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Abstract

Introduction:

For rational drug design, it is crucial to understand the receptor-drug binding processes and
mechanisms. A new era for the use of computer simulations in predicting drug-receptor
interactions at an atomic level has begun with remarkable advances in supercomputing and
methodological breakthroughs.

Areas covered:

End-point free energy calculation methods such as Molecular Mechanics/Poisson Boltzmann
Surface Area (MM/PBSA) or Molecular-Mechanics/Generalized Born Surface Area (MM/GBSA),

free energy perturbation (FEP), and thermodynamic integration (TI) are commonly used for



binding free energy calculations in drug discovery. In addition, kinetic dissociation, and
association rate constants (k,sf and k,y) play critical roles in the function of drugs. Nowadays,
Molecular Dynamics (MD) and enhanced sampling simulations are increasingly being used in drug
discovery. Here, we present a review of the computational techniques used in drug binding free
energy and kinetics calculations.

Expert Opinions:

The applications of computational methods in drug discovery and design are expanding, thanks
to improved predictions of the binding free energy and kinetic rates of drug molecules. Recent
microsecond-timescale enhanced sampling simulations have made it possible to accurately capture
repetitive ligand binding and dissociation, facilitating more efficient and accurate calculations of
ligand binding free energy and kinetics.

Keywords: Computer-aided drug design, Molecular Dynamics, Enhanced sampling, Free Energy,

Kinetics.

Article Highlights:

1 Pharmacodynamics prediction using computer simulations is growing rapidly in the field
of drug design and discovery.

] Accurate prediction of k,,, and k¢ using computational techniques is currently trending
in the field of drug design.

1 MM/PBSA, MM/GBSA, FEP and TI are common techniques used in free energy
calculations.

'] Enhanced sampling methods are advantageous in exploring drug binding and dissociation

pathways and kinetics.



1 Introduction

Drug discovery and development is a time-consuming and expensive process. A new drug's
development is expected to typically cost $2.6 billion and take 10—12 years to reach the consumer
market (1). A poor understanding of pharmacodynamics of drug action has hindered effective
design of drugs. However, considering recent advances in molecular modeling and simulation
algorithms, pharmaceutical companies and scientists have increased their efforts to predict binding
free energies and kinetics of drugs using computational approaches (2-8).

The use of computer simulations to predict ligand binding kinetics and thermodynamics to
therapeutic targets are gaining increasing recognition in recent years (9). At the forefront,
molecular docking and scoring are crucial computational techniques in drug design (10, 11), used
to predict drug binding modes and assess their binding affinities. While these methods are known
for their efficiency, their accuracy is limited (10). Specifically, their accuracy wanes when
distinguishing drugs with subtle differences in binding affinity, highlighting a crucial limitation in
their applicability. A typical example where molecular docking might fall short is in estimating the
binding affinities of congeneric ligands (ligands with the same core structure but differs in certain
substituents or functional group attached to the core) and drugs with less than a tenfold difference
in binding affinity (10, 11).

To address these limitations, molecular dynamics (MD) simulations offer valuable insights into
molecular interactions under varied environmental conditions. Nonetheless, conventional MD

simulations often suffer from insufficient sampling of high energy barriers in complex systems



(12). These limitations can lead to inefficiencies or inaccuracies in simulations, especially when
dealing with dynamic systems exhibiting significant conformational changes (13).

In response to these challenges, advancement in computational technology (14), have paved the
way for the adoption of alchemical free energy methods such as Free Energy Perturbation (FEP)
and Thermodynamic Integration (TI) (15). These methods and their variants offer rigorous
approaches for calculating binding free energies, benefitting from recent innovations like those
introduced by the York lab in 2023, which optimizes sampling of alchemical transformation
pathways in AMBER software suite using a novel A-dependent weight functions and softcore
potential to increase sampling efficiency and ensure stable performance at critical points where A
is equal to 0 or 1 (15,16). Despite these advancements, the substantial computational demands of
such detailed simulations make the adoption of more approximate methods such as Molecular
Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular-Mechanics/Generalized
Born Surface Area (MM/GBSA) (17,18,19,20,21,22) more attractive.

MM/PB(GB)SA offer a compromise between computational demand and the depth of insight into
ligand binding processes and as such, it may lead to limited precision in predicting binding energies
(10). Furthermore, the emergence of enhanced sampling simulations marks a significant stride in
understanding molecular systems’ dynamic behavior, especially in studies of ligand binding
kinetics (5, 6). These techniques, particularly useful in ligand binding kinetics studies, enrich our
comprehension of how molecules interact over time, providing a more complete picture of the
binding process from docking predictions through to detailed kinetic and thermodynamic
evaluations.

Enhanced sampling techniques using pre-defined collective variables (CVs) for effective

simulations include, but are not limited, to umbrella sampling (23), adaptive biasing force (ABF)



(24), Metadynamics (MetaD) (25), conformational flooding (26), and variationally enhanced
sampling (VES) (27). These techniques biases MD simulations to pinpoint various transition states
along selected CVs. This is achieved through modifying the forces or employing external bias
potentials. On the other hand, CV-free methods that have been applied to investigate ligand binding
free energies and kinetics include Gaussian accelerated molecular dynamics variant (LiGaMD) (5),
T random accelerated molecular dynamics (tRAMD) (28), and dissipation-corrected targeted MD
(dcTMD) (29), etc.

We will discuss principles of free energy methods including MM-PBSA, MM-GBSA, FEP and TI
with their applications and limitations, as well as enhanced sampling methods for the calculations

of ligand binding thermodynamics and kinetics.

2 Methods for binding free energy calculations

In this section, we explore various computational approaches for predicting binding free energies.
Specifically, we delve into some methods, applications, and limitations of MM/PBAS, MM/GBSA,
FEP and TI. These methods are relevant in quantitatively estimating the binding free energies of
protein-ligand complexes.

2.1 Molecular Mechanics/Poisson Boltzmann Surface Area and Molecular

Mechanics/Generalized Born Surface Area (MM/PBSA and MM/GBSA)

The MM/PBSA and MM/GBSA methods are popular for computing the ligand binding free energy
(10,30). In principle, the MM/PB(GB)SA accounts for the energetic contribution per residue by
decomposing the total system’s free energy into various components, such as van der Waals,
electrostatics, and the internal energies (bond, angle, and dihedral energies) (10,31). In practice,
the MM/PB(GB)SA calculate the binding free energy between a protein and a ligand by estimating

the free energy of the protein-ligand complex (PL), the free energy of the unbound protein (P), and



the free energy of the unbound ligand (L) separately. The binding free energy AGp;nq 15 the
calculated using the equation below:
AGping = Gp, — (Gp + Gy),

where Gp; is the free energy of the protein-ligand complex, Gp is the free energy of the unbound
protein, and G, is the free energy of the unbound ligand (10,31). The rationale for MM/PB(GB)SA
methods is rooted in a strategic compromise of optimizing computational efficiency while still
maintaining a significant degree of accuracy. This approach allows simulations and analyses of
molecular interactions within a feasible timeframe and with available computational resources,
thus accelerating the pace of drug discovery. By judiciously balancing these two critical factors,
MM/PB(GB)SA provides a powerful toolkit for enabling the exploration of complex molecular
phenomena that were previously beyond reach due to computational limitations (32,33,34).

In most drug discovery efforts, the technique of virtual screening, when used in conjunction with
MM/PB(GB)SA methods, has proven to be highly effective. This combination offers crucial
insights by improving the ranking of binding affinities, accurately predicting how effectively
different molecules will bind to a target and identifying the correct mode of ligand binding.
Essentially, this approach enhances the precision of identifying promising compounds early in the
drug discovery workflow (35,36,37,38,39,40,41). To make MM/PB(GB)SA more accessible,
Wang et al. (42) developed a new webserver called fastDRH in 2022. This webserver integrates
Autodock Vina and Autodock-GPU for the docking process, which predicts the optimal positioning
of small molecules within the binding sites of target proteins. Additionally, it employs a
streamlined, or ‘structure-truncated’ version of the MM/PB(GB)SA method to refine the docking
calculations. This refined approach focuses on the most relevant parts of the molecules to

efficiently predict the binding free energies. Thus, it ensures speed and less computational demand



without sacrificing accuracy (42). All these features are integrated into a platform that is easy to
use for both experts and novices. Moreover, parameter tuning helps to improve the accuracy of
MM/PB(GB)SA (43). For example, Wang et al. (43) recommend some parameters including a
membrane dielectric constant of 7.0 and an internal dielectric constant of 20.0. These parameters
have been found to recapitulate experimental binding affinity in soluble proteins and membrane-
bound proteins (43). Rastelli et al. (44) showed that MM/PB(GB)SA techniques achieved larger
Area Under Curve (AUC) and enrichment factor values than conventional docking approaches in
virtual screening. Additionally, Zhang et al. (39) extended this evaluation to 38 drug targets in the
Database for Useful Decoys (DUD) database and obtained a similar conclusion. In another
example, Zhong et al. (45) used the interaction entropy (IE) technique in the MM/PBSA along
with two MM/GBSA models (GBHCT and GBOB®!) to study the role of entropy and computed the
binding affinities of 176 protein-ligand and protein-protein complexes within the Bcl-2 family.
The results showed significant improvements in differentiating the native structure from decoys in
both protein-ligand and protein-protein systems. According to their results, the GB"“T model and
IE technique combination had the best results, with an AUC of 0.97. Pan et al. (40) applied
MM/PBSA to rank xanthine oxidase inhibitors in respect to their potency and their results
correlated well with experimental results. Zhong et al. (45) demonstrated that incorporating
interaction entropy in MM/PB(GB)SA calculations enhances the accuracy of binding affinity
predictions of small molecules to Bcl-2 family targets. However, recent studies (46,38) have
suggested that [E could reduce the accuracy of prediction for protein-small molecule interactions,
specifically in the context of wild-type and mutant Epidermal Growth Factor Receptor (EGFR)
systems (46). These disparities suggest that parameter tuning in MM/PB(GB)SA calculation is

system specific and effort should be made by researchers in testing different parameters to obtain



reasonable accuracy of binding affinities. Another study by Crean et al. found IE to fall short in
estimating accurate binding affinities in protein-protein interaction systems (38).

Although MM/PB(GB)SA has been effectively applied to recapitulate experimental data and
enhance the outcomes of structure-based drug discovery, they often suffer from a number of
limitations. First, the use of the implicit solvent continuum assumes a large approximation by
neglecting water molecules. By extension, the energetic contributions of water enthalpy and
entropy to the molecular system are thus neglected. The need for explicitly considering water
molecules in these methods cannot be over-emphasized. Water molecules form hydrogen bonds
with proteins or ligands and stabilize the overall structure of the protein. In case water molecules
are tightly bound to the binding sites, the implicit water model will severely affect the prediction
accuracy (47,48).

One of the major challenges in these methods is the precise calculation of conformational entropy,
which is crucial for accurate binding free energy predictions. Normal mode analysis is employed
to evaluate the vibrational frequencies of molecules, providing insights into molecular disorder
(49). However, this approach is sometimes overlooked in its tendency to introduce large statistical
variations. Such variability can lead to significant approximations, potentially compromising the

precision of binding affinity estimations (49,50,51,52).

2.2 Alchemical free energy perturbation

Alchemical free energy perturbation (FEP) is a computational technique used to calculate the free
energy difference between two ligands by transforming one into the other through a series of
transitional states while maintaining a seamless and uninterrupted route. Combining MD

simulations and statistical mechanics, FEP measures the variations in free energy due to ligand



modifications, solvation effects, and molecular structure modifications. The popular Zwanzig
exponential averaging equation (53) can be applied to the alchemical process to quantify the
relative binding energy difference between the two ligands. The Zwanzig equation is given as:

1 1
-—=AF4_.p — AU 4 p(x) 1
e kpT - <e kpT ,

where AF stands for the change in free energy required to change from ligand A4 to ligand B, and
AU represents a mean estimate of the change in potential energy required to change from ligand 4
to ligand B as a function of reaction coordinate x .

Zwanzig’s master equation enables the calculation of thermodynamic variances between two states,
A and B. Prior to this, Kirkwood introduced a lambda (L) parameter for improving the precision
of free energy perturbation calculations in chemical transformation (15,54). Lambda serves as a
couple parameter, enabling the seamless transition between different states of a molecular system
within simulations. It operates on a range between 0 and 1, where A =0 denotes the system’s initial
state (A), and A =1 represents the final state (B). Intermediates values of A allow for a gradual
modulation of interactions, facilitating a stepwise transformation between these states (15,54).
This approach, by varying A in small increments, permits the calculation of free energy difference
between the initial and final states by integrating the energy changes associated with these
incremental steps. The introduction of the A parameter thus significantly improves the accuracy of
FEP calculations, providing a nuanced tool for exploring the energetics behind molecular
transformations, solvation effects, and binding interactions. Bennet later introduced a Bennet
Acceptance Ratio (BAR) method, aimed at minimizing the squared error of the calculations (55).
In this context, the squared error refers to the average of the squared differences between the
calculated and true values, a measure of the accuracy and reliability of computational predictions.

By focusing on reducing this error, the BAR method enhances the precision and effectiveness of



free energy calculations (55). The BAR method underwent further refinement by adopting a
statistically optimal evaluation of FEP simulations. This enhancement led to the creation of the
Multistate Bennett Acceptance Ratio (MBAR), which expands BAR methodology to efficiently
estimate free energy differences across multiple states, leveraging the collective data from
overlapping simulations for improved accuracy and efficiency (56,57).

FEP calculations are shown to be highly effective in predicting the ligand binding affinities in
many systems (58-61). For example, FEP has been applied to study the effect of mutation on
protein-protein interactions particularly in the context of SARS-CoV-2 RBD: ACE2 binding
affinity (62), identify novel allosteric inhibitor of human transcription factor (63) and discover
Nirmatrelvir resistance mutations in SARS-CoV-2 3CLpro (64). Other variants of FEP have started
to yield significant improvements in computing accurate relative binding free energy of congeneric
ligands. Wang et al. (65) employed an improved forcefield, OPLS2.1 (66) and performed replica
exchange molecular dynamics (REMD) simulation (67-69) to accurately predict binding affinities
of 200 ligands across different targets. Similarly, Lenselink et al. (70) used the FEP+ approach as
previously described by Wang et al. (65) to accurately predict the binding affinities of 45 ligands
across 4 targets of GPCRs. Moreover, their findings outline a procedure for using FEP+ on GPCRs
and offer practical implementation strategies for discovering potent compounds in lead
optimization initiatives (70). FEP+ has also been applied in the hit-to-lead optimization campaign.
Sun et al. utilized FEP+ during the hit-to-lead phase of a drug discovery initiative aimed at
targeting soluble adenyl cyclase (71). They used FEP+ to discover a more favorable chemotype
and enhance binding affinity to levels below sub-nanomolar, maintaining drug-like characteristics.
Aside from the utility of FEP+ in protein-ligand studies, recent studies have demonstrated the use

of FEP theory to predict the binding energies between antibody and antigen (72-74), thereby aiding
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the design and optimization of antibodies (75,76). The FEP method and its variants are particularly
attractive because of their high accuracy, usually within the 1.0 kcal/mol range (70).

In addition, FEP and its variants have been demonstrated in many research papers to rigorously
recapitulate binding free energies that correlate with experimental results (58,59,61). Chen et al.
(77) implemented Absolute Protein-Ligand Binding Free Energy Perturbations (ABFEP) for a hit
discovery. The binding free energies calculated in their study show a correlation with experimental
data, achieving a weighted average correlation coefficient (R?) of 0.55 across the whole entire
dataset of 8 congeneric ligands and 8 targets (77). FEP calculations can be run independently in
parallel. Hence, it is feasible to investigate whether the introduction of a functional group or the
swapping of one atom for another might increase or decrease the ligand binding affinity (78-80).
One of the associated issues with FEP is the force field. In classical force fields, the potential
energy function of all atoms in the system is often approximated by training with experimental
data and quantum mechanics. Lenselink et al. (70) successfully predicted binding affinities of
congeneric ligands that correlate with the experimental values. The success of their published work
could be attributed to improved forcefields like OPLS2.1 (improved nonbonded van der Waals
interactions, partial charges, and torsional parameters) (66). Even the most sophisticated free-
energy methodologies will lead to an incorrect conclusion in the absence of an accurate molecular
mechanical force field. In addition, FEP calculation can suffer from sampling issues. The presence
of multiple-high energy wells may cause the system to become trapped in a local minimum,
preventing rigorous sampling across the configuration phase space (81,82,83). It is incredibly
challenging to account for significant protein flexibility in the FEP calculations (84,85). This
limitation prevents the use of FEP to investigate protein-ligand binding in the presence of

substantial protein motions. The consideration of biologically relevant motions underlying
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biomolecular recognition is made possible by the capacity of conformational changes to be tracked
by MD simulations. Additionally, current implementations of Relative Binding Free Energy
(RBFE) in drug research typically conduct only a few nanoseconds of MD simulations for each
intermediate’s A window (83). This restricted duration hampers the comprehensive analysis of
conformational changes. The primary challenges faced in RBFE simulations include
understanding the conformational free-energy landscape associated with the target molecule and
creating tailored approaches informed by this landscape. Additionally, there are specific hurdles
such as effectively handling covalently bound ligands (86), ensuring convergence of the

simulations (82,83), and accurately accounting for multiple binding poses (87).

2.3 Thermodynamic Integration (TT)

Thermodynamic integration (TI) is a well-established technique to determine the binding free
energy difference of two ligands. One can estimate this free energy difference by integrating over
a range of a coupling parameter Lambda, A. TI involves performing an alchemical transformation
that connects the two ligands L and L through a series of intermediate states. By smoothly
varying A from O to 1, the system undergoes a gradual transition from the initial state (L) to the
final state (L2). When A = 0, the system is assumed to represent L state and when A = 1, the system
corresponds to Lo (88). The potential energy of the system can be defined as:

V,x)=1—-D)V,(x) +V,(x), 2

where, V; and V> represent the potential energies of L1 and L, respectively, x denotes the system’s
coordinates, and A serves as an interpolation parameter that linearly combines, V; and V> to

transition the system from one state to another. Integrating the derivative of the potential energy
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with respect to A over the interval of 0 to 1 gives the free energy difference (4G) between the two

states.
LoV (4, x) 3
AG = f .dA
o\ o |
av(a, o : :
where <%x)> represents an ensemble average of the derivative of the potential energy with
2

respect to A at state A. This equation calculates the free energy difference between the two states
by considering the changes in potential energy as the system transition from one state to another.
(88).

Zou et al. applied TI in Amber 18 to predict RBFE for a set of 39 ligands of Cathepsin S protein.
The predicted values correlated well with experimental data (89). In 2020, He et al. (90) used CPU-
based TI and GPU-TI to generate binding free energies of 134 ligands binding to four different
proteins. TI method used in prediction of RBFE in antibody and antigen system of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) outperformed knowledge-based
discrimination of beneficial and deleterious mutations and improved the binding affinity and
neutralization potency of antibody (91).

TI calculations involve conducting a MD simulation for each specific A window. As outlined in
equation 3, the determination of the binding affinity hinges on the derivative of the potential energy
with respect to A. For the calculated change in free energy to be accurate, it is crucial that this
derivative is measured precisely and reliably across each A window. However, when sampling is
biased on a single MD trajectory utilizing a Gaussian random process, challenges in reproducibility
may arise, leading to inconsistencies in the calculated binding energy. A Gaussian random process,
in this context, refers to a statistical method for predicting the outcomes of complex systems where

variables evolve in a way that, at any given point, their distribution follows a Gaussian distribution,
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characterized by its mean and variance. This approach is commonly used in simulation to model
the randomness inherent in molecular movements, but its reliance on a single trajectory can
introduce variability that undermines reproducibility (92). To address these reproducibility
concerns, an alternative method proposed by Bhat et al. (92) involves computing ensemble
averages of MD trajectories. This method, known as ensemble-based thermodynamic integration
(TIES), mitigates the issue of irreproducibility by averaging the outcomes over multiple MD
simulations rather than relying on a single trajectory. By incorporating multiple simulation
trajectories, TIES leverages the diversity of molecular configurations and interactions captured
across different trajectories, thereby offering a more robust and reliable estimation of the free

energy change (92).

3 Enhanced Sampling Techniques for Predicting Ligand Binding Kinetics

While free energy methods offer valuable insights into the thermodynamic aspects of molecular
systems, enhanced sampling methods extend our capabilities to explore the dynamic behavior of
these systems, offering a more complete picture of drug-target interactions. However, they often
face challenges such as low efficacy for sampling rare events or overcoming high energy barriers

in complex systems (12,13).

3.1 Metadynamics (MetaD)
Metadynamics (25) is designed to improve the sampling of rare events. A history-dependent
external biasing potential is applied to the system. This potential is dependent on collective

variables (CVs) and is expressed as an accumulation of Gaussian functions distributed over the
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space of CVs (25). Gradual increase in the bias encourages the system to explore the previously
unsampled regions and estimate the free energy surface.

In 2013, Infrequent metadynamics was introduced to compute the kinetic properties of molecular
systems. Unlike standard metadynamics where biases are added frequently, infrequent
metadynamics adopts a different approach. It extends the time interval between the addition of
consecutive biasing potentials, effectively reducing their frequency (93). This modification is
crucial in the context of transition states. Given the short time required to cross the transition states,
extending the time interval between bias applications effectively minimizes potential bias in these
regions, thereby facilitating more accurate and unbiased exploration of transition states (93).
Pramanik et al. (94) used infrequent metadynamics to benchmark the dissociation kinetics of two
different millimolar fragments of FKBP protein and compared the data with unbiased MD
simulations (94). For 4-hydroxy-2-butanone the residence time obtained from infrequent
metadynamics was 27.3 = 0.1 ns with 8 ps biasing frequency and 21.3 = 0.2 ns from unbiased
MD, demonstrating good agreement between the findings. For 4-diethylamino-2-butanone,
infrequent metadynamics with 60 ps biasing frequency predicted the residence time of 1.83+0.03pus
and unbiased MD predicted 0.54us (94). Using the L99A variant of T4L as a model system, Wang
et al. (95) applied infrequent metadynamics simulations to successfully capture repetitive ligand
binding/unbinding. The total of ~12 us infrequent metadynamics simulations were used to capture
20 ligand dissociation and ligand association events. Based on these events, k,, and k,rr were
predicted to be 3.5 £ 2 x 10*M~1s7 Y and 7 + 2 s71, respectively (95). One-to-two orders of
magnitude difference were observed compared with experimental values of

0.8+1x106M~1s~Land 80020 s~ (95).
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Lamim et al. (96) used a combination of unbiased MD, machine learning (ML), and infrequent
metadynamics to investigate the dissociation rates of two drugs (morphine and buprenorphine)
from the p-opioid receptor (97). The Automatic Mutual Information Noise Omission (AMINO)
method (98) was employed to screen an extensive array of molecular features, with the objective
of isolating a highly relevant subset. This technique leverages the principle of mutual information
to evaluate and discern the interdependencies among various molecular features, thereby
identifying those that are most significant and informative. By systematically excluding features
deemed as noise or less relevance, the AMINO method streamlines the dataset to a more focused
collection of features (98) This refined subset offers more insightful contributions to the
subsequent analysis or predictive modeling. The Reweighted Autoencoded Variational Bayes for
Enhanced Sampling (RAVE) (99) method was then used for predicting optimal reaction
coordinates as CVs for infrequent metadynamics. A biasing frequency of 30 ps provided a good

speed-accuracy trade-off to study ligand dissociation from the receptor. The ks value of 3.19
min~" calculated for morphine agreed well with experimentally obtained k¢ value of 1.388 +
0.1min~! (100). The k,s; value of 1.27 min~' was calculated for buprenorphine, which

deferred by one order of magnitude with the experimentally calculated 0.106 = 0.02 min~! (100).

3.2 Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD)

Gaussian accelerated MD (GaMD) adds a harmonic boost potential to smooth the potential energy
surface of the biomolecules. Cumulant expansion to the second-order aids in accurately
reweighting the GaMD simulations. GaMD allows for unconstrained enhanced sampling without
predefined CVs. Based on GaMD, various selective GaMD algorithms are developed to estimate

biomolecular binding kinetics (101). LiGaMD enables us to efficiently simulate repetitive ligand
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binding and unbinding processes in protein-ligand systems and thus characterize both kinetics and
thermodynamics of ligand binding (5).

For a system of ligand L binding to protein P in biological environment E, the potential energy of
the system could be decomposed as

V(r) = Vib (r) + Ve (rp) + Vep (rg) + ViLnb () + Vep b (rp) + VeEnb (rg) + Vornb (rp) + 4
ViEnb () + VoE b (TpE)s

where Vi, Vps VEp represent the bonded potential energies in L, P, and E respectively. Vir s,
VEeEns, Veeaw denote self-non-bonded potential energies and Vigns, Veens, Veras are non-bonded
interactions between L-E, P-E, and P-L, respectively. Since ligand binding mostly involves non-
bonded interaction energies of ligand, Vi us(7)= Vien(rr)+Viea(rie)+Verw(rer), the LiGaMD
selectively boosts these potential terms (5). To facilitate the ligand rebinding process, another
boost is added to the remaining potential energy terms of the system. A recently developed
LiGaMD2 method applies selective boost potential to both the ligand and protein residues in the
binding pocket to facilitate the ligand binding and dissociation process in a closed (6).

LiGaMD was demonstrated on repetitive binding and dissociation of Nirmatrevlir drug in the

3CLpro binding domain with predicted ko, and k,pr as 3.2 +0.21 X 10°M~1s71,2.92 +

0.37s7 1, respectively (5). Since there were no experimental data for binding rates, K; = (I;:i),

on

was used to calculate the equilibrium dissociation constant. The predicted Ku rate of 9.10 +
0.29nM was found to be consistent with the experimental value of 7.3 + 3nM (5). In microsecond
LiGaMD simulations, repetitive binding and dissociation of benzamidine in trypsin were observed.
The benzamidine binding and dissociation rates were predicted as 1.5 + 0.79 X 10’M~1s~! and

3.53 + 1.41s71, respectively (5). The binding rate closely aligned with the experimental value of

2.9 x 10’M~1s™1, whereas the calculated dissociation rate differed by two orders of magnitude
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in comparison with the experimental value of 600 + 300s~1 (102). Similarly, the LiGaMD?2
method predicted ligand kinetics, k., and k,ff, in four different complexes of small molecule
bound to the L99A T4 lysozyme (T4L) mutants. In benzene-L99A T4L system, the predicted k,,
and ko were 7.42 + 4.81 x 10°M~'s™" and 1440 + 880s~", respectively (6). These values
agreed well with experimentally obtained k,, and k,¢f of 0.7 — 1.0 x 10°M~'s~'and 950s~"
respectively. Similarly, k,, and k¢ calculated for the benzene-M102A T4L system were 9.57 +
6.29 x 10°M~1s71 and 2011 + 1606s~1, respectively. These rates also agreed well with
experimentally values of 3 — 5 X 10°M~1s~1and 300051, respectively. The predicted k,,, and
ko s values of the TAL:L99A-IND systems were 2.99 £ 2.87 x 10°M~'s™" and 3494 + 559571,
respectively, which were comparable to experimental values of 0.7 — 1.0 X 10°M~1s~1 and

325 s71, respectively (6).

3.3 7 Random accelerated molecular dynamics (tRAMD)

TRAMD (103) is based on the random accelerated molecular dynamics (RAMD) technique that is
designed to investigate ligand dissociation pathways from deep binding pockets in proteins. In the
RAMD technique, molecular simulation is enhanced by adding a small randomly directed force to
facilitate ligand dissociation. If the movement of the ligand falls below a given threshold value
within a defined time interval, the direction of the force is randomly reassigned to aid in the
unbinding event. This process continues until the ligand's displacement exceeds a specified
distance from its initial position. At this point, the ligand is assumed to dissociate from the proteins
(103). T-RAMD does not necessitate prior knowledge of the dissociation pathway nor requires
extensive parameter fitting. Here, the magnitude of the randomly oriented force is specified by the

user to facilitate the ligand dissociation from the protein pocket.
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Kokh etal. (103) applied TRAMD to calculate the residence time of 70 diverse drug-like inhibitors
of N-HSP90. The computationally computed residence time, Tcomp ., Was plotted against
experimentally obtained residence time, T,xp.. Among different classes of drugs in the experiment,
the T,mp Was systematically underestimated for 10 compounds that belong to amino-quinazoline
and amino pyrrolopyrimidine class of drugs. Additional four drugs were identified as outliers based
on Crook’s distance method and one drug was omitted due to its failure to retain crystallographic
binding pose during equilibration runs. By excluding the outliers, 78% of the compounds (55 out
of 70) showed a good linear correlation coefficient R? value of 0.86 between the experimentally
measured and computationally predicted residence times, with 36% of mean absolute error (MAE)
and 2.3 T mean of prediction uncertainty, (MPU), on average (103). In 2019, Kokh et al. performed
TRAMD simulations on another 25 N-HS90 with newly reported binding kinetics (104), combined
them with their previous simulations, and applied different ML approaches to identify the
molecular determinants of drug-target residence times (105). For 80 out of 94 compounds, they
observed a linear correlation coefficient R? value of 0.75, with MAE of 0.39 + 0.06, and MPU of
3.1 7 on average (105). Nunes-Alves et al. (106) studied the relative residence times (7) of ligand
dissociation from different cavities in T4L mutants across a spectrum of temperatures using
TRAMD. They found a good linear correlation coefficient value of 0.78, with MAE 38% between

computed residence time and experimental residence time (106).

3.4 Dissipation-corrected targeted MD (dcTMD)
In dcTMD, (107, 108) an external steering force is applied to a subset of atoms in a molecular
simulation, guiding them along a predefined pathway or reaction coordinate. The method

introduces a holonomic constraint force that steers the atoms from an initial to a final state at a
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constant velocity (107, 108). In a ligand-protein system, the steering coordinate corresponds to the
center of mass distance between the ligand and the binding pocket. The theory is based on two
main assumptions. First, the Langevin equation can be applied to the unbiased motion of the
system and provides a proper description of nonequilibrium simulations. Second, it uses cumulant
expansion to derive friction coefficient and thus ensures rapid convergence of Jarzynski’s identity.
Using the Langevin equation, dcTMD introduces a T-boosting term that is distinct from targeted
MD (TMD). The key advantage of T-boosting is its ability to calculate free energy directly at the
target temperature by avoiding the need for rescaling from high to low temperatures as in the TMD
method (108).

By using high-temperature Langevin simulation, dcTMD predicted k,,, and ks for benzamidine
in benzamidine-trypsin system as 8.7 X 10°M~1s71 and 2.7 x 102s~1 , respectively (109). The
finding underestimates the experimentally predicted values of 2.9 X 10’M~1s~! and 600s~?! for
kon and k,sr by a factor of ~2-3, respectively (109). Similarly, the k,, and k,r of Hsp90-
inhibitor complex were calculated using Sms long dcTMD simulation. The simulation predicted a
kon 0f9.0 x 10*M~ts™! and k, ¢/ as 1.6 x 10%s~*. However, these simulated values significantly
underestimate the experimentally determined rates, with a k,, of 4.8+0.2X
10°M~*s™tand k, ¢ of 3.4 £ 0.2 X 10725~ by factor of 5-20 (109). This discrepancy highlights
the potential limitations of the dcTMD simulation in accurately capturing the kinetics of Hsp90-

inhibitor interactions as compared to experimental observations.

3.5 Milestoning

Milestoning uses a set of slowly changing variables, such as torsion angles, radius of gyration, or

distances between chemical groups, to map out the multi-dimensional landscapes that represent all
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possible configurations and states a molecular system can adopt during a chemical reaction or
transformation in MD (110, 111). This approach entails constructing a mesh with cell boundaries
known as 'milestones', and aids in capturing significant transitional states (110). The milestoning
method assumes that variables not included within the defined reaction space rapidly equilibrate,
allowing for their simplified treatment and analysis using standard. This approach enables a
focused study on key transitional dynamics without the computational complexity of accounting
for all system variables in detail (110). A detailed mesh design allows for effective sampling of
transitions between closely situated milestones, making sampling of local transitions and low-
energy regions amenable to MD simulation (110, 111).

Milestoning was implemented in the simulation enabled estimation of kinetic rates (SEEKR) (112)
approach. It integrates milestoning theory, MD, and Brownian dynamics (BD) to predict kinetic
rates and mechanisms of ligand binding (112). SEEKR employs computation-intensive MD to
model transitions between milestones near the binding site, and more computationally efficient
BD for sampling transitions between broadly spaced milestones farther from the binding site. This
strategy allows SEEKR to leverage the comprehensive flexibility of MD where molecular
flexibility is crucial, while utilizing the less demanding BD in regions where molecular flexibility
is of lesser significance (112). As SEEKR requires accurate determination of the first hitting point
distribution for initializing new trajectories at each milestone, it creates an issue of high simulation
cost of calculation and an issue of parallelizability of calculation (113). To address these problems
the Markovian Milestoning with Voronoi tessellation was combined with SEEKR. This method
bypasses the requirement to calculate the equilibrium distribution across all the milestones. Instead,
milestones are identified as the boundaries of a Voronoi tessellation, and the paths of the

trajectories are kept within a Voronoi cell by applying a reflective boundary condition (113).
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SEEKR2, an updated version of SEEKR was introduced to use OpenMM (apart from previously
supported NAMD) for MD (114). SEEKR?2 also provides the user with the option of using either
the conventional milestoning method or the MMVT technique (114).

The SEEKR, MMVT-SEEKR, and SEEKR2 methodologies were applied to estimate the k,,, and
k, s rates of benzamidine binding to trypsin. Utilizing the SEEKR approach, the k,,, rate for the
benzamidine-trypsin system was determined to be 2.1 + 0.3 X 10’ M~1s~1 showing a deviation
of approximately 1.5 times from the experimentally calculated k,, of 2.9 x 10’M~1s~1 (112).
Conversely, the estimated k, ;s rate was not notably lower, yet within an order of magnitude
compared to the experimental value, with SEEKR predicting a k, ;s of 83 + 14s~" against the
experimental value of 600 + 300s~1. In an advancement, SEEKR2 incorporating hydrogen mass
repartitioning (HRM) yielded a k,,, of 2.4+ 0.2 X 10’M~1s~1  aligning more closely with the

1. surpassing the experimental

experimental k,,,. However, it predicted a k,rr 0f 900 £ 130 s~
value of 600 + 300s~1 (114). This indicates a refinement in predicting the k,,, rate, though the
k, s estimation still showed variability.

Contrastingly, MMVT-SEEKR’s predictions deviated significantly from experimental results. It
estimated the k,,, as 124+ 0.5 x 10’M~'s™" and k, 7y as 174 + 95!, marking a deviation by
factors of approximately 6 and 3.5, respectively, from the experimental rates (113). This highlights
a substantial disparity in the accuracy of MMVT-SEEKR’s predictions when compared to both

SEEKR and SEEKR?2, indicating a need for further refinement in its application to accurately

model kinetics of the benzamidine-trypsin interaction.
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4 Expert Opinion

Both MM/PBSA and MM/GBSA have been successfully applied in structure-based drug design.
They are established methods with appropriate balance between computational cost and prediction
accuracy. MM/PBSA is preferred to achieve higher accuracy, while MM/GBSA is preferred for
computational efficiency (less computational demand). However, their computational efficiency is
attained through contentious approximations to the sampling and energy calculation phases. These
simplistic approximations could involve using an evenly distributed dielectric constant for the
entire solute surrounded by a complex local microenvironment, disregarding ions or important
water molecules in the binding site, neglecting or using simplistic computational techniques for
computing conformational and solvation entropies, etc. Certain improvements have been made
over the years. The conventional practice is the use of normal mode analysis for approximating
the conformational entropy. Zhong and collaborators published an improved interaction entropy
method that is computationally effective. It can measure the entropic component of the binding
free energy using MD simulation without incurring extra expenses (45). Moreover, more accurate
force fields such as OPLS2.1 and 3.0 (115) could improve MM/PB(GB)SA -calculation
performance.

FEP and its variants are increasingly used to accurately predict the selectivity and potency of
compounds, with their reliability nearing experimental standards. This accuracy is evidenced by
both retrospective testing, which validates predictions against known outcomes, and prospective
testing, where the methods are used to forecast the results of future experiments. These approaches
are proving critical for advancing the precision of computational predictions to levels comparable
with actual laboratory results. It is possible to address difficult-to-drug targets by successfully

completing studies analyzing tens to hundreds of thousands of prospective drug candidates using
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FEP-enabled methods. The efficiency and range of applications of FEP-enabled drug discovery
will improve with continued advancements in computational and experimental methods.
Improvement needed from the experimental end will include quality protein-ligand complex
structures. High-resolution protein-ligand structures obtained from cryo-EM or X-ray will be a
good starting point for FEP calculations. If experimental structures are not available, Alphafold2
and homology modeling tools can be employed. Additionally, the accuracy of FEP calculations
will be increased while progressively lowering the processing cost of each calculation, provided
that FEP methods are coupled with enhanced sampling techniques like REST, improved GPU
technology, and molecular mechanics force fields (e.g., OPLS 3.0) (65,66,115). Moreover,
significant progress has been achieved in enhancing the robustness and stability of alchemical
transformation pathways within established free energy calculation methods such as FEP and TI
(116, 117). Concurrently, it is worth acknowledging the exceptional GPU performance of certain
academic codes like AMBER, which are not only advancing computational efficiency but also
becoming routinely utilized in the industry for drug discovery efforts (117). A fascinating prospect
for the FEP-enabled drug design is the increase of chemical space to hundreds of thousands of
molecules and beyond. This opens an opportunity for de novo drug discovery. In the de novo drug
discovery process, accurately estimating free energy is critical for the development of highly
targeted compounds. This approach is fundamental in driving the innovation of small molecules,
which are re-emerging as a key focus in the search for new therapeutic agents. It is projected that
advancements in simulation technology, force field development, and quantum chemistry will lead
to the emergence of accurate quantifiable predictive models in these associated spheres. FEP-
enabled drug discovery applications are currently at a pivotal historical crossroads, with the chance

for widespread validation in the clinic in the near future.
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For reliable estimation of free energy difference, sufficient overlap in the phase space between two
states is preferred. In case there is limited phase space overlap, free energy methods could struggle
to provide accurate predictions. This often occurs for systems undergoing large conformational
changes or when comparing vastly different molecular species (13). In such scenarios, enhanced
sampling techniques could be employed to improve phase space sampling and ensure better
overlap, thereby increasing the accuracy of free energy calculations.

Enhanced sampling techniques can be generally categorized into CV-based and CV-free methods,
and both provide their own benefits. By overcoming the free energy barrier and exploring various
transitional states, the enhanced sampling methods have greatly facilitated ligand binding studies.
With increasing accuracy in the prediction of ligand binding free energy and kinetics, enhanced
sampling techniques are more widely used for drug discovery (118). Microsecond enhanced
sampling simulations have been demonstrated to capture both ligand dissociation and binding in
various model systems. Infrequent metadynamics, LiGaMD, dcTMD and T RAMD have been
shown to be very efficient in these studies. Incorporation of machine learning and artificial
intelligence with various sampling techniques could make computational approaches to drug

discovery more powerful and accurate.
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Figure 1. The illustrative representation of interaction between protein (P) and receptor (R) and

schematic diagram for dissociation rate constant( k,s) and association rate constant( k,). K,

represents equilibrium association constant.
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