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Analysis of View Aliasing for the Generalized Radon Transform in R2\ast 

Alexander Katsevich\dagger 

Abstract. In this paper we consider the generalized Radon transform \scrR in the plane. Let f be a piecewise
smooth function, which has a jump across a smooth curve \scrS . We obtain a formula, which accurately
describes view aliasing artifacts away from \scrS when f is reconstructed from the data \scrR f discretized
in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate
\epsilon \rightarrow 0. The proposed approach does not require that f be band-limited. Numerical experiments
with the classical Radon transform and generalized Radon transform (which integrates over circles)
demonstrate the accuracy of the formula.
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1. Introduction. Resolution of image reconstruction from discrete data is one of the fun-
damental questions in imaging. The most direct approach to estimating resolution utilizes the
notions of the point spread function and modulation transfer function [1, sections 12.2, 12.3].
This and other similar approaches allow rigorous theoretical analysis of only the simplest
settings, such as inversion of the classical Radon transform. For the most part, resolution
of reconstruction in more difficult settings (e.g., inversion of the cone beam transform) is
analyzed by heuristic arguments, numerically, or via measurements [2, 3, 4].

Sampling theory provides a related approach to investigating resolution [5, 6, 7, 8, 9, 10,
11, 12, 13, 14]. Consider, for example, the classical Radon transform in R2

\^f(\alpha ,p) =

\int 
R2

f(x)\delta (\vec{}\alpha \cdot x - p)dx, \vec{}\alpha = (cos\alpha , sin\alpha ).(1.1)

The corresponding discrete data are

\^f(\alpha k, pj), \alpha k = \=\alpha + k\Delta \alpha , pj = \=p+ j\Delta p, \alpha k \in [0,2\pi ), j \in Z,(1.2)

for some fixed \=\alpha , \=p and \Delta \alpha , \Delta p. Assume that f is essentially band limited (in the classical
sense). This means that, with high accuracy, its Fourier transform \~f(\xi ) is supported in some
ball | \xi | \leq B. The sampling theory predicts the rates \Delta \alpha , \Delta p with which \^f(\alpha ,p) should be
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416 ALEXANDER KATSEVICH

sampled, so that reconstruction of f from discrete data does not contain aliasing artifacts.
Since the essential band-limit B is related to the size of the smallest detail in f , a typical
prescription of the theory can be loosely formulated as follows: given the size of the smallest
detail in f , the minimal sampling rates to avoid aliasing are \Delta \alpha , \Delta p. Alternatively, the theory
determines the size of the smallest detail in f that can be resolved given the rates \Delta \alpha , \Delta p.

A microlocal approach to sampling was developed recently [15, 16, 17]. In this approach
f is assumed to be band-limited in the semiclassical sense (i.e., the semiclassical wavefront
set WFh(f) is compact). Alternatively, the assumption is that the data represent discrete
values of the convolution w \ast \scrR f . Here \scrR is the generalized Radon transform, and w is a
semiclassically band-limited mollifier. The mollifier models the detector aperture function.
The goal is to accurately recover the semiclassical singularities of f and avoid aliasing. If the
sampling requirement is violated, the theory predicts the location and frequency of aliasing
artifacts.

In [18, 19, 20, 21, 22], the author developed an alternative analysis of resolution (we call
it local resolution analysis, or LRA). The main results in these papers are simple expressions
describing the reconstruction from discrete values of \scrR f or w \ast \scrR f in a neighborhood of the
singularities of f in a variety of settings. We call these expressions the discrete transition
behavior (DTB). DTB provides a direct, quantitative link between the sampling rate and
resolution. In these papers such a link is established for a wide range of integral transforms,
conormal distributions f , and reconstruction operators. In [23, 24] LRA was generalized to
objects with rough boundaries in R2. Neither f nor the mollifier w (if applied) is required to
be band-limited.

Suppose \Delta p= \epsilon and \Delta \alpha = \kappa \epsilon , where \kappa > 0 is fixed. The DTB is an accurate approximation
of the reconstruction in an \epsilon -neighborhood of the singular support of f in the limit as \epsilon \rightarrow 
0. Therefore, the DTB provides much more than a single measure of resolution (e.g., the
size of the smallest detail that can be resolved). Given the DTB function, the user may
decide in a fully quantitative way what sampling rate is required to achieve a user-defined
reconstruction quality. The notion of quality may include resolution (which can be described
in any desired way) and/or any other requirement the user desires. Thus, the LRA answers
precisely the question of the required sampling rate to guarantee the required resolution
(understood broadly).

The only item missing from the LRA until now was analysis of aliasing. Some earlier
results on the analysis of aliasing artifacts (more precisely, view aliasing artifacts) are in [24]
and [1, Section 12.3.2]. They include an approximate formula for the artifacts far from a small,
radially symmetric object. More recent results are in [15, 16, 17]. These include the prediction
of the location and frequency of the artifacts, qualitative analysis of the artifacts generated
by various edges (e.g., flat, convex and a corner), as well as their numerical illustrations.

In this paper we generalize the LRA to the analysis of view aliasing. We call it the Local-
ized Aliasing Analysis, or LAA. Our main result is Theorem 2.5, where a precise, quantitative
formula describing aliasing artifacts is stated. The formula is asymptotic; it is established
in the limit as the sampling rate \epsilon \rightarrow 0 (which is the same assumption as in [15, 16, 17]).
Similarly to the LRA, the LAA is very flexible. In this paper we consider the generalized
Radon transform in R2 and apply it to functions with jump discontinuities across smooth
curves. Similarly to [18, 19, 20, 21, 22], we believe that the LAA is generalizable, and that
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ANALYSIS OF VIEW ALIASING 417

it is capable of predicting aliasing artifacts for a wide range of integral transforms, conormal
distributions f , and reconstruction operators.

To avoid confusion, we clarify the meaning of the terms ``resolution"" and ``aliasing"" used
in this paper. For simplicity, we will use the example of a jump discontinuity across a smooth
curve \scrS . Resolution at x0 \in \scrS means the extent to which the boundary at the jump (i.e., \scrS )
is blurred when the image is reconstructed in a neighborhood of x0 from discrete data. This
blurring is accurately described by the DTB function mentioned above. The derivation of the
DTB function accounts for possible artifacts that may arise due to aliasing from the parts
of \scrS in a neighborhood of x0. In other words, LRA treats local aliasing as part of resolution
analysis. In this paper, the term aliasing stands for rapidly oscillating artifacts away from \scrS 
that are caused by aliasing from \scrS .

The paper is organized as follows. In section 2 we describe the set-up, formulate assump-
tions, and state the main result---Theorem 2.5. This theorem provides a simple formula that
describes aliasing artifacts. We also discuss various quantities used in the formula and state a
corollary that describes what the formula looks like in the case of the classical Radon trans-
form. The proof of Theorem 2.5 is in section 3. Section 4.1 establishes a few useful properties
of the function \Psi , in terms of which the artifacts are described. An algorithm for computing \Psi 
numerically is in section 4.2. Section 5 contains numerical experiments with the classical and
generalized Radon transforms. The latter integrates over circles. Details of implementation,
which illustrate the use of the theorem, are provided. All experiments demonstrate a good
match between reconstruction and prediction. Proofs of some lemmas are in Appendix A.

2. Preliminaries.

2.1. Generalized Radon transform. Let p= \scrP \ast (\alpha ,x) be a defining function for the gen-
eralized Radon transform \scrR :

\^f(\alpha ,p) =

\int 
\scrS \alpha ,p

W (\alpha ,p;x)f(x)dA, \scrS \alpha ,p := \{ x\in R2 :\scrP \ast (\alpha ,x) = p\} , \alpha \in \Omega , p\in R,(2.1)

whereW \in C\infty (\Omega \times R\times U) is some (known) integration weight, dA is the length element on the
curve \scrS \alpha ,p, U \subset R2 is a small open set, and \Omega \subset R is a small interval. Similarly to the classical
Radon transform, we think of \alpha as the polar angle, and p as the affine variable. However,
since we consider the generalized Radon transform, these variables admit many alternative
interpretations. See [25, 26] for more information and references about generalized Radon
transforms, their properties, and applications.

Let \scrS be a C\infty curve. Let (\alpha  \star , p \star ) be a pair such that \scrS \alpha  \star ,p \star 
is tangent to \scrS at some

y0 \in \scrS \cap U . To simplify notation, denote \scrS  \star := \scrS \alpha  \star ,p \star 
. We will compute a reconstruction

in a small neighborhood of some point x0 \not \in \scrS . Let H(y) = 0 be an equation for \scrS in a
neighborhood of y0. The function H is smooth and dH(y) \not = 0, y \in \scrS . Multiplying H by a
constant if necessary, we can assume that \scrP \ast satisfies the equations

\scrP \ast (\alpha  \star , x0) =\scrP \ast (\alpha  \star , y0) = p \star , dx\scrP \ast (\alpha  \star , y0) = dH(y0).(2.2)

Assumption 2.1 (properties of \scrP \ast ).
1. \scrP \ast \in C\infty (\Omega \times U) and dx\scrP \ast (\alpha ,x) \not = 0, x= x0, y0.
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418 ALEXANDER KATSEVICH

x0

Figure 1. Illustration of the curves \scrS and \scrS \alpha ,p.

2. Equations (2.2) hold.
3. \partial \alpha \scrP \ast (\alpha  \star , x0) \not = \partial \alpha \scrP \ast (\alpha  \star , y0) (the Bolker condition).
4. One has

M := (\vec{}\Theta \bot 
0 \cdot \partial y)2(\scrP \ast (\alpha  \star , y) - H(y))| y=y0

> 0,(2.3)

where \vec{}\Theta \bot 
0 is a unit vector orthogonal to dH(y0).

5. There exists c > 0 such that y0 \not \in \scrS \alpha ,p for any \alpha \in \Omega and | p - p \star | \geq c.

Assumption 2.1(4) is equivalent to the condition that the curvatures of \scrS and \scrS  \star at y0 are
not equal. In other words, the order of contact between \scrS and \scrS  \star is one (and not higher). For
example, if one of the two curves is flat at y0, then M \not = 0 as long as the other one is not flat.
The requirement that M be positive is not restrictive. If M < 0, we can flip the p-axis and
replace H\rightarrow  - H, \scrP \ast \rightarrow  - \scrP \ast to make M positive. The essential requirement is that M \not = 0.

The requirementM > 0 means that \scrS \alpha  \star ,p \star +\delta intersects \scrS at two points near y0 when \delta > 0,
and does not intersect \scrS near y0 if \delta < 0 (see Figure 1). In what follows we set

\vec{}\Theta 0 :=\pm dH(y0),(2.4)

and the sign (+ or  - ) is selected so that \vec{}\Theta 0 points towards the part of \scrS \alpha  \star ,p \star +\delta , 0 < \delta \ll 1,
located between its two intersection points with \scrS (see Figure 1).

Shrinking, if necessary, \Omega and U further, we may assume that there is no other pair
(\alpha \prime , p\prime ) \not = (\alpha  \star , p \star ), \alpha 

\prime \in \Omega , such that x0 \in \scrS \alpha \prime ,p\prime and \scrS \alpha \prime ,p\prime is tangent to \scrS at y0.
Let \scrP (\alpha ), \alpha \in \Omega , be the function defined by the requirement that the curves \scrS \alpha ,\scrP (\alpha ) be

tangent to \scrS in a neighborhood of y0. Figure 2 illustrates the function \scrP (\alpha ) in the case of the
classical Radon transform (left panel) and the generalized Radon transform that integrates
over circles (right panel). The circles have arbitrary radii and centers on a given curve z(\alpha )\in \Gamma ,
\alpha \in \Omega . Consider the latter case. Suppose, for example, that \scrS is a circle with radius r and
center a. Then, globally, there are two such functions: \scrP (\alpha ) = | z(\alpha )  - a| \pm r. See also
section 5.2 for more details about the circular Radon transform.

The following simple lemma is proven in Appendix A.1.

Lemma 2.2. For a sufficiently small neighborhood \Omega \ni \alpha  \star , one has

\scrP (\alpha  \star ) = p \star , \scrP (\alpha )\in C\infty (\Omega ), \partial \alpha \scrP \ast (\alpha  \star , y0) =\scrP \prime (\alpha  \star ).(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ANALYSIS OF VIEW ALIASING 419

Figure 2. Illustration of the function \scrP (\alpha ). Left panel: the classical Radon transform that integrates over
lines. Right panel: the generalized Radon transform that integrates over circles with centers on a given curve
parametrized by \alpha (denoted \Gamma in the figure).

From Assumptions 2.1(1), 2.1(3) and Lemma 2.2,

u0 := dx\scrP \ast (\alpha  \star , x0) \not = 0, \mu 0 := \partial \alpha (\scrP \ast (\alpha  \star , x0) - \scrP (\alpha  \star )) \not = 0.(2.6)

2.2. Remaining assumptions and main result. Consider a function f(x) on the plane,
x\in R2. We suppose the following.

Assumption 2.3 (properties of f).
1. supp(f)\subset U and diam(U) is sufficiently small.
2. There exist open sets D\pm and functions f\pm \in C\infty (R2) such that

f(x)\equiv f - (x), x\in D - , f(x)\equiv f+(x), x\in D+,

D - \cap D+ =∅, D - \cup D+ =U \setminus \scrS ,
(2.7)

3. \scrS \cap U is a C\infty curve.

Thus, sing supp(f) \subset \scrS . In general, f - (x) \not = f+(x), x \in \scrS , so f may have a jump across \scrS .
Note that whether x0 \in U or not is irrelevant. Also, when U shrinks towards y0, \scrS does not
change. Thus, \scrS \cap U is a small segment of \scrS around y0. With this understanding, in what
follows we do not distinguish between \scrS and \scrS \cap U .

Similarly to [17], we consider semidiscrete data

\^f\epsilon (\alpha k, p) :=

\int 
w\epsilon (p - s) \^f(\alpha k, s)ds, \alpha k := k\Delta \alpha , p\in R, w\epsilon (t) := \epsilon  - 1w(t/\epsilon ),(2.8)

where w is a mollifier (e.g., the detector aperture function), \Delta \alpha = \kappa \epsilon , and \kappa > 0 is fixed. It is
reasonable to assume that the support of w\epsilon is of size O(\epsilon ), because sampling rates along \alpha 
and p are usually of the same order of magnitude.

Assumption 2.4 (assumptions about the mollifier w).
1. w is compactly supported and w\prime \in Lq(R) for some q > 2 and
2.

\int 
w(p)dp= 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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420 ALEXANDER KATSEVICH

Hence, the data (2.8) represent the integrals of f along thin strips around \scrS \alpha k,p, and their
width (=O(\epsilon )) is determined by \epsilon and the support of w. In the ideal case (not considered in
this paper), where w is the Dirac \delta -function, the data represent the integrals of f along \scrS \alpha k,p.

Reconstruction from the data (2.8) is achieved by the formula

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 
\alpha k\in \Omega 

\omega (\alpha k, x)

\pi 

\int 
\partial p \^f\epsilon (\alpha k, p)

p - \scrP \ast (\alpha k, x)
dp, x\in U \prime ,(2.9)

where U \prime is a small neighborhood of x0 and \omega \in C\infty (\Omega \times U \prime ) is some weight function. This
is a discretized (in \alpha ) version of the classical filtered back-projection inversion formula [27]
adapted to the generalized Radon transform in R2 (e.g., as it was done in [28, 29]). The
integral with respect to p, which is understood in the principal value sense, is the filtering
step (the Hilbert transform). The exterior sum is a quadrature rule corresponding to the
backprojection integral.

To better understand (2.9), we consider its continuous analogue. Suppose w is the \delta -
function. The continuous version of (2.9) reads

f \mathrm{r}\mathrm{e}\mathrm{c} =\scrR \ast (\scrH \partial p)\scrR f.(2.10)

Here \scrR \ast is a weighted adjoint transform and \scrH is the Hilbert transform acting with respect
to p. By imposing additional restrictions on \scrP \ast , \omega , and W we can ensure that \scrR \ast (\scrH \partial p)\scrR 
is a \Psi DO of order zero (see, e.g., [28, 30]) with some other desired properties (e.g., elliptic,
principal symbol equal 1). We do not do this, since our focus here is only the reconstruction
of rapidly oscillating artifacts in f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon away from \scrS . In particular, no attempt is made to
achieve exact reconstruction. In view of this we impose only a minimal set of conditions that
guarantee that Theorem 2.5 holds. These conditions do not guarantee that \scrR \ast (\scrH \partial p)\scrR is a
\Psi DO.

Introduce the following functions:

\psi (\^q) := (1/2)

\int \infty 

0
w(\^q+ \^p)\^p - 1/2d\^p, \^q \in R,

\Psi (h;a, r) :=
\sum 
k\in Z

[\psi (a(k - r) + h) - \psi (a(k - r))] , h, a, r \in R, a \not = 0,

\Psi (h; 0, r) := 0, h, r \in R,

(2.11)

and

\Delta f(y0) = lim
\epsilon \rightarrow 0+

(f(y0 + \epsilon \vec{}\Theta 0) - f(y0  - \epsilon \vec{}\Theta 0)).(2.12)

Various properties of \psi and \Psi (e.g., that \psi is continuous and decays sufficiently fast, so that
the series in the definition of \Psi is absolutely convergent) are established in sections 3.1 and 4.
Our main result is as follows.

Theorem 2.5. Suppose W \in C\infty (\Omega \times R\times U) and \omega \in C\infty (\Omega \times U \prime ) for some small open sets
\Omega \ni \alpha  \star , U \ni y0, and U \prime \ni x0. Under Assumptions 2.1, 2.3, and 2.4, one has

\epsilon  - 1/2(f rec\epsilon (x0 + \epsilon \v x) - f rec\epsilon (x0)) = c\Psi (u0 \cdot \v x;\kappa \mu 0, k \star ) +O(\epsilon 1/2), \epsilon \rightarrow 0,

c := - \kappa \omega (\alpha  \star , x0)W (\alpha  \star , p \star ;y0)

\pi 
(2/M)1/2\Delta f(y0),

k \star :=\alpha  \star /\Delta \alpha , \kappa :=\Delta \alpha /\epsilon ,

(2.13)
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ANALYSIS OF VIEW ALIASING 421

where M is defined in (2.3), u0 and \mu 0 are defined (2.6), and the O(\epsilon 1/2) term is uniform with
respect to \v x confined to any bounded set.

To help the reader, we discuss various quantities occurring in (2.13).
1. \v x is a rescaled displacement from a fixed point x0 to a nearby reconstruction point x:

\v x= (x - x0)/\epsilon .
2. For the classical Radon transform (CRT), \scrP \ast (\alpha ,x) = \vec{}\alpha \cdot x, where \alpha and \vec{}\alpha are related

by \vec{}\alpha = (cos\alpha , sin\alpha ).
3. \alpha  \star , p \star are the values such that the integration curve \scrS  \star = \scrS \alpha  \star ,p \star 

contains x0 and is
tangent to \scrS at some point, denoted y0 (see Figure 1).

4. W (\alpha ,p;y) and \omega (\alpha ,x) are integration weights in \scrR and its adjoint (see (2.1), (2.9),
(2.10) and the discussion around the latter equation). For the CRT, W (\alpha ,p;y) \equiv 1
and \omega (\alpha ,x)\equiv 1.

5. \kappa =\Delta \alpha /\epsilon , where \Delta \alpha is the step size along \alpha .
6. Up to a nonzero factor, M is the difference of curvatures of \scrS and \scrS  \star at y0.
7. \Delta f(y0) is the value of the jump of f across \scrS at y0.
8. k \star = \alpha  \star /\Delta \alpha is the ``index"" value corresponding to the angle \alpha  \star . We put the word

index in quotes, because k \star is not necessarily an integer. As is easily seen from (2.11)
and (2.13), only the fractional part of k \star is important.

9. The quantities u0 := dx\scrP \ast (\alpha  \star , x0) and \mu 0 := \partial \alpha (\scrP \ast (\alpha  \star , x0)  - \scrP (\alpha  \star )) depend on the
properties of the Radon transform (via the function \scrP \ast ) and the curve \scrS . For the
CRT, u0 = \vec{}\alpha  \star and \mu 0 = \vec{}\alpha \bot 

 \star \cdot (x0  - y0), so | \mu 0| = | x0  - y0| .
The following corollary, which follows immediately from Theorem 2.5, illustrates what

(2.13) looks like in the case of the CRT.

Corollary 2.6. Let \scrR be the CRT. Under the assumptions of Theorem 2.5 one has

\epsilon  - 1/2(f rec\epsilon (x0 + \epsilon \v x) - f rec\epsilon (x0)) = c\Psi (\vec{}\alpha  \star \cdot \v x;\kappa \vec{}\alpha \bot 
 \star \cdot (x0  - y0), k \star ) +O(\epsilon 1/2), \epsilon \rightarrow 0,

c := - (\kappa /\pi )(2r)1/2\Delta f(y0), k \star := \alpha  \star /\Delta \alpha , \kappa :=\Delta \alpha /\epsilon ,
(2.14)

where r is the radius of curvature of \scrS at y0 and the O(\epsilon 1/2) term is uniform with respect to
\v x confined to any bounded set.

See section 5 for more details on how to apply (2.13) for the classical and circular Radon
transforms.

3. Proof of Theorem 2.5. By (2.6), u0 \not = 0, \mu 0 \not = 0. By linearity of the Radon transform,
we can assume that the support of f is contained in a small neighborhood of y0 (i.e., by
shrinking U as much as necessary). By Assumption 2.1(5), shrinking U and \Omega even more, we
can assume that there exists c > 0 such that

\scrS \alpha ,p \cap U =∅ for any \alpha \in \Omega , | p - p \star | \geq c.(3.1)

Then

\^f(\alpha ,p) = \varphi 1(\alpha )(p - \scrP (\alpha ))
1/2
+ +\varphi 2(\alpha ,p)(p - \scrP (\alpha ))

3/2
+ +\varphi 3(\alpha ,p), \alpha \in \Omega , p\in R,(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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422 ALEXANDER KATSEVICH

where \varphi 1 \in C\infty 
0 (\Omega ), \varphi 2,3 \in C\infty (\Omega \times R), and

\varphi 1(\alpha  \star ) =W (\alpha  \star , p \star ;y0)\Delta f(y0)2(2/M)1/2.(3.3)

For the CRT this result is established in [31, 32]. For the generalized Radon transform it easily
follows from dx\scrP \ast (\alpha  \star , y0) \not = 0 and M \not = 0 (see Assumptions 2.1(1) and 2.1(4)) by applying the
method of proof of Lemma 3.5 in [21].

Since f(x) is compactly supported, \^f(\alpha ,p) is compactly supported in p by (3.1). Hence
we can assume that \varphi 2(\alpha ,p) is compactly supported as well and

\varphi 3(\alpha ,p)\equiv  - \varphi 1(\alpha )(p - \scrP (\alpha ))
1/2
+ , \alpha \in \Omega , | p| \geq c,(3.4)

for some c.
The idea of the proof is to split \^f into three terms using (3.2), substitute each of them

one by one into (2.8), (2.9), and investigate the resulting expressions separately.

3.1. Beginning of proof. Estimate of the leading term. Replace \^f(\alpha , s) with \varphi 1(\alpha )(s - 
\scrP (\alpha ))

1/2
+ in (2.8) and substitute into (2.9). After simple transformations we get

f \mathrm{r}\mathrm{e}\mathrm{c}-1\epsilon (x) := - \Delta \alpha 

2\pi \epsilon 1/2

\sum 
\alpha k\in \Omega 

\omega (\alpha k, x)\varphi 1(\alpha k)\psi ((\scrP \ast (\alpha k, x) - \scrP (\alpha k))/\epsilon ),

\psi (\^q) := (2\pi ) - 1

\int 
(\^p - \^q) - 1

\int 
w(\^p - \^s)\^s

 - 1/2
+ d\^sd\^p.

(3.5)

After additional transformations with the help of the integral (3.13), \psi simplifies to the ex-
pression in (2.11). These transformations are justified by applying \psi in (3.5) to a test function
and changing the order of integration using the result in [33, section III.28.4]. In turn, (2.11)
gives

\psi (\^q) = 0, \^q > c, \psi (\^q) is uniformly continuous on R,
\psi (n)(\^q) = cn( - \^q) - (1/2) - n +O(| \^q|  - (3/2) - n), \^q < - c, \^q\rightarrow  - \infty , n= 0,1,2, . . . ,

(3.6)

for some c > 0 and cn. Since \^p
 - 1/2
+ \in Lq\prime 

loc(R) for any q\prime < 2, Assumption 2.4(1) and [34,
Exercise 11, p. 196] imply that \psi is uniformly continuous on R. Note that \psi (\^q) is of limited
smoothness on a compact set, outside of which \psi is C\infty .

Using the notation in (2.6) and (2.11) we formulate the following result.

Lemma 3.1. Under the assumptions of Theorem 2.5 one has

\epsilon  - 1/2(f rec-1\epsilon (x0 + \epsilon \v x) - f rec-1\epsilon (x0))

= - \kappa \omega (\alpha  \star , x0)\varphi 1(\alpha  \star )

2\pi 
\Psi (u0 \cdot \v x;\mu 0\kappa ,k \star ) +O(\epsilon 1/2),

(3.7)

where the O(\epsilon 1/2) term is uniform with respect to \v x confined to any bounded set.

The proof of the lemma is in subsection A.2.
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ANALYSIS OF VIEW ALIASING 423

3.2. The second term. Similarly, replace \^f(\alpha , s) with \varphi 2(\alpha , s)(s - \scrP (\alpha ))
3/2
+ in (2.8) and

substitute into (2.9). After simple transformations we get with some c

f \mathrm{r}\mathrm{e}\mathrm{c}-2\epsilon (x) := c\epsilon 
\sum 
\alpha k\in \Omega 

\omega (\alpha k, x)g2(\scrP \ast (\alpha k, x),\scrP (\alpha k), \alpha k), x= x0 + \epsilon \v x,

g2(p, q,\alpha ) :=

\int 
(t - p) - 1\partial t

\int 
w\epsilon (t - s)\varphi 2(\alpha , s)(s - q)

3/2
+ dsdt,

p=\scrP \ast (\alpha k, x), q=\scrP (\alpha k).

(3.8)

Therefore, in (3.8) p, q satisfy

| p| \leq sup
\alpha \in \Omega 

| \scrP \ast (\alpha ,x0)| +O(\epsilon ), | q| \leq c,(3.9)

where c is the same as in (3.1). Reducing, if necessary, \Omega further, we can assume that the
supremum in (3.9) is bounded. Thus, | p| , | q| \leq P for some P < \infty . For simplicity, the
dependence of g2, \varphi 2, and related functions on \alpha will be omitted from notation. Rewrite g2
as follows:

g2(p, q) =

\int 
w\epsilon (p - t)

\int 
(s - t) - 1\partial s

\Bigl( 
\varphi 2(s)(s - q)

3/2
+

\Bigr) 
dsdt.(3.10)

Using the results in [35, section 8.3], we find

g2(p, q) =

\int 
w\epsilon (p - t)

\Bigl( 
\varphi 2,1(t, q)(t - q)

1/2
 - +\varphi 2,2(t, q)

\Bigr) 
dt(3.11)

for some smooth and bounded \varphi 2,1 and \varphi 2,2. The same result can be obtained by elementary
means by writing\int \infty 

0

\varphi (s)

s1/2(s - \rho )
ds=\varphi (\rho )

\int \infty 

0

ds

s1/2(s - \rho )
+

\int \infty 

0

\varphi (s) - \varphi (\rho )

s - \rho 
s - 1/2ds,(3.12)

using the integral (see [36, equations 2.2.4.25 and 2.2.4.26])\int 
(s - \rho ) - 1s

 - 1/2
+ ds= \pi \rho 

 - 1/2
 - ,(3.13)

and substituting \rho = t - q, \varphi (s) = s[(3/2)\varphi 2(s+ q) + s\varphi \prime 
2(s+ q)].

From (3.11) it follows that

| g2(p+\Delta p, q) - g2(p, q)| 

\leq O(| \Delta p| ) + c max
| \tau | \leq c\epsilon 

\bigm| \bigm| \bigm| (p - q+\Delta p+ \tau )
1/2
 -  - (p - q+ \tau )

1/2
 - 

\bigm| \bigm| \bigm| (3.14)

for some c. Recall that in (3.14)

p - q=\scrP \ast (\alpha k, x0) - \scrP (\alpha k), \Delta p=\scrP \ast (\alpha k, x) - \scrP \ast (\alpha k, x0) =O(\epsilon ), \tau =O(\epsilon ),(3.15)

where x = x0 + \epsilon \v x. Since \mu 0 \not = 0 (cf. (2.6)), we have | \scrP \ast (\alpha ,x0)  - \scrP (\alpha )| \geq c| \alpha  - \alpha  \star | for any
\alpha \in \Omega and some c > 0. Therefore, there exists c1 > 0 such that whenever | \alpha  - \alpha  \star | \geq c1\epsilon and
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424 ALEXANDER KATSEVICH

\epsilon > 0 is sufficiently small, the expressions (p - q+\Delta p+ \tau )
1/2
 - and (p - q+ \tau )1/2 - are either both

zero or both nonzero. When they are both nonzero, the magnitude of their difference equals

| \Delta p| 
| p - q+\Delta p+ \tau | 1/2 + | p - q+ \tau | 1/2

\leq c\epsilon 

| \alpha  - \alpha  \star | 1/2
, | \alpha  - \alpha  \star | \geq c1\epsilon ,(3.16)

for some c. Also, there are finitely many k (close to k \star ) such that | \alpha k  - \alpha  \star | < c1\epsilon . For those
k, the same difference is O(\epsilon 1/2).

Using (3.14) and (3.16) in (3.8), we find, similarly to (2.13),

\epsilon  - 1/2(f \mathrm{r}\mathrm{e}\mathrm{c}-2\epsilon (x0 + \epsilon \v x) - f \mathrm{r}\mathrm{e}\mathrm{c}-2\epsilon (x0))

=O(\epsilon 1/2) +O(\epsilon 1/2)

\biggl[ 
\epsilon 1/2 +

\sum 
1\leq k\leq O(1/\epsilon )

\epsilon 

(k\epsilon )1/2

\biggr] 
=O(\epsilon 1/2).

(3.17)

The first O(\epsilon 1/2) term on the right in (3.17) absorbs the contributions, which arise due to the
x-dependence of \omega in (3.8) and due to the O(| \Delta p| ) = O(\epsilon ) term in (3.14). Here we use that
| \omega (x0 + \epsilon \v x,\alpha ) - \omega (x0, \alpha )| \leq c\epsilon and | g2(p, q,\alpha )| \leq c for some c and all \alpha \in \Omega , | p| , | q| \leq P .

3.3. The third term. Finally, replace \^f(\alpha , s) with \varphi 3(\alpha , s) in (2.8) and substitute this
into (2.9). Recall that \varphi 3 is not necessarily compactly supported in s (cf. (3.4)) and

\partial ls\varphi 3(\alpha , s) =O(| s| (1/2) - l), s\rightarrow \infty , \alpha \in \Omega , l= 0,1,2,(3.18)

where the big-O term is uniform in \alpha . Similarly to (3.8) and (3.10), we find

f \mathrm{r}\mathrm{e}\mathrm{c}-3\epsilon (x) := c\epsilon 
\sum 
\alpha k\in \Omega 

\omega (\alpha k, x)g3(\scrP \ast (\alpha k, x), \alpha k),

g3(p,\alpha ) :=

\int 
(t - p) - 1\partial t

\int 
w\epsilon (t - s)\varphi 3(\alpha , s)dsdt

=

\int 
w\epsilon ( - \tau )

\int 
s - 1\partial s\varphi 3(\alpha , s+ \tau + p)dsd\tau , | p| \leq P.

(3.19)

The following lemma is proven in Appendix A.3.

Lemma 3.2. One has\int 
s - 1\partial s [\varphi 3(\alpha , s+ q+\Delta q) - \varphi 3(\alpha , s+ q)]ds=O(| \Delta q| ), \Delta q\rightarrow 0,(3.20)

uniformly in \alpha \in \Omega , | q| \leq c, for any c.

Using Lemma 3.2, the analogue of (3.14) becomes (with \Delta p the same as in (3.15))

| g3(p+\Delta p,\alpha ) - g3(p,\alpha )| 

\leq c max
| \tau | \leq c\epsilon 

\bigm| \bigm| \bigm| \bigm| \int s - 1\partial s [\varphi 3(\alpha , s+ \tau + p+\Delta p) - \varphi 3(\alpha , s+ \tau + p)] ds

\bigm| \bigm| \bigm| \bigm| 
=O(| \Delta p| ) =O(\epsilon ), \alpha \in \Omega ,

(3.21)

for some c. Hence, we obtain, similarly to (3.17),

\epsilon  - 1/2(f \mathrm{r}\mathrm{e}\mathrm{c}-3\epsilon (x0 + \epsilon \v x) - f \mathrm{r}\mathrm{e}\mathrm{c}-3\epsilon (x0)) =O(\epsilon 1/2).(3.22)

Combining (2.13), (3.3), (3.17), (3.22), and using that f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon = f \mathrm{r}\mathrm{e}\mathrm{c}-1\epsilon + f \mathrm{r}\mathrm{e}\mathrm{c}-2\epsilon + f \mathrm{r}\mathrm{e}\mathrm{c}-3\epsilon , we finish
the proof of Theorem 2.5.
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ANALYSIS OF VIEW ALIASING 425

4. A more detailed look at the function \bfPsi .

4.1. Properties of the function \bfPsi . Theorem 2.5 shows that the function \Psi defined in
(2.11) plays a key role in the description of the aliasing artifact. By (3.6), the series that
defines \Psi converges absolutely at every point. Here we prove some properties of \Psi .

Lemma 4.1. Under Assumption 2.4 one has
1. \Psi is continuous on R\times (R \setminus 0)\times R;
2. \Psi (h;a, r+ 1) =\Psi (h;a, r) and \Psi (h; - a, - r) =\Psi (h;a, r) for all h,a, r \in R;
3. \Psi (h+ a;a, r) =\Psi (h;a, r) for all h,a, r \in R.

Remark 4.2. In this section, \Psi is viewed as a stand-alone function (i.e., unrelated to its
use in Theorem 2.5). Therefore, its arguments h, a, and r temporarily lose the meaning they
have when \Psi (h;a, r) is used in Theorem 2.5. Nevertheless, when reading this section it may
be helpful to remember that in the setting of the CRT, h = \vec{}\alpha  \star \cdot \v x, a = \kappa \vec{}\alpha \bot 

 \star \cdot (x0  - y0), and
r= k \star (see Corollary 2.6).

Proof. When a is bounded away from zero, the number of terms with limited smoothness
in the sum in (2.11) is uniformly bounded when h and r are confined to a bounded set. Hence
we can represent \Psi as a sum of finitely many continuous terms and an absolutely convergent
series, whose terms are smooth functions. This proves statement (1).

The first half of statement (2) is obvious. The second half of statement (2) follows im-
mediately by replacing a \rightarrow  - a, r \rightarrow  - r in (2.11), and changing the index of summation
k\rightarrow  - k.

To prove statement (3), fix some c \gg 1 and shift the index of summation k\prime = k + 1 in
(2.11):

\Psi (h+ a;a, r) =
\sum 
k\prime \leq c

\bigl[ 
\psi 
\bigl( 
a(k\prime  - r) + h

\bigr) 
 - \psi 

\bigl( 
a(k\prime  - 1 - r)

\bigr) \bigr] 
.(4.1)

At first glance, to finish the proof we can just change back k = k\prime  - 1 in the second \psi . This
does not work, since each of the sums taken separately is divergent (cf. (3.6)). Hence we argue
differently. We have for any K\gg 1,

\Psi (h+ a;a, r) =

c\sum 
k\prime = - K

\bigl[ 
\psi (a(k\prime  - r) + h) - \psi (a(k\prime  - 1 - r))

\bigr] 
+O(K - 1/2)

=

c\sum 
k\prime = - K

\bigl[ 
\psi (a(k\prime  - r) + h) - \psi (a(k\prime  - r))

\bigr] 
 - \psi (a(K  - 1 - r))

+O(K - 1/2) =\Psi (h;a, r) +O(K - 1/2), K\rightarrow \infty .

(4.2)

The desired assertion now follows.

Lemma 4.3. Suppose w is compactly supported and w(N) \in Lq(R) for some N \geq 1 and
q > 2. One has

\partial n1

h \partial n2
r \Psi (h;a, r) =O(| a| N - (n1+n2)), a\rightarrow 0, n1, n2 \geq 0, n1 + n2 \leq N  - 1,(4.3)

uniformly in h, r \in R.
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426 ALEXANDER KATSEVICH

Proof. We need the following simple lemma, which follows immediately from the Euler--
MacLaurin summation formula [37, equation (25.7)]. For convenience of the reader, the lemma
is proven in Appendix A.4.

Lemma 4.4. Pick some N \prime \geq 1. Suppose g, g(N
\prime ) \in L1(R), g(n)(t)\rightarrow 0 as t\rightarrow \infty for any

n= 0,1,2, . . . ,N \prime  - 1, and
\int 
R g(x)dx= 0. Then,\bigm| \bigm| \bigm| \bigm| \bigm| \epsilon \sum 

k\in Z
g(\epsilon k)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq c \epsilon N
\prime \| g(N \prime )\| L1(R)(4.4)

for some c independent of g and \epsilon .

Set

g(t) := \partial n1

h \partial n2
r (\psi (t - ar+ h) - \psi (t - ar)).(4.5)

The dependence of g on h and r is omitted for simplicity. As is easily seen, g satisfies the
assumptions of Lemma 4.4. Indeed, due to Lemma 4.1(2), 4.1(3), we can assume h \in [0, a),
r \in [0,1). The assumption w(N) \in Lq(R), q > 2 and (2.11) imply that all the derivatives of \psi 
up to the order N are continuous on R.

From (3.6), | g(m)(t)| \leq cm(1+ | t| ) - 3/2, 0\leq m\leq N  - (n1+n2), for some cm independent of
h and r. Hence g decays sufficiently fast at infinity.

It remains to check that g integrates to zero. If n1 > 0 or n2 > 0, this is obvious. Suppose
n1 = n2 = 0. For some c > 0,\int 

R
g(t)dt=

\int c

 - A
g(t)dt+O(A - 1/2)

= - 
\int h - A

 - A
\psi (t)dt+O(A - 1/2) =O(A - 1/2), A\rightarrow \infty .

(4.6)

Application of Lemma 4.4 to g in (4.5) with \epsilon = a and N1 =N  - (n1 + n2) proves the desired
assertion. The uniformity with respect to h and r is obvious.

Corollary 4.5. Suppose w is compactly supported and w(N) \in Lq(R) for some N \geq 1 and
q > 2. Then the derivatives \partial n1

h \partial n2
r \Psi (h;a, r), n1, n2 \geq 0, n1 + n2 \leq N  - 1, are continuous for

all values of their arguments.

Proof. The continuity away from a = 0 is proven the same way as assertion (1) of
Lemma 4.1. The continuity at a= 0 follows from Lemma 4.3.

4.2. Computing \bfPsi numerically. Numerically, we compute \Psi using the following ap-
proach. Due to Lemma 4.1(2) and 4.1(3), we assume h \in [0, a), r \in [0,1). The mollifier
in our experiments is given by

w(t) = (15/16)(1 - t2)2+.(4.7)

First, \psi (t) is computed by analytically evaluating the integral in (2.11). Then we compute
\Delta \psi (t, h) := \psi (t + h)  - \psi (t). For moderate values of t we compute \Delta \psi directly from the
definition. For t\ll  - 1 we use

\Delta \psi (t, h)\approx h/(4| t| 3/2).(4.8)
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Figure 3. Plots of \Psi (ah\prime ;a, r) for three values of a. The variable h\prime is on the horizontal axis.

Finally, we write

\Psi (h;a, r)\approx 
c\sum 

k= - K+1

\Delta \psi (a(k - r), h) +
h

4| a| 3/2
\infty \sum 

k=K

k - 3/2,(4.9)

where c > 0 is selected so that \Delta \psi (a(k  - r), h) = 0 for all k > c and h \in [0, a) and K \gg 1.
The last sum is estimated using the asymptotic formula for the Hurwitz zeta function [38,
equation (1.1)]

\zeta (s, t) :=

\infty \sum 
k=0

(k+ t) - s =
t1 - s

s - 1
+
t - s

2
+O(t - (s+1)), t\rightarrow +\infty ,(4.10)

where s = 3/2 and t =K. The plots of \Psi (ah\prime ;a, r), 0 \leq h\prime \leq 1, for the values a = 1,2,4 and
r= 1/3 are shown in Figure 3.

In agreement with Lemma 4.3, we see that \Psi (ah\prime ;a, r) decays rapidly as a\rightarrow 0.

5. Numerical experiments.

5.1. CRT. In this subsection we experiment with the CRT, which integrates over lines:

\^f(\alpha ,p) =

\int 
S\alpha ,p

f(x)dx, \vec{}\alpha = (cos\alpha , sin\alpha ), S\alpha ,p := \{ x\in R2 : \alpha \cdot x= p\} .(5.1)

Reconstruction uses (2.9),

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 
| \alpha k| \leq \pi /2

1

\pi 

\int 
\partial p \^f\epsilon (\alpha k, p)

p - \scrP \ast (x,\alpha k)
dp, \scrP \ast (x,\alpha )\equiv \vec{}\alpha \cdot x,

\^f\epsilon (\alpha k, p) =

\int 
w\epsilon (p - \rho ) \^f(\alpha k, \rho )d\rho , \alpha k = - (\pi /2) + (\pi /N\alpha )(k+ \delta ),

(5.2)

and w is the same as in (4.7). The weights in both the Radon transform and the inversion
formula are set to 1: W (\alpha ,p;x)\equiv 1, \omega (\alpha ,x)\equiv 1.
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428 ALEXANDER KATSEVICH

Figure 4. Illustration of various quantities used in the main formula (2.13) to predict aliasing from a disk
in the case of the CRT.

In the first experiment, f is the characteristic function of the disk centered at the origin
with radius r. Thus, \scrS = \{ x\in R2 : | x| = r\} . By (2.2),

| dH(y0)| = | dx\scrP \ast (\alpha  \star , y0)| = | \alpha  \star | = 1.(5.3)

Therefore, by (2.3),

M = - (\vec{}\Theta \bot 
0 \cdot \partial y)2H(y)| y=y0

= 1/r > 0(5.4)

is the curvature of \scrS at y0. Also, \vec{}\Theta 0 =dH(y0) points towards the center of curvature of \scrS at
y0 (the center of the disk).

At a given x \not \in \scrS , aliasing arises due to the parts of \scrS where the lines \scrS \alpha ,p \ni x are
tangent to \scrS . For | x| > r, two such lines exist. We pick x0 = (r, b) and find two pairs (\alpha  \star , p \star )
with the required properties. Clearly, one of the pairs is (\alpha  \star = \pi , p \star =  - r), and the other
is (\alpha  \star = 2tan - 1(b/r)  - \pi , p \star =  - r). This choice of values of (\alpha  \star , p \star ) ensures that \scrS \alpha  \star ,p \star +\delta ,
where 0< \delta \ll 1, intersects \scrS at two points (cf., the paragraph following (2.3)). See Figure 4,
where the first pair (with \alpha  \star = \pi ) is shown in red, and the second, in black. The contribution
coming from a neighborhood of each point of tangency y0 is computed by (2.13) using the
corresponding values of parameters (computed elsewhere in this subsection) and added. For
reconstructions we use r = 5 and x0 = (5,7). To better illustrate the aliasing artifact we also
reconstruct a small region of interest (ROI), which is a square centered at x0 with side length
40\epsilon .

For computations we also need u0 and \mu 0 (cf. (2.13)). They follow easily from (2.6),

u0 = \vec{}\alpha  \star , \mu 0 = \vec{}\alpha \bot 
 \star \cdot (x0  - y0),(5.5)

where y0 is the point where \scrS  \star is tangent to \scrS . As is seen from Figure 4, \mu 0 = - | x0  - y0| for
the first (red) pair (\alpha  \star , p \star ), and \mu 0 = | x0  - y0| for the second (black) pair.

In the first experiment, \epsilon = 0.02, N\alpha = 200 and in the second, \epsilon = 0.01, N\alpha = 400. Since
the direction \alpha  \star = 0 is special, we use a nonzero shift \delta in (5.2) for additional generality. The
results are shown in Figures 5--10.

Figure 5 (left panel) shows the reconstructed region | x1| , | x2| \leq 10 with \epsilon = 0.02 and
N\alpha = 200. The left panel also shows the ROI (a small square). The right panel shows a
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ANALYSIS OF VIEW ALIASING 429

Figure 5. Disk phantom, CRT reconstruction of the region | x1| , | x2| \leq 10: \epsilon = 0.02, N\alpha = 200, \delta = 0.03.
Left: global reconstruction; right: profile of the reconstruction through the center.
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Figure 6. Disk phantom, ROI CRT reconstruction: \epsilon = 0.02, N\alpha = 200, \delta = 0.03. The ROI is the square
shown in Figure 5. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

line profile through the origin to confirm the accuracy of reconstruction. Figure 6 shows the
reconstructed ROI with \delta = 0.03. The right panel shows the profiles of the reconstructed
difference \epsilon  - 1/2(f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x)  - f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0)) (green) and the prediction given by the main term on
the right in (2.13) (red) along the line segment x = x0 + \epsilon h\vec{}\Theta , | h| \leq 11, where \vec{}\Theta = x0/| x0| .
The line segment is indicated on the left panel. The values of h are on the horizontal axis of
the profile. From (5.5), the values of u0 \cdot \v x used in (2.13) are given by h\vec{}\alpha  \star \cdot \Theta .

Similarly, Figure 7 shows the reconstructed ROI and line profiles for the same line segment
when \delta = 0.2.

Figure 8 shows the reconstructed region | x1| , | x2| \leq 10 with \epsilon = 0.01 and N\alpha = 400. The
ROI is shown as well. Recall that the size of the ROI is proportional to \epsilon . Figure 9 shows
the ROI and the corresponding line profiles for \delta = 0.03. Similarly, Figure 10 shows the
reconstructed ROI and line profiles when \delta = 0.2. In both cases, the vector \vec{}\Theta and the range
of h that determine the line segment are the same as before.

Comparing Figure 6 with Figure 9 and Figure 7 with Figure 10, we see that reducing \epsilon 
and \Delta \alpha improves the match between the reconstruction and prediction.
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Figure 7. Disk phantom, ROI CRT reconstruction: \epsilon = 0.02, N\alpha = 200, \delta = 0.2. The ROI is the square
shown on the left in Figure 5. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles
along the line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

Figure 8. Disk phantom, CRT reconstruction of the region | x1| , | x2| \leq 10: \epsilon = 0.01, N\alpha = 400, \delta = 0.03.
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Figure 9. Disk phantom, ROI CRT reconstruction: \epsilon = 0.01, N\alpha = 400, \delta = 0.03. The ROI is the square
shown in Figure 8. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

In the second experiment f is the characteristic function of an ellipse centered at the
origin: \scrS = \{ x\in R2 : x= (r1 cos\theta , r2 sin\theta ), \theta \in [0,2\pi )\} . Of course, the main formulas like (5.3),
(5.5) still hold. The only difference is that now the radius of curvature r (and the constant
M ; see (5.4)) depends on the point of tangency.
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Figure 10. Disk phantom, ROI CRT reconstruction: \epsilon = 0.01, N\alpha = 400, \delta = 0.2. The ROI is the square
shown in Figure 8. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

Figure 11. Ellipse phantom, CRT reconstruction of the region | x1| , | x2| \leq 10: \epsilon = 0.02, N\alpha = 200, \delta = 0.03.
Left: global reconstruction; right: profile of the reconstruction along the diagonal from top left to bottom right.

As before, we pick x0 outside the ellipse and find two pairs (\alpha  \star , p \star ). The contribution
coming from a neighborhood of each point of tangency y0 is computed by (2.13) and added.
In the reconstructions we use r1 = 4, r2 = 6, and x0 = 7(cos \theta , sin\theta ), \theta = 25\circ . To better
illustrate the aliasing artifact we also reconstruct a small ROI, which is a square centered at
x0 with side length 40\epsilon .

The values of the parameters \epsilon , N\alpha , and \delta are the same as before. In the first experiment
with the ellipse, \epsilon = 0.02, N\alpha = 200 and in the second -- \epsilon = 0.01, N\alpha = 400. The results are
shown in Figures 11--16.

Figure 11 (left panel) shows the reconstructed region | x1| , | x2| \leq 10 with \epsilon = 0.02 and
N\alpha = 200. The left panel also shows the ROI (a small square). The right panel shows a
line profile through the origin to confirm the accuracy of reconstruction. Figure 12 shows the
reconstructed ROI with \delta = 0.03. The right panel shows the profiles of the reconstructed
difference \epsilon  - 1/2(f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) - f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0)) (green) and the prediction given by the main term on the
right in (2.13) (red) along the line segment x = x0 + \epsilon h\vec{}\Theta , | h| \leq 11, where \vec{}\Theta = x0/| x0| . The
line segment is indicated on the left panel. Similarly, Figure 13 shows the reconstructed ROI
and line profiles for the same line segment when \delta = 0.2.
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Figure 12. Ellipse phantom, ROI CRT reconstruction: \epsilon = 0.02, N\alpha = 200, \delta = 0.03. The ROI is the square
shown in Figure 11. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.
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Figure 13. Ellipse phantom, ROI CRT reconstruction: \epsilon = 0.02, N\alpha = 200, \delta = 0.2. The ROI is the square
shown on the left in Figure 11. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles
along the line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

Figure 14. Ellipse phantom, CRT reconstruction of the region | x1| , | x2| \leq 10: \epsilon = 0.01, N\alpha = 400, \delta = 0.03.

Figure 14 shows the reconstructed region | x1| , | x2| \leq 10 with \epsilon = 0.01 and N\alpha = 400.
The ROI is shown as well. Figure 15 shows the ROI and the corresponding line profiles for
\delta = 0.03. Similarly, Figure 16 shows the reconstructed ROI and line profiles when \delta = 0.2.
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Figure 15. Ellipse phantom, ROI CRT reconstruction: \epsilon = 0.01, N\alpha = 400, \delta = 0.03. The ROI is the square
shown in Figure 14. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.
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Figure 16. Ellipse phantom, ROI CRT reconstruction: \epsilon = 0.01, N\alpha = 400, \delta = 0.2. The ROI is the square
shown in Figure 14. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 11, shown on the left. The variable h is on the horizontal axis.

In both cases, the vector \vec{}\Theta and the range of h that determine the line segment are the same
as before.

Comparing Figure 12 with Figure 15 and Figure 13 with Figure 16, we see that reducing
\epsilon and \Delta \alpha improves the match between the reconstruction and prediction. Overall, the results
with the elliptical phantom are very similar to those with the disk phantom.

5.2. Circular Radon transform. In this subsection we experiment with the generalized
Radon transform (GRT), which integrates over circles with any radius \rho > 0 and centers on
the circle | x| =R:

(\scrR f)(\alpha ,\rho ) = \^f(\alpha ,\rho ) =

\int 
S\alpha ,\rho 

f(x)dx, \vec{}\alpha = (cos\alpha , sin\alpha ),

\scrP \ast (\alpha ,x) := | x - R\vec{}\alpha | , S\alpha ,\rho := \{ x\in R2 : | x - R\vec{}\alpha | = \rho \} .
(5.6)

The value of R is fixed. Therefore

dx\scrP \ast (\alpha ,x) =
x - R\vec{}\alpha 

| x - R\vec{}\alpha | 
, M = (1/\rho  \star ) - (\vec{}\Theta \bot 

0 \cdot \partial y)2H(y)| y=y0
> 0.(5.7)
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434 ALEXANDER KATSEVICH

ANALYSIS OF VIEW ALIASING 19

for α and setting ρ = |x0−Rα⃗|. Generally, up to four solutions (α, ρ) (i.e., up to four
circles Sα,ρ) can exist. To simplify the experiment, we reverse the argument. We
pick some pair (α⋆, ρ⋆) such that S⋆ is tangent to S at some y0 and then select some
x0 ∈ S⋆. To be specific, we select a ‘+’ in (5.9), i.e. ρ⋆ satisfies |xc−Rα⃗⋆| = r+ρ⋆.

This implies thatM = (1/r)+(1/ρ⋆) and Θ⃗0 = (y0−Rα⃗⋆)/|y0−Rα⃗⋆| points towards
the center of curvature of S at y0 (see Figure 17). Similarly to the classical Radon
transform, our construction ensures that Sα⋆,ρ⋆+δ, where 0 < δ ≪ 1, intersects S
at two points.

S
R

y0

x0

xc
u0

S

α

ρ

α

Θ0

Θ

Rα

-Rα
r

Γ

Figure 17. Illustration of various quantities used in the main
formula (2.13) to predict aliasing from a disk in the case of the
circular Radon transform.

To illustrate aliasing only from the place where S⋆ is tangent to S we select
Ω to be a sufficiently small neighborhood of α⋆. Since P∗(α, x) = |x − Rα⃗| and
P(α) = |xc −Rα⃗| − r, we find

u0 =
x0 −Rα⃗⋆

|x0 −Rα⃗⋆|
,

µ0 =−Rα⃗⊥
⋆ · (u0 − Θ⃗0) = −(R/ρ⋆)α⃗⋆ · (x0 − y0),

(5.10)

see Figure 17.
For reconstructions we use

R = 5, xc = (1, 1), r = 2, (α⋆, ρ⋆) = (0.53π, 2.24), x0 = (−1.42, 2.95),

Ω := [α⋆ − π/4, α⋆ + π/4].
(5.11)

In the first reconstruction, ϵ = 10−2, Nα = 500 and in the second – ϵ = 0.5 · 10−2,
Nα = 1000. The results are shown in Figures 18 and 19, respectively. The left
panels show the limited angle reconstruction of the region |x1|, |x2| ≤ 4. The middle
panels show the limited angle reconstruction of an ROI. The ROI is a small square
centered at x0 with side length 40ϵ, the ROI is shown on the left panel. The right
panels show the profiles of the reconstructed difference ϵ−1/2(f rec

ϵ (x) − f rec
ϵ (x0))

(green) and the prediction given by the main term on the right in (2.13) (red)

along the line segment x = x0 + ϵhΘ⃗, |h| ≤ 6, shown in the middle panel. The

values of h are on the horizontal axis of the profiles. The unit vector Θ⃗ is chosen

to be orthogonal to S⋆ at x0 (i.e., Θ⃗ and u0 are parallel, see Figure 17). In the

experiments we set Θ⃗ = −u0. As is seen, reducing ϵ and ∆α improves the match
between the reconstruction and prediction.

Figure 17. Illustration of various quantities used in the main formula (2.13) to predict aliasing from a disk
in the case of the circular Radon transform.

In the computation of M we used that dx\scrP \ast (\alpha ,x) = 1. Reconstruction is achieved using a
straightforward modification of (2.9),

f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) = - \Delta \alpha 

2\pi 

\sum 
\alpha k\in \Omega 

1

\pi 

\int 
\partial \rho \^f\epsilon (\alpha k, \rho )

p - \scrP \ast (x,\alpha k)
d\rho ,

\^f(\alpha k, \rho ) =

\int 
w\epsilon (\rho  - \rho \prime ) \^f(\alpha k, \rho 

\prime )d\rho \prime , \alpha k = (2\pi /N\alpha )k, w(\rho ) = (15/16)(1 - \rho 2)2+,

(5.8)

i.e., w is the same as in (4.7). Clearly, the reconstruction is not theoretically exact anymore.
But it preserves the strength of the singularities (in the Sobolev scale). Again, the weights in
both the Radon transform and the inversion formula are set to 1: W (\alpha ,\rho ;x)\equiv 1, \omega (\alpha ,x)\equiv 1.

The function f is the characteristic function of the disk centered at xc with radius r. Thus,
\scrS = \{ x\in R2 : | x - xc| = r\} ; see Figure 17.

At a given x0, aliasing arises due to the parts of \scrS where various \scrS \alpha ,\rho \ni x0 are tangent to
\scrS . All such (\alpha ,\rho ) are found by solving each of the two equations

| xc  - R\vec{}\alpha |  - | x0  - R\vec{}\alpha | =\pm r(5.9)

for \alpha and setting \rho = | x0  - R\vec{}\alpha | . Generally, up to four solutions (\alpha ,\rho ) (i.e., up to four
circles \scrS \alpha ,\rho ) can exist. To simplify the experiment, we reverse the argument. We pick some
pair (\alpha  \star , \rho  \star ) such that \scrS  \star is tangent to \scrS at some y0 and then select some x0 \in \scrS  \star . To be
specific, we select a ""+"" in (5.9), i.e., \rho  \star satisfies | xc  - R\vec{}\alpha  \star | = r + \rho  \star . This implies that
M = (1/r)+ (1/\rho  \star ) and \vec{}\Theta 0 = (y0 - R\vec{}\alpha  \star )/| y0 - R\vec{}\alpha  \star | points towards the center of curvature of
\scrS at y0 (see Figure 17). Similarly to the CRT, our construction ensures that \scrS \alpha  \star ,\rho  \star +\delta , where
0< \delta \ll 1, intersects \scrS at two points.
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Figure 18. Disk phantom, limited angle GRT reconstruction: \epsilon = 0.01, N\alpha = 500. Left: global reconstruc-
tion; middle: reconstruction inside the square ROI shown on the left; right: profiles of the reconstruction (green)
and prediction (red) along the line segment x = x0 + \epsilon h\vec{}\Theta , | h| \leq 6, shown in the middle. The variable h is on
the horizontal axis.
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Figure 19. Disk phantom, limited angle GRT reconstruction: \epsilon = 0.005, N\alpha = 1000. Left: global recon-
struction; middle: reconstruction inside the square ROI shown on the left; right: profiles of the reconstruction
(green) and prediction (red) along the line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 6, shown in the middle. The variable h
is on the horizontal axis.

To illustrate aliasing only from the place where \scrS  \star is tangent to \scrS we select \Omega to be a
sufficiently small neighborhood of \alpha  \star . Since \scrP \ast (\alpha ,x) = | x - R\vec{}\alpha | and \scrP (\alpha ) = | xc - R\vec{}\alpha |  - r, we
find

u0 =
x0  - R\vec{}\alpha  \star 

| x0  - R\vec{}\alpha  \star | 
,

\mu 0 = - R\vec{}\alpha \bot 
 \star \cdot (u0  - \vec{}\Theta 0) = - (R/\rho  \star )\vec{}\alpha  \star \cdot (x0  - y0);

(5.10)

see Figure 17.
For reconstructions we use

R= 5, xc = (1,1), r= 2, (\alpha  \star , \rho  \star ) = (0.53\pi ,2.24), x0 = ( - 1.42,2.95),

\Omega := [\alpha  \star  - \pi /4, \alpha  \star + \pi /4].
(5.11)

In the first reconstruction, \epsilon = 10 - 2, N\alpha = 500 and in the second -- \epsilon = 0.5 \cdot 10 - 2, N\alpha = 1000.
The results are shown in Figures 18 and 19, respectively. The left panels show the limited
angle reconstruction of the region | x1| , | x2| \leq 4. The middle panels show the limited angle
reconstruction of an ROI. The ROI is a small square centered at x0 with side length 40\epsilon ;
the ROI is shown on the left panel. The right panels show the profiles of the reconstructed
difference \epsilon  - 1/2(f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x) - f \mathrm{r}\mathrm{e}\mathrm{c}\epsilon (x0)) (green) and the prediction given by the main term on the
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436 ALEXANDER KATSEVICH

right in (2.13) (red) along the line segment x= x0 + \epsilon h\vec{}\Theta , | h| \leq 6, shown in the middle panel.
The values of h are on the horizontal axis of the profiles. The unit vector \vec{}\Theta is chosen to be
orthogonal to \scrS  \star at x0 (i.e., \vec{}\Theta and u0 are parallel; see Figure 17). In the experiments we set
\vec{}\Theta = - u0. As is seen, reducing \epsilon and \Delta \alpha improves the match between the reconstruction and
prediction.

Appendix A. Proofs of lemmas.

A.1. Proof of Lemma 2.2. The property \scrP (\alpha  \star ) = p \star follows from assumption 2.1(2).
Recall that H(y) = 0 is a local equation of \scrS (cf. (2.2) and the paragraph preceding it). To
find \scrP (\alpha ), we solve

H(y) = 0, \lambda dH(y) = dy\scrP \ast (\alpha ,y)(A.1)

for y \in \scrS and \lambda in terms of \alpha near (\lambda = 1, y = y0, \alpha = \alpha  \star ) and then set \scrP (\alpha ) = \scrP \ast (\alpha ,y(\alpha )).
Assumptions 2.1(1), 2.1(2), 2.1(4) and the implicit function theorem imply that y(\alpha ) and,
therefore, \scrP (\alpha ) are smooth in a small neighborhood \Omega \ni \alpha  \star . Since y

\prime (\alpha ) is tangent to \scrS , using
the second equation in (A.1) gives \scrP \prime (\alpha  \star ) = \partial \alpha \scrP \ast (\alpha  \star , y0).

A.2. Proof of Lemma 3.1. Denote

H(x,\alpha , \epsilon ) :=
\scrP \ast (\alpha ,x) - \scrP (\alpha )

\epsilon 
, x= x0 + \epsilon \v x,\alpha \in \Omega .(A.2)

Since \mu 0 \not = 0 (cf. (2.6)), we have | \scrP \ast (\alpha ,x0) - \scrP (\alpha )| \geq c| \alpha  - \alpha  \star | for any \alpha \in \Omega and some c > 0.
Hence

| H(x,\alpha k, \epsilon )| \geq c1| k - k \star | for all | \v x| \leq c,\alpha k \in \Omega , | k - k \star | \geq c2,(A.3)

for some c, c1, c2 > 0 and all \epsilon > 0 sufficiently small. From (3.5),

f \mathrm{r}\mathrm{e}\mathrm{c}-1\epsilon (x0 + \epsilon \v x) - f \mathrm{r}\mathrm{e}\mathrm{c}-1\epsilon (x0) = - \Delta \alpha 

2\pi \epsilon 1/2
(J +O(\epsilon 1/2)),

J :=
\sum 
\alpha k\in \Omega 

\omega (\alpha k, x0)\varphi 1(\alpha k) [\psi (H(x0 + \epsilon \v x,\alpha k, \epsilon )) - \psi (H(x0, \alpha k, \epsilon ))] .
(A.4)

The O(\epsilon 1/2) term in parentheses on the right in (A.4) denotes the contribution, which arises
due to the x-dependence of \omega in (3.5). Here we use (3.6) with n= 0, (A.3), and that for some
c and all \v x in a bounded set,

| \omega (\alpha ,x0 + \epsilon \v x) - \omega (\alpha ,x0)| \leq c\epsilon , | \varphi 1(\alpha )| \leq c, \alpha \in \Omega ,(A.5)

hence

O(\epsilon )

\biggl( 
O(1) +

\sum 
c2\leq | k - k \star | \leq O(1/\epsilon )

| k - k \star |  - 1/2

\biggr) 
=O(\epsilon 1/2).(A.6)

From (2.6),

H(x0 + \epsilon \v x,\alpha , \epsilon ) =H(x0, \alpha , \epsilon ) + dx\scrP \ast (\alpha ,x0)\v x+O(\epsilon )

=H(x0, \alpha , \epsilon ) + u0 \cdot \v x+O(\epsilon + | \alpha  - \alpha  \star | ).
(A.7)
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ANALYSIS OF VIEW ALIASING 437

Also, | \omega (x0, \alpha )\varphi 1(\alpha )| \leq c for some c and all \alpha \in \Omega . Therefore, by (3.6) with n= 1 and (A.3),\sum 
\alpha k\in \Omega 

\omega (\alpha k, x0)\varphi 1(\alpha k)[\psi (H(x0 + \epsilon \v x,\alpha k, \epsilon )) - \psi (H(x0, \alpha k, \epsilon ) + u0 \cdot \v x)]

=
\sum 

| k| \leq O(1/\epsilon )

\psi \prime (H(x0, \alpha k, \epsilon ) +O(1))O(\epsilon + \epsilon | k - k \star | )

=O(\epsilon )

\biggl( 
1 +

\sum 
c2\leq | k - k \star | \leq O(1/\epsilon )

1 + | k - k \star | 
| k - k \star | 3/2

\biggr) 
=O(\epsilon 1/2).

(A.8)

Here we use that w\prime \in Lq(R), q > 2 (see assumption 2.4(1)), so \psi \prime is continuous. This shows
that if w does not have the required smoothness (e.g., if w is the characteristic function
of a detector pixel), the magnitude of the expression in (A.8) may turn out to be much
larger, leading to a slower rate of convergence in Theorem 2.5 (or even to a breakdown of the
convergence altogether).

From (A.4), (A.7), and (A.8),

J =
\sum 
\alpha k\in \Omega 

\omega (\alpha k, x0)\varphi 1(\alpha k)\Delta \psi (H(x0, \alpha k, \epsilon )) +O(\epsilon 1/2),

\Delta \psi (t) := \psi (t+ u0 \cdot \v x) - \psi (t).

(A.9)

Furthermore,

H(x0, \alpha k, \epsilon ) = \mu 0
\alpha k  - \alpha  \star 

\epsilon 
+Rk, Rk =O(\epsilon (k - k \star )

2).(A.10)

Denote, for simplicity, ak = \mu 0\kappa (k - k \star ). Then

\Delta \psi (ak +Rk) - \Delta \psi (ak) =Rk\Delta \psi 
\prime (ak + \xi k),(A.11)

where | \xi k| \leq | Rk| . We can assume that \Omega is sufficiently small, so that

| \mu 0(\alpha k  - \alpha  \star ) + \epsilon Rk| \geq c| \alpha k  - \alpha  \star | \forall \alpha k \in \Omega (A.12)

for some c > 0. Dividing by \epsilon implies

| ak +Rk| \geq c\kappa | k - k \star | \forall \alpha k \in \Omega (A.13)

with the same c. Using (3.6) with n= 2 gives\sum 
c\leq | k - k \star | \leq O(1/\epsilon )

\omega (\alpha k, x0)\varphi 1(\alpha k)[\Delta \psi (ak +Rk) - \Delta \psi (ak)]

=
\sum 

c\leq | k - k \star | \leq O(1/\epsilon )

O(\epsilon | k - k \star | 2)
1 + | k - k \star | 5/2

=O(\epsilon 1/2)
(A.14)

for some c > 0 sufficiently large. The requirement | k  - k \star | \geq c is needed, because \psi \prime \prime (\^q),
on which the estimate (A.14) is based, may not exist for \^q in a compact set when w\prime \in Lq.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

2/
24

 to
 5

.1
98

.1
37

.2
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



438 ALEXANDER KATSEVICH

To estimate the remaining finitely many terms without appealing to the second derivative we
write

\Delta \psi (ak +Rk) - \Delta \psi (ak)

= [\psi (ak + u0 \cdot \v x+Rk) - \psi (ak + u0 \cdot \v x)] - [\psi (ak +Rk) - \psi (ak)]

=O(\epsilon ), | k - k \star | \leq c.

(A.15)

This follows, because \psi \prime is continuous on all of R and Rk = O(\epsilon ) whenever | k  - k \star | \leq c
(cf. (A.10)). This is another place where we use that w\prime \in Lq. If w is not sufficiently smooth,
the quantity in (A.15) may turn out to be much larger.

It is clear that all the big-O terms are uniform with respect to \v x (and, hence, h) restricted
to a bounded set. Combining (A.4), (A.9), (A.14), and (A.15) finishes the proof.

A.3. Proof of Lemma 3.2. Denote

J :=

\int 
s - 1

\bigl[ 
\varphi \prime 
3(s+ q+\Delta q) - \varphi \prime 

3(s+ q)
\bigr] 
ds,(A.16)

where we omitted the dependence on \alpha for simplicity. All the big-O terms in this subsection
are uniform with respect to \alpha \in \Omega . Restricting the integral in (A.16) to | s| \leq 1 we find

J1 :=

\int 
| s| \leq 1

s - 1
\bigl( \bigl[ 
\varphi \prime 
3(s+ q+\Delta q) - \varphi \prime 

3(q+\Delta q)
\bigr] 
 - 
\bigl[ 
\varphi \prime 
3(s+ q) - \varphi \prime 

3(q)
\bigr] \bigr) 

ds.(A.17)

Clearly, J1 =O(| \Delta q| ) uniformly in | q| \leq c. Here we have used that \varphi 3 is smooth, so its third
order derivative is bounded on compact sets. By (3.18), \varphi \prime \prime 

3(p) =O(| p|  - 3/2), p\rightarrow \infty . Hence

J2 :=

\int 
| s| \geq 1

s - 1
\bigl[ 
\varphi \prime 
3(s+ q+\Delta q) - \varphi \prime 

3(s+ q)
\bigr] 
ds=O(| \Delta q| )(A.18)

uniformly in | q| \leq c. Combining the estimates for J1,2 proves the lemma.

A.4. Proof of Lemma 4.4. The Euler--MacLauren formula reads as follows [37, equa-
tion (25.7)]:

b - 1\sum 
k=a

f(k) =

\int b

a
f(t)dt+

N \prime \sum 
m=1

bm
m!

(f (m - 1)(b) - f (m - 1)(a))

 - 
\int b

a

BN \prime (\{ 1 - t\} )
N \prime !

f (N
\prime )(t)dt.

(A.19)

Here b > a are integers, Bm and bm are Bernoulli polynomials and numbers, respectively,
\{ t\} = t - \lfloor t\rfloor is the fractional part of t\in R, and \lfloor t\rfloor is the floor function, i.e., the largest integer
not exceeding t.

Substituting f(t) = g(\epsilon t), taking the limit as a\rightarrow  - \infty , b\rightarrow \infty (which is allowed due to
the decay of g and its derivatives), changing variables \tau = \epsilon t, and using that g(N

\prime ) \in L1(R),
we finish the proof.
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