs) have successfully predicted the peptide
binding and dissociation rates in the systems. Particular, 27 us Metadynamics simulations of the
peptide P53 binding to the MDM2> predicted values of (Kon, kotr) at (0.43+0.22x10’M-!s!,
0.7+0.4s"), showing good agreement with the corresponding experimental values of (0.92x10"M-
Is71,2.06s"). Similarly, Weighted Ensemble>® of a total amount of ~120 ps ¢cMD simulations with
implicit solvent model for the P53-MDM2 system predicted a highly consistent binding kinetic
rate (kon) of 7 . MSM>’ analysis based on a total of 831 ps ¢cMD simulations for peptide P53
binding to MDM2 accurately predicted values of kon and kosr at 0.019x107 M-!s! and 2.5 s,
respectively. Another MSM built on hundreds-of-microsecond cMD and Hamiltonian replica
exchange simulations has been implemented to characterize binding and dissociation of the PMI
peptide to the MDM222, The predicted values of (kon, Kofr) were (300x10’M-s™!, 0.125-1.13s7}),
being comparable to the corresponding experimental values of (52.7x10'M!s, 0.037s!).
Nevertheless, MSM and Weighted Ensemble require expensive and exceedingly long simulations.
GaMD was developed to provide both unconstrained enhanced sampling and free energy
calculations of large biomolecules*® #°. It works by applying a harmonic boost potential to reduce
system energy barriers. The boost potential exhibits a near Gaussian distribution, which enables
accurate reweighting of the free energy profiles through cumulant expansion to the second order*®
49 Recently, novel Ligand GaMD (LiGaMD)’8 and LiGaMD2>° approaches have been developed
to more efficiently sample small-molecule dissociation and rebinding processes, offering accurate
prediction of ligand binding thermodynamics and kinetics. In LiGaMD, a selective boost is
specifically applied at the ligand’s non-bonded interaction potential energy>®. In LiGaMD?2, the
selective boost extended to the essential potential energy of both the ligand and surrounding

residues in the protein pocket, which significantly improved the sampling of ligand dissociation



and rebinding in a closed binding pocket>®. An increasing amount of studies*! 32 60-63 demonstrated
the pivotal role of non-bonded interaction potentials in ligand binding, along with the crucial
structural flexibility of proteins and peptides>? ®+%°. Building upon the successes of LiGaMD and
LiGaMD2, which primarily focused on small-molecules, here we introduce a more general
approach, termed LiGaMD3, for binding simulations of both small-molecules and flexible peptides.
In LiGaMD3, three distinct boosts are applied: one on the non-bonded interaction energy of the
substrate, the second one on the remaining non-bonded potential energy of the system, and a third
one on the system bonded potential energy. These boosts are designed to accelerate the substrate
dissociation, facilitate substrate rebinding, and promote the system conformational changes,
respectively. MDM27%, a well-known oncology protein involved in regulating diverse cellular
signaling pathways, serves as an ideal model system for investigating the binding and dissociation
of both small molecules and highly flexible peptides. Notably, this system has been extensively
explored through experimental studies and simulations as mentioned above, highlighting its
critical role in drug discovery. Therefore, MDM2 bound by small-molecule drugs and peptides
were chosen as model systems in this study. Through two microsecond LiGaMD3 simulations, we
successfully captured repetitive ligand and peptide binding and dissociation processes across all
MDM2 systems. LiGaMD3 facilitated highly efficient and accurate predictions of ligand and
peptide binding thermodynamics and kinetics, being consistent with experimental binding free

energies and kinetic rates.

Methods

LiGaMD3: Triple boost for ligand dissociation and rebinding



We consider a system of small-molecule/peptide L binding to a protein P in a biological
environment E. The system comprises of N atoms with their coordinates r = {ry,---, 7y} and

momenta p = {p;, -+, py} . The system Hamiltonian can be expressed as:

H(r,p) = K(p) +V(r), (1)

where K(p) and V(r) are the system kinetic and total potential energies, respectively. We

decompose the potential energy into the following terms:

V(r) = Ve (TP)+VL,b () + Veb (rg) + Vepnb (rp) + VbLnb (rpL) +

VbEnb (rpe) +ViLnp () +ViEnb (rue) + VEEnb (rg) (2)

where Vp , V,, , and Vg ;, are the bonded potential energies of protein P, small-molecule/peptide L
and environment E, respectively. Vp,p,, Vi np and Vg ,p, are the self non-bonded potential
energies in the protein P, small-molecule/peptide L and environment E, respectively. Vo np, Veg np
and Vg ,, are the non-bonded interaction energies between P-L, P-E and L-E, respectively.
According to classical molecular mechanics force fields’!> 72, the non-bonded potential energies

are usually calculated as:
an = Velec + VvdWa (3)

where V.. and V4, are the system electrostatic and van der Waals potential energies. The

bonded potential energies are usually calculated as

Vo = Voona + Vangie T Vainedrai 4)

where Vyonas Vangie a0d Viineara: are the system bond, angle and dihedral potential energies. In

LiGaMD3, the essential non-bonded interaction potential energy of the ligand is defined as:



V,(r) = ViLnb () + Vb nb (rpL). Q)

We add a boost potential selectively to the V; (r) according to the GaMD algorithm:

%kL(EL - VL(T'))Z' V,(r) <E,

6
0, V,(r) = E,, ©

AV, (r) = {

where E is the threshold energy for applying boost potential and 4; is the harmonic constant. The
LiGaMD3 simulation parameters are derived similarly as in the previous GaMD*, LiGaMD?,
and LiGaMD2%. The subscript L is omitted for simplicity hereafter. When E is set to the lower
bound as the system maximum potential energy (E=V,ax), the effective harmonic force constant k

can be calculated as:

ko = min(1.0, k) = min (1.0, 2 Ymax=Vminy @)

ov Vimax—Vavg

where Vipaxs Vinins Vavg @and oy, are the maximum, minimum, average and standard deviation of the
boosted system potential energy, and g, is the user-specified upper limit of the standard deviation

of AV (e.g., 10ksT) for proper reweighting. The harmonic constant k is calculated as k = k-

with 0 < k, < 1. Alternatively, when the threshold energy F is set to its upper bound

Vimax—Vmin

E =Vyin + %, kg is set to:

kO — k;’) = (1 _ @) Vmax—Vmin , (8)

ov” Vavg—Vmin
if k, is found to be between 0 and 1. Otherwise, k, is calculated using Eqn. (7).

In addition to selectively boosting the essential non-bonded interaction potential energy of
the ligand, another boost potential is applied on the remaining non-bonded potential energy of the

system (V;, (1)) to facilitate ligand rebinding:



Vp(r) =V = V() = Vbpnb (rp) + VbEnb (TPE)+VLE,nb (rie) + VEEnb» )

2kp(Ep = Vo ()", Vo) < Ep

10
0, Vp(r) 2 Ep (10

AVp(r) = {

where Vp is the total system potential energy other than the essential non-bonded ligand potential
energy ligand, Ep is the corresponding threshold energy for applying the second boost potential
and kp is the harmonic constant. The third boost potential is applied to the total bonded potential

energy of the system as:

Ve(r) = Vp o (rp)+ V(1) + Vi p () an
2
AVg(r) = {i kg(Ep — Vp(1))", Vs(r) < Eg )
0, Vp(r) = Ep

This leads to LiGaMD3 with a triple-boost potential AV (r) = AV, (r) + AVp(r) + AVg (7).
Energetic Reweighting of LiGaMD3

To calculate potential of mean force (PMF)”® from LiGaMD3 simulations, the probability
distribution along a reaction coordinate is written as p*(A4). Given the boost potential AV (r) of

each frame, p*(A4) can be reweighted to recover the canonical ensemble distribution, p(A), as:

« (eBAV(?)) i
p(4)) = p*(4) I raerveyr J = Lo M, (13)

where M is the number of bins, f = kzT and (eﬁAV(F) ) j 1s the ensemble-averaged Boltzmann

factor of AV () for simulation frames found in the /™ bin. The ensemble-averaged reweighting

factor can be approximated using cumulant expansion:

i k
(eﬁAV(T)> = exp {Zlc:;li_lck}’ "



where the first two cumulants are given by

¢, = (Av),

C, = (AVZ) — (AV)? = g2, (15)

The boost potential obtained from LiGaMD3 simulations usually follows near-Gaussian
distribution. Cumulant expansion to the second order thus provides a good approximation for
computing the reweighting factor’* 4. The reweighted free energy F(A) = —kgT Inp(A4) is

calculated as:
* 2 ﬁk
F(A) = F*(A) = Xie=1 77 G + E, (16)

where F*(A) = —kgT In p*(A) is the modified free energy obtained from LiGaMD2 simulation

and F_ is a constant.

Ligand binding Kkinetics obtained from reweighting of LiGaMD3 Simulations

Reweighting of ligand binding kinetics from LiGaMD3 simulations followed a similar protocol
using Kramers’ rate theory that has been recently implemented in kinetics reweighting of the
GaMD?® 7577 Provided sufficient sampling of repetitive ligand dissociation and binding in the
simulations, we record the time periods and calculate their averages for the ligand found in the
bound (73) and unbound (7 ) states from the simulation trajectories. The Tz corresponds to
residence time in drug design'®. Then the ligand dissociation and binding rate constants (kofr and

kon) were calculated as:

1

Kop = ——, (18)

Ty-[L]
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where [L] is the ligand concentration in the simulation system.

For a particle climbing over potential energy barriers, Kramers showed that the reaction
rate depends on temperature and viscosity of the host medium. The reaction rates were derived for
both limiting cases of small and large viscosity. In the context of biomolecular simulations in
aqueous medium, it is relevant for us to focus on the large viscosity limiting case. Biomolecules
move in the high friction (“overdamping”) regime and energy barriers are much greater than kg7’
(ks is the Boltzmann’s constant and 7' is temperature). In this case, the reaction rate is calculated

as’’:

kg = =7 e AR kT, (19)

where w,,, and w,, are frequencies of the approximated harmonic oscillators (also referred to as
curvatures of free energy surface’ 7°) near the energy minimum and barrier, respectively, € is the

frictional rate constant and AF is the free energy barrier of transition.

Without the loss of generality, we consider a 1D potential of mean force (PMF) free energy

profile of a reaction coordinate F(A4). Near minimum at 4, the free energy can be approximated

by a harmonic oscillator of frequency wy,, i.e., F(4) = % (2nw,,)?(A — A,,))?. Near barrier at A,

the free energy is approximated as F(A4) = F, —%(anb)z(A — A,)? , where F, is the free

energy at A, and wy, is the frequency of the approximated harmonic oscillator. Then we can

calculate w,,, and wy, as:

_ |IF'CA)l
w = /—211 : (20)

where F"(A) is the second-order derivative of the PMF profile.

11



The friction constant ¢ or diffusion coefficient D with & = kgT /D can be estimated as
follows. First, we calculate a survival function S(7) as the probability that the system remains in an
energy well longer than time ¢. In a direct approach, we count the events that the system visits the
energy well throughout a simulation. We record and measure the time intervals of each visiting
event until the system escapes over an energy barrier. Then we have a time series 7;, where i=1,
2, ..., N, and N is the total number barrier transitions observed in the simulation. The time series
is subsequently ordered such that T; < T, < --- < Ty. With that, the survival function is estimated

as S (Ti) ~ 1 —i/N, which is the probability that the system is trapped in the energy well for time

longer than T;. Alternatively, we can numerically calculate the time-dependent probability density
of reaction coordinate 4, p(4, t) by solving the Smoluchowski equation along 1D PMF profile of

the reaction coordinate:

0pAt) _ 0 [,-F(a)/kgT O (,F(A)/kgT
e~ Pog [e ’ BA(e ’ p)] @D

Then the survival function is calculated as S(t) = |, tw f;bblz p(A,t)dAdt, where Ay, and A, are

two boundaries of the energy well. The initial condition is often set as the Boltzmann distribution

of reaction coordinate 4 in the energy well, i.e., p(4,0) = e F(A/ksT

Second, using the above survival functions, we estimate the effective kinetic rates as the
negative of the slopes in linear fitting of the In[S(¢)] versus ¢, i.e., k = —dIn[S(t)]/dt . This is
based on the assumption that the survival function exhibits exponential decay as observed in earlier
studies. Finally, the apparent diffusion coefficient D is obtained by dividing the kinetic rate
calculated directly using the transition time series collected from the simulation by that using the
probability density solution of the Smoluchowski equation®. In order to reweight ligand kinetics

from the LiGaMD3 simulations using the Kramers’ rate theory, the free energy barriers of ligand

12



binding and dissociation are calculated from the original (reweighted, AF) and modified (no
reweighting, AF*) PMF profiles, similarly for curvatures of the reweighed (w) and modified (w*,
no reweighting) PMF profiles near the ligand bound (“B”) and unbound (“U”) low-energy wells
and the energy barrier (“Br”), and the ratio of apparent diffusion coefficients from simulations
without reweighting (modified, D*) and with reweighting (D). The resulting numbers are then
plugged into Eq. (17) to estimate accelerations of the ligand binding and dissociation rates during

LiGaMD3 simulations’’, which allows us to recover the original kinetic rate constants.
System Setup

The complex structures of MDM2 bound by the Nutlin 3 drug, P53 and PMI were obtained from
the 5C5A, 1YCR and 3EQS PDB files, respectively. The AMBER ff14SB force field®! was used
for the protein and peptide. The GAFF2 force field® with AM1-BCC charge was used for the
Nutlin 3 small molecule. Each system was solvated in a periodic box of TIP3P water molecules
with a distance of 18 A from the solute to the box edge using tleap. Therefore, the ligand/peptide
concentration was 0.00335 M in the simulation system. Appropriate number of Na+/Cl- ions were

added to achieve system neutrality.

Simulation Protocol

Each system was energy minimized and gradually heated to 300 K in 1 ns with the Langevin
thermostat and harmonic restraints of 1.0 kcal/mol/A? on all non-hydrogen atoms of the protein
and the ligand using the AMBER23 software®’. The simulation system was firstly energy
minimized with 1.0 kcal/mol/A? constraints on the heavy atoms of the proteins, including the
steepest descent minimization for 50,000 steps and conjugate gradient minimization for 50,000

steps. The system was then heated from 0 K to 300 K for 200 ps. It was further equilibrated using
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the NVT ensemble at 300 K for 200 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1
kcal/mol/A? constraints on the heavy atoms of the protein, followed by 2 ns short cMD without
any constraint. The LiGaMD3 simulations proceeded with 2 ns short cMD to collect the potential
statistics, 50.0 ns LiGaMD3 equilibration after adding the boost potential and then three
independent 2,000 ns production runs. It provided more powerful sampling to set the threshold
energy for applying the boost potential to the upper bound (i.e., E = Vmint1/k) in our previous study
ligand dissociation and binding using LiGaMD’®. Therefore, the threshold energy for applying the
ligand essential non-bonded potential (first boost) and the remaining non-bonded potential energy
of the system (second boost) were set to the upper bound in the LiGaMD3 simulations. The
threshold energy for applying the third boost to the system bonded energy potential was set to the
lower bound. In order to observe ligand/peptide dissociation during LiGaMD3 production
simulations while keeping the boost potential as low as possible for accurate energetic reweighting,
the (cop, oop, ooB) parameters were set to (2.0 kcal/mol, 6.0 kcal/mol, 6.0 kcal/mol) for the
LiGaMD3 simulations of the MDM2 bound by the Nutlin 3, PMI and P53. LiGaMD3 production
simulation frames were saved every 0.4 ps for analysis. In the LiGaMD simulations performed for
comparison, the (cop, Gop) parameters were set to (4.8 kcal/mol, 6.0 kcal/mol) for simulations of
the MDM2-Nutlin 3 system and (8.0 kcal/mol, 6.0 kcal/mol) for MDM2-PMI system, respectively.
The threshold energies for applying the boosts in the LiGaMD simulations were set to the upper
bound. Example simulation files of the LiGaMD3 simulations of the MDM2-Nutlin 3 system are

included in the Supporting Information.

Simulation Analysis

The VMD3* and CPPTRAJ® tools were used for simulation analysis. The number of ligand

dissociation and binding events (Np and N3) and the ligand/peptide binding and unbinding time
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periods (13 and ty) were recorded from individual simulations (Tables 1 & S1). With high
fluctuations, tz and Ty were recorded for only the time periods longer than 1 ns. The 1D and 2D
free energy profiles, as well as the ligand binding free energy, were calculated through energetic
reweighting of the LiGaMD3 simulations. The center-of-mass distance between the small-
molecule/peptide and the protein pocket (defined by protein residues within 5 A of the ligand,
denoted as dvpm2-substrate) and small-molecule heavy atom or peptide backbone RMSDs relative to
the PDB structures with the protein aligned were chosen as the reaction coordinates. The bin size
was set to 1.0 A. The cutoff for the number of simulation frames in one bin was set to 500. The
ligand binding free energies (AG) were calculated using the binding kinetic rates as AG =
—RTLn(kO rrl kon) . The ligand dissociation and binding rate constants (k,, and ko) were

calculated from the LiGaMD3 and LiGaMD simulations with their accelerations analyzed using

the Kramers’ rate theory (Table S2).

Table 1. Summary of LiGaMD3 simulations performed on small molecule and peptide binding to
the MDM2. AV is the total boost potential. Np and Np are the number of observed ligand
dissociation and binding events, respectively. AGsin and AGey, are the ligand-MDM?2 binding free
energies obtained from LiGaMD3 simulations and experiments, respectively. * The simulation

binding free energy is estimated using A Ggim=-RT Ln(koglkon).

AV AGE, AG..
System Method | ID | N | No | yooymol) | (kealimol) | (keal/mol)
Sml | 5 | 6
MDM2-Nutline3 | LiGaMD | Sim2 | 3 | 3 | 94.92:4.01 |-10.18+2.22
Sim3 3 4
Siml | 6 5 -10.96
MDM2-Nutline3 | LiGaMD3 | Sim2 | 7 | 7 | 12.9424.05 |-11.02£0.59
Sm3 | 5 | 5
Siml | 4 | 4
MDM2-PMI | LiGaMD3 | Sim2 | 6 | 5 | 45.1147.04 |-11.86£1.16 | -12.02
Sim3 | 6 | 6
Siml | 5 | 6
MDM2-P53 | LiGaMD3 | Sim2 | 4 | 5 | 45.59£7.03 |-10.59+0.11 | -9.27
sm3 | 5 | 6
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Results

Microsecond LiGaMD3 simulations captured repetitive small-molecule and peptide
dissociation and rebinding to the MDM2

Both LiGaMD and LiGaMD3 have effectively captured the binding and dissociation processes of
the Nutlin 3 small molecule to the MDM2 protein across all three independent 2,000 ns simulations
(Figs. 1B & 1C). However, LiGaMD encountered difficulty in capturing the rebinding of the PMI
peptide to the protein, as no frames with peptide RMSD < 5 A were observed in all three 2,000 ns
simulations (Fig. 1F). In contrast, LiGaMD3 demonstrated consistent performance in successfully
capturing the repetitive binding and dissociation of the PMI peptide in the MDM2 (Fig. 1E).
Moreover, an additional system wherein MDM2 is bound by the peptide P53 was included to
further evaluate the performance of LiGaMD3 (Fig. 2). LiGaMD3 could capture multiple times of

P53 binding and dissociation in 2000ns simulations (Fig. 2).
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Figure 1. Comparison of LiGaMD and LiGaMD3 simulations on the MDM2 protein bound by the Nutlin
3 small molecule and PMI peptide: Computational models of the MDM2 bound by the Nutlin 3 small
molecule (A) and PMI peptide (D); Time courses of ligand root-mean-square deviation (RMSD) relative to
the experimental bound structure (PDB ID: 5C5A) in the MDM2-Nutlin 3 system calculated from
LiGaMD3 (B) and LiGaMD (C) simulations, respectively. Time courses of peptide RMSD relative to the
experimental bound structure (PDB ID: 3EQB) in the MDM2-PMI calculated from LiGaMD3 (E) and

LiGaMD?2 (F) simulations, respectively.
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Figure 2. (A) Computational model of the MDM?2 bound by the P53 peptide; (B) Time courses of peptide

P53 RMSD relative to the experimental bound structure (PDB ID: 1YCR) in the MDM2-P53 system

calculated from LiGaMD3 simulations.

The LiGaMD3 simulations of the MDM?2-Nutlin 3 system yielded an average boost potential of
12.92 kcal/mol with a standard deviation of 4.05 kcal/mol (Table 1). In contrast, achieving ligand
dissociation and binding required a significantly larger boost in LiGaMD, with an average boost
potential of 94.92 kcal/mol and a standard deviation of 4.01 kcal/mol (Table 1). For the MDM2-
PMI and MDM2-P53 systems, LiGaMD3 simulations recorded average boost potentials of
45.11£7.04 kcal/mol and 45.59+7.03 kcal/mol, respectively (Table 1). Notably, the boost
potentials applied in simulations of peptide-protein systems are much higher compared to that of
small molecule-MDM?2 system. LiGaMD3 required substantially smaller boosts than LiGaMD
simulations, indicating its enhanced efficiency in sampling, which was also advantageous for

accurate energetic and kinetic reweighting.
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RMSDs of the small-molecule/peptide relative to their experimental bound structures with the
MDM2 protein aligned were computed (Figs. 1, 2 & Table 1) to calculate the number of small-
molecule/peptide dissociation (Np) and binding (Np) events in each of the 2,000 ns LiGaMD3
simulations. With close examination of the ligand/peptide binding trajectories, RMSD cutoffs of
the ligand unbound and bound states were set to >15 A and <5.0 A, respectively. Due to
fluctuations in small-molecule/peptide-protein interactions, we recorded only the corresponding
binding and dissociation events that lasted for more than 1.0 ns. In 2,000 ns simulations of the
MDM2-Nutlin 3 system, LiGaMD3 consistently captured 5-7 binding and 5-7 dissociation events,
whereas LiGaMD captured only 3-5 binding and 3-6 dissociation events (Fig. 1 & Table 1). The
total number of binding events recorded in LiGaMD3 was 18, compared to 11 in LiGaMD. The
total number of dissociation events in LiGaMD3 and LiGaMD was 17 and 13, respectively. Hence,
LiGaMD3 demonstrated improved efficiency in capturing both binding and dissociation events
compared to LiGaMD. Additionally, no rebinding events were observed in LiGaMD simulations
of PMI to MDM2 (Fig. 1F), whereas each 2,000 ns LiGaMD3 simulation successfully captured 4-
6 binding and 4-6 dissociation events, indicating its superior capability in capturing flexible
peptide-protein interactions (Fig. 1E & Table 1). Similar numbers of peptide dissociation (5-6)
and binding (4-5) events were observed in simulations of the MDM2-P53 system (Fig. 2 & Table
1). In summary, LiGaMD3 simulations successfully captured repetitive dissociation and rebinding
events of both small-molecules and flexible peptides to the MDM?2 on three model systems: Nutlin
3 bound to MDM2 (MDM2-Nutlin 3), PMI bound to MDM2 (MDM2-PMI), and P53 bound to

MDM2 (MDM2-P53) (Figs. 1,2 & S1).

19



Ligand and peptide binding kinetic rates and free energies calculated from LiGaMD3
agreed with experimental data.

The successful simulations of repetitive small-molecule and flexible peptide binding and
dissociation in LiGaMD3 allowed us to predict the small-molecule and peptide binding kinetic
rate constants (Fig. S2 & Table 2). We recorded the time periods for the small-molecule and
peptide found in the bound (73) and unbound (7v) states throughout the LiGaMD and LiGaMD?3
simulations. Without reweighting, the binding rate constant (k,,*) and dissociation rate constant
(kop®) for Nutlin 3 were directly calculated from the LiGaMD trajectories as 1.69 + 0.28x10° M-
L'l and 3.68 + 2.10x10° s'! (Table 2). In comparison, in LiGaMD3, these rate constants were
calculated as 1.16 + 0.28x10° M!-s"! and 2.77 + 0.75x107 s”!, respectively (Table 2). The peptide
binding rate constants (k.,*) were directly calculated from the LiGaMD?3 trajectories as 8.57 +
1.37x10% M1s! and 1.02+£0.29 x 10° M!-s! for the MDM2-PMI and MDM2-P53 systems,
respectively (Table 2).

Table 2 Comparison of kinetic rates obtained from experimental data and LiGaMD3 simulations
for ligand binding to MDM2. k,, and k. are the kinetic dissociation and binding rate constants,

respectively, from experimental data or LiGaMD3 simulations with reweighting using Kramers’

rate theory. k;, and kg, are the accelerated kinetic dissociation and binding rate constants
calculated directly from LiGaMD3 simulations without reweighting. Alogk,, = log kSi™ —

exp

logkoy Alogk,sr = logksfF —logky?

System | Method kon MUYy | Adlog(kon) | kop(sV) | Aloglkep) | kpn (M5 Kopr (s
Experiment 3.3 x 107 - 0.48 - - -

BI/{IDl\lﬂ- LiGaMD 5.26+0.65x10° 1.82 69.51£58.37 1.36 1.69+0.28x10° 3.6842.10x10°

U 1 iGaMD3 | g 2944 80x10° 137 15.45:4.69 1.39 1.16£0.31x10° | 2.77+0.75x107
MDM2- | Experiment 527% 10° - 0.037 - - -

PMI LiGaMD3 | 5.76+4.80x108 0.04 2.66+1.73 1.85 8.51+1.37x108 3.41+0.96x107
MDM2- | Experiment 9.2x10° - 2.06 -

P53 LiGaMD3 | 8.03+7.42x 10° 1.94 28.0+19.2 1.13 1.02+0.29x10° 1.95+0.73x107

20




Next, we performed reweighting on the LiGaMD and LiGaMD3 simulations of ligand-MDM?2
systems to calculate acceleration factors for the small-molecule/peptide binding and dissociation
processes (Table S2) and to recover the original kinetic rate constants using the Kramers’ rate
theory (Table 2). In the LiGaMD simulations, the dissociation free energy barrier (AFop)
significantly decreased from 9.10+1.26 kcal/mol in the reweighted PMF profiles to 2.77+1.76
kcal/mol in the modified PMF profiles for the system of MDM2-Nutlin 3 (Fig. S1 and Table S2).
Similarly, for the MDM2-Nutlin 3, MDM2-PMI, and MDM2-P53 systems, the dissociation free
energy barrier (AFoy) significantly decreased from 9.65+0.76, 9.05+£0.23, 7.23+0.40 kcal/mol in
the reweighted PMF profiles to 0.79+0.10, 0.89+0.07, 0.67+0.18 kcal/mol in the modified PMF
profiles in LiGaMD3 simulations, respectively (Table S1 and Fig. S1). Curvatures of the
reweighed (w) and modified (w*, no reweighting) free energy profiles were calculated near the
ligand Bound (“B”’) and Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well
as the ratio of apparent diffusion coefficients calculated from LiGaMD and LiGaMD3 simulations
with reweighting (D) and without reweighting (modified, D*) (Table S2). According to the
Kramers’ rate theory, the association and dissociation of the Nutline 3 small molecule in LiGaMD
were accelerated by 0.32 and 5.30x10* times. In contrast, in LiGaMD3, the association and
dissociation of the Nutlin 3 were accelerated by 1.40 and 1.79x10° times, respectively. Moreover,
the association of the peptide in the LiGaMD3 was accelerated by 1.47 and 1.27 times for the
MDM2-PMI and MDM2-P53 systems, respectively. While the peptide dissociation was
significantly accelerated by 1.28x107 and 6.96x10° times for the MDM2-PMI and MDM2-P53
systems, respectively. Therefore, the reweighted k., in the MDM2-Nutlin 3 system with LiGaMD
and LiGaMD3 were calculated as 5.26+0.65x10° M!-s! and 8.29+4.80x103 M!-s°!, respectively,

being in consistent with the experimental values of 3.3x10” M!-s’l, Similarly, for the MDM2-PMI
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and MDM2-P53 systems, the reweighted ko, values were predicted as 5.76+4.80x10® and
8.03+7.42x10%, respectively, being consistent with the corresponding experimental values’® of
5.27x10% and 9.20x10° M!-s"{(Table 2). The reweighted oz values for the Nutlin 3 in the MDM2-
Nutline 3 with LiGaMD and LiGaMD3 were calculated as 69.51+58.37 s! and 15.45+4.69 s!,
being in accordance with the experimental of 0.48 s!. For the peptide in the MDM2-PMI and
MDM2-P53 systems, the reweighted peptide ko were calculated from LiGaMD3 simulations as
2.66+1.73, 28.0+19.2 s°!, in agreement with the corresponding experimental values’® of 0.037 and

2.06 s!, respectively.

Based on the ligand binding kinetic rates (ko and k,p), we calculated the ligand binding free
energies as AG = —RTLn(kO il kon). The resulting binding free energies in the MDM2-Nutlin 3
system with LiGaMD and LiGaMD3 were -10.18+2.22 kcal/mol and -11.02+0.59 kcal/mol,
respectively, demonstrating high consistency with the experimental value of -10.96 kcal/mol. In
the MDM2-PMI and MDM2-P53 systems (Table 1), the calculated peptide binding free energy
values were -11.86+1.16 kcal/mol and -10.59+0.11 kcal/mol, exhibiting strong agreement with the
corresponding experimental values of -12.02 kcal/mol and -9.27 kcal/mol respectively. The root-
mean square error (RMSE) of binding free energy for the three systems was only 0.94 kcal/mol.
Hence, LiGaMD3 simulations achieved both efficient sampling and accurate small-

molecule/peptide binding thermodynamics and kinetics calculations.

Multiple ligand binding and dissociation pathways were identified from LiGaMD3

simulations.
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We closely examined the LiGaMD3 trajectories to explore the pathways involved in the small-
molecule/peptide binding and dissociation of the MDM2. Two primary pathways were identified
for the binding and dissociation, denoted as “pathway 1” (residues 65-95, including motifs 3, f1°,
al’ and f2’) and “pathway 2” (residues 97-106, a2’ helix) (Figs. 3 and S2). These pathways were
consistently observed in the binding and dissociation of Nutlin 3, PMI and P53. Binding of Nutlin
3 via pathways 1 and 2 were observed 13 times and 5 times, respectively (Fig. 3B). The same
pathways 1 and 2 were identified in the simulations of the MDM2-PMI and MDM2-P53 systems.
Peptide binding in the MDM2-PMI and MDM2-P53 systems occurred along pathways 1 and 2 for
9 and 7 times, respectively (Fig. 3B). Similarly, peptide P53 binding events along pathways 1 and
2 were 8 and 6, respectively (Fig. 3B). The same pathways were identified for the dissociation of
the MDM2-Nutlin 3, MDM2-PMI and MDM2-P53 systems (Fig. 3C). Dissociation of Nutlin-3
via pathways 1 and 2 were observed 11 and 6 times, respectively (Fig. 3C). Peptide dissociation
in the MDM2-PMI system along pathways 1 and 2 occurred 9 and 9 times, respectively (Fig. 3C).
Similarly, peptide P53 dissociation along pathways 1 and 2 occurred 6 and 8 times, respectively
(Fig. 3C). Note that the number of binding/dissociation events along different pathways were
counted directly from the simulations without reweighting. Nevertheless, with GaMD enhanced
sampling formula, the overall shape of the system free energy profiles should be maintained even
with the boost potential*’. This suggests that the absolute number of the binding and dissociation
events may not be meaningful, but the relative preference of the pathways derived from the
LiGaMD3 simulations could be still used. Moreover, one can use the reweighted free energy

profiles (e.g., those in Fig. 4) to examine the energetic preference of the ligand pathways.
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Figure 4. 2D Potential of Mean Force (PMF) free energy profiles and low-energy conformational states of
ligand/peptide binding to the MDM2: (A) 2D PMF profile regarding the ligand heavy atom RMSD and the
number of contacts between the ligand and residues 65-95 of MDM2 in the LiGaMD?3 simulations of Nutlin
3 binding to the MDM2 protein; (B) Low-energy “Intermediate” conformations “I1” (blue) and “12” (red)
as identified from the 2D PMF profiles of Nutlin 3 binding to MDM2 protein; (C-D) Important ligand-
MDM?2 interactions in the low-energy conformations “I1” (C) and 12 (D). (E) 2D PMF profile regarding
the peptide backbone RMSD and the number of contacts between the PMI and residues 65-95 of the MDM2
in the LiGaMD3 simulations of PMI binding to the MDM?2 protein; (F) Low-energy “Intermediate”
conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF profiles of PMI binding to MDM?2
protein; (G-H) Important PMI-MDM?2 interactions in the low-energy conformations “I1” (G) and 12 (H).
(I) 2D PMF profile regarding the peptide backbone RMSD and the number of contacts between the P53
and residues 65-95 of the MDM2 in the LiGaMD3 simulations of P53 binding to the MDM?2 protein; (J)
Low-energy “Intermediate” conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF
profiles of P53 binding to MDM?2 protein; (K-L) Important P53-MDM2 interactions in the low-energy

conformations “I1” (K) and 12 (L).

Small-molecule and Peptide binding to the MDM2 involved Induced Fit

After identifying the pathway 1, which involves motifs B3-B1’°-a1’-f2’ (residues 65-95), we further
investigated the relationship between conformational changes within this region upon small-
molecule/peptide binding. Therefore, the ligand RMSD and the number of contacts between the
ligand and residues 65-95 in MDM2 (denoted as Ncontact) Were used as reaction coordinates to
calculate 2D PMF profiles (Figs. 4A-4C). Four low-energy states were identified in the 2D PMF
profile of the MDM2-Nutlin 3 system including the Bound (“B”), Intermediate (“I1” and “I2”),
and Unbound (“U”) (Fig. 4A). The ligand RMSD and Ncontact Of these states centered around (3.0

A, 24),(9.0A,37),(20.1 A, 0), and (50.0 A, 0), respectively (Fig. 4A). In the MDM2-PMI system,

25



four low-energy states were identified: Bound (“B”), Intermediate (“I11” and “I2”), and Unbound
(“U”) (Fig. 4E), with the PMI peptide RMSD and Neontact centered around (3.5 A, 60), (9.7 A, 85),
(27.5 A, 0), and (50 A, 0), respectively (Fig. 4E). Similarly, in the MDM2-P53 system, four low-
energy states were observed: Bound (“B”), Intermediate (“I1” and “I2”"), and Unbound (“U”) states
(Fig. 41), with the P53 peptide RMSD and Neonwet centered around (4.0 A, 64), (8.5 A, 78), (30.5
A, 0), and (60.8 A, 0), respectively (Fig. 41).Compared to the Bound state, the intermediate “I1”
and “I2” states exhibited significant conformational alterations in the MDM2-Nutlin 3, MDM2-
PMI, and MDM2-P53 systems (Figs. 4B, 4F & 4J). In the intermediate “I1”” and “I2” states, motifs
B3-p1’-al’-P2° (residues 65-95) in the MDM2-Nutlin3 system moved outward significantly
compared to the X-ray Bound structures, resulting in the opening of the binding pocket (Fig. 4B).
Two critical interactions were identified in “I1” state: a hydrogen bond interaction between
MDM2:Q72 and Nutlin 3 and aromatic interaction between MDM2:Y67 and Nutlin 3 (Fig. 4C).
While in the “I2” state, I1-I1 interactions were observed between MDM2:Y77 or MDM2:Y 81 and
Nutlin 3 (Figs. 4C&4D). In the MDM2-PMI system, significant conformational changes occurred
upon peptide PMI binding, involving particularly motifs f3-f1’-a1’-p2’ (residues 65-95), resulting
in distinct open and closed conformations in the “I1” and “I2” states, respectively (Fig. 4F). In the
“I1” state, hydrogen bonds were formed between MDM2:Q72 and PMI:W7, MDM2:Q72 and
PMI:D5 (Figs. 4G). In the “I2” state, II-II interactions were formed between MDM2:Y77-
PMIL:Y6, MDM2:Y81 and PMI: W7 (Figs. 4H). In the MDM2-P53 system, significant
conformational changes occurred upon peptide P53 binding, involving particularly motifs 3-p1°-
al’-B2’ (residues 65-95), resulting in a more closed conformation in the “I1” and “I2” states (Fig.
4J). In the “I1” state, hydrogen bonds were formed between MDM2:Q72 and P53:L.22,

MDM2:Y67 and P53:D21 (Fig. 4K). In the “I2” state, II-II interactions were formed between
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MDM2:Y77 and P53:F19, MDM2:Y81 and P53:F18 (Figs. 4K&4L.). Hence, residues Q72, Y67,
Y77 and Y81 in the MDM2 protein play pivotal roles during ligand binding in the intermediate

conformational states.

In order to further explore the mechanism of ligand binding to the MDM2, we computed 2D PMF
free energy profiles to characterize conformational changes of both the protein and ligand during
binding. The intermediate “I1” and “I2” states showed quite large conformational changes in the
motifs B3-B1’-al’-B2° (residues 65-95). Therefore, we calculated 2D PMF profiles regarding the
RMSD of the ligand and the MDM2 motifs B3-f1°-al’-B2’ (residues 65-95) RMSD (denoted as
Loop RMSD) relative to the experimental bound structures with the protein aligned (Figs. SA-5C).
For the MDM2-Nutlin 3 system, three low-energy states were identified from the 2D PMF profile,
including the Bound, Intermediate “I2” and Unbound (Figs. SA). The protein motifs $3-p1’-al’-
B2’ at the peptide-binding site adopted the “Open” conformation in the 12 state (Figs. SA and 5B).
The peptide and loop RMSDs centered around (4.5 A, 1.0 A), (18.0 A, 2.9 A) and (59.0 A, 2.0 A)
in the Bound “B”, Intermediate “I2” and Unbound “U” states, respectively (Fig. 5A). For the
MDM2-PMI system, three low-energy states were identified from the 2D PMF profile, including
the Bound “B”, Intermediate “I1” and Unbound “U”. The peptide and loop RMSDs centered
around (5.0 A, 0.8 A), (10.2 A, 3.0 A) and (58.2 A, 2.0 A) in the “B”, “I1” and “U” states,
respectively (Figs. 5B). Four low-energy conformational states were identified in the MDM2-P53
system. The peptide and loop RMSDs centered around (5.2 A, 0.8 A), (10.5 A, 3.9 A), (31.0 A,
4.0 A)and (61.0 A, 1.9 A) in the Bound “B”, Intermediate “I1” and “I2”, and Unbound “U” states,

respectively (Fig. 5C).
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Figure 5. (A-C) 2D PMF profiles regarding the ligand heavy atom RMSD or peptide backbone RMSD and
the MDM2 loop (residues 65-95) RMSD relative to their corresponding experimental bound structure in
the LiGaMD3 simulations of Nutlin 3(A), PMI peptide (B) and P53 peptide (C) binding to the MDM2
protein; (D-F) 2D PMF profiles regarding the distance between the ligand/peptide and MDM?2 binding
pocket and the Rg of the substrates in the LiGaMD3 simulations of Nutlin 3 (D), PMI peptide (E) and P53

(F) binding to the MDM2 protein.

In addition, we examined the conformational dynamics exhibited by the small molecule
and peptides during their binding processes. In this regard, the ligand radius of gyration (R;) was
calculated and monitored for possible conformational changes. The small-molecule/peptide R, and
the center-of-mass distance between protein pocket and ligand (denoted as dmpma-substrate) Were
used as reaction coordinates to calculate 2D PMF profiles. From the reweighted 2D PMF profiles
(Fig. 5D-5F), we identified a low-energy “Bound” state in all three systems, for which the dvpmo-

substrate and Rg in the MDM2-Nutlin3, MDM2-PMI and MDM2-P53 systems centered around (8.6
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A, 44 A), (14.0 A, 6.3 A) and (13.0 A, 8.3 A), respectively. This suggested that successful
sampling of complete small-molecule/peptide binding was captured in the LiGaMD3 simulations.
Notably, in the intermediate states, the peptides sampled a wider range of R, and the protein motifs
B3-B1’-al’-P2’ exhibited higher RMSDs compared with the bound states. Therefore, the small-
molecule and peptides binding to the MDM2 protein showed predominantly an “induced-fit”

mechanism.

Discussions
We have presented a new LiGaMD3 method to improve sampling efficiency and accurately predict
thermodynamic and kinetic properties associated with the binding of small molecules and highly flexible
peptides. LiGaMD3 works by selectively boosting the essential non-bonded interaction potential energy of
the ligand, as well as the remaining non-bonded potential energy and all the bonded potential of the system.
Non-bonded potential interactions play a critical role in ligand dissociation and rebinding, while the bonded
potentials mainly contribute to conformational changes of the system. Utilizing microsecond timescale
simulations, LiGaMD?3 effectively captures repetitive dissociation and rebinding processes of both small
molecules and peptides in three model systems of MDM?2 bound by different small molecules and flexible
peptides. These simulations allowed for simultaneous predictions of ligand/peptide binding free energies
and kinetic rate constants. However, it remains challenging to achieve highly accurate predictions of ligand
binding kinetics. The prediction errors of binding (Alogk,,) and dissociate (Alogk.y) rate constants
calculated form LiGaMD3simulations are mostly in the range of -2 to 2 (Table 1), which fall within the
acceptable accuracy °.

In order to achieve proper acceleration levels, six key parameters need to be fine-tuned in LiGaMD3,
including the iEP, iED, iEB, cop, Gop, and oos. It generally provides more powerful sampling to set the
threshold energy for applying the boost potential to the upper bound (iE=2) than to the lower bound (iE=1).

Due to typically high energy barriers for ligand dissociation and binding, the upper-bound mode (iEP=2
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and iED=2) are usually recommended for the first and second boosts in LiGaMD3 in effective sampling of
both ligand dissociation and rebinding. The third boost in LiGaMD3 focuses on conformational changes,
which require lower boost in most cases. Consequently, the lower-bound mode (iEB=1) is generally
recommended for this purpose. The energy barrier for ligand dissociation is typically higher than that for
ligand binding. Starting from the bound state, once the applied boost allows the ligand to overcome the
dissociation energy barrier, the same boost will likely overcome the energy barrier for ligand rebinding.
However, if the boost is too high, it could become challenging for the ligand rebinding. Therefore, one rule
for choosing the parameter values is that the acceleration should be sufficient to overcome the dissociation
energy barrier but not too high to prevent rebinding. For oop, one may start with a large value (e.g., 8.0
kcal/mol) and then decrease it gradually to find one that enables ligand dissociation while maintaining the
ligand rebinding ability in LiGaMD?3 testing equilibration simulations, for which default values could be
used for oop, and ooz (6.0 kcal/mol). Once a final set of the parameters is determined, one can proceed to
the LiGaMD3 production simulations.

LiGaMD3 simulations revealed the critical role of nonbonded potentials in governing
ligand dissociation and rebinding process, being consistent with previous computational findings*!-
54,86 Non-bonded interactions have been recognized as one of the main factors that govern the

66-68 Furthermore, our simulations identified multiple pathways

ligand binding to its target protein
for ligand binding and dissociation and revealed an “induced-fit” mechanism of ligand binding,
being consistent with earlier simulation results?? %%, Compared with the cMD?*®, Metadynamics?®
2, Weighted Ensemble,” MSM>? and Replica Exchange MD simulations®, LiGaMD3 offers a
more efficient and user-friendly approach. LiGaMD3 also shows advantages over previous
LiGaMD, particularly in its ability to accurately capture peptide binding to proteins. While
microsecond cMD simulations have proven effective in capturing small molecule and highly

flexible peptide binding to target proteins, the slower kinetics of ligand dissociation remain beyond

the accessible timescale of cMD. Weighted Ensemble>* and MSM>? methods have shown promise
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in accurately predicting small molecule and peptide binding kinetics, but typically require
extensive computational resources, often involving tens-of-microsecond simulations®2.
Metadynamics, with carefully designed CVs, can efficiently capture both ligand binding and
unbinding. However, the predefined CVs may impose constraints on binding pathways and
conformational space. The approach may also encounter challenges such as the “hidden energy
barrier” problem and slow convergence if important CVs are omitted.? *© Overall, previous
methods have been computationally demanding, necessitating significantly longer simulations to
adequately characterize ligand binding thermodynamics and kinetics. LiGaMD3 captures the
repetitive small-molecule and peptide dissociation and binding events within only microsecond
simulations, offering an efficient approach to characterizing ligand binding dynamics and
extending the capabilities of the LiGaMD methodology to binding of highly flexible peptides.
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Table S1 The ligand bound and unbound time periods (ts and ty) recorded from LiGaMD3
simulations of the ligand/peptide-MDM?2 binding systems.

System Method 1D g (ns) Ty (ns)
MDM?2- LiGaMD S%ml 74,321,19,172,146 42.4,395,56,97,36,632
Nutlin Sim2 | 187,1026,209 87,317,184
Sim3 | 397,334,706 26,66,67,404
MDM2- | LiGaMD3 | Siml | 14,55.7,23,83,23,115 25,240.9,196,600,623
Nutlin Sim2 | 61.6,53,87,12,65,47,8 272,137,338,20,219,137,164
Sim3 | 14,30,30,24,23 189,628,551,119,392
MDM2- | LiGaMD3 | Siml | 360.7,191.6,64.29,10.5,32.9,17.1 85.2,17.1,26.3,40.5,43.3,101.5
PMI Sim2 | 456.4,47.2,18.4 261.1,110.6,96.3
Sim3 | 68.17,147.0,57.6,10.5,9.8,45.0,8.9 | 129.8,35.4,56.6,45.4,108.2,59.2,221.0
MDM2- | LiGaMD3 | Siml | 60,17,29,25,30 250,136,249,153.7,534,380
P53 Sim2 | 379,41,30,17 306,201,390,197,434
Sim3 | 38.5,23.7,88,24,84 100.7,115,118,207,407,787

Table S2 Energy barriers of ligand/peptide-MDM3 dissociation (“off”) and binding (“on”
calculated from the reweighed (AF) and modified (no reweighting, AF¥*) free energy profiles,
curvatures of the reweighed (w) and modified (w*) free energy profiles near the ligand/peptide
Bound (“B”), Barrier (“Br”’) and Unbound (“U”) states, and the ratio of apparent diffusion
coefficients calculated from the LiGaMD3 simulations without reweighting (modified, D*) and
with reweighting (D).

AF AF*
Sim (keal/mol) (keal/mol) i e DD
Off | On | Off | On B Br U B Br U off On
LiGaMD | 9.10+ | 2.77 | 2.68 | 0.63 | 1.54 0.30 0.22 078 | 0.069 | 0.020 | 143 | 0.16
MDM2- 1.26 | £1.76 | £0.25 | +0.16 | +0.36 +0.30 +0.17 | £0.028 | £0.009 | +£0.005 | +0.44 | +0.03

Nutlin | LiGaMD3 | 9.65 | 0.79 | 0.76 0.33 10.28 0.12 0.012 1.16 0.14 0.032 0.96 0.18
+0.76 | £0.10 | £0.18 | £0.15 | +£0.60 +0.07 +0.006 | +0.27 | +0.05 | +0.009 | £0.81 | +0.05

MDM2- | LiGaMD3 | 9.05+ | 0.89 1.38 0.23 0.94+0 | 0.0097 0.048 7.21 0.066 0.025 0.13 0.17

PMI 023 | £0.07 | £0.12 | +0.06 53 | £0.0043 | £0.020 | +0.30 | £0.010 | +0.003 | +0.03 | +0.004
MDM2- | LiGaMD3 | 723+ | 067 | 1.16 | 0.093 | 0.43 0.023 0.023 7.04 | 0.062 | 0.026 | 0.25 0.23
P53 0.40 | £0.18 | £0.04 | £0.031 | £0.20 | +0.012 | +0.018 | +0.10 | £0.018 | +0.002 | +£0.08 | +0.20
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Figure S1. LiGaMD3 simulations captured repetitive dissociation and binding of the Nutlin 3
small molecule and highly flexible PMI and P53 peptides to the MDM2 protein: (A-B) time
courses of the distance between the MDM2 and small molecule Nutlin 3 calculated from three
independent 2 us LiGaMD (A) and LiGaMD3 (B) simulations; (C-D) time courses of the distance
between the MDM2 and peptide from three independent 2 pus LiGaMD3 simulations of (C) PMI
and (D) P53 binding to MDM2; (E-F) The corresponding reweighted (black) and non-reweighted
(red) PMF profiles of the distance between MDM?2 and ligand averaged over three LiGaMD (E)
and LiGaMD3 (F) simulations of Nutlin 3 binding to MDM2; (G-H) )The corresponding PMF
profiles of the MDM2-peptide distances averaged over three LiGaMD3 simulations of (G) PMI
and (H) P53 binding to MDM2. Error bars are standard deviations of the free energy values
calculated from three LiGaMD and LiGaMD3 simulations.



Figure S2. Cartoon representation of the MDM2 with each motif labeled. Residues predominantly
involved in “pathway 1” were colored in red, including the 3, B1° and B2’ strands and the al’
helix (residues 65-95). Residues mainly involved in “pathway 2” were colored in blue, including
the a2’ helix (residues 97-106).



	LiGaMD3-SI.pdf
	Table S2 Energy barriers of ligand/peptide-MDM3 dissociation (“off”) and binding (“on”) calculated from the reweighed (∆F) and modified (no reweighting, ∆F*) free energy profiles, curvatures of the reweighed (w) and modified (,𝑤-∗.) free energy profi...


