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Abstract—Entropy rate estimation has a broad range of
applications such as bioinformatics, feature clustering etc.
Although there are many existing work on the estimation of
entropy rate for Markov chains with discrete distributions,
the understanding for the entropy rate estimation of Markov
chains with continuous distributions is limited. In this paper,
efficient methods for estimating the entropy rate for Markov
chains with continuous distributions are proposed. Moreover,
we derive bounds on the convergence rate of the proposed
entropy rate estimators.

I. INTRODUCTION

Entropy rate is an important quantity in information the-
ory and statistics. It can be understood as the fundamental
limit of predicting the next step in a stochastic process.
Correspondingly, the estimation of entropy rate for a
stochastic process, especially a stationary Markov chain,
has been used in a wide variety applications. For example,
it can be used in bioinformatics [1–5] for analyzing DNA
sequences, feature clustering and image registration [6],
blind source separation [7, 8], economics [9], and many
other signal processing related fields [10, 11].

The estimation of the entropy rate for Markov chains
with discrete distributions has been discussed in some
recent interesting works [12–15]. A simple and intuitive
method is plug-in method, in which one estimates the
stationary distribution and the transition probability matrix
first and then calculates the entropy rate. [13] proved that
this estimator converges almost surely and is asymptoticly
normal. [14] provided a finite sample bound on the es-
timation error. These results show that the simple plug-
in method is efficient if the alphabet size is finite and
fixed. If the alphabet size grows with the sequence length,
then the simple plug-in method is no longer optimal.
In [15], a new method was proposed, which can handle
the case with large state space. This method estimates
the conditional entropy given each previous state based
on some efficient entropy estimators for identical and
independently distributed (i.i.d) samples, such as those
proposed in [16, 17]. It exhibits clear advantage over the
simple plug-in estimator, since it estimates the conditional
entropy directly, instead of estimating the full transition
matrix. Such an improvement is significant if the alphabet
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size is large. Moreover, it is shown in [15] that this new
method achieves the minimax optimal sample complexity.

Despite that the entropy rate estimation has been widely
discussed for discrete distributions, the previous methods
and the theoretical analysis can not be straightforwardly
generalized to continuous distributions. For discrete dis-
tributions, for all samples at a fixed state s, their next
states are i.i.d conditional on s. However, for continuous
distributions, we can not use this property, because we
can not expect that there are a large number of samples
located at the same state. As a result, it is impossible to
find some states that are conditionally i.i.d, which makes
the analysis much harder.

In this paper, our goal is to estimate the entropy rate
for continuous distributions. In particular, we propose
two competitive methods to estimate the entropy rate of
Markov Chains with continuous distributions.

For the first method, our design is based on the fact
that for stationary and homogeneous Markov chain, the
entropy rate equals to the conditional entropy of a state
given its previous state. Therefore, it is natural to design
a method based on the combination of two Kozachenko-
Leonenko (KL) entropy estimators [18], in which one of
them estimates the joint entropy, while the other estimates
the marginal entropy. The final estimate of the entropy rate
can then be calculated by subtracting the marginal entropy
estimate from the joint entropy estimate. We name this
method as 2KL entropy rate estimator. The 2KL method
is simple to use with little parameter tuning, and has
good empirical performance. However, it is very difficult
to rigorously characterize the convergence rate of this
2KL method. The analysis techniques for the KL entropy
estimator [19–24] cannot be applied for the analysis of the
proposed 2KL entropy rate estimator. The main reason is
that the existing techniques for analyzing the KL entropy
estimator relies heavily on the fact that the available
samples are independent, while the samples obtained from
the Markov chain case are not independent anymore.

To overcome the lack of rigorous convergence rate
characterization of the 2KL entropy rate estimator, we
propose another estimator that is amenable to analysis and
has similar or better performance than the 2KL estimator.
The main idea of the new estimator is to divide the support
set into bins. For each bin, we find all samples falling in
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this bin and then find their next states. After that, we apply
the KL entropy estimator, on these states whose previous
steps are all in the same bin. We call this as Bin-KL
entropy rate estimator. The Bin-KL entropy rate estimator
shares some similarity with that in [15], since both [15]
and our method estimates the conditional entropy directly
instead of estimating the full probability mass function
(pmf) or probability density function (pdf). However,
unlike discrete distributions, for continuous distributions,
the states whose previous steps are within the same bin
are not i.i.d or conditional i.i.d given the previous state,
since their distributions are still slightly different due to
different locations of the previous states, even if those
previous states are in the same bin. As a result, the
analysis of the new proposed method becomes harder.
For this estimator, we are able to provide a new analysis
to show that this method is consistent, and derive its
convergence rate. Our analysis uses some techniques from
previous works on the KL entropy estimator [21, 23, 24].
Consider that the samples are no longer i.i.d, we modify
the previous analysis and carefully bounded the effect of
the mutual dependence between each steps. To the best
of our knowledge, this is the first attempt to propose a
method to estimate the entropy rate of Markov chains with
continuous distributions, and bound its convergence rate.

II. PRELIMINARIES

Consider a first order ergodic Markov chain X1,X2, . . .,
in which Xi ∈ S, S ⊂ Rd is a compact set. Each
Xi is a continuous random variable, is conditionally
independent with X1, . . . ,Xi−2 given Xi−1. The entropy
rate is defined as

h̄ = lim
n→∞

1

n
h(X1, . . . ,Xn), (1)

in which h(X1, . . . ,Xn) is the joint differential entropy
of X1, . . . ,Xn:

h(X1, . . . ,Xn)

= −
∫
f(x1, . . . ,xn) ln f(x1, . . . ,xn)dx1 . . . dxn.

The joint pdf f(x1, . . . ,xn) is usually unknown in prac-
tice. We need to estimate the entropy rate from samples.
Suppose we are given a realization of the Markov chain,
which is a sequence with length N , i.e. X1, . . . ,XN ,
in which X1 is an arbitrary initial state. Our goal is to
estimate the entropy rate h̄ based on these N samples.

In this paper, we assume that the Markov chain is time
homogeneous, which means that there exists a transition
kernel p, such that p(x, ·) = fi+1(·|Xi = x) for all
i = 1, 2, . . . and x ∈ S, in which fi+1(·|Xi = x) is
the conditional pdf of Xi+1 given Xi = x. Denote π
as the pdf of the stationary distribution, which satisfies∫
π(x)p(x,y)dx = π(y).
Then we have

h̄ = lim
n→∞

1

n
h(X1, . . . ,Xn)

= lim
n→∞

h(Xn|Xn−1) =

∫
π(x)h(p(x, ·))dx, (2)

in which h(p(x, ·)) = −
∫
p(x,y) ln p(x,y)dy. is the

conditional entropy of a state given the previous state.

III. PROPOSED METHODS

In this section, we propose two methods, called 2KL
method and Bin-KL method respectively, to estimate the
entropy rate based on the expression (2).

A. 2KL Method

For a time homogeneous and uniformly ergodic Markov
chain, we have

h̄ = lim
n→∞

1

n
h(X1, . . . ,Xn) = lim

n→∞
h(Xn|Xn−1). (3)

Therefore, we can estimate the entropy rate by estimat-
ing the conditional entropy of next state given the previous
state. Define Zi = (Xi,Xi+1) for i = 1, . . . , N − 1, then
h̄ = lim

n→∞
[h(Zn) − h(Xn)]. h(Zn) and h(Xn) slightly

change over n. However, they will converge as n increases.
Hence, a possible idea is to use two entropy estimators
to estimate h(Z) using Zi, i = 1, 2, . . . , N − 1 and to
estimate h(X) using Xi, i = 1, 2, . . . , N separately, and
then calculate the estimated conditional entropy.

The most common method for estimating the entropy
for continuous random variable is the KL estimator, which
calculates the differential entropy based on k nearest
neighbor distances. If the nearest neighbor distances are
large, then the random variable has a high differential
entropy, and vice versa. It was first proposed in [18], and
was then analyzed in [20, 21, 23–26]. In our case, the
expressions of the KL estimates for h(X) and h(Z) are

ĥ(X) = −ψ(k) + ψ(N) + ln cd +
d

N

N∑
i=1

ln εXi
, (4)

ĥ(Z) = −ψ(k) + ψ(N − 1) + ln c2d +
d

N

N∑
i=1

ln εZi , (5)

in which ψ is the digamma function, ψ(t) = Γ′(t)/Γ(t),
Γ is the Gamma function, Γ(t) =

∫
ut−1e−udu. cd

and c2d are the volumes of the d-dimension and 2d-
dimension unit balls respectively. If we use `2 metric, then
cd = πd/2/Γ(d/2 + 1). c2d can be defined similarly. εXi

is the distance of Xi to its k nearest neighbors among
{X1, . . . ,XN}, and εZi

is the distance of Zi to its k
nearest neighbors among {Z1, . . . ,ZN−1}. We call this
method as 2KL method, as it is a combination of two KL
estimators.

This method is simple to use since the only parameter
we need to tune is k. According to the analysis of KL
estimators in [23, 24, 27], the optimal k is fixed with
respect to sample size N . Furthermore, we will show
in Section V that the 2KL method has good empirical
performance. However, it is challenging to rigorously
characterize the convergence property of this method. In
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particular, although there are many existing works that
analyze the performance of KL entropy estimators for the
case with i.i.d data under various assumptions [19–24],
these analysis can not be easily generalized to analyze
the 2KL entropy rate estimator for the Markov chains
because samples are no longer i.i.d. The challenge with
the rigorous performance analysis of the 2KL method
motivates us to design an alternative entropy rate estimator
that is amenable to analysis and has similar or better
empirical performance as the 2KL method in the next
subsection.

B. Bin-KL Method

To address the lack of rigorous performance analysis of
the 2KL method issue, we propose an alternative entropy
rate estimator that has rigorous convergence characteriza-
tion and has similar or better empirical performance. We
name this new method as Bin-KL method. The main idea
of the Bin-KL method is to estimate π(x) and h(p(x, ·)).
However, since the distribution of each Xi is continuous,
we can not estimate them at every x. Therefore, we divide
the support S into m bins, denoted as B1, . . . , Bm, such
that each bin is a connected set and is sufficiently small.
Assume that the transition kernel p and the corresponding
pdf of the stationary distribution π is continuous, then they
will be sufficiently close within each bin. Hence, we can
let the estimation of π and ĥ(p(x, ·)) to be the same in
each bin.
π(x) can then be estimated by π̂(x) = n(Bj)/NV (Bj),

in which V (Bj) is the volume of Bj , and n(Bj) =∑N−1
i=1 1(Xi ∈ Bj) is the number of samples falling in Bj

among the first N − 1 samples. This means that π(x) can
be simply estimated by the fraction of all samples falling
in Bj .

For the estimation of h(p(x, ·)) for x ∈ Bj , we
denote Ij = {i|Xi−1 ∈ Bj}, which is a set of indices
of samples whose previous step belong to Bj . Obvi-
ously, the cardinality of Ij is |Ij | = n(Bj). Denote
(Xj1,Yj1), . . . , (Xj,n(Bj),Yj,n(Bj)) as a random permu-
tation of (Xi−1,Xi) for i ∈ Ij . Note that the distributions
of Yj1, . . . ,Yj,n(Bj) are close to each other, since their
previous steps are all in Bj , and the previous steps are
close to each other. With this observation, we can use the
KL entropy estimator to estimate h(p(x, ·)) for x ∈ Bj .
The estimated value of h(p(x, ·)) is the same for all
x ∈ Bj . Therefore, we use ĥj to denote such estimated
result. If n(Bj) ≥ k, then

ĥj = −ψ(k) + ψ(n(Bj)) + ln cd

+
d

n(Bj)

n(Bj)∑
l=1

ln εjl, (6)

in which εjl is the distance from Yjl to its k-th nearest
neighbor among Yj1,. . .,Yj,l−1, Yj,l+1,. . .,Yj,n(Bj). If
n(Bj) < k, then the KL entropy estimator can not be
used. In this case, we just set ĥj = 0.

Setting ĥj = 0 when the number of samples within Bj
is less than k will inevitably cause some estimation bias.
However, we can ensure that the number of bins grows
slower than the total sample size N , then the expected
number of samples within each bin will also grows with
N . As a result, the probability that n(Bj) < k becomes
smaller with the increase of N . This ensures that the
additional bias caused by setting ĥj = 0 converges to
zero.

Combining these two steps, the proposed Bin-KL en-
tropy rate estimator is written as

ˆ̄h =

∫
π̂(x)ĥ(p(x, ·))dx

=
m∑
j=1

∫
Bj

π̂(x)ĥ(p(x, ·))dx =
m∑
j=1

n(Bj)

N
ĥj . (7)

The Bin-KL method has two design parameters, m and
k. The optimal choice of m grows with sample size N .
We will characterize the optimal growth rate of m with
sample size N in the convergence analysis section. On the
contrary, the optimal k does not grow with N . Therefore,
k can be selected as a fixed value. Although the selection
of k can partially affect the bias and variance of this
estimator, it does not impact their convergence rates.

We now compare the Bin-KL method and the 2KL
method. As will be shown in the numerical simulation,
both methods have good empirical performance. The mean
square errors of both methods converge to zero. The
performances of these two methods depend on the dis-
tributions, but they generally have comparable empirical
performances. A major difference is that we have rigorous
convergence analysis for the Bin-KL method (shown in
Section IV), while for the 2KL method, we are not able
to provide such analysis due to difficulties discussed in
Section III-A.

Another aspect to compare is the time complexity.
We discover that the Bin-KL method usually requires
less time than the 2KL method. This is because the k
nearest neighbor search has a higher time complexity than
assigning bins. For the Bin-KL method, the KL estimator
is used for every bin, in which the number of samples
is much less than the total sample size N . However, for
the 2KL method, the KL estimator is used on the whole
dataset. Hence, the 2KL method is slower than the Bin-KL
method, especially when the sequence length is large.

Finally, we would like to remark that the 2KL method
has a broader range of applications. It can be used for both
distributions with bounded and unbounded support, while
the Bin-KL method can only be used on distributions with
bounded support. If the support is unbounded, the number
of bins will be infinite. To address this, it is possible to
improve the bin method so that it can adaptively divide
the support into bins with different sizes, such that the bin
size is larger where the pdf of the stationary distribution
is low.
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IV. CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of the
convergence rate of the Bin-KL entropy rate estimator (7).
Our analysis is based on the following assumptions.

Assumption 1. We make the following assumptions:
(a) The support set S has finite volume VS , finite surface

area AS and finite diameter D;
(b) The conditional pdf is lower bounded, i.e. p(x,y) ≥

fL for some constant fL > 0.
(c) p(x,y) is L-Lipschitz;
(d) There exist two constant R and α, such that for all

x ∈ S and r ≤ R, we have

V (B(x, r) ∩ S) ≥ αV (B(x, r)), (8)

in which VS , AS , D, Cb, fL, fU , L, R are all finite positive
constants, and α ∈ (0, 1).

We now comment on these assumptions. Assumption
(a) is an assumption that is necessary for our bin splitting
method. It is possible to design an adaptive bin splitting
strategy to the estimate the entropy rate if the distribution
of Xi has an unbounded support. However, in this paper,
we focus on the case that S is bounded for simplicity.
Assumption (b) restricts the lower bound of the transition
probability. It can also be shown from Assumption (a)
and (c) that the p(x,y) is also upper bounded. These
bounds are important to calculate the convergence rate.
Such assumption has already been made in similar works
on the estimation of information theoretic functionals
[23, 24, 27]. In Assumption (c), we assume that p(x,y)
is Lipschitz in both x and y. The overall convergence
of the mean square error may be faster if we assumes
smoothness of p(x,y) with a higher order. Assumption
(d) is a regularity assumption on the shape of the support,
which is satisfied by almost all common support sets. For
example, Assumption (d) holds if the support set is convex
or is the union of a finite number of convex sets. We would
like to remark that in previous works on the estimation
of entropy rate for discrete distributions [14, 15], there
are some assumptions about the uniform ergodicity of
Markov chain as well as the corresponding mixing time,
which indicates how fast the distribution converges to the
stationary distribution. This assumption is necessary to
get the convergence rate of the entropy rate estimator in
[14, 15]. In our Assumptions (a)-(d), we do not state such
assumption explicitly, because the uniform ergodicity can
actually be derived from Assumption (b), which restricts
the lower and upper bound of the transition kernel.

Based on these assumptions, we have the following
theorem regarding the convergence rate of the Bin-KL
entropy rate estimator defined in (7).

Theorem 1. The mean square error of the Bin-KL entropy
rate estimator can be bounded by

E[(ˆ̄h− h̄)2] .
m

N
ln2N +m−

2
d +

(m
N

) 2
d

. (9)

To optimize the convergence rate, we let m grow with N
as

m ∼

{
N

d
d+2 if d ≤ 2

N
1
2 if d > 2.

(10)

With this choice, the convergence rate of the mean square
error of the Bin-KL estimator becomes

E[(ˆ̄h− h̄)2] .

{
N−

2
d+2 ln2N if d ≤ 2

N−
1
d if d > 2.

(11)

The main idea of the proof of Theorem 1 is to bound the
estimation error of π̂ and ĥj separately. The main difficulty
is that ĥj are not i.i.d for different j, thus the overall
bound of the estimator can not be obtained by simply
bounding the bias and variance of each ĥj . To cope with
this problem, we designed a new approach that is different
from the traditional analysis on KL estimator [23, 24].

Theorem 1 shows the convergence rate of the Bin-KL
entropy rate estimator. An intuitive understanding of (9) is
that the first term comes from the variance of ĥj defined
in (6), the second term comes from the bias of ĥj , while
the third term comes from the bias and variance of π̂j .

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations to
validate our theoretical analysis. We use the following
distributions as the ground truth. For all of the distribu-
tions used in this section, X1 ∼ U([0, 1]d), in which U
denotes uniform distribution, d is the dimensionality. In
this section, we use d = 1, 2, 3. For each i = 2, 3, . . .,

X′i−1 = Xi−1 + Wi−1, (12)
Xij = X′i−1,j − bX′i−1,jc, (13)

in which b·c is the floor function. By operation (13),
it is ensured that all Xi’s are within [0, 1]d. The dis-
tribution of W is different for different cases. In the
first case, W ∼ U([−0.1, 0.1]d). In the second case,
W ∼ U([−0.3, 0.3]d). In the third case, each component
Wj follows a distribution with pdf fZj

(zj) = 1.5 − zj ,
for zj ∈ [0, 1] and j = 1, . . . , d. In the fourth case,
each component Wj follows a Gaussian distribution with
µ = 0, σ = 0.2.

From the above construction, X1, . . . ,XN is a Markov
chain, in which each random variable is supported
on [−1, 1]d. The entropy rates of these four distribu-
tions are h̄1 = ln(0.2)d, h̄2 = ln(0.6)d, h̄3 =(
1
2 −

1
8 ln 2− 9

8 ln 3
2

)
d, h̄4 = −0.2249d, in which h̄4 is

calculated numerically.
In all of the trials, we fix k = 3 for both Bin-KL and

2KL methods. Moreover, for the Bin-KL method, we use

m =

{
bN 1

3 c if d = 1

max{m′|(m′) 1
d ∈ N,m′ ≤

√
N} if d ≥ 2.

(14)

Such setting is based on (10), which requires m ∼ N1/3

for d = 1 and otherwise m ∼
√
N . The reason that we
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Fig. 1. Plots of the mean square error of the Bin-KL method and the
2KL method for the first distribution.
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Fig. 2. Plots of the mean square error of the Bin-KL method and the
2KL method for the second distribution.

require m1/d to be an integer is that we would like the
number of bins to be the same in each dimension, so that
each bin is a regular hexahedron.

Now we show the plots of the mean square error vs
the sample size. Both two coordinates are set to be log
scale, so that we can have a clear view of the convergence
rates. In each plot, we compare the results of the Bin-KL
method and the 2KL method. Each point on the curves in
the figures are averaged from T = 500 trials. The sample
sizes range from 100 to 100, 000. The results are shown in
Figures 1, 2, 3, 4 respectively for the four different cases
discussed above.

From Figures 1, 2, 3 and 4, it can be observed that
the mean square errors of both Bin-KL method and
2KL method converge to zero as the sequence length N
increases. Both methods have comparable performance,
with each one being slightly better than the other one
depending on the underly distribution. For the first and
the second distribution, the 2KL method performs better,
while for the third and fourth distribution, the Bin-KL
method performs better.
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Fig. 3. Plots of the mean square error of the Bin-KL method and the
2KL method for the third distribution.
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Fig. 4. Plots of the mean square error of the Bin-KL method and the
2KL method for the fourth distribution.

Distribution d Bin 2KL Theoretical rate

1
1 0.71 1.05 0.67
2 0.51 0.58 0.50
3 0.33 0.40 0.33

2
1 0.77 1.02 0.67
2 0.56 0.57 0.50
3 0.35 0.39 0.33

3
1 0.98 1.01 0.67
2 0.52 0.50 0.50
3 0.34 0.33 0.33

4
1 1.04 0.97 0.67
2 0.67 0.58 0.50
3 0.59 0.56 0.33

TABLE I
THE EMPIRICAL AND THEORETICAL CONVERGENCE RATES OF

BIN-KL AND 2KL METHOD FOR THE ENTROPY RATE ESTIMATION.

Moreover, it can be observed that the curves of 2KL
method are smooth, while for the Bin-KL method, the
curves are less smooth, especially when the dimension
is high. This is because according to (14), m does not
change continuously with N . When the sequence length N
reaches some threshold, m suddenly changes, and thus the
resulting mean square error changes abruptly. As a result,
there are usually several turning points in the curve. This
effect is especially obvious if the dimensionality is high.

Finally, we list the empirical convergence rates of the
Bin-KL method and the 2KL method for different cases,
and compare them with the theoretical rates. The empirical
rates are calculated by finding the negative slope of the
curves by linear regression, while the theoretical rates
come from (11). The results are shown in Table I, in which
the theoretical rate is denoted as β if the mean square error
converges with O(N−β) or O(N−βpoly(lnN)), in which
poly denotes any polynomial.

From Table I, it can be observed that some empirical
convergence rates agree with the theoretical rates, and
other empirical results are actually faster than the theo-
retical one. We explain such difference as following. The
assumption we make is a relatively weak condition, and
practical distributions may satisfy some stronger condi-
tions. For example, we assume that the transition kernel p
is Lipschitz, while actually p may be second order smooth,
i.e. p may have bounded Hessian in the support. As a
result, the real convergence rate of the mean square error
can actually be faster than our theoretical prediction.

VI. CONCLUSION

In this paper, we have proposed two methods to estimate
the entropy rate of Markov chains, in which each step fol-
lows a continuous distribution. The first method, the 2KL
method, combines two KL entropy estimators directly.
This method is intuitively correct but hard to analyze.
The second method, the Bin-KL method, is based on a
hybrid of bin splitting and the KL entropy estimator. For
this method, we have conducted a theoretical analysis to
show the consistency of this method, and have derived its
convergence rate. Numerical simulations have shown that
both methods perform well for the distributions satisfying
our assumptions, and the convergence rate of the Bin-KL
method agrees with our theoretical prediction.
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