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Analysis of View Aliasing for the Generalized Radon Transform in R2*
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Abstract. In this paper we consider the generalized Radon transform R in the plane. Let f be a piecewise
smooth function, which has a jump across a smooth curve S. We obtain a formula, which accurately
describes view aliasing artifacts away from S when f is reconstructed from the data R f discretized
in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate
€ — 0. The proposed approach does not require that f be band-limited. Numerical experiments
with the classical Radon transform and generalized Radon transform (which integrates over circles)
demonstrate the accuracy of the formula.
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1. Introduction. Resolution of image reconstruction from discrete data is one of the fun-
damental questions in imaging. The most direct approach to estimating resolution utilizes the
notions of the point spread function and modulation transfer function [1, sections 12.2, 12.3].
This and other similar approaches allow rigorous theoretical analysis of only the simplest
settings, such as inversion of the classical Radon transform. For the most part, resolution
of reconstruction in more difficult settings (e.g., inversion of the cone beam transform) is
analyzed by heuristic arguments, numerically, or via measurements [2, 3, 4].

Sampling theory provides a related approach to investigating resolution [5, 6, 7, 8, 9, 10,
11, 12, 13, 14]. Consider, for example, the classical Radon transform in R?

(1.1) f(a,p)= . f@)o(a@-x—p)de, d=(cosa,sina).

The corresponding discrete data are

A~

(1.2) flow,pj), axy=a+ kAo, pj=p+ jAp, oy, €[0,27), j € Z,

for some fixed &, p and A, Ap. Assume that f is essentially band limited (in the classical
sense). This means that, with high accuracy, its Fourier transform f(£) is supported in some
ball [£] < B. The sampling theory predicts the rates Aa, Ap with which f(a,p) should be
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sampled, so that reconstruction of f from discrete data does not contain aliasing artifacts.
Since the essential band-limit B is related to the size of the smallest detail in f, a typical
prescription of the theory can be loosely formulated as follows: given the size of the smallest
detail in f, the minimal sampling rates to avoid aliasing are A«, Ap. Alternatively, the theory
determines the size of the smallest detail in f that can be resolved given the rates Aa, Ap.

A microlocal approach to sampling was developed recently [15, 16, 17]. In this approach
f is assumed to be band-limited in the semiclassical sense (i.e., the semiclassical wavefront
set WF,(f) is compact). Alternatively, the assumption is that the data represent discrete
values of the convolution w * Rf. Here R is the generalized Radon transform, and w is a
semiclassically band-limited mollifier. The mollifier models the detector aperture function.
The goal is to accurately recover the semiclassical singularities of f and avoid aliasing. If the
sampling requirement is violated, the theory predicts the location and frequency of aliasing
artifacts.

In [18, 19, 20, 21, 22], the author developed an alternative analysis of resolution (we call
it local resolution analysis, or LRA). The main results in these papers are simple expressions
describing the reconstruction from discrete values of Rf or w xR f in a neighborhood of the
singularities of f in a variety of settings. We call these expressions the discrete transition
behavior (DTB). DTB provides a direct, quantitative link between the sampling rate and
resolution. In these papers such a link is established for a wide range of integral transforms,
conormal distributions f, and reconstruction operators. In [23, 24] LRA was generalized to
objects with rough boundaries in R?. Neither f nor the mollifier w (if applied) is required to
be band-limited.

Suppose Ap = € and Aa = ke, where k > 0 is fixed. The DTB is an accurate approximation
of the reconstruction in an e-neighborhood of the singular support of f in the limit as ¢ —
0. Therefore, the DTB provides much more than a single measure of resolution (e.g., the
size of the smallest detail that can be resolved). Given the DTB function, the user may
decide in a fully quantitative way what sampling rate is required to achieve a user-defined
reconstruction quality. The notion of quality may include resolution (which can be described
in any desired way) and/or any other requirement the user desires. Thus, the LRA answers
precisely the question of the required sampling rate to guarantee the required resolution
(understood broadly).

The only item missing from the LRA until now was analysis of aliasing. Some earlier
results on the analysis of aliasing artifacts (more precisely, view aliasing artifacts) are in [24]
and [1, Section 12.3.2]. They include an approximate formula for the artifacts far from a small,
radially symmetric object. More recent results are in [15, 16, 17]. These include the prediction
of the location and frequency of the artifacts, qualitative analysis of the artifacts generated
by various edges (e.g., flat, convex and a corner), as well as their numerical illustrations.

In this paper we generalize the LRA to the analysis of view aliasing. We call it the Local-
ized Aliasing Analysis, or LAA. Our main result is Theorem 2.5, where a precise, quantitative
formula describing aliasing artifacts is stated. The formula is asymptotic; it is established
in the limit as the sampling rate ¢ — 0 (which is the same assumption as in [15, 16, 17]).
Similarly to the LRA, the LAA is very flexible. In this paper we consider the generalized
Radon transform in R? and apply it to functions with jump discontinuities across smooth
curves. Similarly to [18, 19, 20, 21, 22], we believe that the LAA is generalizable, and that
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it is capable of predicting aliasing artifacts for a wide range of integral transforms, conormal
distributions f, and reconstruction operators.

To avoid confusion, we clarify the meaning of the terms “resolution” and “aliasing” used
in this paper. For simplicity, we will use the example of a jump discontinuity across a smooth
curve S. Resolution at xp € S means the extent to which the boundary at the jump (i.e., S)
is blurred when the image is reconstructed in a neighborhood of xy from discrete data. This
blurring is accurately described by the DTB function mentioned above. The derivation of the
DTB function accounts for possible artifacts that may arise due to aliasing from the parts
of § in a neighborhood of xzy. In other words, LRA treats local aliasing as part of resolution
analysis. In this paper, the term aliasing stands for rapidly oscillating artifacts away from S
that are caused by aliasing from S.

The paper is organized as follows. In section 2 we describe the set-up, formulate assump-
tions, and state the main result—Theorem 2.5. This theorem provides a simple formula that
describes aliasing artifacts. We also discuss various quantities used in the formula and state a
corollary that describes what the formula looks like in the case of the classical Radon trans-
form. The proof of Theorem 2.5 is in section 3. Section 4.1 establishes a few useful properties
of the function W, in terms of which the artifacts are described. An algorithm for computing ¥
numerically is in section 4.2. Section 5 contains numerical experiments with the classical and
generalized Radon transforms. The latter integrates over circles. Details of implementation,
which illustrate the use of the theorem, are provided. All experiments demonstrate a good
match between reconstruction and prediction. Proofs of some lemmas are in Appendix A.

2. Preliminaries.

2.1. Generalized Radon transform. Let p = P,(«a,x) be a defining function for the gen-
eralized Radon transform R:

(2.1) f(a,p)—/s W(a,p;x) f(2)dA, Sap:={r €R*: Py(a,x) =p},a €Q, pER,

where W € C®(Q xR xU) is some (known) integration weight, dA is the length element on the
curve Sy p, U C R? is a small open set, and  C R is a small interval. Similarly to the classical
Radon transform, we think of o as the polar angle, and p as the affine variable. However,
since we consider the generalized Radon transform, these variables admit many alternative
interpretations. See [25, 26] for more information and references about generalized Radon
transforms, their properties, and applications.

Let S be a C* curve. Let (ou,p,) be a pair such that S,, ,, is tangent to S at some
yo € SNU. To simplify notation, denote S, := S,, p,. We will compute a reconstruction
in a small neighborhood of some point zp ¢ S. Let H(y) = 0 be an equation for S in a
neighborhood of yy. The function H is smooth and dH(y) # 0, y € S. Multiplying H by a
constant if necessary, we can assume that P, satisfies the equations

(2-2) 7’*(04*,960) = 7)*(0%2/0) = D dmp*(a*ay()) = dH(Z/O)-

Assumption 2.1 (properties of Py).
1. P, e C*(Qx U) and d;Py(ar,x) #0, & = z0, Yo.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/12/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

418 ALEXANDER KATSEVICH

X
Sa* sPx B

Figure 1. Illustration of the curves S and Sa.p.

2. Equations (2.2) hold.
OaPs(0tx, x0) # 0aPs (i, yo) (the Bolker condition).
4. One has

b

(2.3) M := (67 - 0,)*(Pe(axsy) = H(y))ly=y, >0,

where éé‘ is a unit vector orthogonal to dH (yo).
5. There exists ¢ > 0 such that yo & Sa,p for any a € Q and [p —p.| >c.

Assumption 2.1(4) is equivalent to the condition that the curvatures of S and S, at yo are
not equal. In other words, the order of contact between S and S, is one (and not higher). For
example, if one of the two curves is flat at yo, then M # 0 as long as the other one is not flat.
The requirement that M be positive is not restrictive. If M < 0, we can flip the p-axis and
replace H — —H, P, — —P, to make M positive. The essential requirement is that M £ 0.

The requirement M > 0 means that S, ,, 45 intersects S at two points near yg when § > 0,
and does not intersect S near yg if § <0 (see Figure 1). In what follows we set

(2.4) O :=£dH (yp),

and the sign (+ or —) is selected so that ©g points towards the part of Sa, pots, 0<I K1,
located between its two intersection points with S (see Figure 1).

Shrinking, if necessary, 2 and U further, we may assume that there is no other pair
(/,p') # (e, py), @ € Q, such that zg € Sy and Sy is tangent to S at yo.

Let P(a), a € Q, be the function defined by the requirement that the curves S, p(q) be
tangent to S in a neighborhood of yy. Figure 2 illustrates the function P(«) in the case of the
classical Radon transform (left panel) and the generalized Radon transform that integrates
over circles (right panel). The circles have arbitrary radii and centers on a given curve z(a) € T,
a € . Consider the latter case. Suppose, for example, that S is a circle with radius r and
center a. Then, globally, there are two such functions: P(«a) = |z(a) — a|] = r. See also
section 5.2 for more details about the circular Radon transform.

The following simple lemma is proven in Appendix A.l.

Lemma 2.2. For a sufficiently small neighborhood €25 ay, one has

(2.5) Plax) =px, Pla) €CT(Q), 0Pl yo) = PI(O‘*)'
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Figure 2. Illustration of the function P(«). Left panel: the classical Radon transform that integrates over
lines. Right panel: the generalized Radon transform that integrates over circles with centers on a given curve
parametrized by o (denoted T in the figure).

From Assumptions 2.1(1), 2.1(3) and Lemma 2.2,
(2.6) g = dy P, w0) # 0, p10 := Oa(Pu(a, 20) — P(a)) #0.

2.2. Remaining assumptions and main result. Consider a function f(z) on the plane,
x € R2. We suppose the following.

Assumption 2.3 (properties of f).
1. supp(f) C U and diam(U) is sufficiently small.
2. There exist open sets D1 and functions f+ € C°°(R?) such that

2.7) f(@)=f-(z), z€ D, f(z)=f+(z), v €Dy,
' D_ND,=2, D_UD,=U\S,

3. SNU is a C* curve.

Thus, singsupp(f) C S. In general, f_(z) # fi(x), z € S, so f may have a jump across S.
Note that whether xg € U or not is irrelevant. Also, when U shrinks towards yg, S does not
change. Thus, SN U is a small segment of S around yo. With this understanding, in what
follows we do not distinguish between & and SNU.

Similarly to [17], we consider semidiscrete data

~

(2.8) felag,p) :—/we(p—s)f(ak,s)ds, ap =kAa, pER, w(t):=e tw(t/e),

where w is a mollifier (e.g., the detector aperture function), Aa = ke, and k > 0 is fixed. It is
reasonable to assume that the support of we is of size O(e), because sampling rates along «
and p are usually of the same order of magnitude.

Assumption 2.4 (assumptions about the mollifier w).
1. w is compactly supported and w’ € LY(R) for some ¢ > 2 and

2. [w(p)dp=1.
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Hence, the data (2.8) represent the integrals of f along thin strips around S,, ;, and their

width (= O(e)) is determined by e and the support of w. In the ideal case (not considered in

this paper), where w is the Dirac d-function, the data represent the integrals of f along Sy, p.
Reconstruction from the data (2.8) is achieved by the formula

29) ey =52 Y Awt) [ oIt g, e,

27 e p_P*(ak7w)

where U’ is a small neighborhood of zy and w € C*°(2 x U’) is some weight function. This
is a discretized (in «) version of the classical filtered back-projection inversion formula [27]
adapted to the generalized Radon transform in R? (e.g., as it was done in [28, 29]). The
integral with respect to p, which is understood in the principal value sense, is the filtering
step (the Hilbert transform). The exterior sum is a quadrature rule corresponding to the
backprojection integral.

To better understand (2.9), we consider its continuous analogue. Suppose w is the 6-
function. The continuous version of (2.9) reads

(2.10) FreC =R*(HO,)RY.

Here R* is a weighted adjoint transform and H is the Hilbert transform acting with respect
to p. By imposing additional restrictions on Py, w, and W we can ensure that R*(HJ,)R
is a DO of order zero (see, e.g., [28, 30]) with some other desired properties (e.g., elliptic,
principal symbol equal 1). We do not do this, since our focus here is only the reconstruction
of rapidly oscillating artifacts in fI*¢ away from S. In particular, no attempt is made to
achieve exact reconstruction. In view of this we impose only a minimal set of conditions that
guarantee that Theorem 2.5 holds. These conditions do not guarantee that R*(Hd,)R is a
UDO.
Introduce the following functions:

bd) = (1/2) /0 T w(g+ ) dp, GeR,

(2.11) U(hsa,r) =Y [ (alk—r)+h) = (alk—7))], ha,r €R,a#0,
keZ
U(h;0,7):=0, h,r €R,
and
(2.12) Af(yo) = lim (f(y0 +€Bo) — f(y0 — Bv)).

Various properties of 1) and ¥ (e.g., that 1 is continuous and decays sufficiently fast, so that
the series in the definition of ¥ is absolutely convergent) are established in sections 3.1 and 4.
Our main result is as follows.

Theorem 2.5. Suppose W € C®(Q xR xU) and w e C®(Q x U’) for some small open sets
Q3 ay, Udyo, and U' > 9. Under Assumptions 2.1, 2.3, and 2.4, one has

e V2(fI(wo + ex) — fI%(w0)) = W (ug - F; rpt, ki) + O(e'/?), €0,
(2'13) co— Kw(a*ax())w(a*ap*;y()) (2/M)1/2 Af(yo),

s

ke i=an/Aa, k:=Aa/e,
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where M is defined in (2.3), ug and po are defined (2.6), and the O(e'/?) term is uniform with
respect to & confined to any bounded set.

To help the reader, we discuss various quantities occurring in (2.13).

1. & is a rescaled displacement from a fixed point xg to a nearby reconstruction point x:

= (x —mxp)/e.

2. For the classical Radon transform (CRT), Pi(«,x) =& -z, where « and & are related

by @ = (cos a, sin «).

3. o, ps are the values such that the integration curve S, = S,, p, contains zo and is

tangent to S at some point, denoted yo (see Figure 1).

4. W(a,p;y) and w(a,x) are integration weights in R and its adjoint (see (2.1), (2.9),
(2.10) and the discussion around the latter equation). For the CRT, W(a,p;y) =1
and w(a,z)=1.
k= Aa«a/e, where Aa is the step size along a.

Up to a nonzero factor, M is the difference of curvatures of S and S, at yo.
Af(yo) is the value of the jump of f across S at yo.
ky = ay/Aa is the “index” value corresponding to the angle a,. We put the word
index in quotes, because k, is not necessarily an integer. As is easily seen from (2.11)
and (2.13), only the fractional part of k, is important.
9. The quantities ug := dpPx(, z9) and g := 9o (Pr(x, to) — P(a)) depend on the
properties of the Radon transform (via the function P,) and the curve S. For the
CRT, ug = @ and 1o = & - (T — Y0), 50 |po| = |20 — yo-
The following corollary, which follows immediately from Theorem 2.5, illustrates what
(2.13) looks like in the case of the CRT.

Corollary 2.6. Let R be the CRT. Under the assumptions of Theorem 2.5 one has

Sl B

e 2(frec(mo + ek) — f1(x0)) = W (@, - F; kAL - (w0 — Y0), kx) + O(€'/?), €0,

2.14
(2.14) ci=— (/) (2r) 2 AL (), ke:=an/Aa, k:=Aa/e,

where r is the radius of curvature of S at yo and the 0(61/2) term is uniform with respect to
I confined to any bounded set.

See section 5 for more details on how to apply (2.13) for the classical and circular Radon
transforms.

3. Proof of Theorem 2.5. By (2.6), ug #0, po # 0. By linearity of the Radon transform,
we can assume that the support of f is contained in a small neighborhood of yo (i.e., by
shrinking U as much as necessary). By Assumption 2.1(5), shrinking U and €2 even more, we
can assume that there exists ¢ > 0 such that
(3.1) SapNU =@ for any a € Q,[p—p.| >c.

Then

32)  fla.p)=e1(@)(p—P)Y? + pala,p)(p — P(@)3? + ps3(a,p), a€QpeR,
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where @1 € C§°(£2), 2,3 € C°(2 x R), and
(3.3) e1(00) = W (0 i Y0) A f (y0)2(2/ M)

For the CRT this result is established in [31, 32]. For the generalized Radon transform it easily
follows from d,Px(cw,yo) # 0 and M # 0 (see Assumptions 2.1(1) and 2.1(4)) by applying the
method of proof of Lemma 3.5 in [21].

Since f(x) is compactly supported, f (a,p) is compactly supported in p by (3.1). Hence
we can assume that pa(a,p) is compactly supported as well and

(3.4) p3(a,p) = —p1(a)(p — P(a)?, a e lp >¢

for some c.
The idea of the proof is to split f into three terms using (3.2), substitute each of them
one by one into (2.8), (2.9), and investigate the resulting expressions separately.

3.1. Beginning of proof. Estimate of the leading term. Replace f(a,s) with ¢;(a)(s —
P(a))i/ % in (2.8) and substitute into (2.9). After simple transformations we get

Ax
rec-1 e
fe (:ZZ) T 27‘(’61/2

(3.5) o €Q
w@) = [0 [ up- 95 a5

w(ag, )1 (k)Y ((P(ag, z) — Plow))/€),

After additional transformations with the help of the integral (3.13), ¢ simplifies to the ex-
pression in (2.11). These transformations are justified by applying ¢ in (3.5) to a test function
and changing the order of integration using the result in [33, section I11.28.4]. In turn, (2.11)
gives

P(G)=0, §>c, 1(q) is uniformly continuous on R,

3.6
GO Y@ = () VD Ol D), < —eig o —sem=0.1,2,...,

for some ¢ > 0 and ¢,. Since ;6;1/2 € LZ;C(R) for any ¢’ < 2, Assumption 2.4(1) and [34,
Exercise 11, p. 196] imply that ¢ is uniformly continuous on R. Note that 1 (g) is of limited
smoothness on a compact set, outside of which 1 is C*°.

Using the notation in (2.6) and (2.11) we formulate the following result.

Lemma 3.1. Under the assumptions of Theorem 2.5 one has

E—I/Z(f:ec—1($0 —}—6.%) _ ferec—l(xo))

(3.7)
_ /@w(a*, 327(7)3901(@*> \I/(UO - T HoR, k‘*) + 0(61/2)7

where the O<61/2) term is uniform with respect to & confined to any bounded set.

The proof of the lemma, is in subsection A.2.
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3.2. The second term. Similarly, replace f(«,s) with pg(a,s)(s — 77(04))3’r/2 in (2.8) and
substitute into (2.9). After simple transformations we get with some ¢

TeC2(1) = ce Z w(o, z)g2(Pu(ak, ), Plag), ar), ==z + €L,

92(p,q, ) == /(t_p)_lat/we(t_3)902<a73)(3_Q)3-/2d3dt7
p="Pi(a,z), ¢=Playg).

(3.8)

Therefore, in (3.8) p, ¢ satisfy
(3.9) |p’ < sup \P*(a,xo)\ + 0(6)7 |q, <c,
ac)

where ¢ is the same as in (3.1). Reducing, if necessary, Q further, we can assume that the
supremum in (3.9) is bounded. Thus, |p|,|¢| < P for some P < oco. For simplicity, the
dependence of gs, @9, and related functions on « will be omitted from notation. Rewrite go
as follows:

(3.10) 20 = [wo=0) [ (=070, (pa(o)ls - ) dsctr

Using the results in [35, section 8.3], we find

(3.11) 2200 = [ w.lo =) (p2a(t0)(t -0 + paalt.)) de

for some smooth and bounded ¢ 1 and ¢ 2. The same result can be obtained by elementary
means by writing

(s /°° ds /°° e(s) —(p) —1/
3.12 —————ds= — —_— ds,
A el A el M =
using the integral (see [36, equations 2.2.4.25 and 2.2.4.26])
(3.13) /(s — p)_lsllﬂds = 7rp:1/2,

and substituting p =t — q, ¢(s) = s[(3/2)p2(s + q) + sph(s + q)]-
From (3.11) it follows that

l92(p+ Ap,q) — g2(p, q)|

(3.14) < O(|Apl) + e max ‘(p —q+2p+ ) —(p—g+ 1)
for some c. Recall that in (3.14)
(315) b—q= P*(Oék,$0) - P(ak)7 Ap:'P*(Oék,ZL') - P*(ak7$0) = 0(6)7 T= 0(6)7

where x = x9 + €. Since pg # 0 (cf. (2.6)), we have |P.(a,x0) — P(a)| > c|la — ay| for any
a € Q and some ¢ > 0. Therefore, there exists ¢; > 0 such that whenever |a — a,| > c¢1e and
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€ > 0 is sufficiently small, the expressions (p —q+ Ap+T)1_/2 and (p— q—i—T)l_/2 are either both
zero or both nonzero. When they are both nonzero, the magnitude of their difference equals
Ap .
p—a+Ap+72 4 p—q+ 727 |a— a2
for some c. Also, there are finitely many k (close to k,) such that |ag — ay| < c1e. For those

k, the same difference is O(e'/?).
Using (3.14) and (3.16) in (3.8), we find, similarly to (2.13),

e V2(f12 (g + ) — f1%(20))

3.17 €
( ) 20(61/2)+O(61/2) |:61/2+ Z (16)1/2:| 20(61/2).
1<k<O(1/e) V€

(3.16)

|ov — ay| > cqe,

The first O(e'/?) term on the right in (3.17) absorbs the contributions, which arise due to the
z-dependence of w in (3.8) and due to the O(|Ap|) = O(e) term in (3.14). Here we use that
lw(zo + €2, ) — w(wp, )| < ce and |g2(p, q, )| < ¢ for some ¢ and all a € Q, |p|, |q| < P.

3.3. The third term. Finally, replace f(a,s) with @s(c,s) in (2.8) and substitute this
into (2.9). Recall that ¢3 is not necessarily compactly supported in s (cf. (3.4)) and

(3.18) Aps(a,s)=0(s| YD, s 00, a€Q, 1=0,1,2,
where the big-O term is uniform in «. Similarly to (3.8) and (3.10), we find
freed(@) i=ce > wlon, z)gs(Pulan, x), ),

OékGQ

(3.19) g3(p,a) := /(t —p)lﬁt/we(t — s)p3(a, s)dsdt

= /we(—T)/s_lasgpg(oz,s + 7+ p)dsdr, |p| < P.
The following lemma is proven in Appendix A.3.

Lemma 3.2. One has
(3.20) /8‘183 [p3(e, s +q+ Aq) — p3(a, s +q)] ds = O(|Aq|), Ag— 0,
uniformly in a € Q, |q| < ¢, for any c.
Using Lemma 3.2, the analogue of (3.14) becomes (with Ap the same as in (3.15))
l93(p + Ap, @) — g3(p, @)

(3.21) < c‘n|12<1§ /3_183 [os(a,s +T7+p+ Ap) — p3(a, s + 7+ p)]ds

=0(|Ap|])=0(¢), a €Q,
for some c. Hence, we obtain, similarly to (3.17),
(3.22) € 2(f13 (w0 + ) — f1°70 (wo)) = O(€7?).

Combining (2.13), (3.3), (3.17), (3.22), and using that frec = frec-l 4 free2 4 grec3 we finish
the proof of Theorem 2.5.
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4. A more detailed look at the function W.

4.1. Properties of the function ¥. Theorem 2.5 shows that the function ¥ defined in
(2.11) plays a key role in the description of the aliasing artifact. By (3.6), the series that
defines ¥ converges absolutely at every point. Here we prove some properties of W.

Lemma 4.1. Under Assumption 2.4 one has

1. U is continuous on R x (R\ 0) x R;

2. ¥(h;a,r+1)=Y¥(h;a,r) and Y(h;—a,—r)=VY(h;a,r) for all hya,r € R;
3. W(h+a;a,r)=Y(h;a,r) for all h,a,r €R.

Remark 4.2. In this section, ¥ is viewed as a stand-alone function (i.e., unrelated to its
use in Theorem 2.5). Therefore, its arguments h, a, and r temporarily lose the meaning they
have when W(h;a,r) is used in Theorem 2.5. Nevertheless, when reading this section it may
be helpful to remember that in the setting of the CRT, h = &, - &, a = ka7 - (zo — y0), and

r =k, (see Corollary 2.6).

Proof. When a is bounded away from zero, the number of terms with limited smoothness
in the sum in (2.11) is uniformly bounded when h and r are confined to a bounded set. Hence
we can represent W as a sum of finitely many continuous terms and an absolutely convergent
series, whose terms are smooth functions. This proves statement (1).

The first half of statement (2) is obvious. The second half of statement (2) follows im-
mediately by replacing a — —a, » — —r in (2.11), and changing the index of summation
kE— —k.

To prove statement (3), fix some ¢ > 1 and shift the index of summation ¥’ =k + 1 in
(2.11):

(4.1) U(h+a;a,r)= Z [¥(a(k' —r)+h) =9 (a(k' —1—71))].

k' <c

At first glance, to finish the proof we can just change back k =k’ — 1 in the second . This
does not work, since each of the sums taken separately is divergent (cf. (3.6)). Hence we argue
differently. We have for any K > 1,

[

U(h+aa,r)= Y [plalk’ —r)+h) —(a —1-1))] + O(K1/?)
k'=—K

(4.2) = > [ —r)+h)—p(a® —r))] —pla(K —1-7))

k=—K
+O(K™Y2) = W(h;a,7) + O(K/?), K — .

The desired assertion now follows. [ |

Lemma 4.3. Suppose w is compactly supported and w) e LY(R) for some N > 1 and
q>2. One has

(4.3) 0,072 W (hsa,r) = O(laN~(MH72)) a0, nyny >0,m +ng <N -1,

uniformly in h,r € R.
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Proof. We need the following simple lemma, which follows immediately from the FKuler—
MacLaurin summation formula [37, equation (25.7)]. For convenience of the reader, the lemma
is proven in Appendix A.4.

Lemma 4.4. Pick some N’ > 1. Suppose g,gV') € LY(R), ¢ (t) = 0 as t — co for any
n=0,1,2,...,N' =1, and [, g(x)dx=0. Then,

S olet

kEZ

(4.4) <ceVlg™| 11 (w)

for some ¢ independent of g and €.

Set
(4.5) g(t):==0;" 0/ ((t —ar + h) —(t —ar)).

The dependence of g on h and r is omitted for simplicity. As is easily seen, ¢ satisfies the
assumptions of Lemma 4.4. Indeed, due to Lemma 4.1(2), 4.1(3), we can assume h € [0,a),
r€[0,1). The assumption w®™) € LI(R), ¢ > 2 and (2.11) imply that all the derivatives of 1)
up to the order N are continuous on R.

From (3.6), [¢"™) ()] < em(14t])73/2, 0 <m < N — (ny +ny), for some ¢, independent of
h and r. Hence g decays sufficiently fast at infinity.

It remains to check that g integrates to zero. If n; > 0 or ny > 0, this is obvious. Suppose
n1 =n9 = 0. For some ¢ > 0,

/Rg(t)dt:/cAg(t)dHO(A_l/?)
(4.6) N

h—A
- —/ GOt + O(A~2) = O(A12), 4 oc.
—A

Application of Lemma 4.4 to g in (4.5) with e =a and N; = N — (n; + n2) proves the desired
assertion. The uniformity with respect to h and r is obvious.

Corollary 4.5. Suppose w is compactly supported and w®) e LY(R) for some N > 1 and
q>2. Then the deriatives 0, 0*¥ (h;a,r), ni,n2 >0, ny +ny <N — 1, are continuous for
all values of their arguments.

Proof. The continuity away from a = 0 is proven the same way as assertion (1) of
Lemma 4.1. The continuity at a =0 follows from Lemma 4.3. |

4.2. Computing ¥ numerically. Numerically, we compute ¥ using the following ap-
proach. Due to Lemma 4.1(2) and 4.1(3), we assume h € [0,a), r € [0,1). The mollifier
in our experiments is given by

(4.7) w(t) = (15/16)(1 — t*)3.

First, ¢ (t) is computed by analytically evaluating the integral in (2.11). Then we compute
AY(t,h) == (t + h) —1(t). For moderate values of ¢ we compute Ay directly from the
definition. For ¢t < —1 we use

(4.8) AY(t, h) ~ h/(4]t]3?).
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Figure 3. Plots of ¥(ah';a,r) for three values of a. The variable h' is on the horizontal axis.

Finally, we write

h =3/
(4.9) U(h;a,r) ~ Z Ad(a )’h)+zmyi’>/2];(k )

—K+1

where ¢ > 0 is selected so that Ay(a(k —r),h) =0 for all kK > c and h € [0,a) and K > 1.
The last sum is estimated using the asymptotic formula for the Hurwitz zeta function [38,
equation (1.1)]

o tl s 1=
(4.10) = (k+1) p— +7+O(t—(8+1>), t — 400,
k=0

where s =3/2 and t = K. The plots of ¥(ah';a,r), 0 < h' <1, for the values a = 1,2,4 and
r=1/3 are shown in Figure 3.
In agreement with Lemma 4.3, we see that W(ah';a,r) decays rapidly as a — 0.

5. Numerical experiments.

5.1. CRT. In this subsection we experiment with the CRT, which integrates over lines:
(5.1) f(a,p):/ f(x)dz, d@=(cosa,sina), Sa,p:={rcR*:a -z =p}.

Reconstruction uses (2.9),

f&(x) = Z / p];;ak’ dp, Pu(z,0)=a -,
(5.2) T ez ™) P Pr@an)

fop) = / welp — p) (e p)dp, = —(m/2) + (1/Na)(k +5),

and w is the same as in (4.7). The weights in both the Radon transform and the inversion
formula are set to 1: W(a,p;z) =1, w(a,z)=1.
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Figure 4. Illustration of various quantities used in the main formula (2.13) to predict aliasing from a disk
in the case of the CRT.

In the first experiment, f is the characteristic function of the disk centered at the origin
with radius 7. Thus, S = {z € R?: |x| =7}. By (2.2),

(5-3) |[dH (yo)| = |daPu(eve; yo)| = o] = 1.
Therefore, by (2.3),
(5.4) M = —(6% - 0,)°H(y)lymy, = 1/7>0

is the curvature of S at yg. Also, éo = dH (yo) points towards the center of curvature of S at
yo (the center of the disk).

At a given = ¢ S, aliasing arises due to the parts of & where the lines S,, > x are
tangent to S. For |z| > r, two such lines exist. We pick z¢ = (r,b) and find two pairs (au, ps)
with the required properties. Clearly, one of the pairs is (ay = 7,p, = —7), and the other
is (ax = 2tan~1(b/r) — m,p, = —r). This choice of values of (cu,ps) ensures that S,, ,, 14,
where 0 < 0 < 1, intersects S at two points (cf., the paragraph following (2.3)). See Figure 4,
where the first pair (with o, =) is shown in red, and the second, in black. The contribution
coming from a neighborhood of each point of tangency yp is computed by (2.13) using the
corresponding values of parameters (computed elsewhere in this subsection) and added. For
reconstructions we use r =5 and xg = (5,7). To better illustrate the aliasing artifact we also
reconstruct a small region of interest (ROI), which is a square centered at xy with side length
40€.

For computations we also need ug and pg (cf. (2.13)). They follow easily from (2.6),

(5.5) ug = Ay, po =0y - (xo — yo),

where yg is the point where S, is tangent to S. As is seen from Figure 4, puo = —|xg — yo| for
the first (red) pair (o, ps), and po = |zg — yo| for the second (black) pair.

In the first experiment, ¢ = 0.02, N, = 200 and in the second, ¢ = 0.01, N, = 400. Since
the direction a, = 0 is special, we use a nonzero shift ¢ in (5.2) for additional generality. The
results are shown in Figures 5-10.

Figure 5 (left panel) shows the reconstructed region |zi|,|z2| < 10 with ¢ = 0.02 and
N, = 200. The left panel also shows the ROI (a small square). The right panel shows a
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Figure 5. Disk phantom, CRT reconstruction of the region |z1],|x2| < 10: € = 0.02, No = 200, 6 = 0.03.
Left: global reconstruction; right: profile of the reconstruction through the center.

Reconélrucled profile T
Predicted profile ——

Figure 6. Disk phantom, ROI CRT reconstruction: € = 0.02, N, = 200, § = 0.03. The ROI is the square
shown in Figure 5. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x = xo + €hO, |h| <11, shown on the left. The variable h is on the horizontal azis.

line profile through the origin to confirm the accuracy of reconstruction. Figure 6 shows the
reconstructed ROI with § = 0.03. The right panel shows the profiles of the reconstructed
difference e 1/2(fre¢(z) — f*°°(x0)) (green) and the prediction given by the main term on
the right in (2.13) (red) along the line segment x = 2 + ¢h©, |h| < 11, where © = z0/|zq|.
The line segment is indicated on the left panel. The values of h are on the horizontal axis of
the profile. From (5.5), the values of u - & used in (2.13) are given by hd, - ©.

Similarly, Figure 7 shows the reconstructed ROI and line profiles for the same line segment
when 6 =0.2.

Figure 8 shows the reconstructed region |zi], |z2| < 10 with € = 0.01 and N, = 400. The
ROI is shown as well. Recall that the size of the ROI is proportional to e. Figure 9 shows
the ROI and the corresponding line profiles for § = 0.03. Similarly, Figure 10 shows the
reconstructed ROI and line profiles when § = 0.2. In both cases, the vector 6 and the range
of h that determine the line segment are the same as before.

Comparing Figure 6 with Figure 9 and Figure 7 with Figure 10, we see that reducing e
and A« improves the match between the reconstruction and prediction.
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Figure 7. Disk phantom, ROI CRT reconstruction: € = 0.02, N, = 200, § = 0.2. The ROI is the square
shown on the left in Figure 5. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles
along the line segment x = xo + €h®, |h| <11, shown on the left. The variable h is on the horizontal azis.

Figure 8. Disk phantom, CRT reconstruction of the region |z1|,|x2| <10: € =0.01, No =400, 6 =0.03.

Reconéqucled profil

e
Predicted, le ——

Figure 9. Disk phantom, ROI CRT reconstruction: € = 0.01, No =400, § = 0.03. The ROI is the square
shown in Figure 8. Left:_'reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x =xo + €h©, |h| <11, shown on the left. The variable h is on the horizontal azis.

In the second experiment f is the characteristic function of an ellipse centered at the
origin: S ={x € R?:x = (1 cosf,resind),d € [0,27)}. Of course, the main formulas like (5.3),
(5.5) still hold. The only difference is that now the radius of curvature r (and the constant
M; see (5.4)) depends on the point of tangency.
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Reconstructed profile ——
Predicted profile ——

Figure 10. Disk phantom, ROI CRT reconstruction: ¢ = 0.01, N, =400, 6 = 0.2. The ROI is the square
shown in Figure 8. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x =xo + €h©, |h| <11, shown on the left. The variable h is on the horizontal azis.
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Figure 11. Ellipse phantom, CRT reconstruction of the region |z1]|,|z2| < 10: e =0.02, No =200, § = 0.03.
Left: global reconstruction; right: profile of the reconstruction along the diagonal from top left to bottom right.

As before, we pick zy outside the ellipse and find two pairs (o, px). The contribution
coming from a neighborhood of each point of tangency yg is computed by (2.13) and added.
In the reconstructions we use r; = 4, ro = 6, and zp = 7(cosf,sinf), 6 = 25°. To better
illustrate the aliasing artifact we also reconstruct a small ROI, which is a square centered at
xg with side length 40e.

The values of the parameters ¢, N, and ¢ are the same as before. In the first experiment
with the ellipse, ¢ = 0.02, N, = 200 and in the second — ¢ = 0.01, N, = 400. The results are
shown in Figures 11-16.

Figure 11 (left panel) shows the reconstructed region |zi],|x2| < 10 with € = 0.02 and
N, = 200. The left panel also shows the ROI (a small square). The right panel shows a
line profile through the origin to confirm the accuracy of reconstruction. Figure 12 shows the
reconstructed ROI with § = 0.03. The right panel shows the profiles of the reconstructed
difference e~ 1/2(fre¢(x) — f**¢(x0)) (green) and the prediction given by the main term on the
right in (2.13) (red) along the line segment x = xo + €h®, |h| < 11, where © = ¢/|xo|. The
line segment is indicated on the left panel. Similarly, Figure 13 shows the reconstructed ROI
and line profiles for the same line segment when § = 0.2.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/12/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

432 ALEXANDER KATSEVICH

Reconstructed profile ——
Predicted profile ——

Figure 12. Ellipse phantom, ROI CRT reconstruction: € =0.02, N, =200, 6 =0.03. The ROI is the square
shown in Figure 11. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x =xo + €h©, |h| <11, shown on the left. The variable h is on the horizontal azis.

T T
Reconstructed profile ——
Predicted profie —— |
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Figure 13. Ellipse phantom, ROI CRT reconstruction: ¢ =0.02, N, =200, 6§ =0.2. The ROI is the square
shown on the left in Figure 11. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles
along the line segment x = xo + €h®, |h| <11, shown on the left. The variable h is on the horizontal azis.

Figure 14. Ellipse phantom, CRT reconstruction of the region |z1|, |x2] <10: e =0.01, No =400, § =0.03.

Figure 14 shows the reconstructed region |z1],|z2| < 10 with € = 0.01 and N, = 400.
The ROI is shown as well. Figure 15 shows the ROI and the corresponding line profiles for
6 = 0.03. Similarly, Figure 16 shows the reconstructed ROI and line profiles when § = 0.2.
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Reconstructed profile ——
Predicted pryfile ——

Figure 15. Ellipse phantom, ROI CRT reconstruction: e =0.01, N, =400, 6 =0.03. The ROI is the square
shown in Figure 14. Left: reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x =xo + €h©, |h| <11, shown on the left. The variable h is on the horizontal azis.

T
Reconstructed profile
Predicted profile

Figure 16. Ellipse phantom, ROI CRT reconstruction: ¢ =0.01, No =400, 6 =0.2. The ROI is the square
shown in Figure 14. Left.; reconstructed ROI; right: reconstructed (green) and predicted (red) profiles along the
line segment x = xo + €hO, |h| <11, shown on the left. The variable h is on the horizontal azis.

In both cases, the vector O and the range of h that determine the line segment are the same
as before.

Comparing Figure 12 with Figure 15 and Figure 13 with Figure 16, we see that reducing
€ and A« improves the match between the reconstruction and prediction. Overall, the results
with the elliptical phantom are very similar to those with the disk phantom.

5.2. Circular Radon transform. In this subsection we experiment with the generalized
Radon transform (GRT), which integrates over circles with any radius p > 0 and centers on
the circle |z| = R:

Rp)(a.p) = fap)= [ fla)da. a= (cosasin),
Po(a,x) = |z — Ra|, So;,p = {zcR?:|z — Ra| = p}.

The value of R is fixed. Therefore

r — Ral -
(5-7) de*(a,:L‘) = m; M= (1/0*) - (@é : ay)QH(Z/”y:yo > 0.

(5.6)
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pick some pair (o, py) such that S is tangent to S at some Yo and then select some
zo € Si. To be specific, we select a ‘+’ in (5.9), i.e. p, satisfies |z, — Rdy| = r+ py.
This implies that M = (1/7)4+(1/p,) and ¢ = (yo—R@.)/|yyo— R@,| points towards
the center of curvature of S at yo (see Figure 17). Similarly to the classical Radon

transform, our construction ensures that S,, ,, s, where 0 < § < 1, intersects S

434 at_two points. ALEXANDER KATSEVICH

circular Radon t

In the gom utatlon of M we use Pela,z) = 1.
%trate 1a m the” place whe + 18 tangent to & we select
straléht Orwar f ;(1

fo be a suthcient y sm ne1ghborhood of a,. Since P.(a,z) = | — Ra| and
P(a) ~ Ral ng,
A B gy P ACRUR
5.8) 0 *p Pz ozk
(5 ]:EO — Ra,|’

(5.10)f(ak7p)_Lw5p I (. g 2 = (7 Ndh (15/16)(1 — p*)2,
2 (g =tk L)

ie. %ﬁeisF RN G as in (4.7). Clearly, the reconstruction is not theoretically exact anymore.
But it E&%&F&é&lﬁl’i@’s‘%@éﬁﬁ%f% singularities (in the Sobolev scale) Again, the Welghts in

bot% i{adﬁlfréns%rm bhd thd iTversie fdbnhita(Qrd 3 2741 W, A x}A% %R ) = 1.
e% ction=F jathe ahitaatestisti¢unction of the disk centered at x. with radius 7. Thus,
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Wgé%%wmm%meW%M%%mwo
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( 5'9})anels show the limited ang*% rec% ruction %fﬂz[xn %QI The ROI is a small square

centered at zo with side length 40e, the ngI is shown on the left panel. The right

for RoRGB shemgthe prpfiles %FheG@ﬁ@qu&ﬁdtélﬁﬁxﬁwmol $ (as e lie. faip(#6) four
circl8rsyn) and dhgt PRI S¥phmentinydaravee the dighindnt. Mé)pl@@@bme
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specifitueseofeleatreadirthénh(ridpnial ,apjs saft isfiesprofitesR AL he=unit mctdF}@ isngllimsehat
M =61pw) dr{ﬂlégghahd@é?*:é(yoro Ria.)/ @oan®ay] poinpmtaitekdscchd oguter f)cufvatiwe of
S ateypdppadiigyipe! $t Huailarly, to Aha LCREL oraderung ucting auigsplvesSthe, miatvliere
0 < HeEwtednithiiesbeonstr ivEdPRIS prediction.

hat d,.P

econstruction is achieved using a

Y
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Reconstructed profile ——
02 Predicted profie ——

—

Figure 18. Disk phantom, limited angle GRT reconstruction: € = 0.01, N, = 500. Left: global reconstruc-
tion; middle: reconstruction inside the square ROI shown on the left; right: profiles of the reconstruction (green)
and prediction (red) along the line segment x = xo + €h®, |h| <6, shown in the middle. The variable h is on
the horizontal axis.

——

Figure 19. Disk phantom, limited angle GRT reconstruction: € = 0.005, N, = 1000. Left: global recon-
struction; middle: reconstruction inside the square ROI shown on the left; right: profiles of the reconstruction
(green) and prediction (red) along the line segment © = xo + €h®, |h| < 6, shown in the middle. The variable h
is on the horizontal axis.

To illustrate aliasing only from the place where S, is tangent to S we select €2 to be a
sufficiently small neighborhood of a. Since Py(a,x) = |x — Rd@| and P(a) = |z, — RA| —r, we
find

(5.10) *7 Jeo — R’
pio = —Ray - (up — O9) = —(R/px) @ - (x0 — ¥0);

see Figure 17.
For reconstructions we use

(5.11) R=5, z.=(1,1), 7=2, (ay,psx) = (0.537,2.24), 2o =(—1.42,2.95),
' Q= oy — /4, + 7/4].

In the first reconstruction, € = 1072, N, =500 and in the second — € =0.5- 1072, N, = 1000.
The results are shown in Figures 18 and 19, respectively. The left panels show the limited
angle reconstruction of the region |z1],|r2| < 4. The middle panels show the limited angle
reconstruction of an ROI. The ROI is a small square centered at xg with side length 40e;
the ROI is shown on the left panel. The right panels show the profiles of the reconstructed
difference e~ 1/2(fre¢(z) — f**¢(xq)) (green) and the prediction given by the main term on the
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right in (2.13) (red) along the line segment x =z + eh®, |h| <6, shown in the middle panel.
The values of h are on the horizontal axis of the profiles. The unit vector 6 is chosen to be
orthogonal to S, at xg (i.e., 6 and ug are parallel; see Figure 17). In the experiments we set
6 = —ug. Asis seen, reducing € and A« improves the match between the reconstruction and
prediction.

Appendix A. Proofs of lemmas.

A.1. Proof of Lemma 2.2. The property P(a,) = p, follows from assumption 2.1(2).
Recall that H(y) =0 is a local equation of S (cf. (2.2) and the paragraph preceding it). To
find P (), we solve

(A'l) H(y) =0, )‘dH(y) = dyp* (av Y)

for y € S and \ in terms of a near (A =1,y = yp,@ = ) and then set P(a) = Pi(a,y(a)).
Assumptions 2.1(1), 2.1(2), 2.1(4) and the implicit function theorem imply that y(«) and,
therefore, P(a) are smooth in a small neighborhood €2 5 . Since 3/(«) is tangent to S, using
the second equation in (A.1) gives P’'(ax) = 9oPs (s, yo)-

A.2. Proof of Lemma 3.1. Denote
Po(a,x) — Pa)

€

(A.2) H(z,a,¢€):= , T =x0+ €X,a €.

Since po # 0 (cf. (2.6)), we have |Pi(a,z0) — P(a)| > c|av — o] for any a € 2 and some ¢ > 0.
Hence

(A.3) |H(x, 0, €)| > c1]k — ky| for all 2] <c,ar € Q, |k — ki| > ca,
for some ¢, c1,co >0 and all € > 0 sufficiently small. From (3.5),
Aa
fre (@ +ed) — fr M (wo) = —mu +O0(e'?)),
(A.4) 3
J = Z w(ou, zo)e1 (o) [ (H (o + €X, o, €)) — ¥ (H (20, o, €))] -

ar€N

The O(e'/?) term in parentheses on the right in (A.4) denotes the contribution, which arises
due to the a-dependence of w in (3.5). Here we use (3.6) with n =0, (A.3), and that for some
c and all  in a bounded set,

(A.5) |w(a, o + €) — w(a,xo)| < ce, |p1(a)| <e, ae,
hence
(A.6) O(e) <0(1)+ > ]k—k*|1/2> = O(e'/?).
c2<|k—k.|<O(1/¢)
From (2.6),

H(zo+ et,a,€) = H(zp, 0, €) + dpPu(a, 20)E + O(€)

(A.7) )
= H(zo,0,€) +up- T+ O(e + |a — ayl).
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Also, |w(zg, @)p1(a)| < c for some ¢ and all a € Q. Therefore, by (3.6) with n=1 and (A.3),

Z w(ag, xo)p1(ap) [V (H (xg + €&, g, €)) — Y(H (2o, g, €) + ug - )]
aR €SN
— Z V' (H (2, g, €) + O(1))O(e + €|k — ky|)
[k|<O(1/€)

1+ |k — Ky
:O(e)(l > Ikkl?’/2> O(eY/?).

c2<|k—k,|<O(1/e)

Here we use that w’ € LY(R), g > 2 (see assumption 2.4(1)), so ¢’ is continuous. This shows
that if w does not have the required smoothness (e.g., if w is the characteristic function
of a detector pixel), the magnitude of the expression in (A.8) may turn out to be much
larger, leading to a slower rate of convergence in Theorem 2.5 (or even to a breakdown of the
convergence altogether).

From (A.4), (A.7), and (A.8),

J =" wlag,z0)p1(ar) A (H (wo, ax,e€)) + O(e'/?),
(Ag) €Y

Arp(t) = 1p(t +ug - ) — ().
Furthermore,

Qp — O

(A.10) H (z0, g, €) = o + Ry, Ry =O0(e(k — ky)?).
Denote, for simplicity, ax = por(k — k). Then

(A.11) Adp(ay, + Ry) — A(ax) = RpAY' (ay, + &),
where |£;| <|Ry|. We can assume that €2 is sufficiently small, so that
(A.12) |o(a — o) + €Ri| = clag — o Vag € Q

for some ¢ > 0. Dividing by € implies

(A.13) lax, + Ri| > cklk — ky| Yoy, €

with the same c. Using (3.6) with n =2 gives
Z w(ak, zo)e1 (o) [AY(ak + R) — A(a)]

e<|k—k,|<O(1/e)

_ Z O(dk_k*P) 20(61/2)

_ 5/2
<l 2o LTIl

(A.14)

for some ¢ > 0 sufficiently large. The requirement |k — k.| > ¢ is needed, because ¥"(q),
on which the estimate (A.14) is based, may not exist for ¢ in a compact set when w' € LY.
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To estimate the remaining finitely many terms without appealing to the second derivative we
write

A¢(ar, + Ry) — Aip(ay)
(A.15) = [Qb(CLk +uo- T+ Ry) —Y(ag +uo - Lf?)] — [I/J(Gk +Ry) — Ib(ak)]
O(e), [k — k| <c.

This follows, because v’ is continuous on all of R and Rx = O(e) whenever |k — k.| < ¢
(cf. (A.10)). This is another place where we use that w’ € L9. If w is not sufficiently smooth,
the quantity in (A.15) may turn out to be much larger.

It is clear that all the big-O terms are uniform with respect to & (and, hence, h) restricted
to a bounded set. Combining (A.4), (A.9), (A.14), and (A.15) finishes the proof.

A.3. Proof of Lemma 3.2. Denote
(A.16) J::/s_1 [oh(s+q+Aq) — ph(s+q)] ds,

where we omitted the dependence on « for simplicity. All the big-O terms in this subsection
are uniform with respect to « € 2. Restricting the integral in (A.16) to |s| <1 we find

(A.17) Jp = / - sTH([e5(s + a4+ Aq) — P5(q + Ag)] — [#h(s +q) — ¢h(q)]) ds.

Clearly, J; = O(|Ag|) uniformly in |g| < ¢. Here we have used that ¢3 is smooth, so its third
order derivative is bounded on compact sets. By (3.18), ¢4 (p) = O(|p|~%/?), p — co. Hence

(A.18) Ty = / 7 [+ A0 = s+ )] ds=0(1ag)

uniformly in |¢| < ¢. Combining the estimates for J; o proves the lemma.

A.4. Proof of Lemma 4.4. The Euler-MacLauren formula reads as follows [37, equa-
tion (25.7)]:

b—1 b N’ b
S = [ e+ 30 () - 10 )
k=a @ m=1

. /ab Bn: (]{Vll' t})f(N/)(t)dt.

(A.19)

Here b > a are integers, B,, and b,, are Bernoulli polynomials and numbers, respectively,
{t} =t —|t] is the fractional part of ¢ € R, and |¢] is the floor function, i.e., the largest integer
not exceeding .

Substituting f(t) = g(et), taking the limit as a - —oo, b — oo (which is allowed due to
the decay of g and its derivatives), changing variables 7 = et, and using that g™ e L'(R),
we finish the proof.
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