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Abstract 

Introduction: 

For rational drug design, it is crucial to understand the receptor-drug binding processes and 

mechanisms. A new era for the use of computer simulations in predicting drug-receptor 

interactions at an atomic level has begun with remarkable advances in supercomputing and 

methodological breakthroughs. 

Areas covered: 

End-point free energy calculation methods such as Molecular Mechanics/Poisson Boltzmann 

Surface Area (MM/PBSA) or Molecular-Mechanics/Generalized Born Surface Area (MM/GBSA), 

free energy perturbation (FEP), and thermodynamic integration (TI) are commonly used for 
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binding free energy calculations in drug discovery. In addition, kinetic dissociation, and 

association rate constants (𝑘!"" and 𝑘!#) play critical roles in the function of drugs. Nowadays, 

Molecular Dynamics (MD) and enhanced sampling simulations are increasingly being used in drug 

discovery. Here, we present a review of the computational techniques used in drug binding free 

energy and kinetics calculations. 

Expert Opinions: 

 The applications of computational methods in drug discovery and design are expanding, thanks 

to improved predictions of the binding free energy and kinetic rates of drug molecules. Recent 

microsecond-timescale enhanced sampling simulations have made it possible to accurately capture 

repetitive ligand binding and dissociation, facilitating more efficient and accurate calculations of 

ligand binding free energy and kinetics.  

Keywords: Computer-aided drug design, Molecular Dynamics, Enhanced sampling, Free Energy, 

Kinetics. 

 

Article Highlights: 

• Pharmacodynamics prediction using computer simulations is growing rapidly in the field 

of drug design and discovery. 

• Accurate prediction of 𝑘!" and 𝑘!## using computational techniques is currently trending 

in the field of drug design. 

• MM/PBSA, MM/GBSA, FEP and TI are common techniques used in free energy 

calculations. 

• Enhanced sampling methods are advantageous in exploring drug binding and dissociation 

pathways and kinetics. 



 3 

 

 

 

1 Introduction 

Drug discovery and development is a time-consuming and expensive process. A new drug's 

development is expected to typically cost $2.6 billion and take 10–12 years to reach the consumer 

market (1). A poor understanding of pharmacodynamics of drug action has hindered effective 

design of drugs. However, considering recent advances in molecular modeling and simulation 

algorithms, pharmaceutical companies and scientists have increased their efforts to predict binding 

free energies and kinetics of drugs using computational approaches (2-8).  

The use of computer simulations to predict ligand binding kinetics and thermodynamics to 

therapeutic targets are gaining increasing recognition in recent years (9). At the forefront, 

molecular docking and scoring are crucial computational techniques in drug design (10, 11), used 

to predict drug binding modes and assess their binding affinities. While these methods are known 

for their efficiency, their accuracy is limited (10). Specifically, their accuracy wanes when 

distinguishing drugs with subtle differences in binding affinity, highlighting a crucial limitation in 

their applicability. A typical example where molecular docking might fall short is in estimating the 

binding affinities of congeneric ligands (ligands with the same core structure but differs in certain 

substituents or functional group attached to the core) and drugs with less than a tenfold difference 

in binding affinity (10, 11).  

To address these limitations, molecular dynamics (MD) simulations offer valuable insights into 

molecular interactions under varied environmental conditions. Nonetheless, conventional MD 

simulations often suffer from insufficient sampling of high energy barriers in complex systems 



 4 

(12). These limitations can lead to inefficiencies or inaccuracies in simulations, especially when 

dealing with dynamic systems exhibiting significant conformational changes (13).  

In response to these challenges, advancement in computational technology (14), have paved the 

way for the adoption of alchemical free energy methods such as Free Energy Perturbation (FEP) 

and Thermodynamic Integration (TI) (15). These methods and their variants offer rigorous 

approaches for calculating binding free energies, benefitting from recent innovations like those 

introduced by the York lab in 2023, which optimizes sampling of alchemical transformation 

pathways in AMBER software suite using a novel λ-dependent weight functions and softcore 

potential to increase sampling efficiency and ensure stable performance at critical points where λ 

is equal to 0 or 1 (15,16). Despite these advancements, the substantial computational demands of 

such detailed simulations make the adoption of more approximate methods such as Molecular 

Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular-Mechanics/Generalized 

Born Surface Area (MM/GBSA) (17,18,19,20,21,22) more attractive.  

MM/PB(GB)SA offer a compromise between computational demand and the depth of insight into 

ligand binding processes and as such, it may lead to limited precision in predicting binding energies 

(10). Furthermore, the emergence of enhanced sampling simulations marks a significant stride in 

understanding molecular systems’ dynamic behavior, especially in studies of ligand binding 

kinetics (5, 6). These techniques, particularly useful in ligand binding kinetics studies, enrich our 

comprehension of how molecules interact over time, providing a more complete picture of the 

binding process from docking predictions through to detailed kinetic and thermodynamic 

evaluations.  

Enhanced sampling techniques using pre-defined collective variables (CVs) for effective 

simulations include, but are not limited, to umbrella sampling (23), adaptive biasing force (ABF) 
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(24), Metadynamics (MetaD) (25), conformational flooding (26), and variationally enhanced 

sampling (VES) (27). These techniques biases MD simulations to pinpoint various transition states 

along selected CVs. This is achieved through modifying the forces or employing external bias 

potentials. On the other hand, CV-free methods that have been applied to investigate ligand binding 

free energies and kinetics include Gaussian accelerated molecular dynamics variant (LiGaMD) (5),  

𝜏 random accelerated molecular dynamics (𝜏RAMD) (28), and dissipation-corrected targeted MD 

(dcTMD) (29), etc. 

We will discuss principles of free energy methods including MM-PBSA, MM-GBSA, FEP and TI 

with their applications and limitations, as well as enhanced sampling methods for the calculations 

of ligand binding thermodynamics and kinetics.  

2 Methods for binding free energy calculations 

In this section, we explore various computational approaches for predicting binding free energies. 

Specifically, we delve into some methods, applications, and limitations of MM/PBAS, MM/GBSA, 

FEP and TI. These methods are relevant in quantitatively estimating the binding free energies of 

protein-ligand complexes. 

2.1 Molecular Mechanics/Poisson Boltzmann Surface Area and Molecular 

Mechanics/Generalized Born Surface Area (MM/PBSA and MM/GBSA) 

The MM/PBSA and MM/GBSA methods are popular for computing the ligand binding free energy 

(10,30). In principle, the MM/PB(GB)SA accounts for the energetic contribution per residue by 

decomposing the total system’s free energy into various components, such as van der Waals, 

electrostatics, and the internal energies (bond, angle, and dihedral energies) (10,31). In practice, 

the MM/PB(GB)SA calculate the binding free energy between a protein and a ligand by estimating 

the free energy of the protein-ligand complex (PL), the free energy of the unbound protein (P), and 
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the free energy of the unbound ligand (L) separately. The binding free energy 𝛥𝐺$%#&  is the 

calculated using the equation below: 

𝛥𝐺$%#& =	𝐺'( 	− (𝐺' 	+ 		𝐺(), 

where 𝐺'( is the free energy of the protein-ligand complex, 𝐺' is the free energy of the unbound 

protein, and 𝐺( is the free energy of the unbound ligand (10,31). The rationale for MM/PB(GB)SA 

methods is rooted in a strategic compromise of optimizing computational efficiency while still 

maintaining a significant degree of accuracy. This approach allows simulations and analyses of 

molecular interactions within a feasible timeframe and with available computational resources, 

thus accelerating the pace of drug discovery. By judiciously balancing these two critical factors, 

MM/PB(GB)SA provides a powerful toolkit for enabling the exploration of complex molecular 

phenomena that were previously beyond reach due to computational limitations (32,33,34).                          

In most drug discovery efforts, the technique of virtual screening, when used in conjunction with 

MM/PB(GB)SA methods, has proven to be highly effective. This combination offers crucial 

insights by improving the ranking of binding affinities, accurately predicting how effectively 

different molecules will bind to a target and identifying the correct mode of ligand binding. 

Essentially, this approach enhances the precision of identifying promising compounds early in the 

drug discovery workflow (35,36,37,38,39,40,41). To make MM/PB(GB)SA more accessible, 

Wang et al. (42) developed a new webserver called fastDRH in 2022. This webserver integrates 

Autodock Vina and Autodock-GPU for the docking process, which predicts the optimal positioning 

of small molecules within the binding sites of target proteins. Additionally, it employs a 

streamlined, or ‘structure-truncated’ version of the MM/PB(GB)SA method to refine the docking 

calculations. This refined approach focuses on the most relevant parts of the molecules to 

efficiently predict the binding free energies. Thus, it ensures speed and less computational demand 



 7 

without sacrificing accuracy (42). All these features are integrated into a platform that is easy to 

use for both experts and novices. Moreover, parameter tuning helps to improve the accuracy of 

MM/PB(GB)SA (43). For example, Wang et al. (43) recommend some parameters including a 

membrane dielectric constant of 7.0 and an internal dielectric constant of 20.0. These parameters 

have been found to recapitulate experimental binding affinity in soluble proteins and membrane-

bound proteins (43).  Rastelli et al. (44) showed that MM/PB(GB)SA techniques achieved larger 

Area Under Curve (AUC) and enrichment factor values than conventional docking approaches in 

virtual screening. Additionally, Zhang et al. (39) extended this evaluation to 38 drug targets in the 

Database for Useful Decoys (DUD) database and obtained a similar conclusion. In another 

example, Zhong et al. (45) used the interaction entropy (IE) technique in the MM/PBSA along 

with two MM/GBSA models (GBHCT and GBOBC1) to study the role of entropy and computed the 

binding affinities of 176 protein-ligand and protein-protein complexes within the Bcl-2 family. 

The results showed significant improvements in differentiating the native structure from decoys in 

both protein-ligand and protein-protein systems. According to their results, the GBHCT model and 

IE technique combination had the best results, with an AUC of 0.97. Pan et al.  (40) applied 

MM/PBSA to rank xanthine oxidase inhibitors in respect to their potency and their results 

correlated well with experimental results. Zhong et al. (45) demonstrated that incorporating 

interaction entropy in MM/PB(GB)SA calculations enhances the accuracy of binding affinity 

predictions of small molecules to Bcl-2 family targets. However, recent studies (46,38) have 

suggested that IE could reduce the accuracy of prediction for protein-small molecule interactions, 

specifically in the context of wild-type and mutant Epidermal Growth Factor Receptor (EGFR) 

systems (46). These disparities suggest that parameter tuning in MM/PB(GB)SA calculation is 

system specific and effort should be made by researchers in testing different parameters to obtain 
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reasonable accuracy of binding affinities. Another study by Crean et al. found IE to fall short in 

estimating accurate binding affinities in protein-protein interaction systems (38).  

Although MM/PB(GB)SA has been effectively applied to recapitulate experimental data and 

enhance the outcomes of structure-based drug discovery, they often suffer from a number of 

limitations. First, the use of the implicit solvent continuum assumes a large approximation by 

neglecting water molecules. By extension, the energetic contributions of water enthalpy and 

entropy to the molecular system are thus neglected. The need for explicitly considering water 

molecules in these methods cannot be over-emphasized. Water molecules form hydrogen bonds 

with proteins or ligands and stabilize the overall structure of the protein. In case water molecules 

are tightly bound to the binding sites, the implicit water model will severely affect the prediction 

accuracy (47,48).  

One of the major challenges in these methods is the precise calculation of conformational entropy, 

which is crucial for accurate binding free energy predictions. Normal mode analysis is employed 

to evaluate the vibrational frequencies of molecules, providing insights into molecular disorder 

(49). However, this approach is sometimes overlooked in its tendency to introduce large statistical 

variations. Such variability can lead to significant approximations, potentially compromising the 

precision of binding affinity estimations (49,50,51,52).  

 

2.2 Alchemical free energy perturbation  

Alchemical free energy perturbation (FEP) is a computational technique used to calculate the free 

energy difference between two ligands by transforming one into the other through a series of 

transitional states while maintaining a seamless and uninterrupted route. Combining MD 

simulations and statistical mechanics, FEP measures the variations in free energy due to ligand 
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modifications, solvation effects, and molecular structure modifications. The popular Zwanzig 

exponential averaging equation (53) can be applied to the alchemical process to quantify the 

relative binding energy difference between the two ligands. The Zwanzig equation is given as: 

𝑒!
!

"#$
∆#%⟶# = #𝑒!

!
"#$

∆$%⟶#(&)$, 1 

where ΔF stands for the change in free energy required to change from ligand A to ligand B, and 

ΔU represents a mean estimate of the change in potential energy required to change from ligand A 

to ligand B as a function of reaction coordinate 𝑥 .  

Zwanzig’s master equation enables the calculation of thermodynamic variances between two states, 

A and B. Prior to this, Kirkwood introduced a lambda (λ) parameter for improving the precision 

of free energy perturbation calculations in chemical transformation (15,54). Lambda serves as a 

couple parameter, enabling the seamless transition between different states of a molecular system 

within simulations. It operates on a range between 0 and 1, where λ =0 denotes the system’s initial 

state (A), and λ =1 represents the final state (B). Intermediates values of λ allow for a gradual 

modulation of interactions, facilitating a stepwise transformation between these states (15,54). 

This approach, by varying λ in small increments, permits the calculation of free energy difference 

between the initial and final states by integrating the energy changes associated with these 

incremental steps. The introduction of the λ parameter thus significantly improves the accuracy of 

FEP calculations, providing a nuanced tool for exploring the energetics behind molecular 

transformations, solvation effects, and binding interactions. Bennet later introduced a Bennet 

Acceptance Ratio (BAR) method, aimed at minimizing the squared error of the calculations (55). 

In this context, the squared error refers to the average of the squared differences between the 

calculated and true values, a measure of the accuracy and reliability of computational predictions. 

By focusing on reducing this error, the BAR method enhances the precision and effectiveness of 
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free energy calculations (55). The BAR method underwent further refinement by adopting a 

statistically optimal evaluation of FEP simulations. This enhancement led to the creation of the 

Multistate Bennett Acceptance Ratio (MBAR), which expands BAR methodology to efficiently 

estimate free energy differences across multiple states, leveraging the collective data from 

overlapping simulations for improved accuracy and efficiency (56,57).  

FEP calculations are shown to be highly effective in predicting the ligand binding affinities in 

many systems (58-61). For example, FEP has been applied to study the effect of mutation on 

protein-protein interactions particularly in the context of SARS-CoV-2 RBD: ACE2 binding 

affinity (62), identify novel allosteric inhibitor of human transcription factor (63) and discover 

Nirmatrelvir resistance mutations in SARS-CoV-2 3CLpro (64). Other variants of FEP have started 

to yield significant improvements in computing accurate relative binding free energy of congeneric 

ligands. Wang et al. (65) employed an improved forcefield, OPLS2.1 (66) and performed replica 

exchange molecular dynamics (REMD) simulation (67-69) to accurately predict binding affinities 

of 200 ligands across different targets. Similarly, Lenselink et al. (70) used the FEP+ approach as 

previously described by Wang et al. (65) to accurately predict the binding affinities of 45 ligands 

across 4 targets of GPCRs. Moreover, their findings outline a procedure for using FEP+ on GPCRs 

and offer practical implementation strategies for discovering potent compounds in lead 

optimization initiatives (70). FEP+ has also been applied in the hit-to-lead optimization campaign. 

Sun et al. utilized FEP+ during the hit-to-lead phase of a drug discovery initiative aimed at 

targeting soluble adenyl cyclase (71). They used FEP+ to discover a more favorable chemotype 

and enhance binding affinity to levels below sub-nanomolar, maintaining drug-like characteristics. 

Aside from the utility of FEP+ in protein-ligand studies, recent studies have demonstrated the use 

of FEP theory to predict the binding energies between antibody and antigen (72-74), thereby aiding 
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the design and optimization of antibodies (75,76). The FEP method and its variants are particularly 

attractive because of their high accuracy, usually within the 1.0 kcal/mol range (70).  

In addition, FEP and its variants have been demonstrated in many research papers to rigorously 

recapitulate binding free energies that correlate with experimental results (58,59,61). Chen et al. 

(77) implemented Absolute Protein-Ligand Binding Free Energy Perturbations (ABFEP) for a hit 

discovery. The binding free energies calculated in their study show a correlation with experimental 

data, achieving a weighted average correlation coefficient (R2) of 0.55 across the whole entire 

dataset of 8 congeneric ligands and 8 targets (77). FEP calculations can be run independently in 

parallel. Hence, it is feasible to investigate whether the introduction of a functional group or the 

swapping of one atom for another might increase or decrease the ligand binding affinity (78-80). 

One of the associated issues with FEP is the force field. In classical force fields, the potential 

energy function of all atoms in the system is often approximated by training with experimental 

data and quantum mechanics. Lenselink et al. (70) successfully predicted binding affinities of 

congeneric ligands that correlate with the experimental values. The success of their published work 

could be attributed to improved forcefields like OPLS2.1 (improved nonbonded van der Waals 

interactions, partial charges, and torsional parameters) (66). Even the most sophisticated free-

energy methodologies will lead to an incorrect conclusion in the absence of an accurate molecular 

mechanical force field. In addition, FEP calculation can suffer from sampling issues. The presence 

of multiple-high energy wells may cause the system to become trapped in a local minimum, 

preventing rigorous sampling across the configuration phase space (81,82,83). It is incredibly 

challenging to account for significant protein flexibility in the FEP calculations (84,85). This 

limitation prevents the use of FEP to investigate protein-ligand binding in the presence of 

substantial protein motions. The consideration of biologically relevant motions underlying 
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biomolecular recognition is made possible by the capacity of conformational changes to be tracked 

by MD simulations. Additionally, current implementations of Relative Binding Free Energy 

(RBFE) in drug research typically conduct only a few nanoseconds of MD simulations for each 

intermediate’s λ window (83). This restricted duration hampers the comprehensive analysis of 

conformational changes. The primary challenges faced in RBFE simulations include 

understanding the conformational free-energy landscape associated with the target molecule and 

creating tailored approaches informed by this landscape. Additionally, there are specific hurdles 

such as effectively handling covalently bound ligands (86), ensuring convergence of the 

simulations (82,83), and accurately accounting for multiple binding poses (87).  

 

2.3 Thermodynamic Integration (TI) 

Thermodynamic integration (TI) is a well-established technique to determine the binding free 

energy difference of two ligands. One can estimate this free energy difference by integrating over 

a range of a coupling parameter Lambda, λ. TI involves performing an alchemical transformation 

that connects the two ligands L1 and L2 through a series of intermediate states. By smoothly 

varying λ from 0 to 1, the system undergoes a gradual transition from the initial state (L1) to the 

final state (L2). When λ = 0, the system is assumed to represent L1 state and when λ = 1, the system 

corresponds to L2 (88). The potential energy of the system can be defined as: 

𝑉(𝜆, 𝑥) = (1 − 𝜆)𝑉((𝑥) + 𝑉)(𝑥), 2 

where, V1 and V2 represent the potential energies of L1 and L2, respectively, x denotes the system’s 

coordinates, and λ serves as an interpolation parameter that linearly combines, V1 and V2 to 

transition the system from one state to another. Integrating the derivative of the potential energy 
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with respect to λ over the interval of 0 to 1 gives the free energy difference (ΔG) between the two 

states.  

∆𝐺 = 0 1
𝜕𝑉(𝜆, 𝑥)
𝜕𝜆 3

*

. 𝑑𝜆
(

+
 

3 

where ,)*(,,.)
),

-
,
 represents an ensemble average of the derivative of the potential energy with 

respect to λ at state λ. This equation calculates the free energy difference between the two states 

by considering the changes in potential energy as the system transition from one state to another. 

(88).  

Zou et al. applied TI in Amber 18 to predict RBFE for a set of 39 ligands of Cathepsin S protein. 

The predicted values correlated well with experimental data (89). In 2020, He et al. (90) used CPU-

based TI and GPU-TI to generate binding free energies of 134 ligands binding to four different 

proteins. TI method used in prediction of RBFE in antibody and antigen system of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) outperformed knowledge-based 

discrimination of beneficial and deleterious mutations and improved the binding affinity and 

neutralization potency of antibody (91). 

TI calculations involve conducting a MD simulation for each specific λ window. As outlined in 

equation 3, the determination of the binding affinity hinges on the derivative of the potential energy 

with respect to λ. For the calculated change in free energy to be accurate, it is crucial that this 

derivative is measured precisely and reliably across each λ window. However, when sampling is 

biased on a single MD trajectory utilizing a Gaussian random process, challenges in reproducibility 

may arise, leading to inconsistencies in the calculated binding energy. A Gaussian random process, 

in this context, refers to a statistical method for predicting the outcomes of complex systems where 

variables evolve in a way that, at any given point, their distribution follows a Gaussian distribution, 
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characterized by its mean and variance. This approach is commonly used in simulation to model 

the randomness inherent in molecular movements, but its reliance on a single trajectory can 

introduce variability that undermines reproducibility (92). To address these reproducibility 

concerns, an alternative method proposed by Bhat et al. (92) involves computing ensemble 

averages of MD trajectories. This method, known as ensemble-based thermodynamic integration 

(TIES), mitigates the issue of irreproducibility by averaging the outcomes over multiple MD 

simulations rather than relying on a single trajectory. By incorporating multiple simulation 

trajectories, TIES leverages the diversity of molecular configurations and interactions captured 

across different trajectories, thereby offering a more robust and reliable estimation of the free 

energy change (92).  

 

3 Enhanced Sampling Techniques for Predicting Ligand Binding Kinetics 

While free energy methods offer valuable insights into the thermodynamic aspects of molecular 

systems, enhanced sampling methods extend our capabilities to explore the dynamic behavior of 

these systems, offering a more complete picture of drug-target interactions. However, they often 

face challenges such as low efficacy for sampling rare events or overcoming high energy barriers 

in complex systems (12,13).  

 
3.1 Metadynamics (MetaD) 

Metadynamics (25) is designed to improve the sampling of rare events. A history-dependent 

external biasing potential is applied to the system. This potential is dependent on collective 

variables (CVs) and is expressed as an accumulation of Gaussian functions distributed over the 
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space of CVs (25). Gradual increase in the bias encourages the system to explore the previously 

unsampled regions and estimate the free energy surface.   

In 2013, Infrequent metadynamics was introduced to compute the kinetic properties of molecular 

systems. Unlike standard metadynamics where biases are added frequently, infrequent 

metadynamics adopts a different approach. It extends the time interval between the addition of 

consecutive biasing potentials, effectively reducing their frequency (93). This modification is 

crucial in the context of transition states. Given the short time required to cross the transition states, 

extending the time interval between bias applications effectively minimizes potential bias in these 

regions, thereby facilitating more accurate and unbiased exploration of transition states (93). 

Pramanik et al. (94) used infrequent metadynamics to benchmark the dissociation kinetics of two 

different millimolar fragments of FKBP protein and compared the data with unbiased MD 

simulations (94). For 4-hydroxy-2-butanone the residence time obtained from infrequent 

metadynamics was 27.3 ± 0.1 ns with 8 ps biasing frequency and   21.3 ± 0.2 ns from unbiased 

MD, demonstrating good agreement between the findings. For 4-diethylamino-2-butanone, 

infrequent metadynamics with 60 ps biasing frequency predicted the residence time of 1.83±0.03μs 

and unbiased MD predicted 0.54μs (94). Using the L99A variant of T4L as a model system, Wang 

et al. (95) applied infrequent metadynamics simulations to successfully capture repetitive ligand 

binding/unbinding. The total of ~12	𝜇s infrequent metadynamics simulations were used to capture 

20 ligand dissociation and ligand association events.  Based on these events, 𝑘!# and 𝑘!""  were 

predicted to be 3.5 ± 2 × 100𝑀12𝑠12  and 7 ± 2 𝑠12 , respectively (95). One-to-two orders of 

magnitude difference were observed compared with experimental values of 

0.8±1×103𝑀12𝑠12and 800±20 𝑠12 (95).  
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Lamim et al.  (96) used a combination of unbiased MD, machine learning (ML), and infrequent 

metadynamics to investigate the dissociation rates of two drugs (morphine and buprenorphine) 

from the 𝜇-opioid receptor (97). The Automatic Mutual Information Noise Omission (AMINO) 

method (98) was employed to screen an extensive array of molecular features, with the objective 

of isolating a highly relevant subset. This technique leverages the principle of mutual information 

to evaluate and discern the interdependencies among various molecular features, thereby 

identifying those that are most significant and informative. By systematically excluding features 

deemed as noise or less relevance, the AMINO method streamlines the dataset to a more focused 

collection of features (98) This refined subset offers more insightful contributions to the 

subsequent analysis or predictive modeling.  The Reweighted Autoencoded Variational Bayes for 

Enhanced Sampling (RAVE) (99) method was then used for predicting optimal reaction 

coordinates as CVs for infrequent metadynamics. A biasing frequency of 30 ps provided a good 

speed-accuracy trade-off to study ligand dissociation from the receptor.  The  𝑘!"" value of 3.19  

	𝑚𝑖𝑛12 calculated for morphine agreed well with experimentally obtained 𝑘!"" value of 1.388 ± 

0.1𝑚𝑖𝑛12  (100). The  𝑘!""  value of 1.27 	𝑚𝑖𝑛12  was calculated for buprenorphine, which 

deferred by one order of magnitude with the experimentally calculated 0.106 ± 0.02 𝑚𝑖𝑛12  (100).  

 

3.2 Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD) 

Gaussian accelerated MD (GaMD) adds a harmonic boost potential to smooth the potential energy 

surface of the biomolecules. Cumulant expansion to the second-order aids in accurately 

reweighting the GaMD simulations. GaMD allows for unconstrained enhanced sampling without 

predefined CVs. Based on GaMD, various selective GaMD algorithms are developed to estimate 

biomolecular binding kinetics (101). LiGaMD enables us to efficiently simulate repetitive ligand 
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binding and unbinding processes in protein-ligand systems and thus characterize both kinetics and 

thermodynamics of ligand binding (5).  

For a system of ligand L binding to protein P in biological environment E, the potential energy of 

the system could be decomposed as   

𝑉(𝑟) = 𝑉,,.(𝑟,) + 𝑉/,.(𝑟/) + 𝑉0,.(𝑟0) + 𝑉,,,1.(𝑟,) + 𝑉//,1.(𝑟/) + 𝑉00,1.(𝑟0) + 𝑉/,,1.(𝑟/,) +

𝑉,0,1.(𝑟,0) + 𝑉/0,1.(𝑟/0), 

4 

where VL,b ,VP,b, VE,b represent the bonded potential energies in L, P, and E respectively. VLL,nb, 

VEE,nb, VPP,nb denote self-non-bonded potential energies and VLE,nb, VPE,nb, VPL,nb are non-bonded 

interactions between L-E, P-E, and P-L, respectively. Since ligand binding mostly involves non-

bonded interaction energies of ligand, VL,nb(r)= VLL,nb(rL)+VLE,nb(rLE)+VPL,nb(rPL), the LiGaMD 

selectively boosts these potential terms (5). To facilitate the ligand rebinding process, another 

boost is added to the remaining potential energy terms of the system. A recently developed 

LiGaMD2 method applies selective boost potential to both the ligand and protein residues in the 

binding pocket to facilitate the ligand binding and dissociation process in a closed (6). 

LiGaMD was demonstrated on repetitive binding and dissociation of Nirmatrevlir drug in the 

3CLpro binding domain with predicted 𝑘!#  and 𝑘!"" as 3.2 ± 0.21 × 104𝑀12𝑠12, 2.92 ±

0.37𝑠12 , respectively (5). Since there were no experimental data for binding rates, 𝐾& = @5233
524

A,  

was used to calculate the equilibrium dissociation constant. The predicted Kd rate of 9.10 ±

0.29𝑛𝑀 was found to be consistent with the experimental value of 7.3 ± 3𝑛𝑀 (5). In microsecond 

LiGaMD simulations, repetitive binding and dissociation of benzamidine in trypsin were observed. 

The benzamidine binding and dissociation rates were predicted as  1.5 ± 0.79 × 106𝑀12𝑠12 and 

3.53 ± 1.41𝑠12, respectively (5). The binding rate closely aligned with the experimental value of 

2.9 × 106𝑀12𝑠12, whereas the calculated dissociation rate differed by two orders of magnitude 
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in comparison with the experimental value of 600 ± 300𝑠12  (102). Similarly, the LiGaMD2 

method predicted ligand kinetics, 𝑘!# and 𝑘!"" , in four different complexes of small molecule 

bound to the L99A T4 lysozyme (T4L) mutants. In benzene-L99A T4L system, the predicted 𝑘!# 

and 𝑘!""  were 7.42 ± 4.81 × 103𝑀12𝑠12  and 1440 ± 880𝑠12, respectively (6). These values 

agreed well with experimentally obtained 𝑘!# and 𝑘!"" of  0.7 − 1.0 × 103𝑀12𝑠12and 950𝑠12 

respectively. Similarly, 𝑘!# and 𝑘!"" calculated for the benzene-M102A T4L system were 9.57 ±

6.29 × 103𝑀12𝑠12  and 2011 ± 1606𝑠12 , respectively. These rates also agreed well with 

experimentally values of 3 − 5 × 103𝑀12𝑠12and 3000𝑠12, respectively. The predicted 𝑘!# and 

𝑘!"" values of the T4L:L99A-IND systems were 2.99 ± 2.87 × 103𝑀12𝑠12 and 3494 ± 559𝑠12, 

respectively, which were comparable to experimental values of  0.7 − 1.0 × 103𝑀12𝑠12   and  

325	𝑠12, respectively (6). 

 

3.3 𝜏 Random accelerated molecular dynamics (𝜏RAMD) 

𝜏RAMD (103) is based on the random accelerated molecular dynamics (RAMD) technique that is 

designed to investigate ligand dissociation pathways from deep binding pockets in proteins. In the 

RAMD technique, molecular simulation is enhanced by adding a small randomly directed force to 

facilitate ligand dissociation. If the movement of the ligand falls below a given threshold value 

within a defined time interval, the direction of the force is randomly reassigned to aid in the 

unbinding event. This process continues until the ligand's displacement exceeds a specified 

distance from its initial position. At this point, the ligand is assumed to dissociate from the proteins 

(103). 𝜏-RAMD does not necessitate prior knowledge of the dissociation pathway nor requires 

extensive parameter fitting. Here, the magnitude of the randomly oriented force is specified by the 

user to facilitate the ligand dissociation from the protein pocket.  
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Kokh et al.  (103) applied 𝜏RAMD to calculate the residence time of 70 diverse drug-like inhibitors 

of N-HSP90. The computationally computed residence time, 𝜏7!89 , was plotted against 

experimentally obtained residence time, 𝜏:.9;. Among different classes of drugs in the experiment, 

the 𝜏7!89 was systematically underestimated for 10 compounds that belong to amino-quinazoline 

and amino pyrrolopyrimidine class of drugs. Additional four drugs were identified as outliers based 

on Crook’s distance method and one drug was omitted due to its failure to retain crystallographic 

binding pose during equilibration runs. By excluding the outliers, 78% of the compounds (55 out 

of 70) showed a good linear correlation coefficient 𝑅< value of 0.86 between the experimentally 

measured and computationally predicted residence times, with 36% of mean absolute error (MAE) 

and 2.3 𝜏 mean of prediction uncertainty, (MPU), on average (103). In 2019, Kokh et al.  performed 

𝜏RAMD simulations on another 25 N-HS90 with newly reported binding kinetics (104), combined 

them with their previous simulations, and applied different ML approaches to identify the 

molecular determinants of drug-target residence times (105). For 80 out of 94 compounds, they 

observed a linear correlation coefficient R2 value of 0.75, with MAE of 0.39 ± 0.06, and MPU of 

3.1 𝜏 on average (105). Nunes-Alves et al. (106) studied the relative residence times (𝜏) of ligand 

dissociation from different cavities in T4L mutants across a spectrum of temperatures using 

𝜏RAMD. They found a good   linear correlation coefficient value of 0.78, with MAE 38% between 

computed residence time and experimental residence time (106).  

 

3.4 Dissipation-corrected targeted MD (dcTMD) 

In dcTMD, (107, 108) an external steering force is applied to a subset of atoms in a molecular 

simulation, guiding them along a predefined pathway or reaction coordinate. The method 

introduces a holonomic constraint force that steers the atoms from an initial to a final state at a 
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constant velocity (107, 108). In a ligand-protein system, the steering coordinate corresponds to the 

center of mass distance between the ligand and the binding pocket. The theory is based on two 

main assumptions. First, the Langevin equation can be applied to the unbiased motion of the 

system and provides a proper description of nonequilibrium simulations. Second, it uses cumulant 

expansion to derive friction coefficient and thus ensures rapid convergence of Jarzynski’s identity. 

Using the Langevin equation, dcTMD introduces a T-boosting term that is distinct from targeted 

MD (TMD). The key advantage of T-boosting is its ability to calculate free energy directly at the 

target temperature by avoiding the need for rescaling from high to low temperatures as in the TMD 

method (108). 

By using high-temperature Langevin simulation, dcTMD predicted 𝑘!# and 𝑘!""  for benzamidine 

in benzamidine-trypsin system as 8.7 × 103𝑀12𝑠12 and 2.7 × 10<𝑠12 , respectively (109). The 

finding underestimates the experimentally predicted values of 2.9 × 106𝑀12𝑠12 and 600𝑠12 for 

𝑘!#  and 𝑘!""  by a factor of ~2-3, respectively (109). Similarly, the 𝑘!#  and 𝑘!""  of Hsp90-

inhibitor complex were calculated using 5ms long dcTMD simulation. The simulation predicted a 

𝑘!# of 9.0 × 100𝑀12𝑠12 and	𝑘!"" as 1.6 × 10<𝑠12. However, these simulated values significantly 

underestimate the experimentally determined rates, with a 𝑘!#  of 4.8 ± 0.2 ×

104𝑀12𝑠12 and	𝑘!"" of 3.4 ± 0.2 × 101<𝑠12 by factor of 5-20 (109). This discrepancy highlights 

the potential limitations of the dcTMD simulation in accurately capturing the kinetics of Hsp90-

inhibitor interactions as compared to experimental observations.  

 

3.5 Milestoning 

Milestoning uses a set of slowly changing variables, such as torsion angles, radius of gyration, or 

distances between chemical groups, to map out the multi-dimensional landscapes that represent all 
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possible configurations and states a molecular system can adopt during a chemical reaction or 

transformation in MD (110, 111). This approach entails constructing a mesh with cell boundaries 

known as 'milestones', and aids in capturing significant transitional states (110). The milestoning 

method assumes that variables not included within the defined reaction space rapidly equilibrate, 

allowing for their simplified treatment and analysis using standard. This approach enables a 

focused study on key transitional dynamics without the computational complexity of accounting 

for all system variables in detail (110). A detailed mesh design allows for effective sampling of 

transitions between closely situated milestones, making sampling of local transitions and low-

energy regions amenable to MD simulation (110, 111). 

Milestoning was implemented in the simulation enabled estimation of kinetic rates (SEEKR) (112) 

approach. It integrates milestoning theory, MD, and Brownian dynamics (BD) to predict kinetic 

rates and mechanisms of ligand binding (112). SEEKR employs computation-intensive MD to 

model transitions between milestones near the binding site, and more computationally efficient 

BD for sampling transitions between broadly spaced milestones farther from the binding site. This 

strategy allows SEEKR to leverage the comprehensive flexibility of MD where molecular 

flexibility is crucial, while utilizing the less demanding BD in regions where molecular flexibility 

is of lesser significance (112). As SEEKR requires accurate determination of the first hitting point 

distribution for initializing new trajectories at each milestone, it creates an issue of high simulation 

cost of calculation and an issue of parallelizability of calculation (113). To address these problems 

the Markovian Milestoning with Voronoi tessellation was combined with SEEKR.  This method 

bypasses the requirement to calculate the equilibrium distribution across all the milestones. Instead, 

milestones are identified as the boundaries of a Voronoi tessellation, and the paths of the 

trajectories are kept within a Voronoi cell by applying a reflective boundary condition (113). 
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SEEKR2, an updated version of SEEKR was introduced to use OpenMM (apart from previously 

supported NAMD) for MD (114). SEEKR2 also provides the user with the option of using either 

the conventional milestoning method or the MMVT technique (114). 

The SEEKR, MMVT-SEEKR, and SEEKR2 methodologies were applied to estimate the 𝑘!# and 

𝑘!"" rates of benzamidine binding to trypsin. Utilizing the SEEKR approach, the 𝑘!# rate for the 

benzamidine-trypsin system was determined to be 2.1 ± 0.3 × 106𝑀12𝑠12 showing a deviation 

of approximately 1.5 times from the experimentally calculated 𝑘!#  of 2.9 × 106𝑀12𝑠12 (112). 

Conversely, the estimated 𝑘!""  rate was not notably lower, yet within an order of magnitude 

compared to the experimental value, with SEEKR predicting a 𝑘!"" of 83 ± 14𝑠12 against the 

experimental value of 600 ± 300𝑠12. In an advancement, SEEKR2 incorporating hydrogen mass 

repartitioning (HRM) yielded a 𝑘!# of  2.4 ± 0.2 × 106𝑀12𝑠12 , aligning more closely with the 

experimental 𝑘!#. However, it predicted a 𝑘!"" of 900 ± 130	𝑠12, surpassing the experimental 

value of 600 ± 300𝑠12 (114). This indicates a refinement in predicting the 𝑘!# rate, though the  

𝑘!"" estimation still showed variability. 

Contrastingly, MMVT-SEEKR’s predictions deviated significantly from experimental results. It 

estimated the 𝑘!#   as 12 ± 0.5 × 106𝑀12𝑠12 and 𝑘!""  as 174 ± 9𝑠12, marking a deviation by 

factors of approximately 6 and 3.5, respectively, from the experimental rates (113). This highlights 

a substantial disparity in the accuracy of MMVT-SEEKR’s predictions when compared to both 

SEEKR and SEEKR2, indicating a need for further refinement in its application to accurately 

model kinetics of the benzamidine-trypsin interaction. 
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4 Expert Opinion 

Both MM/PBSA and MM/GBSA have been successfully applied in structure-based drug design. 

They are established methods with appropriate balance between computational cost and prediction 

accuracy. MM/PBSA is preferred to achieve higher accuracy, while MM/GBSA is preferred for 

computational efficiency (less computational demand). However, their computational efficiency is 

attained through contentious approximations to the sampling and energy calculation phases. These 

simplistic approximations could involve using an evenly distributed dielectric constant for the 

entire solute surrounded by a complex local microenvironment, disregarding ions or important 

water molecules in the binding site, neglecting or using simplistic computational techniques for 

computing conformational and solvation entropies, etc. Certain improvements have been made 

over the years. The conventional practice is the use of normal mode analysis for approximating 

the conformational entropy. Zhong and collaborators published an improved interaction entropy 

method that is computationally effective.  It can measure the entropic component of the binding 

free energy using MD simulation without incurring extra expenses (45). Moreover, more accurate 

force fields such as OPLS2.1 and 3.0 (115) could improve MM/PB(GB)SA calculation 

performance.  

FEP and its variants are increasingly used to accurately predict the selectivity and potency of 

compounds, with their reliability nearing experimental standards. This accuracy is evidenced by 

both retrospective testing, which validates predictions against known outcomes, and prospective 

testing, where the methods are used to forecast the results of future experiments. These approaches 

are proving critical for advancing the precision of computational predictions to levels comparable 

with actual laboratory results. It is possible to address difficult-to-drug targets by successfully 

completing studies analyzing tens to hundreds of thousands of prospective drug candidates using 
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FEP-enabled methods. The efficiency and range of applications of FEP-enabled drug discovery 

will improve with continued advancements in computational and experimental methods. 

Improvement needed from the experimental end will include quality protein-ligand complex 

structures. High-resolution protein-ligand structures obtained from cryo-EM or X-ray will be a 

good starting point for FEP calculations. If experimental structures are not available, Alphafold2 

and homology modeling tools can be employed. Additionally, the accuracy of FEP calculations 

will be increased while progressively lowering the processing cost of each calculation, provided 

that FEP methods are coupled with enhanced sampling techniques like REST, improved GPU 

technology, and molecular mechanics force fields (e.g., OPLS 3.0) (65,66,115). Moreover, 

significant progress has been achieved in enhancing the robustness and stability of alchemical 

transformation pathways within established free energy calculation methods such as FEP and TI 

(116, 117). Concurrently, it is worth acknowledging the exceptional GPU performance of certain 

academic codes like AMBER, which are not only advancing computational efficiency but also 

becoming routinely utilized in the industry for drug discovery efforts (117). A fascinating prospect 

for the FEP-enabled drug design is the increase of chemical space to hundreds of thousands of 

molecules and beyond. This opens an opportunity for de novo drug discovery. In the de novo drug 

discovery process, accurately estimating free energy is critical for the development of highly 

targeted compounds. This approach is fundamental in driving the innovation of small molecules, 

which are re-emerging as a key focus in the search for new therapeutic agents. It is projected that 

advancements in simulation technology, force field development, and quantum chemistry will lead 

to the emergence of accurate quantifiable predictive models in these associated spheres. FEP-

enabled drug discovery applications are currently at a pivotal historical crossroads, with the chance 

for widespread validation in the clinic in the near future.   
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For reliable estimation of free energy difference, sufficient overlap in the phase space between two 

states is preferred. In case there is limited phase space overlap, free energy methods could struggle 

to provide accurate predictions. This often occurs for systems undergoing large conformational 

changes or when comparing vastly different molecular species (13). In such scenarios, enhanced 

sampling techniques could be employed to improve phase space sampling and ensure better 

overlap, thereby increasing the accuracy of free energy calculations. 

Enhanced sampling techniques can be generally categorized into CV-based and CV-free methods, 

and both provide their own benefits. By overcoming the free energy barrier and exploring various 

transitional states, the enhanced sampling methods have greatly facilitated ligand binding studies. 

With increasing accuracy in the prediction of ligand binding free energy and kinetics, enhanced 

sampling techniques are more widely used for drug discovery (118).  Microsecond enhanced 

sampling simulations have been demonstrated to capture both ligand dissociation and binding in 

various model systems. Infrequent metadynamics, LiGaMD, dcTMD and 𝜏 RAMD have been 

shown to be very efficient in these studies. Incorporation of machine learning and artificial 

intelligence with various sampling techniques could make computational approaches to drug 

discovery more powerful and accurate.  
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Figure 1. The illustrative representation of interaction between protein (P) and receptor (R) and 

schematic diagram for dissociation rate constant( 𝑘!"") and association rate constant( 𝑘!#). 𝐾= 

represents equilibrium association constant. 

 


