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Abstract

We extend current models of the halo occupation distribution (HOD) to include a flexible, empirical
framework for the forward modeling of the intrinsic alignment (IA) of galaxies. A primary goal of this
work is to produce mock galaxy catalogs for the purpose of validating existing models and methods for
the mitigation of IA in weak lensing measurements. This technique can also be used to produce new,
simulation-based predictions for IA and galaxy clustering. Our model is probabilistically formulated,
and rests upon the assumption that the orientations of galaxies exhibit a correlation with their host
dark matter (sub)halo orientation or with their position within the halo. We examine the necessary
components and phenomenology of such a model by considering the alignments between (sub)halos
in a cosmological dark matter only simulation. We then validate this model for a realistic galaxy
population in a set of simulations in the IllustrisTNG suite. We create an HOD mock with TNG-like
correlations using our method, constraining the associated IA model parameters, with the �

2
dof between

our model’s correlations and those of Illustris matching as closely as 1.4 and 1.1 for orientation–position
and orientation–orientation correlation functions, respectively. By modeling the misalignment between
galaxies and their host halo, we show that the 3-dimensional two-point position and orientation
correlation functions of simulated (sub)halos and galaxies can be accurately reproduced from quasi-
linear scales down to 0.1 h

�1Mpc. We also find evidence for environmental influence on IA within
a halo. Our publicly-available software provides a key component enabling e�cient determination of
Bayesian posteriors on IA model parameters using observational measurements of galaxy-orientation
correlation functions in the highly nonlinear regime.
Keywords: Cosmology, Weak Gravitational Lensing, Intrinsic Alignments

1. INTRODUCTION

Weak lensing is an important probe for cosmological
galaxy imaging surveys, and will be of major interest
for the Rubin Observatory’s Legacy Survey of Space and
Time (LSST, Ivezić et al. 2019) as well as other Stage
IV surveys such as Euclid (Scaramella et al. 2022) and
Roman (Akeson et al. 2019). These new surveys will
be much more powerful than those in the past, and will
require correspondingly more precise analyses. The in-
trinsic alignments (IA) exhibited by galaxies as a result
of their alignment with large-scale structure and other
nearby galaxies can contaminate cosmic shear measure-
ments, driving the need for accurate IA modeling (Hey-
mans et al. 2006; Blazek et al. 2011; Joachimi et al. 2013;
Krause et al. 2015).

IA has typically been modeled using analytic ap-
proaches, usually motivated through cosmological per-
turbation theory (e.g. Hirata & Seljak 2004; Bridle &
King 2007; Blazek et al. 2015, 2019; Vlah et al. 2020,
2021; Maion et al. 2023; Bakx et al. 2023; Chen & Kok-
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ron 2023). However, these approaches are unable to de-
scribe alignments in the fully nonlinear regime. To ad-
dress this issue, in recent years, interest in halo-based
models of the intrinsic alignment of galaxies has taken
o↵, with Fortuna et al. (2020) updating previous work
by Schneider & Bridle (2010) to provide a robust theor-
etical description of intrinsic alignment within dark mat-
ter halos. At the same time, e↵orts have emerged to
infuse dark-matter-only N-body simulations with mock
galaxies which have correlated alignments. These meth-
ods include halo-based modeling (e.g. Joachimi et al.
2013; Ho↵mann et al. 2022), tidal field descriptions (e.g.
Harnois-Déraps et al. 2022), and machine learning ap-
proaches (e.g. Jagvaral et al. 2022). These simulation
capabilities are important for validating our approaches
to mitigate IA e↵ects in weak lensing surveys, provid-
ing realistically complex mock data on which to test our
analysis pipelines. These simulations can also be used
to directly model IA, including in situations where ana-
lytic modeling is not feasible, such as higher-order or
map-based analyses. Finally, the resulting mock galaxy
catalogs can also help us in understanding and testing
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galaxy formation and evolution models which could im-
pact the large-scale alignment of galaxies; either directly
through comparison and calibration to hydro sims, or
through interpreting the resulting behavior of di↵erent
galaxy formation or evolution models in terms of the
HOD IA parameterization. This mock generation pro-
cess provides the connection between small scale galaxy
formation physics either as calculated by a hydro sim or
through some other analytic method and IA observables
on a wide range of scales. In other words, the paramet-
ers of this HOD model are informed by the small-scale
galaxy formation physics and allow us to make predic-
tions, including statistical uncertainty, for a wide range
of IA observables (Ho↵mann et al. 2022; Samuro↵ et al.
2023).

In this work, we provide a new, flexible, and e�cient
halo-based method for including IA in mock galaxy cata-
logs. This method is built on the halotools

1 package
for generating mock galaxy catalogs (Hearin et al. 2017)
and can be applied within larger simulation and analysis
frameworks to produce mock galaxy catalogs or for IA
modeling (Van Alfen et al. 2024).

Models of the Halo Occupation Distribution (HOD)
typically have components to capture the number of
galaxies within halos (occupation), as well as the dis-
tribution of their positions and velocities within halos
(phase space). In this work, we add two new compon-
ents to this framework: one component to model the
statistical distribution of galaxy orientations within their
halos, and a second component, the IA strength model,
that characterizes the probabilistic alignment between
the galaxy orientation and some reference vector asso-
ciated with the parent halo. These new ingredients to
HOD modeling are quite flexible and allow for multivari-
ate dependence on galaxy properties.

This paper is organised as follows: Section 2 presents
background on two-point clustering, giving the forms of
the correlation functions used to analyze our models.
Section 3 describes the cosmologies of the simulations
used in this work and discusses how we determine our co-
variance. In Section 4 we introduce the Dimroth-Watson
distribution that we use to characterize the distribution
of galaxy orientations within their halos, and we describe
the probabilistic models of central and satellite galaxy
alignments that will be used throughout the rest of the
paper. In Section 5, we examine the impact of altering
central and satellite alignment strengths. This provides
a baseline for understanding the simplest e↵ect our align-
ment strengths have on our model. In Section 6, we use
high-resolution N-body simulations to investigate the ac-
curacy with which subhalo-orientation correlation func-
tions can be captured by our HOD-type models using
radial alignments, as subhalo orientations are often not
available. We use the IllustrisTNG hydrodynamical sim-
ulation to test the flexibility of our model of alignment
strength in Section 7. Section 8 summarizes our results
and future work.

2. TWO-POINT CORRELATION FUNCTIONS AND THE
HALO OCCUPATION DISTRIBUTION

In this section, we introduce the basic equations of
the analytical model of halo occupation statistics. His-

1 https://github.com/astropy/halotools

torically, these analytic expressions have provided the
principal framework underlying theoretical predictions
of two-point galaxy clustering in the nonlinear regime
(e.g., Berlind et al. 2003; Yang et al. 2003). In the
present work, the theoretical prediction pipeline we in-
troduce is purely simulation-based, and so our Monte
Carlo methods for computing the integrals in this sec-
tion are quite distinct from the algorithms implemented
in other widely-used halo model libraries such as the Core
Cosmology Library (CCL, Chisari et al. 2019) or HM-
Code (Mead et al. 2015). We defer a comparative discus-
sion of these methodologies to Section 8, and we include
the analytical expressions here to elucidate the connec-
tion between simulation-based and analytical pipelines.
Section 2.1 is purely pedagogical. None of the equa-
tions listed there are used in our work and are presented
only to give context and background. The limitations
of these equations and their necessary assumptions also
highlight the importance of simulation-based methods.
While these analytic equations rely on assumptions that
only hold in certain regimes, a simulation-based approach
needs no such assumptions. The following subsection,
Section 2.2, discusses the estimators used by our code to
measure the correlations in our simulations.

2.1. Theory: The Halo Model and correlation functions

In this paper, we consider the halo model (Cooray &
Sheth 2002; Asgari et al. 2023), which provides a flexible
approach for us to use in our creation of mock galaxy
catalogs. Here we overview the theoretical equations
for the two-point correlation functions. The functions
are given to provide a conceptual background, but our
analysis does not use these formulae to calculate correla-
tion functions. Instead, we measure the correlations from
mock data using the estimators described in Section 2.2.

Below, we see the theoretical formulation of the
position-position correlations.

⇠gg(r) = ⇠
1h
gg (r) + ⇠

2h
gg (r) (1)

⇠
1h
gg (r) = ⇠

1h
cs (r) + ⇠

1h
ss (r) (2)

⇠
2h
gg (r) = ⇠

2h
cc (r) + ⇠

2h
cs (r) + ⇠

2h
ss (r) (3)

⇠
2h
gg (r) =

1

n̄2
g

Z
dM1

Z
dM2

dn

dM1

dn

dM2
⇠hh(r|M1, M2)

⇥ hNg|M1ihNg|M2i,
(4)

where dn
dM is the halo mass function (the di↵erential dis-

tribution of number density of halos n as a function of
halo mass M), hNg|Mi is the expectation value of the
number of galaxies in a halo of mass M , and n̄g is the
overall number density of the population of galaxies be-
ing considered, and we have ignored the central and satel-
lite fractions, which are often absorbed into the defini-
tion of the correlation function. In the above equations,
subscripts indicate the two populations being correlated.
The subscript “g” refers to all galaxies, “h” refers to halo,
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“c” refers to central galaxy (the most massive galaxy
at/near the center of the host dark matter halo), and
“s” refers to satellite galaxy (a smaller galaxy in a host
dark matter halo besides the central galaxy). The su-
perscripts “1h” and “2h” denote the scale contributing
to the correlations. Namely, “1h” refers to the 1-halo re-
gime (galaxies within the same halo), “2h” refers to the
2-halo regime (galaxies residing in separate halos), and
no superscript indicates correlations from all scales. In
this paper, we use 1 Mpc/h as the approximate delin-
eation between the 1-halo and 2-halo regimes.

The assumptions underlying Eq. (4) are:

• r � R
max
vir

• On very large scales, ⇠hh(r) varies slowly across the
length scale of halos

where R
max
vir refers to the largest virial radius of all halos

being considered for the 2-halo contribution to the cor-
relation. These assumptions together allow equation (4)
to treat halos as a single point with a given number
density of galaxies concentrated at that point. Clearly,
while these assumptions work at large scales, they break
down as separations approach the 1-halo regime. At such
scales, equation (4) no longer accurately represents the
correlation function. The breakdown of this assumption
is an example of where simulation-based methods are
useful.

⇠
1h
gg (r) =

1

n̄2
g

Z
dM

dn

dM

Z
d3

x�(x|M)�(x + r|M)

⇥ hNg(Ng � 1)|Mi
(5)

In Eq. (5), �(x|M) is the galaxy profile, i.e., the unit-
normalized spatial distribution of galaxies within a halo
of mass M . This expression includes both central–
satellite and satellite–satellite pairs.

Above, we looked at the position-position correlation
functions. Here, we overview the orientation-orientation
and position-orientation correlation functions. The equa-
tions presented here are analogous to those described in
more detail in Fortuna et al. (2020). Following typical
naming conventions (e.g. Lee et al. 2008; Tenneti et al.
2015), we use the subscripts “e” and “d” to refer to ellipt-
icity and direction respectively, where direction refers to
the separation between galaxies, which in some contexts
we call “position.” As discussed below, we do not use full
shape information in this work, so our use of “ellipticity”
refers in practice to orientation.

⇠
2h
ee (r) =

1

n̄2
g

Z
dM1

Z
dM2

dn

dM1

dn

dM2
⇠hh(r|M1, M2)

⇥ hNg|M1ihNg|M2ih|e1 · e2|2i
(6)

In Eq. (6), e is the three-dimensional ellipticity or
orientation (i.e. the unit-normalized ellipticity) of the
galaxy. Similarly, the 1-halo part of the ee correlation
function and both parts of the ed correlation function
are

⇠
1h
ee (r) =

1

n̄2
g

Z
dM

dn

dM

Z
d3x�(x|M)�(x + r|M)

⇥ hNg(Ng � 1)|Mih|e1 · e2|2i,
(7)

⇠
2h
ed (r) =

1
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dM1
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dM2

dn

dM1

dn

dM2
⇠hh(r|M1, M2)

⇥ hNg|M1ihNg|M2i
�
h|e1 · r̂|2i + h|e2 · r̂|2i

�
,

(8)

and

⇠
1h
ed (r) =

1

n̄2
g

Z
dM

dn

dM

Z
d3x�(x|M)�(x + r|M)

⇥ hNg(Ng � 1)|Mi
�
h|e1 · r̂|2i + h|e2 · r̂|2i

�
.

(9)

For ⇠ee(r), we can decompose the final term in the in-
tegrand into central and satellite contributions:

h|e1 · e2|2i = fcen,1fcen,2h|ecen,1 · ecen,2|2i
+ fsat,1fsat,2h|esat,1 · esat,2|2i
+ fcen,1fsat,2h|ecen,1 · esat,2|2i
+ fsat,1fcen,2h|esat,1 · ecen,2|2i

(10)

where fcen,i and fsat,i are the fraction of galaxies in
sample i that are centrals and satellites, so that fcen,i +
fsat,i = 1.

For ⇠ed(r), this central-satellite decomposition takes
the form:

h|ei · r̂|2i = fcen,ih|ecen,i · r̂|2i + fsat,ih|esat,i · r̂|2i (11)

where r = r · r̂ refers to the position vector between two
galaxies.

2.2. Two-point Correlation Functions Estimators

Below are the estimators for the position-position,
position-orientation, and orientation-orientation correl-
ation functions that we use to analyze our model. While
earlier we showed the theoretical formulation, here we
focus on the estimators we use on mock galaxy catalogs.
As stated earlier, to remain consistent with the names
used in the literature, we have described these functions
using “ellipticity” rather than “orientation.” However,
while Eqs. (6)-(9) can use full ellipticity, the rest of our
paper and the estimators below only use the galaxy ori-
entation. Our method, as presented here, does not in-
clude full galaxy shape information, which is the topic
of ongoing work. We also note that the functions util-
ized here are convenient for analysing simulations where
three-dimensional position and orientation information is
available. However, for analysis of observed data, where
only projected shape information is present, other cor-
relation functions are typically used (e.g. Mandelbaum
et al. 2006; Singh et al. 2023).

The galaxy-galaxy two-point correlation function is
given by:

⇠gg(r) =
DD(r)

RR(r)
� 1 (12)
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where DD(r) is the number of galaxy pairs separated
by r and RR(r) is the expected number of pairs for a
random distribution. We use this estimator rather than
the Landy-Szalay estimator (Landy & Szalay 1993) even
though it is somewhat sub-optimal in some cases (Singh
et al. 2017). This estimator is faster, and the periodic
nature of our box allows us to use analytic randoms,
negating much of the sub-optimality.

The ellipticity-direction (ED) correlation function is
defined as:

!(r) = h|ê(x) · r̂|2i � 1

3
. (13)

The ellipticity-ellipticity (EE) correlation function is
defined as:

⌘(r) = h|ê(x) · ê(x + r)|2i � 1

3
, (14)

where x is the position vector of a given galaxy, r is
the separation vector between two galaxies, and r̂ is the
unit vector of the separation vector r. In both of these
equations, subtracting the factor of 1/3 accounts for the
fact that integrating the dot product of the two vectors
(i.e. integrating the cos2 ✓ between them) over a sphere
results in a factor of 1/3 when the vectors are randomly
distributed (i.e. there is no correlation). These equa-
tions are examined in more depth in Chisari et al. (2016)
with discussion about the factor of 1/3 in Hopkins et al.
(2005).

Beyond this section, the symbols for equations
(12)-(14) will be used. Namely we use ⇠ for
the position–position correlation function, ! for the
position–orientation correlation function, and ⌘ for the
orientation–orientation correlation function. We do this
to separate the rest of our work from the pedagogical
discussion here as well as to connect the measurements
discussed later with the estimators used to obtain them.

3. SIMULATIONS AND COVARIANCE

We construct our HOD models using halotools, a
library for simulation-based predictions of the galaxy–
halo connection. Catalogs of dark matter halos are the
root data product underlying halotools-based predic-
tions, and throughout the paper we make use of cata-
logs provided by the library, although we note that
halotools provides full support for user-supplied simu-
lation data. Upon ingesting a catalog of simulated halos,
halotools populates each halo with a synthetic galaxy
population according to an occupation model, distrib-
uting galaxies within each halo according to an assumed
phase space model. Orientations are bestowed upon each
synthetic galaxy according to the alignment models out-
lined in Section 4.

Throughout the paper, we will distinguish between a
host halo, which is a distinct gravitationally self-bound
collection of simulated dark matter particles, and a
subhalo, a gravitationally self-bound object that is loc-
ated inside the boundary of a larger host halo. We will
use the term (sub)halo whenever referring to a collection
of host halos and subhalos together and/or when refer-
ring to an individual object that may be either a subhalo
or a host halo.

We have previously defined central galaxies as the most
massive galaxy in a dark matter halo, located at or near

the center of the halo. Satellite galaxies are all galax-
ies in a halo other than the central galaxy. The ratio
of central galaxies to satellite galaxies depends on the
occupation parameters of the HOD model. As a rule
of thumb, the galaxy tables produced with halotools

using occupation parameters typical of those this work
tend to contain roughly three central galaxies to every
one satellite galaxy.

3.1. Simulations

In this paper, unless otherwise stated, whenever we cre-
ate a catalog using halotools, we do so using the avail-
able halo catalogs from the Bolshoi-Planck2 (BolPlanck)
simulation output at z = 0, the cosmology and simula-
tion parameters of which are given in Table 1 (Klypin
et al. 2011).

While most of the paper uses BolPlanck, Figures 3 and
4 use the Small MultiDark Planck (SMDPL) simulation
with cosmology described in Table 1. The simulation is
evolved by solving for gravitational interactions only us-
ing the L-GADGET-2 code, a version of the publicly avail-
able cosmological code GADGET-2 (Springel 2005) with a
force resolution of 1.5 h

�1kpc. This simulation belongs
to the series of MultiDark simulations with Planck cos-
mology. More details for this simulation are described in
Klypin et al. (2016).

For both BolPlanck and SMDPL, (sub)halos are found
using the phase-space halo finder ROCKSTAR (Behroozi
et al. 2013a), which uses adaptive, hierarchical refine-
ment of friends-of-friends groups in six phase-space di-
mensions and one time dimension, and tracked over time
using the Consistent Trees algorithm (Behroozi et al.
2013b). As demonstrated in Knebe et al. (2011, 2013),
this results in a very robust tracking of (sub)halos (also
see Jiang & van den Bosch 2016).

The essential orientation properties used in this paper
(the x, y, and z values of the unit vector for the major axis
of the ellipsoid) are also generated with the ROCKSTAR

halo finder, shown in Appendix B of Rodŕıguez-Puebla
et al. (2016). For a more detailed look at shape finding,
see Appendix A.

ROCKSTAR determines virial spherical overdensity
(SO hereafter) volumes for each halo, centered on a
local density peak (possible for even very ellipsoidal
halos), such that the average density inside the sphere
is ⇢̄h(z) = �vir(z)⇢m(z). Here ⇢m(z) = ⌦m(z)⇢crit(z),
where ⇢crit(z) = 3H(z)2/8⇡G is the critical energy dens-
ity of the Universe, and �vir(z) is given by a fitting func-
tion (Bryan & Norman 1998):

�vir(z) =
⇥
18⇡

2 � 82⌦⇤(z) � 39⌦2
⇤(z)

⇤
⌦�1

m (15)

For the Planck cosmology, �vir(z) ' 360. The radius
of each such sphere defines the virial radius Rvir of the
halo, which is related to the mass of the halo via Mvir =
(4/3)⇡R

3
vir⇢̄h. Additionally, subhalos in this catalog are

distinct, self-bound structures whose centers are found
within the virial radius of a more massive host halo.

In Section 7, we compare results from our HOD
models (built using the BolPlanck catalogs described
above) to the Next Generation Illustris Simulations3 (Il-

2 https://doi.org/10.17876/cosmosim/bolshoip
3 http://www.tng-project.org

https://doi.org/10.17876/cosmosim/bolshoip
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Simulation Particle Mass ⌦m,0 �8 ns h Lbox z
(h�1M�) (h�1 Mpc)

Bolshoi-Planck ⇠ 108 0.30711 0.82 0.96 0.70 250 0
(BolPlanck)

Small MultiDark Planck ⇠ 108 0.307115 0.8228 0.96 0.6777 400 0
(SMDPL)

IllustrisTNG300 ⇠ 1010 0.3089 0.8159 0.9667 0.6774 205 0

Table 1. Cosmology and other parameters for the three simulations described in Section 3. Additional information about each
simulation can be found in said section.

lustrisTNG), a suite of hydrodynamical simulations of
galaxy formation in cosmological volumes (Nelson et al.
2017; Pillepich et al. 2017; Naiman et al. 2018; Sprin-
gel et al. 2017; Marinacci et al. 2018). Illustris re-
solves galaxy shapes, therefore the IA seen in Illustris
is modeled directly by hydrodynamic interactions. The
IllustrisTNG runs used in this work are two uniform mass
resolution cosmological volume simulations with side
lengths 205 h

�1Mpc, one “full physics” run, TNG300,
including all of the complex physics of galaxy formation,
and a gravity-only counterpart, TNG300-Dark. The ini-
tial conditions of the simulations were set at z = 127
using the Zeldovich approximation. The adopted cosmo-
logical parameters are given in Table 1.

It is unclear exactly to what extent the cosmologies of
the underlying halo catalogs shown in Table 1 will a↵ect
resulting galaxy tables. However, the methods described
here are highly tunable and can produce a wide range
of galaxy populations and alignments from a single halo
catalog as shown in Section 7.

3.2. Covariance

Building our HOD model for IA is inherently
stochastic, as both the selection of halos being popu-
lated and the alignment of galaxies (discussed below) are
drawn from distributions. When fitting this model to
“data” (which in this work include both measurements
of the simulated halos being populated as well as galax-
ies in another simulation such as IllustrisTNG), we must
account for the fact that both the data and model have
stochasticity. When fitting to the halo measurements
(Section 6), we find that calculating the covariance using
multiple realizations of the galaxy alignments, without
changing the halo occupation, is su�cient to allow a test
of the model performance while avoiding double count-
ing the variance from the occupation step. When fitting
to IllustrisTNG (Section 7), we calculate the covariance
from IllustrisTNG and average over multiple model real-
izations to remove model variance. Further details con-
cerning our covariance are given in Appendix D.

4. MODELING ALIGNMENTS

In this paper, we make the assumption that both galax-
ies and (sub)halos can be modeled as triaxial homologous
ellipsoids (see Appendix A for details). The orientation
of galaxies/halos can then be entirely described by spe-
cifying the vectors associated with the minor, interme-
diate, and semi-major axes of ellipsoids. Here we focus
on modeling the orientation of a single axis of the ellips-
oid describing a galaxy within its host halo, but we note
that the following framework could be extended to model
a three-dimensional galaxy orientation and shape, albeit
with increased complexity.

Our strategy will be to statistically model the misalign-
ment angle between a vector specifying the orientation
of each galaxy’s (sub)halo, and a vector specifying the
orientation of the galaxy, as shown in Figure 1. Math-
ematically, if we assume that the vector specifying the
orientation of each galaxy’s host (sub)halo is the unit vec-
tor, ẑ, we can model the orientation vector of the galaxy
by specifying the angular coordinates on the unit-sphere.

For this purpose, we utilize the Dimroth-Watson dis-
tribution, which specifies the spherical polar coordinates
of a unit vector. We chose the Dimroth-Watson distri-
bution as it provides a maximum entropy distribution on
a sphere while accounting for the 180 degree symmetry
we see in our galaxy orientations (Watson 1965). These
criteria are di�cult to meet with other distributions, but
the Dimroth-Watson distribution naturally fits the role
for directional, axially symmetric systems on a sphere
(Sra & Karp 2013). The probability distribution for the
polar angle, ✓, and the azimuthal angle, �, are given by

P (✓,�) =
B()

2⇡
e
� cos2(✓) sin(✓)d✓d� (16)

where the normalization factor is given by:

B() =
1

2

Z 1

0
e
�t2dt (17)

Note that the azimuthal angle, �, is modeled as a uni-
form distribution, so that the angle ✓ is then by defin-
ition the misalignment angle between galaxy and host
(sub)halo orientation, ✓MA. The degree to which galax-
ies and (sub)halos align is then controlled by the  para-
meter.

It is convenient to re-parameterize the strength of
alignment  by:

µ =
�2 tan�1()

⇡
(18)

such that µ = 1, 0, �1 corresponds to perfect alignment,
random alignment, and perfect anti-alignment, respect-
ively. As illustrated in Figure 2, a positive value of µ

corresponds to a preferential parallel alignment between
a galaxy and its host (sub)halo. A negative value of
µ corresponds to a preferential perpendicular alignment
between a galaxy and its host halo.

The distribution of misalignment angles is symmetric
about cos(✓MA) = 0, in accord with the symmetries we
have assumed of the shapes of galaxies and halos. There
is thus no di↵erence in the morphological orientations
between a galaxy rotated by 180� and its original orient-
ation. In principle, for disk galaxies whose orientation is
determined by angular momentum, it may be interesting
to distinguish between parallel and anti-parallel angu-
lar momentum vectors. Although the di↵erence should
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host halo

halo axis

subhalo

central
galaxy

satellite
galaxy✓MA

✓MA

with subhaloes

host halo

halo axis

central
galaxy

satellite
galaxy✓MA

✓MA

without subhaloes

Figure 1. Cartoon of alignment model when subhalos with
accurate shapes are available (top) and without subhalos
(bottom). In both cases, the misalignment angle is determ-
ined with respect to some reference axis, which di↵ers for
satellite galaxies depending on the model used, either using
subhalo alignment (top), or radial alignment (bottom).

not impact the observable galaxy ellipticities, correla-
tions between the angular momentum direction and the
density field can allow us to probe tidal torque theory
(e.g. Lee 2019) – we leave exploration of this and related
e↵ects to future work.

4.1. Galaxy Alignment Models

For all investigations, we align the major axes of central
galaxies with the major axes of their host halos.

Figure 2. Dimroth-Watson distribution model, equa-
tion (16), for the distribution of galaxy–halo orientation mis-
alignment angles, ✓. Di↵erent color lines show distributions
with di↵erent alignment strengths, µ, given by equation (18).
We see that as µ approaches 1, the Dimroth-Watson distribu-
tion approaches delta functions at cos ✓ = 1 and �1 (perfect
alignment). Meanwhile, as µ approaches �1, the distribu-
tion approaches a delta function at cos ✓ = 0 (perfect anti-
alignment). Notably, the value of µ does not deterministic-
ally assign misalignment angle (except in the cases of perfect
alignment and perfect anti-alignment), but rather it determ-
ines the shape of the distribution from which misalignment
angles will be drawn.

For satellite galaxies, we explore two models in this
paper for determining their orientations:

1. satellites are oriented relative to that of their host
dark matter subhalo, called subhalo alignment (as
seen in the upper image of Figure 1);

2. satellites are oriented relative to the host halo
centric radial vector, called radial alignment (il-
lustrated in the lower image of Figure 1). In this
case, there are two di↵erent alignment strengths
explored.

(a) Constant alignment strength, where the align-
ment strength is the same for all satellite
galaxies.

(b) Distance-dependent alignment strength,
where the alignment strength of a satellite
depends on the distance to its central galaxy.

In the case of subhalo alignment, the model needs
information about subhalo positions and orientations,
while the radial alignment model may be used with
or without subhalo positions and needs no informa-
tion about subhalo orientations (though we typically use
subhalo positions unless otherwise stated).

4.2. Building an HOD Mock

To build an HOD-based mock catalog, we use the
HODModelFactory in halotools. Central and satel-
lite galaxies have separately-defined occupation models
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that determine the number of galaxies of each popula-
tion present in a given halo. Additionally, each popu-
lation has its own model for the intra-halo phase space
distribution. Throughout the paper, central galaxies are
placed at the center of the host halo with the same pe-
culiar velocity as the halo. For satellite galaxies, we con-
sider two di↵erent classes of phase space models. The
first is defined by the NFWPhaseSpace class: the spatial
distribution of satellites is spherically symmetric and has
a radial density profile given by the NFW distribution
(Navarro et al. 1997); satellite velocities are isotropic and
exhibit a velocity dispersion profile determined by the
Jeans equation. The second satellite model we consider
is given by the SubhaloPhaseSpace class, in which the po-
sition and velocity of each satellite is defined by a subhalo
that has been randomly selected from the simulated halo,
preferentially selecting the most massive subhalos first;
when Nsat is smaller than the number of subhalos in the
host halo, the lowest-mass subhalos are left unoccupied,
and when Nsat exceeds the number of available subhalos,
the remaining satellites are distributed according to the
NFWPhaseSpace class. The SubhaloPhaseSpace class
provides a way for the synthetic satellite population to
inherit the complexity of the intra-halo distributions of
simulated subhalos, while at the same time retaining the
flexibility of the HOD to occupy host halos with a vari-
able number of satellites.

5. IMPACT OF GALAXY–HALO MISALIGNMENT ON
ORIENTATION CORRELATION FUNCTIONS

In this section, we use our halo model of IA to provide
a pedagogical investigation of how galaxy–halo misalign-
ment manifests in orientation correlation functions. We
will separately study e↵ects arising from central and
satellite galaxies, and we will consider the full range of
spatial scales, spanning both 1-halo and 2-halo regimes.
Our general strategy for this investigation is to begin by
orienting galaxies to be perfectly aligned with the refer-
ence vector of the (sub)halo; we then leverage the flex-
ibility of our probabilistic model by programmatically
weakening the alignment strength, and studying how the
orientation correlation function changes as a result.

5.1. Central and Satellite Galaxy Misalignment

We begin by examining the e↵ect of varying the central
galaxy – host halo alignment strength on the orientation
correlation functions. In Figure 3, we show the position–
orientation (!) on the left and orientation–orientation
(⌘) correlation functions on the right. In both plots, we
show subhalos and host halos with a peak mass greater
than 1012

h
�1

M� as black points with error bars. Errors
on these measurements are estimated using jackknife re-
sampling of the simulation box, by splitting into 43 equal
volume sub-samples.

Also shown in Figure 3 are color-coded lines, show-
ing !

g
gg and ⌘

g
gg (position-orientation and orientation-

orientation correlations for all galaxies) for model galax-
ies in the same sample of (sub)halos with varying levels
of central-host halo major axis alignments. Here we use
the superscripts “g” and “h” to specify the correlation
is being done on the galaxies or halos respectively (e.g.
!

h
cs refers to the position–orientation correlation between

the positions of halos hosting central galaxies and the
orientations of subhalos hosting satellite galaxies). The

satellite–subhalo alignment strength is kept fixed at full
strength, µsat = 1. Because there is still significant un-
certainty in the ⌘ measurement in a 400 Mpc box, we use
a fitting function to smooth the results (see Appendix B
for details). For maximum alignment, µcen = 1, the cor-
relation functions reproduce the (sub)halo measurement
by construction.

Next we show the e↵ect of varying the satellite–subhalo
alignment strength on the orientation correlation func-
tions. Similar to previous section, in Figure 4 we show
the ! on the left and ⌘ on the right, with correlation
functions for subhalos and host halos given as black
points with error bars. In Figure 4, the color-coded lines
correspond to varying levels of satellite–subhalo align-
ments, while the central–halo alignment strength is kept
fixed at full strength, µcen = 1. Again, when µsat = 1,
the (sub)halo orientation correlation functions are repro-
duced by construction.

Broadly speaking, we can see that central galaxy align-
ments produce a much larger e↵ect on the correlation
functions relative to satellites, especially at larger scales.
The satellite correlations in Figure 4 show noticeable ef-
fects at smaller scales, but become much less important
on scales larger than ⇠ 1 Mpc/h. Meanwhile, Figure 3
shows that changing the alignment strength of centrals
has a noticeable e↵ect at all scales.

6. MODELING SATELLITE ORIENTATIONS WITHOUT
SUBHALO ORIENTATIONS

Our analyses in the previous sections have relied upon
alignments in which the orientation of a synthetic satel-
lite was variably-correlated with the major axis of its
parent subhalo. But relying on subhalo catalogs as the
core data product of the model introduces a significant
source of systematic error arising from uncertainty in
subhalo-finding and numerical/resolution issues on small
scales (e.g., van den Bosch et al. 2018; Campbell et al.
2018). The resolution requirements on subhalo finding
are steep, especially for predictions involving subhalo in-
ternal structure (e.g., Rodŕıguez-Puebla et al. 2016; Ben-
son 2017; Mansfield & Avestruz 2021), and so making
theoretical predictions with models that require resolved
subhalo orientations leads to costly demands on the Gpc-
sized simulations that are required to analyze cosmolo-
gical surveys. The positions of the subhalos themselves
are fairly well-resolved and do not introduce notable un-
certainty.

These considerations motivate an alternative formula-
tion of satellite orientations with various levels of subhalo
information. We start by looking at radial alignments for
cases where no subhalo orientation is present, while still
using subhalo positions to place satellites. From there,
we move on to examine the ability of this simple model
to match halo correlations in the 1-halo and 2-halo re-
gimes, justifying our choice to fit our parameters to the
1-halo regime. Following that discussion, we examine the
e↵ect of varying levels of satellite anisotropy, including
a fully isotropic model that shows the e↵ect of building
an HOD with no subhalo information at all. We then
conclude this section with a discussion on the goodness
of fit of the best radial alignment models as well as by
introducing an alternate method of determining a radial
alignment strength in the case where subhalo orienta-
tions are present.
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Figure 3. The e↵ect of degrading the central galaxy-host halo alignment strength on the ! (left) and ⌘ (right) orientation
correlation functions. The black points with error bars (which are often smaller than the points) are measurements made directly
on (sub)halos. The colored lines are for model galaxies with varying levels of alignment strength between central galaxies and
their host halo, from random alignments (light blue) to perfect alignments (pink). In each model, satellite galaxies take on the
same orientation as their subhalo. On the right, a fitting function is used to smooth the results, letting us focus on the overall
trend from lowering the central alignments which tends to be noisy for ! correlations. We also see a downward bump around
the 1-halo to 2-halo scale transition in the right panel. This suggests to us an e↵ect related to the satellite–satellite correlations,
with the sudden upturn going into the1-halo regime being related to satellite pairs within a halo becoming more significant. This
e↵ect also only becomes apparent once the central alignment strength has become weak enough that the satellite alignments
become more important.

Figure 4. The e↵ect of degrading the satellite galaxy-subhalo alignment strength on the ! (left) and ⌘ (right) orientation
correlation functions. The black points with error bars are measurements made directly on (sub)halos. The colored lines are for
model galaxies with varying levels of alignment strength between satellite galaxies and their subhalo, from random alignments
(light blue) to perfect alignments (pink). In each model, central galaxies take on the same orientation as their host halo. On
the right, a fitting function is used to smooth the results.
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In this section we carry out a targeted study of the flex-
ibility of IA models of satellites that do not rely upon
subhalo orientations. Our primary assumption will be
that the orientation of a satellite galaxy tends to align
radially towards the center of the host halo. We examine
this assumption in the simplest alignment model in §6.1,
and in subsequent subsections we proceed to incorporate
additional complexity and study the impact on orienta-
tion correlation functions. In order to assess the flexibil-
ity required by an HOD-type model of satellite orienta-
tions, we begin by focusing on recovering the orientation
correlation functions exhibited by (sub)halos at z = 0
in the gravity-only Bolshoi-Planck simulation. Note that
we do not claim that satellite galaxies always perfectly
align with their respective subhalos, but we use this as a
test of how much subhalo orientation information can be
captured when such information is not available. In this
way, we probe the full flexibility provided by our model.
Following this preliminary investigation, in Section 7, we
will proceed to apply our IA model to full-physics hydro-
dynamical simulations (described in Section 3).

6.1. Radial Alignment Modeling

Constant radial misalignment uses a single, constant
alignment strength for all galaxies, giving them all
the same Dimroth-Watson distribution for their radial
alignments. A distance-dependent alignment strength
changes the shape of the Dimroth-Watson distribution
for each satellite galaxy depending on its distance from
its central galaxy. We choose a form of this relation-
ship given by a power law – equation (19). Because
µ 2 [�1, 1], this equation is limited to that range as
well, assigning -1 to all µ < �1, and 1 to all µ > 1.

µ = a (r/rvir)
� (19)

Note that equation (19) is not the only possible model
for radial alignment, but it is one possible simple way
to model distance-dependent radial alignments. In par-
ticular, this model requires that all satellite galaxies
have either preferential alignment, or preferential anti-
alignment (or random in the case of a = 0). We have
chosen this particular model for its simplicity, but the
same concept of assigning individual alignment strengths
based on such a model is general.

Since µ refers to how strongly galaxies tend to align
with respect to a given reference vector, the µ values in
this section refer to how strongly satellite galaxies align
with the radial vector between the satellite and the center
of its host halo. In previous sections, we used (sub)halo
major axes as reference vectors, so matching the halo
correlation in that context would mean perfectly aligning
with the halo major axes. Here, however, matching the
halo correlations is less straightforward. We would only
expect a value of µ = 1 in this case if subhalo shapes are
perfectly aligned with their radial vectors.

In any given mock galaxy catalog that we generate,
there are roughly three times as many central galaxies as
there are satellite galaxies (i.e., the satellite fraction is
roughly 25% for the galaxy populations we consider), so
looking at the correlation functions between all galaxies
dilutes the e↵ect of the satellites, and is heavily influ-
enced by the central correlations. In order to compare
the e↵ects of these satellite alignments strengths, we look

at !
g
cs (the correlation functions for the central galaxy

position and satellite galaxy orientation) rather than the
full ! correlation function for all galaxies to all galax-
ies. In this way, we can better see the e↵ect of only the
satellite orientations. All fits discussed in this section
are fits to central position, satellite orientation correla-
tion functions. We do note that in the 2-halo regime, it is
expected that the overall alignment correlation functions
are dominated by the impact of central-central alignment
only (Schneider & Bridle 2010; Fortuna et al. 2020); this
is an important caveat to bear in mind in the following
discussions in regards to the impact of our model’s abil-
ity or inability to fit central-satellite correlations well in
the 2-halo regime.

As shown in central plot of Figure 5, and discussed in
more detail in Section 6.4, the distance-dependent and
constant radial alignment strengths perform comparably.
The correlation function from the distance-dependent ra-
dial alignment may match that of its halos slightly better,
but adds an extra degree of complexity. We also see that
the correlation functions match much better in the 1-halo
regime (here, defined as anything within 1 Mpc/h) than
overall.

For the fits shown in Figure 5, we determined para-
meters by fitting the 1-halo portion of the !cs correl-
ation functions from the galaxies to those of the halos
using MCMC. We discuss our decision to fit solely to
the 1-halo regime in Section 6.2, and we note that we
use this type of fitting solely to show the flexibility of
the model, as the radial alignment model is intended for
situations where subhalo orientations are not known. We
find the best constant radial alignment strength to be
µsat = 0.826, and the best distance-dependent alignment
strength, following equation (19), to have a = 0.804 and
� = �0.04.

While radial alignment is intended for a situation in
which no subhalo orientations are available, we do have
subhalo orienations and can use them for comparison
purposes now. Comparing to the subhalo correlation
functions, we see in Figure 5 that the distance-dependent
alignment strength produces correlation functions that
match within 40% of the halo correlation functions over-
all (much better on average), and well within 15% in
the 1-halo regime (much better on average: about 6%).
Meanwhile, the constant alignment strength produces
results with very similar values. However, in the 1-halo
regime, the average percent di↵erence between the con-
stant model and the halos is slightly worse: about 8%
o↵ on average. A closer examination of the relative error
can be seen in Section 6.2 in the context of fitting to the
1-halo and 2-halo regimes; both the distance-dependent
and constant models here closely match those seen in the
1-halo fit model described there. While there may be a
slight preference for a distance-dependent radial align-
ment, the two methods perform comparably. Certainly,
constant radial alignment provides a simpler model and
may be su�cient for many needs.

In Figure 5 we restricted our view to central–satellite
correlations. We have done this because the radial
alignment model inherently contains central–position,
satellite–orientation information, but we noted earlier
that the 2-halo correlation function can be decomposed
into central–central, central–satellite, and satellite–
satellite portions. In Figure 6 we see a similar de-
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Figure 5. Left: ⇠cs correlation function (central galaxy position correlated with satellite galaxy position). Galaxy correlation
functions are shown in the solid red and dashed blue lines, with the corresponding halo correlation function shown in black
dots. Here, all three share the same ⇠ (position–position) correlation function as the only di↵erence in the model is the
alignment. Middle: !cs correlation function (central galaxy position and satellite galaxy orientation). Here, we see a slight
di↵erence between !g

cs (the galaxy correlation functions) and !h
cs (the corresponding halo correlation function) with the distance-

dependent alignment (solid red line) performing slightly better at small scales than the constant alignment strength (shown as
a dashed blue line). Right: ⌘cs correlation function (central galaxy orientation and satellite galaxy orientation). In all panels
(and in figures below), the shaded regions show the 1-sigma confidence interval of each model.

Figure 6. The position–orientation correlations for central–satellite (left; !cs), satellite–satellite (middle; !ss), and all galaxy–
satellite (right; !gs) pairs. All correlations shown are using a constant radial alignment model. Left: !cs function; an identical
configuration to the constant radial alignment series in the middle panel of Figure 5. Here we see good agreement to the 1-halo
regime with slight underestimation in the 2-halo regime. Middle: !ss correlation function. Here we see a generally good
agreement except at small scales. Right: !gs correlation function. We see that, although !ss performs poorly at small scales,
the !cs portion dominates making the overall correlation a good fit.

composition of position–orientation correlation functions
into central–satellite (!cs), satellite-satellite (!ss), and
all galaxy–satellite (!gs) pairs. The (!cs) correlation is
identical to the constant radial alignment portion of the
central panel of Figure 5, but the other panels look at
other contributions. As we have seen, (!cs) fits the 1-
halo regime well and slightly underestimates the 2-halo
regime. Meanwhile, the (!ss) portion performs reason-
ably well until we reach small scales. In the (!gs) panel,
we see that, though (!ss) fails at small scales, the (!cs)
portion dominates, making the overall agreement good.

6.2. Fitting to the 1-halo and 2-halo Regimes

We have compared the galaxy correlation functions to
those of their respective halos for both the full range, as
well for the 1-halo regime alone, generally finding that
our models fared better on small scales. Because of this,
we restrict ourselves to the 1-halo regime when finding
the best-fit parameters for the constant and distance-
dependent radial alignment models. In this section, we
further justify that decision by showing the limits of
our model when considering satellite alignments. For

both the constant radial alignment strength and the
distance-dependent radial alignment strength cases, we
ran MCMC chains and compared the galaxy correla-
tion functions to the halo correlation functions in the
1-halo regime. To run these chains, and any time we use
MCMC, we use the emcee python package (Foreman-
Mackey et al. 2013).

Our attempts to fit to the correlation function across
all scales led to a wide spread of a and � values for equa-
tion (19), producing extreme values for µ, and result-
ing in poor fits and no clear best-fit parameter values.
Our attempts to fit to large-scale correlations alone (i.e.,
the 2-halo regime) resulted in similar issues. Meanwhile,
when restricting attention to the small-scale correlations
alone, our fitter enjoyed higher-accuracy success. These
results, and the fact that we underestimate the 2-halo
correlations when fitting to the 1-halo regime only, im-
ply that there is extra environmental information needed
to reproduce correlation functions between central posi-
tion and satellite orientation in the 2-halo regime, and
that a simple radial alignment does not fully capture
subhalo orientations. This situation is not surprising,
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since our model only directly includes information from
the 1-halo regime (e.g. satellite positions and (sub)halo
orientations).

In Figure 7, we see a direct comparison of !
g
cs (the

central galaxy position, satellite galaxy orientation cor-
relation function), as measured directly from simulated
(sub)halos, and two di↵erent HOD models: one with
alignment strengths found by fitting to the 1-halo regime
only (labeled as the 1-halo fit model), and one defined
by fitting to the 2-halo regime only (which we will call
the 2-halo fit model). Overall, the 1-halo fit model per-
forms better; it matches the 1-halo regime well and per-
forms comparably to the 2-halo fit model in the 2-halo
regime. Neither fit suggests that our model can accur-
ately capture the full range of spatial scales, but looking
at the 1-halo and 2-halo regimes separately, we see the
strengths and weaknesses of each model in more detail.
In the 1-halo range of scales, the 1-halo fit model achieves
⇠ 12% accuracy at worst, while the 2-halo fit model only
matches within 90%. In the 2-halo regime, the 1-halo
fit model is only accurate at the 40% level, but even the
2-halo fit model performs no better, di↵ering by almost
as much.

For a clearer picture, the �
2 per degree of freedom

(�2
dof) (describing how well the galaxy correlation func-

tions match those of their halos) of the 1-halo fit model
is 5.2, 8.6, and 3.8 for the full, 1-halo, and 2-halo re-
gimes respectively, while the 2-halo fit model had values
of 26160, 55792, and 10.8. At this point, the only clear
meaning of the 2-halo fit �

2
dof values is that fitting this

model to the 2-halo regime does not work without extra
information not yet captured by our model. We remind
the reader that at this point, we still have made no at-
tempt to refine the radial alignment model, but rather
we have thus far only illustrated why we have chosen to
fit our parameters to the 1-halo regime alone. In Section
6.4, we turn attention to fitting distance-dependent ra-
dial alignment parameters and refining the goodness of
fit.

We conclude this section by noting that our results
imply a need for an additional modeling ingredient that
captures the e↵ect of environment beyond what is con-
tained in the radial vector, similar to such ingredients
that are now commonly used to capture assembly bias
in HODs (e.g., Hearin et al. 2016; Yuan et al. 2018).
The nature of this correction may require appeal to some
measure of large-scale density smoothed on some scale,
and/or tidal information. We acknowledge this limita-
tion, however, as demonstrated here, satellite alignments
based on radial vectors are a simple, flexible, and e↵ect-
ive model when simulated subhalos are unavailable. The
development of a model with additional environmental
dependence is beyond our current scope and is left as a
topic for future work.

6.3. Satellite Anisotropy

In §6.1-6.2, we restricted consideration to HOD-style
models of satellite alignments in which the spatial pos-
itions of satellites were assigned based on the positions
of their respective subhalos. We know that such satellite
anisotropy a↵ects correlations (Samuro↵ et al. 2020), and
for IA models of satellites based on the radial vector, an-
isotropy in satellite locations has an influence on the ori-
entation correlation functions. In this section we study

Figure 7. Top: Comparison of the central-satellite position-
orientation correlation function for halos, !h

cs (black points),
with that of the galaxies, !g

cs (colored lines). Two galaxy
series are shown, each one having been generated by an HOD
model where the galaxy alignment strengths were fit using
MCMC. Bottom: The ratio of the galaxy correlation func-
tion over the halo correlation function (!g/!h). The series
where the parameters were fit to the 1-halo part of the halo
correlation functions fits closely in the 1-halo regime (agreeing
within 15%), as expected, while failing to accurately repres-
ent the 2-halo regime (di↵ering by up to 40%). Meanwhile,
the HOD with alignment strengths obtained by fitting to the
2-halo regime fail to model the 1-halo signal (di↵ering by up
to 90%), and don’t follow the 2-halo correlation function well
(only agreeing within 40%) despite having been fit to that
area.

the e↵ect of satellite isotropy and anisotropy on meas-
urements of IA by comparing an isotropic phase space
model with anisotropic satellite placement.

We model the anisotropic number density profile of
satellites in halos as a triaxial NFW profile following Jing
& Suto (2002) and Schneider et al. (2012).

⇢(R) =
⇢c

R
Rs

⇣
1 + R

Rs

⌘2 (20)

where the relation between the Cartesian and elliptical
coordinates is given by:

x = r sin(✓) cos(�) = R

⇣
a

c

⌘��
sin(⇥) cos(�)

y = r sin(✓) sin(�) = R

✓
b

c

◆�

sin(⇥) sin(�)

z = r cos(✓) = R cos(⇥) (21)

where a, b, and c are the principle axis lengths of the host
halo normalized such that a = 1. The anisotropy para-
meter, �, controls the magnitude of the anisotropy; when
� = 0, satellites follow a spherically symmetric NFW
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profile; when � = 1, satellites follow a triaxial NFW pro-
file with axis ratios equal to that of the underlying dark
matter halo; when � > 1, the satellite distribution ex-
hibits a greater degree of anisotropy than the underlying
halo.

We compare three levels of anisotropy in the spatial
distribution of satellites within their halos:

• A subhalo position model, which places satellites
at the locations of subhalos.

• A semi-isotropic model, which initially places
galaxies using subhalo positions, but then ran-
domly rotates each host halo’s satellite population
about the halo major axis. This model therefore
preserves correlations involving the major axis but
erases other anisotropies in the satellite distribu-
tion.

• An isotropic model, which places galaxies following
a spherically symmetric NFW profile (as in §6.1-
6.2.

We stress that in all three models sketched above, the
only di↵erence between the models is the level of aniso-
tropy in the intra-halo positions of satellites. For the
model of orientations explored in this section, here we
assume that centrals are perfectly aligned with the halo
shape, and for satellites we adopt a radial alignment
model with constant strength of 0.85.

As shown in Figure 8, both the subhalo position and
semi-isotropic models allow the galaxy correlation func-
tions to match those of the halos within 10% for the !

correlation functions and within 30% for the ⌘ correla-
tion function. Meanwhile, models with isotropic satel-
lites predict much weaker correlations, especially in the
1-halo regime, resulting in a 30% and a 60% di↵erence
from the subhalo ! and ⌘ correlation functions, respect-
ively. The results illustrated in Figure 8 demonstrate
that the level of anisotropy of satellite positions within
the halo comprises an important degree of freedom for
orientation correlation functions and that the major axis
of the anisotropy contains most of the relevant informa-
tion.

6.4. Capturing Subhalo IA in Gravity-only Simulations

So far in this section, we have been primarily fo-
cused on the position–orientation correlation function;
in this section we consider additional orientation cor-
relation functions to study the flexibility of our satel-
lite IA models. Figure 5 shows how three di↵erent cor-
relation functions are impacted by satellite IA models
with either constant or distance-dependent alignment
strength. Each prediction was computed from 50 real-
izations of the model, and in all cases galaxy positions
are placed at the center of (sub)halos. We remind the
reader that the satellite fraction is ⇠ 25% in the pre-
dicted galaxy population, and so our plots show central-
to-satellite correlation functions of each type: the cent-
ral position to satellite position correlation function, ⇠,

the central position to satellite orientation correlation
function, !, and the central orientation to satellite ori-
entation correlation function, ⌘. We plot central-satellite
cross-correlation functions to isolate the e↵ect of satellite
alignments on the IA signal.

The orientation correlation function ⌘ is better fit in
the 1-halo regime, again indicating that additional en-
vironmental information beyond simple radial alignment
is needed in order to capture physically plausible satel-
lite e↵ects on IA in the 2-halo regime. As mentioned in
Section 6.1, by fitting to the 1-halo regime, we found the
best constant radial alignment strength to be 0.826, and
the best distance-dependent alignment strength to have
a = 0.804 and � = �0.04.

Previously, we derived these values using MCMC,
but as an alternate method, we can directly fit the
Dimroth-Watson distribution to the PDF of misalign-
ment angles in the simulation. The results of this fitting
process are shown in Figure 9, which displays the best-
fitting Dimroth-Watson curve to the distribution of mis-
alignment angles of simulated subhalos. To study the
distance-dependence of alignment strength, we bin the
subhalos (or satellite galaxies in the case of comparing
to results obtained via MCMC) by r/rvir, and perform
separate fits on each bin. In the right panel of Figure
9, we show a power law fit to the resulting relationship
between µ and r/rvir.

At first glance, both the model with distance-
dependent alignment strength and that with the con-
stant alignment strength appear to give equally valid
results for the ! correlation function, as they match
within 20% overall and within 6% and 8%, respectively,
in the 1-halo regime. However, there are noticeable dif-
ferences when the full �

2
dof is considered. Looking at the

! (ED) correlation function, the model with distance-
dependent alignment strength has a �

2
dof of 4.3 overall,

3.9 in the 1-halo regime, and 4.0 in the 2-halo regime
while the model with constant alignment strength shows
a �

2
dof of 6.3, 8.2, and 4.3 for the overall, 1-halo, and

2-halo regimes respectively. Similarly, if we look at the
⌘ (EE) correlation functions, we see that the distance-
dependent alignment strength matches the halo correl-
ation functions within 10% overall and within 13% in
the 1-halo regime, while the constant alignment strength
model only matches within 24% overall and 15% in the
1-halo regime. From this, we see that there does seem to
be minor improvement from using a distance-dependent
alignment model, especially when we limit our investig-
ation to the 1-halo regime where our model works best.
However, we should note the small value for � found
above (� = �0.04), indicating this power law depend-
ence is very close to a constant radial alignment.

In the 2-halo regime, the radial alignment model fails
to capture the environmental dependence of subhalo ori-
entations. In order to capture physically plausible satel-
lite contributions to the IA signal on large scales, improv-
ing the physical realism beyond a simple radial alignment
model will be necessary. We will explore such modeling
improvements in future work.

7. CAPTURING IA WITH REALISTIC COMPLEXITY:
TESTING THE MODEL WITH ILLUSTRIS

In the previous sections, we studied how models of
satellite IA are able to capture the orientation correlation
functions of subhalos in gravity-only N-body simulations.
We now turn attention in this section to the IA signal ex-
hibited by galaxies in the IllustrisTNG hydrodynamical
simulation. In so doing, we will study IA models of both
central and satellite galaxies acting together in concert.
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Figure 8. The e↵ect of subhalo anisotropy on ⌘ and !. Here we compare the correlations of all of the halos themselves (black
points) to those of all of the galaxies (black lines), where the isotropy of galaxy placement is the only di↵erence between the
three galaxy correlation functions shown. The galaxy correlations shown are the average of fifty iterations (assigning position
and alignment fifty times). While all three models align galaxies with respect to the radial vector, the subhalo position model
uses subhalo positions to place galaxies while the isotropic model places the galaxies isotropically, and the semi-isotropic model
uses the subhalo positions then rotates them around the halo major axis to preserve the radial distribution. Here we see that
using the subhalo positions, even if we rotate them, produces a signal remarkably close to that of the subhalos. Placing galaxies
isotropically appears to lose some information required to match the halo correlation functions with the parameters given.

For central IA, we use the shape of the parent halo as the
reference vector with respect to which central galaxy ori-
entations are (mis)aligned. For satellite IA, we consider
two di↵erent types of model: one based on the orienta-
tion of subhalos, the second HOD-type model based on
radial alignments of constant strength. The free para-
meters of our model modulate the strength of central
(satellite) galaxies with respect to the parent (sub)halo,
and for all our results we use emcee to fit the parameters
regulating the alignment strength.

Prior to fitting the galaxy alignment strengths, we
first adjust the occupation model parameters such that
the halo occupation of our model more closely matches
that of IllustrisTNG300. That is, we ensure that halos
of a given mass are populated, on average, with the
same number of galaxies as halos of comparable mass
in IllustrisTNG300. We used the Zheng07Cens and
Zheng07Sats for the central and satellite galaxy occupa-
tion models available in halotools, which calculate the
mean central and satellite occupations following equa-
tions (2) and (5) of Zheng et al. (2007). Table C1 shows
the occupation parameters found by fitting the central
and satellite occupation functions used by Zheng07Cens
and Zheng07Sats to the mean occupations seen in Illus-
tris. Specifically, the parameters were fit on the region
where the central occupation transitions from zero cent-
ral galaxies, to one central galaxy. For simplicity, in our
fits �logM (the width of the cuto↵ profile) and ↵ (asymp-
totic slope at high halo mass) were held fixed at 0.26 and
1.0 respectively and not allowed to vary. As noted pre-
viously, the models built using halotools tend to have
roughly three central galaxies to every one satellite, giv-

ing a satellite fraction of roughly 25% with the occupa-
tion parameters used. The Illustris satellite fraction var-
ies between 30% and 40% satellite galaxies, depending
on the stellar mass threshold chosen (with higher stellar
mass thresholds yielding a lower percentage of satellite
galaxies).

The corner plots in Figure 10 display the posteriors
from our fits to the orientation correlation functions in
Illustris. As indicated in the figure labels, we show res-
ults for fits to three separate galaxy samples, each defined
by a di↵erent stellar mass cut. Sample 1 corresponds to
log (M⇤) � 10.5, sample 2 to log (M⇤) � 10, and sample
3 to log (M⇤) � 9.5. Two broad trends are apparent
in Figure 10. First, the central galaxies have a notice-
ably larger alignment strength than the satellite galaxies.
Second, as the stellar mass threshold increases, so does
the alignment strength of both populations. Both of the
above trends can be more clearly seen in Figure 11, which
shows how the best-fitting alignment strength µ changes
with the stellar mass cut.

As seen in Figure 12, our best-fitting HOD model using
constant radial satellite alignment generates correlation
functions that agree reasonably well with IllustrisTNG.
It is by now well established that an HOD model more
complex than the one we use here is required for pre-
cision fits to the spatial clustering of hydro-simulated
galaxies (e.g., Beltz-Mohrmann et al. 2020; Hadzhiyska
et al. 2020). For the ⇠ correlations functions, the HOD
models for samples one, two, and three produce correla-
tions within 14.0%, 9.5%, and 12.0% respectively to their
corresponding counterpart from the Illustris data. This
level of agreement is a su�cient baseline for purposes of
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Figure 9. Left: Di↵erential distribution of (sub)halo radial misalignment angles for extant (sub)halos with a peak mass greater
than 1012 h�1M�. The best fit Dimroth-Watson distribution (µ = 0.83) is shown as a red line. The shaded region shows the
variation in the alignment strength for 80% of subhalos (i.e. the alignment strength assigned to 80% of the subhalos based
on where they fall on the power law fit in the right panel). We see here that a single Dimroth-Watson distribution provides
a good fit to all (sub)halo misalignment angles. Right: Dependence of the alignment strength for subhalos as a function of
radial position, scaled by the virial radius of the host halo. The black points are alignment strengths for bins of r/rvir (with
the alignment strength of each bin using the process shown in the left panel) with error bars given by bootstrapping with 50
bootstrap realizations.The red line is a clipped power law fit to these points. As opposed to the left plot where we fit a single
Dimroth-Watson distribution to all (sub)halos, we see here that if we bin (sub)halos by distance and fit a Dimroth-Watson
distribution to the misalignment angles in each bin, the behavior is approximately described by a power law.

logM⇤ � 10.5 logM⇤ � 10.0 logM⇤ � 9.5

Figure 10. The parameter values found from MCMC for central alignment strength (µcen) and satellite alignment strength
(µsat) to let HOD models best fit Illustris correlation functions using a subhalo alignment model for the satellite galaxies. Each
sample corresponds to a di↵erent mass cuto↵ for the halos included in the HOD model. These are the same mass cuto↵s seen
in Figure 12. In the models used to generate these corner plots, we used a central alignment for central galaxies and subhalo
alignment for satellite galaxies. We did the same process using constant radial alignment for satellite galaxies, yielding similar
corner plots not shown here. As a general trend, we see the alignment strengths increase with higher mass cuto↵s. Left: Best
parameters found were µcen = 0.802 and µsat = 0.449. Middle: Best parameters found were µcen = 0.683 and µsat = 0.274.
Right: Best parameters found were µcen = 0.528 and µsat = 0.112.
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Satellite ! ⌘ Central Satellite
Alignment Alignment Alignment

Type Strength Strength

Radial (logM⇤ � 10.5) 1.9 1.3 0.780 0.335
Radial (logM⇤ � 10.0) 2.1 1.2 0.685 0.139
Radial (logM⇤ � 9.5) 1.4 0.5 0.545 0.030

Subhalo (logM⇤ � 10.5) 1.8 1.2 0.802 0.449
Subhalo (logM⇤ � 10.0) 1.7 1.1 0.683 0.274
Subhalo (logM⇤ � 9.5) 1.8 0.7 0.528 0.112

Table 2. �2
dof values for the central-satellite ! (position-

orientation) and ⌘ (orientation-orientation) correlation func-
tions comparing the functions from our HOD models with
those from Illustris. Also included are the alignment strengths
that best fit our HOD model to IllustrisTNG. As before, these
are the same mass cuto↵s seen in Figure 12.

broadly assessing the accuracy of our alignment strength
models.

The center and right panels of Figure 12 display the
level of success of our best-fitting IA model to capture
the position-orientation and orientation-orientation cor-
relation functions, respectively. Table 2 shows the �

2
dof

values for each of these fits. For the satellite IA, we find
that a model based on radial alignment performs compar-
ably well to a model based on subhalo alignment, which
is encouraging for the prospects of HOD-type approaches
to capturing orientation correlation functions.

8. DISCUSSION & CONCLUSIONS

In this work, we have studied forward modeling tech-
niques that enable predictions of large-scale structure
that include intrinsic alignments in galaxy shape. Our
methodology is fully simulation-based: when predict-
ing galaxy correlation functions, we first create a syn-
thetic universe of galaxies by populating simulated halos,
and then we compute summary statistics with the same
point estimators used in the corresponding observational
measurements. Our prediction pipeline is computation-
ally e�cient, and it has the practical capability to run
likelihood analyses in the deeply nonlinear regime with
MCMC sampling algorithms. We have demonstrated the
e↵ectiveness of our model by reproducing IA signals ex-
hibited by subhalos in gravity-only simulations, as well
as by galaxies in hydrodynamical simulations such as Il-
lustrisTNG.

Our simulation-based methodology is flexible, and it is
able to leverage information from subhalos when avail-
able in a high-resolution simulation, or alternatively to
populate catalogs of host halos in lower-resolution sim-
ulations. When subhalo information is available in the
underlying simulation, we can generate more physically
realistic predictions by using the orientation of subhalos
as the reference vector for satellite galaxies. When us-
ing simulations that do not include subhalo orientations
(as is often the case due to the computational demands
of survey-scale simulations), a radial satellite alignment
model (in which satellites preferentially align with re-
spect to the radial vector between central and satellite)
can approximate reasonably well the IA signal exhibited
by hydro-simulated galaxies in the 1-halo regime.

In detail, we find that a distance-dependent alignment
strength, following equation (19), may provide a slightly
closer match to the 1-halo term signal seen in the correl-
ation functions of either gravity-only subhalos or hydro-

Figure 11. Alignment using the central alignment and
subhalo alignment models for the central and satellite galaxies
respectively. The three points shown for each type of galaxy
correspond to samples one, two, and three. The samples
are separated based on the minimum mass threshold for the
galaxies included in the sample, shown on the x-axis.

simulated galaxies. However, even a satellite model
with a simple constant radial alignment strength pro-
duces a reasonable correlation function on small scales;
looking specifically at !

g
cs, we see that the distance-

dependent alignment strength with the radial alignment
model gives a �

2
dof of 4.3 overall, while the constant align-

ment strength gives 6.3.
As shown in Figure 5, no form of radial alignment

model is able to faithfully reproduce the central–satellite
correlation functions in the 2-halo regime; this im-
plies the need for the development of a new model of
galaxy alignments that more flexibly incorporates envir-
onmental information, analogous to ongoing e↵orts to
capture assembly-biased halo occupation statistics (e.g.,
Contreras et al. 2021; Yuan et al. 2022; Lange et al. 2023).
Reference vectors based in part on the tidal field are a
promising way to incorporate such environmental e↵ects
(Harnois-Déraps et al. 2022).

We find that the anisotropic spatial distribution of
satellites within their host halos plays an important role
in the strength of orientation correlation functions. Fig-
ure 8 shows that models based on the anisotropic pos-
itions of subhalos substantially improve upon the real-
ism of the predictions. Meanwhile, models based on a
spherically symmetric NFW profile perform poorly in
the 1-halo regime. These results imply the need for
IA models with improved sophistication in the intra-
halo phase space distributions of satellites, echoing the
well-established need for such ingredients to capture or-
dinary two-point clustering (e.g., Orsi & Angulo 2018;
Hadzhiyska et al. 2022).

One of our main goals was to test how well the IA sig-
nal in IllustrisTNG can be mimicked with a simple HOD-
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Figure 12. Left: Two-point correlation functions o↵set by 1-dex for clarity Middle: position–orientation correlation function
Right: orientation–orientation correlation function. In each panel, the points with error bars are measurements made on the
IllustrisTNG300-1 simulation with error bars estimated using jackknife re-sampling of the box. The lines with shaded regions
are halo model predictions made by populating a DMO simulation with mock galaxies where the shaded region shows the
variation from random realizations of the model. We used a constant radial satellite alignment model in each case to showcase
the flexibility of the model in cases where subhalo orientations are not available. The three colors are for three stellar mass
threshold samples.

type model of galaxy orientations. In our tests, we used
MCMC to fit our models of central and satellite align-
ment strength to the orientation correlation functions
of IllustrisTNG galaxies, repeating this analysis separ-
ately for samples defined by three di↵erent stellar mass
cuts. Figure 12 summarizes the results of this analysis,
and Table 2 records the alignment strengths of our best-
fitting models. Subhalo-based models are particularly
e↵ective in their ability to generate a mock galaxy cata-
log with correlation functions similar to IllustrisTNG,
attaining �

2
dof close to unity for every sample and cor-

relation function considered. Satellite models based on
constant radial alignment perform comparably well to
the subhalo models, despite their relative simplicity. In
future work, we will generalize the HOD-type methodo-
logy used here to incorporate joint correlations between
IA strength and galaxy brightness, color, and redshift as
seen in simulations (Zjupa et al. 2022) and observations
(Samuro↵ et al. 2023). We will also work towards adding
more sophisticated alignment models that take into ac-
count more detailed sets of halo properties and other in-
formation, including redshift, in order to produce more
robust results (Xu et al. 2023).

In a full forward model of galaxy correlation functions
⇠, !, and ⌘, additional ingredients for the probabilistic
distribution of galaxy shapes will be needed in addition
to the alignment distribution model studied here. Once
the model is able to accommodate full shape information,
we expect that the results here would show much better
agreement corresponding to the expanded functionality
of our alignment models. Our mock-population frame-
work lays the groundwork for carrying out Bayesian in-
ference with simulation-based forward models of galaxy
shape correlation functions. Our simulation-based ap-
proach simplifies the e↵ort required to model systematic
e↵ects that can be challenging to capture analytically,
such as galaxy assembly bias, halo exclusion in the trans-

ition between 1- and 2-halo regimes (van den Bosch et al.
2013; Garćıa & Rozo 2019), and beyond-linear halo bias
(Mahony et al. 2022; Mead & Verde 2021). Forward mod-
els based on mock-population methods also extend nat-
urally to predict higher-order summary statistics, which
can provide additional information not contained in the
two-point functions studied here (Harnois-Déraps et al.
2021). With the additional e↵ort outlined above, our
models could be used to derive posteriors on the true in-
trinsic alignment strength of galaxies from observations
on highly nonlinear scales, and to supply priors on the
IA nuisance parameters used in cosmological analyses of
larger scales.
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APPENDIX

A. GALAXY & HALO SHAPES

We model (sub)halos and galaxies as 3-
dimensional ellipsoids. The shape and orientation
of (sub)halos/galaxies may then be characterized by
calculating the reduced inertia tensor for the particle
distribution. We define the reduced inertia tensor as:

Ĩij =

P
mn

xnixnj

r2nP
mn

(A1)

where
r
2
n =

X
x

2
ni (A2)

is the distance between the center of mass and the n
th

particle in the system. The reduced inertia tensor applies
more weight to particles that are near the center of the
object, reducing the sensitivity to loosely bound particles
present in the outer regions of the object.

The triaxial shape of the (sub)halo/galaxy is specified
by the eigenvalues of the inertia tensor, �a > �b > �c,

4 http://www.astropy.org

where the half-lengths of the principle axis of the ellipsoid
are given by a =

p
�a, b =

p
�b, c =

p
�c, (a � b � c).

The orientation of this ellipsoid is then specified by the
eigenvectors, êa, êb, and êc.

The radial weighting applied in equation (A1) tends
to make (sub)halos/galaxies appear more spherical. To
alleviate this, we iteratively calculate the reduced inertia
tensor for (sub)halos/galaxies. After the initial calcula-
tion of the Ĩ, the particle distribution is rotated so that
êa, êb, and êc are aligned with the x-, y-, x-axis. The
radial distance, r

2
n in equation (A1), is replaced with the

elliptical radial distance:

r
2
n =

⇣
xn

a

⌘2
+

⇣
yn

b

⌘2
+
⇣

zn

c

⌘2
(A3)

This process is repeated until the eigenvalues change by
less than 1% between iterations.

We implicitly model (sub)halos/galaxies as homolog-
ous triaxial ellipsoids. Note the caveats here. halos con-
tain substructure. galaxies may contain multiple com-
ponents. galaxies are observed to have twisting iso-
photes. By modeling galaxies as homologous ellipsoids,
we can specify a single shape and orientation, vastly sim-
plifying the modeling.

B. FITTING FUNCTIONS

In Figures 3 and 4, we fit a smooth function to our
measurements of simulated (subhalo) ⌘ (EE) measure-
ments. We primarily do this to reduce the noise in the
measurement at any given radius in order to make the
figures more clear. We present our fitting function here
for completeness.

⌘(r) = A1 exp (�(r/R1)
�) +

A2 exp (�(R2/r))

1.0 + (r/R2)↵
(B1)

!(r) =A1 exp (�(r/R1)
�) +

A2 exp (�(R2/r))

1.0 + (r/R2)↵
(B2)

+
A3

1.0 + (r/R3)�
(B3)

C. ILLUSTRISTNG HOD

As shown in §7, the alignment correlation functions
simultaneously depend on the misalignment distributions
as well as the underlying halo occupation statistics. Thus
in order to test the e�cacy of our misalignment mod-
eling using IllustrisTNG, it’s important to first estab-
lish an accurate baseline HOD model. In Table C1, we
see the occupation model parameters used. These val-
ues were found by fitting the occupation parameters in
the Zheng07Cens and Zheng07Sats occupation models to
fit the occupation distribution of our HOD models with
that of Illustris. Specifically, we fit the parameters in the
region where the central occupation transitions from zero
to one. Note that the values �logM and ↵ have been fixed
for simplicity, only allowing the other three parameters
to vary.

D. COVARIANCE

Due to the probabilistic nature of populating an HOD
model and aligning with a Dimroth-Watson distribution
(discussed later in Section 4), there is stochasticity in
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log(Mthresh) log(Mmin) �logM log(M0) log(M1) ↵

9.0 11.37 0.26 11.55 12.35 1.0
9.5 11.61 0.26 11.8 12.6 1.0
10.0 11.93 0.26 12.05 12.85 1.0
10.5 12.54 0.26 12.68 13.48 1.0

Table C1. HOD parameters for TNG300-1

both the data vector and the model. We have two dif-
ferent ways in which we select our covariance, depending
on our data vector.

In Section 6, we fit our satellite galaxy alignment
strengths to find an alignment strength for the radial
alignment such that the central position, satellite ori-
entation correlation functions for the galaxies match as
closely as possible to those of the halos (keeping central
galaxies perfectly aligned with their host halos for simpli-
city). However, because there is an element of stochasti-
city both in the population of the dark matter halos with
galaxies, and in the realignment of the galaxies, both our
data vector and our model have covariance. To account
for this, we look at the contribution to the covariance of
repopulating halos versus that of assigning galaxy align-
ments. As seen in Figure D1, we find that most of the co-
variance comes from aligning galaxies. As such, we use a
fixed seed for the galaxy population step in our MCMC,
meaning the same dark matter halos are populated on
each run, keeping the galaxy alignment step the only
stochastic process. For our covariance, we use the covari-
ance of !

g
cs (the central galaxy position, satellite galaxy

orientation correlation function) from 100 instances of
realigning galaxies at that seed, for a given alignment
strength (see Section 6 for more detail). We use this
covariance in the MCMC, after which a new alignment
strength is determined, and the process repeats (generat-
ing a new covariance from 100 new iterations at the new
alignment strength) until the alignment strength result-
ing from the MCMC does not change appreciably.

In Section 7, rather than fitting to the halo orienta-
tions, we found both central and satellite galaxy align-
ment strengths by fitting !

g
gg (the gg subscript now re-

ferring to all galaxies) correlation functions to those of
IllustrisTNG300. In this case, since we had a fixed data
vector, we used jackknife resampling of the Illustris data,
splitting the simulation box into 5x5x5 jackknife regions
to determine our covariance. It is important to note that
we multiplied this jackknife covariance by the Hartlap
factor, shown in equation (D1) (taken from equation 17
in Hartlap et al. (2007))

Ĉ
�1 =

n � p � 2

n � 1
Ĉ

�1
⇤ , (D1)

where Ĉ
�1 is the adjusted inverse covariance, Ĉ

�1
⇤ is

the inverse covariance directly from jackknife resampling,
n is the number of independent observations (i.e. the
number of jackknife regions), and p is the number of
elements in the data vector (i.e. the number of bins).
This helps approximately debias our estimation of the
original inverse jackknife covariance.

Data availability— We used the Bolshoi-Planck catalog
and Multidark, both available through halotools and on-
line at https://www.cosmosim.org/. The IllustrisTNG

Figure D1. The diagonals of the covariance matrices gener-
ated from measuring the ed correlations of 100 instances of
mock galaxy catalogs. The curve for total covariance comes
from catalogs where we performed a full repopulation (i.e.
no random seed was used and each time, halos were selected
and populated randomly before assigning galaxy orientation).
The orientation curve was generated in a similar fashion, but
instead of allowing a full repopulation, we used a fixed seed
for the halo population (i.e. the same halos were chosen each
time with the same galaxy populations) meaning the only
source of variance was the galaxy alignments. The final curve
shows the di↵erence between these two, Total - Orientation,
representing the covariance that comes from just the repopu-
lation of the halos, ignoring the galaxy alignments. Here we
see that the majority of the covariance comes from realigning
the galaxies.

data we used is publicly available at https://www.tng-
project.org/.
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Pellejero-Ibáñez M., 2023, arXiv e-prints, p. arXiv:2307.13754
Mandelbaum R., Hirata C. M., Ishak M., Seljak U., Brinkmann

J., 2006, MNRAS, 367, 611
Mansfield P., Avestruz C., 2021, MNRAS, 500, 3309
Marinacci F., et al., 2018, Monthly Notices of the Royal

Astronomical Society, 480, 5113
Mead A. J., Verde L., 2021, Monthly Notices of the Royal

Astronomical Society, 503, 3095

Mead A. J., Peacock J. A., Heymans C., Joudaki S., Heavens
A. F., 2015, MNRAS, 454, 1958

Naiman J. P., et al., 2018, Monthly Notices of the Royal
Astronomical Society, 477, 1206

Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Nelson D., et al., 2017, Monthly Notices of the Royal

Astronomical Society, 475, 624
Orsi Á. A., Angulo R. E., 2018, MNRAS, 475, 2530
Pillepich A., et al., 2017, Monthly Notices of the Royal

Astronomical Society, 475, 648
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Zjupa J., Schäfer B. M., Hahn O., 2022, MNRAS, 514, 2049
van den Bosch F. C., More S., Cacciato M., Mo H., Yang X.,

2013, MNRAS, 430, 725
van den Bosch F. C., Ogiya G., Hahn O., Burkert A., 2018,

MNRAS, 474, 3043

This paper was built using the Open Journal of As-
trophysics LATEX template. The OJA is a journal which

provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.

http://dx.doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1093/mnras/staa3802
http://dx.doi.org/10.1093/mnras/staa3802
http://dx.doi.org/10.1093/mnras/stz2458
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.4170G
http://dx.doi.org/10.1093/mnras/staa623
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5506H
http://dx.doi.org/10.48550/arXiv.2210.10068
https://ui.adsabs.harvard.edu/abs/2022arXiv221010068H
http://dx.doi.org/10.1093/mnras/stab1623
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.1623H
http://dx.doi.org/10.1093/mnras/stab3222
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.3868H
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.3868H
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1093/mnras/stw840
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2552H
http://dx.doi.org/10.3847/1538-3881/aa859f
http://dx.doi.org/10.1111/j.1365-2966.2006.10705.x
http://dx.doi.org/10.1103/PhysRevD.70.063526
http://adsabs.harvard.edu/abs/2004PhRvD..70f3526H
http://dx.doi.org/10.1103/PhysRevD.106.123510
https://ui.adsabs.harvard.edu/abs/2022PhRvD.106l3510H
http://dx.doi.org/10.1086/425993
http://dx.doi.org/10.1086/425993
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1093/mnras/stac2083
http://dx.doi.org/10.1093/mnras/stac2083
http://dx.doi.org/10.1093/mnras/stw439
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.2848J
http://dx.doi.org/10.1086/341065
http://dx.doi.org/10.1093/mnras/stt1618
http://dx.doi.org/10.1093/mnras/stt1618
http://dx.doi.org/10.1088/0004-637X/740/2/102
https://ui.adsabs.harvard.edu/abs/2011ApJ...740..102K
http://dx.doi.org/10.1093/mnras/stw248
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.4340K
http://dx.doi.org/10.1111/j.1365-2966.2011.18858.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.2293K
http://dx.doi.org/10.1093/mnras/stt1403
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.1618K
http://dx.doi.org/10.1093/mnras/stv2615
http://dx.doi.org/10.1093/mnras/stv2615
http://dx.doi.org/10.1086/172900
https://ui.adsabs.harvard.edu/abs/1993ApJ...412...64L
http://dx.doi.org/10.1093/mnras/stad473
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520.5373L
http://dx.doi.org/10.3847/1538-4357/aafe11
https://ui.adsabs.harvard.edu/abs/2019ApJ...872...37L
http://dx.doi.org/10.1111/j.1365-2966.2008.13624.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13624.x
http://dx.doi.org/10.1093/mnras/stac1858
http://dx.doi.org/10.1093/mnras/stac1858
http://dx.doi.org/10.48550/arXiv.2307.13754
https://ui.adsabs.harvard.edu/abs/2023arXiv230713754M
http://dx.doi.org/10.1111/j.1365-2966.2005.09946.x
http://adsabs.harvard.edu/abs/2006MNRAS.367..611M
http://dx.doi.org/10.1093/mnras/staa3388
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.3309M
http://dx.doi.org/10.1093/mnras/sty2206
http://dx.doi.org/10.1093/mnras/sty2206
http://dx.doi.org/10.1093/mnras/stab748
http://dx.doi.org/10.1093/mnras/stab748
http://dx.doi.org/10.1093/mnras/stv2036
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.1958M
http://dx.doi.org/10.1093/mnras/sty618
http://dx.doi.org/10.1093/mnras/sty618
http://dx.doi.org/10.1086/304888
https://ui.adsabs.harvard.edu/abs/1997ApJ...490..493N
http://dx.doi.org/10.1093/mnras/stx3040
http://dx.doi.org/10.1093/mnras/stx3040
http://dx.doi.org/10.1093/mnras/stx3349
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.2530O
http://dx.doi.org/10.1093/mnras/stx3112
http://dx.doi.org/10.1093/mnras/stx3112
http://dx.doi.org/10.1093/mnras/stw1705
http://dx.doi.org/10.1093/mnras/stw1705
http://dx.doi.org/10.1093/mnras/stz3114
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.5330S
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.5330S
http://dx.doi.org/10.1093/mnras/stad2013
http://dx.doi.org/10.1051/0004-6361/202141938
http://dx.doi.org/10.1111/j.1365-2966.2009.15956.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15956.x
http://dx.doi.org/10.1088/1475-7516/2012/05/030
http://dx.doi.org/10.1088/1475-7516/2012/05/030
http://dx.doi.org/10.1093/mnras/stx1828
http://arxiv.org/abs/2307.02545
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2012.08.010
http://dx.doi.org/10.1093/mnras/stv272
http://dx.doi.org/10.1093/mnras/stv272
http://dx.doi.org/10.1088/1475-7516/2020/01/025
http://dx.doi.org/10.1088/1475-7516/2020/01/025
https://ui.adsabs.harvard.edu/abs/2020JCAP...01..025V
http://dx.doi.org/10.1088/1475-7516/2021/05/061
http://dx.doi.org/10.1088/1475-7516/2021/05/061
https://ui.adsabs.harvard.edu/abs/2021JCAP...05..061V
http://arxiv.org/abs/2307.12334
http://dx.doi.org/10.1046/j.1365-8711.2003.06254.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.339.1057Y
http://dx.doi.org/10.1093/mnras/sty1089
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.2019Y
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.2019Y
http://dx.doi.org/10.1093/mnras/stab3355
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.3301Y
http://dx.doi.org/10.1086/521074
http://dx.doi.org/10.1093/mnras/stac042
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.2049Z
http://dx.doi.org/10.1093/mnras/sts006
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430..725V
http://dx.doi.org/10.1093/mnras/stx2956
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.3043V
http://astro.theoj.org

	Abstract
	Introduction
	Two-Point Correlation Functions and the Halo Occupation Distribution
	Theory: The Halo Model and correlation functions
	Two-point Correlation Functions Estimators

	Simulations and Covariance
	Simulations
	Covariance

	Modeling Alignments
	Galaxy Alignment Models
	Building an HOD Mock

	Impact of Galaxy–Halo Misalignment on Orientation Correlation Functions
	Central and Satellite Galaxy Misalignment

	Modeling Satellite Orientations without Subhalo Orientations
	Radial Alignment Modeling
	Fitting to the 1-halo and 2-halo Regimes
	Satellite Anisotropy
	Capturing Subhalo IA in Gravity-only Simulations

	Capturing IA with Realistic Complexity: testing the model with Illustris
	Discussion & Conclusions
	Galaxy & Halo Shapes
	Fitting Functions
	IllustrisTNG HOD
	Covariance

