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ABSTRACT

Tournaisian-age failure of marginal lacustrine sediments, and their bulk collapse into an
inland rift-basin lake in the Moncton Subbasin, Canada, led to the entrainment of rare, almost
complete, three-dimensionally preserved non-woody trees. Preservation of these unique fossils
from the Albert Formation was a consequence of contemporaneous seismicity. Synsedimentary
structures include an array of soft-sediment deformational features and a field of cross-cutting
sand boils indicating multiple seismic shocks >4.6 Mw. This tectonically controlled event,
entombing trees whose novel growth form is both evolutionarily and ecologically transition-
ary and unlike other Paleozoic plants, is a one-off in the paleobotanical record.

INTRODUCTION

Mississippian-age continental rocks are rare
in North America when contrasted with Penn-
sylvanian strata. A Macrostrat analysis (Peters
et al., 2018) of Tournaisian and Viséan deposits
reveals that surface-and-subsurface rocks of this
age comprise only 0.06% to 0.03% of the record.
The majority of terrestrial deposits represent
alluvial, fluvial, and coastal settings. Here, plant
fossils are typically small and fragmentary (e.g.,
Gensel and Skog, 1977; Skog and Gensel, 1980;
Gensel, 1988; Gensel and Pigg, 2010) and are
preserved as either adpressions (Knaus, 1995)
or permineralizations (Gastaldo et al., 1993).
Evidence of trees is limited to in situ stumps,
rooting structures (Rygel et al., 2006; Leslie
and Pfefferkorn, 2010; Gastaldo et al., 2024),
or transported wood (Matten, 1972). Interior
continental depositional sites are even rarer and
reportedly without megafossils.

We describe the unique taphonomy of
extraordinary, rare Tournaisian-age non-woody
trees with intact 3-D canopies—Sanfordiacaulis
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densifolia (Gastaldo et al., 2024)—and detail
evidence of mass transport coincident with
pervasive seismicity in a rift-basin lake. These
trees were quickly transferred from life position
along the lake margin and buried at depth in it.
As a result of this temporally unique event, a
previously undescribed and unanticipated tree
morphology, indicative of biological experimen-
tation, was preserved in the Moncton Subbasin,
far inland of the coastal settings that typify the
majority of Carboniferous-age floras.

REGIONAL GEOLOGICAL SETTING
Tectonically influenced accretion of mul-
tiple terranes with extensive lateral and tem-
poral variability resulted in a complex regional
depositional history in the Maritimes basins
(Fig. 1A; Gibling et al., 2019). Late Paleozoic
extensional and transtensional block-faulting in
New Brunswick produced NE-trending half gra-
bens and grabens (Waldron et al., 2017), where
fully continental sediment accumulated. Here,
six lithostratigraphic groups are separated by
regional unconformities (St. Peter and Johnston,
2009), with the Horton Group assigned a mid-
Tournaisian age based on palynostratigraphy
(355-350.5 Ma; Gastaldo et al., 2024).
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The tropical to subtropical (Dietrich et al.,
2011) Horton Group consists of the basal Mem-
ramcook Formation overlain by the Albert Forma-
tion (Fig. 1B) and capped by the Bloomfield For-
mation (St. Peter and Johnston, 2009). Plant fossils
(Figs. 2 and 3) occur in the Hiram Brook Member
of the Albert Formation. These rocks exhibit lat-
eral variability of coeval depositional environments
and are interpreted as fluvial, floodplain, marginal
lacustrine shoreface, delta-top, and deep-lacustrine
facies of a meromictic lake (Greiner, 1974; Falcon-
Lang, 2004; Keighley, 2008).

SANFORD QUARRY

The Hiram Brook Member in the San-
ford Quarry, Norton, New Brunswick, Canada
(Figs. 1B and 2A; N 45.627786°, W 65.691610°)
consists of 10+ m of siltstone and sandstone, and
is composed of four lithologic units (Fig. 3A).
Unit 1 is an upward-coarsening mudstone and
siltstone to very fine sandstone. The basal silt-
stone is massive with an abrupt upper contact to
a sandstone, which is planar-bedded (laminate)
or internally cross-bedded. Symmetrical wave-
ripple bedforms and mudcracks are common.
Bedding planes preserve microbial-induced
sedimentary structures (MISS), wrinkles, and
“elephant-skin textures” (Bottjer and Hagadorn,
2007). Plant fossils are absent, but ichnofossils
in the sandy upper 30 cm include Skolithos
(<1 cm), small-scale Cruziana, and Rusophycus
(<5 mm). Unit 1 represents marginal lacustrine
facies (Fig. 3A) without evidence of soft-sedi-
ment deformation (SSD). An undulatory contact
separates Unit 1 from Unit 2.

Conformable Unit 2 varies from 60 to 140 cm
in thickness, is a succession of light-to-medium
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Figure 1. Geological context of the Sanford Quarry locality. (A) A map of the Moncton Sub-
basin in relation to peripheral Carboniferous basins and uplifted regions. (B) Geologic map
of strata around Norton, New Brunswick, Canada, and the location of the Sanford Quarry, in

which the Hiram Brook Member is exposed.

gray siltstone to sandstone preserving abundant
plant fossils. The sandstone displays ball-and-
flame structures (Fig. 3C; balls <1 m wide) and
polyaxial folding of beds (Fig. 3E). Although
cross-bedding is pervasive, the unit exhibits
extensive SSD features at centimeter to meter
scale. Bedding surfaces are swaly (Fig. 3B),
cross-bedding is contorted, and crossbed sets
are often reoriented to impossible depositional
angles (Figs. 4C and 4D). A small exposure of
conical, centimeter-scale sand boils occurs at

the upper contact (a hand sample is illustrated
in Fig. S1 in the Supplemental Material'). In

!Supplemental Material. Evidence of Sanford
Quarry sand volcanoes (boils) and megaflora preserved
in association with Sanfordiacaulis densifolia. Mohr
circle analysis between normal and shear stress, cohe-
sive strength, and angle of repose for the Albert Forma-
tion used as the basis for the interpretation of sediment
slumping. Please visit https://doi.org/10.1130/GEOL
.S.26275852 to access the supplemental material; con-
tact editing @ geosociety.org with any questions.
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Figure 2. Field images and trunk of Sanfordiacaulis (Sanford Quarry, Norton, New Brunswick,
Canada). (A) Quarry exposure of Units 1-3. (B) Field image of S. densifolia with compound
leaves (L; Gastaldo et al., 2024). (C) Evidence of Unit 2 seismicity in Sanford Quarry show-
ing Unit 3’s basal contact (lower yellow line) that is a continuation of Unit 2’s soft-sediment
deformation features. Sst—sandstone.

addition to S. densifolia, fragmentary plant fos-
sils include: Sphenopteridium, Aneimites, and
eremopteriod-type pinnules (Cleal et al., 2009;
Figs. S2A-S2D); lycopods (i.e., cf. Lepidoden-
dropsis; Figs. S2E-S2F); and comminuted axes
and articulated branches exhibiting a preferen-
tial orientation. To date, five tree trunks of S.
densifolia (Fig. 2B; Gastaldo et al., 2024), with
attached crown leaves distributed on multiple
bedding surfaces, are preserved in an ~125
m? area of the quarry. The plant holotype and
associated debris are surrounded by deformed
climbing current ripples. Laterally equivalent
deposits contain abundant, macerated, coalified
plant fragments and axes mixed with the con-
torted and disturbed marginal lake sediments.
Unit 3, a pyrite-nodule—bearing, massive
sandstone, is capped with wrinkled MISS. Pyrite
nodules vary in size at the centimeter scale. While
the upper contact is relatively planar, the basal
contact has a wavy, pointed cuspate surface, at
the scale of meters to tens of meters laterally
(Fig. 2C), that overlies Unit 2’s SSD features.
Bed thickness varies, and a single sandstone splits
laterally into multiple beds with wave ripples that
onlap the cuspate “crests.” Unit 3 shows no syn-
sedimentary SSD. The upper contact preserves
a carbonized megaflora and thick, calcareous
microbial mats with plant debris. Microbial mats
thicken and wrinkle, forming large concentric
MISS shapes (Rugalichnus sp.) where millimeter
to centimeter scale microstromatolites impart a
pustulose texture in this marginal lake setting.
Unit 4 terminates the succession with a
sharp, conformable basal contact. It is a 7.5 m
massive or, less commonly, laminated, pyrite-
rich, dark gray mudrock. Scarce, basal pyrite
nodules are overlain by fine, thin current-rippled
sandstone and SSD structures; burrows are rare.
The unit marks a return to deep-water lacustrine
conditions of the underlying Frederick Brook
Member, with sandstone beds interpreted as
tempestites or turbidity current deposits.

PLANT TAPHONOMY

Five S. densifolia trees occur in close spatial
proximity in Unit 2. These are monopodial, non-
woody trunks, <16 cm in diameter and >0.75 m
in length with spirally arranged, compound,
frond-like leaves. In the holotype, the leaf orga-
nization consists of sets of ~13 leaves distrib-
uted along ~14 cm of vertical trunk distance
(Fig. 2B), resulting in a functional crown of
>250 leaves, each >1.75 m long, with a crown
volume of >20-30 m?® (Gastaldo et al., 2024).
Trunks are decayed, partially mud-filled, and
compressed. Decayed leaf bases occur below
attached crown leaves, distributed on numer-
ous bedding planes indicating that trees were
transferred collectively in a natural growth posi-
tion to the sediment-water interface. Trunk-and-
leaf decay and 3-D entombment occurred on the
lake bottom, evidenced by their compression
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Figure 3. Lithostratigraphy and evidence of seismicity. (A) Composite stratigraphy of quarry
succession. (B) Unit 2 soft-sediment liquefaction and deformation structures. (C) Unit 2 seis-
mite-induced ball-and-flame and deformation structures. Scales in cm. (D) Surficial trails
on margin of sand boil indicating sediment-water interface residency and post-earthquake
bioturbation. (E) Deformational folding below sand boils showing sand dikes and slumped
horizon with refolded fold. Image from Wilson (2006). v. fn. ss.—very fine sandstone; f. ss—fine

sandstone; med. ss.—medium sandstone.

and mud-filled petioles and the near absence
of lateral axes, and photosynthetic laminae
exhibit differential decay (Fig. S2). Soft-sed-
iment deformation between articulated leaves
displays a swirling pattern, indicating liquefac-
tion as a burial mechanism.

SEISMIC EVIDENCE

The prominent SSD features of the Hiram
Brook Member are indicative of seismicity
coeval with the emplacement of the marginal lake
plants. Convolute-bedding, load-casts, pouches,
and ball-and-flame structures (Fig. 3) are ubiq-

uitous, and small sand boils (Fig. S1) occur. In
laterally equivalent rocks, 6.6 km away along
Highway 1 (Erb Settlement locality; Fig. 1A;
N 45.6674694°, W 65.6276806°), unequivocal
seismic evidence is exposed at various scales
(Wilson, 2006). Here, sand boils are clustered
across an upper sandstone contact. Conical sand
boils, up to several decimeters, stand in relief
and vary in diameter from ~5—40 cm. Individ-
ual boils are superposed in at least four events
(Figs. 4A and 4B), with surficial grazing trails
traversing their sides (Fig. 3E). Underlying beds
are refolded and distorted (Figs. 4C and 4D).
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DISCUSSION

North American Mississippian rocks are
dominated by marine carbonates and siliciclas-
tics, with these concentrated in the Michigan and
outlining the Midcontinent basins (Peters et al.,
2018). In contrast, non-marine deposits com-
prise a very small percentage of that record, and
Lower Mississippian (Tournaisian and Viséan)
deposits, more common in the Maritimes Basin,
comprise <6% of surficial and subsurface
deposits. Regardless of geography or deposi-
tional environment, plant fossils are extremely
rare in these rocks. When present, isolated com-
pressions (e.g., Knaus, 1995; Gensel and Pigg,
2010), charcoal (Hu et al., 2024), and palyno-
morphs (Richardson and Ausich, 2004) occur in
coastal plain, deltaic, and nearshore facies. To
our knowledge, Canada’s Horton Formation pre-
serves the only fully continental succession in
which Tournaisian plants are reported (e.g., Fal-
con-Lang, 2004). The conditions under which
Sanfordiacaulis was preserved are an anomaly
in the stratigraphic record.

Coseismic activity is a factor in the fossil-
ization of upright trees in coastal plain settings
(Gastaldo et al., 2004), and this biostratinomic
mode is likely responsible for sites where whole
plants (roots, stems, crowns) were transported
and preserved in nearshore settings (e.g., Gie-
sen and Berry, 2013). However, Unit 2 is inter-
preted as a cohesive slump with a copse of trees
in a fully terrestrial lacustrine-delta lobe of the
Hiram Brook Member (Keighley, 2008). The
continental nature of these facies is atypical of
Carboniferous coseismic preservation and is
the earliest example of this taphonomic mode
of whole-tree preservation under which an
unexpectedly novel tree from an “upland” or
“extrabasinal” (sensu Thomas and Cleal, 2017,
i.e., non-basinal-wetland vegetation) has been
revealed (Gastaldo et al., 2024).

Seismic evidence, confined mainly to Unit
2, indicates that marginal lake sediments under-
went structural collapse, transferring soil, leaf
litter, and standing vegetation en masse into
a Tournaisian-age rift lake. To date, no roots
have been observed, as this horizon of the slump
block remains buried. The rapid displacement
of subaerial plants, entrained on a translational
or rotational sediment raft (e.g., Sudd = islands
of trees; Ridley, 1930) and buried by subsequent
mass-flow events, allowed for preservation of
articulated trees. Trees in outcrop display a pre-
ferred orientation, the trunks of which are paral-
lel aligned, indicating the cluster was toppled in
life position and remained anchored to a soil as
it settled to the sediment-water interface. The
capping sandstone retains a seismically induced
topography, in which convolute-bedding is
extensive, and through which sand boils erupted.

Sand boils (Figs. 4A and 4B), along with
refolded folds (Figs. 3D and 4C) in underlying
slumped beds, result from liquefaction of satu-



Figure 4. Sand boils and subjacent sedimentary structures. (A, B) Superposed and cross-cut-
ting relationships of sand boils, Erb Settlement locality, indicating contemporaneous seismic
events. Scale in cm. (C) Lower detachment surface of high-strain zone in Highway 1 outcrop
near the Erb Settlement, 7.5 km SW of Sussex (N 45.679995°, W 65.589527°). (D) Thin section
showing the lower contact of a high-strain zone from same outcrop. Images C and D used
with permission from Wilson (2006).

rated sand during earthquakes (Montenat et al.,
2007). Today, these are visible directly after
seismic events with moment magnitudes >6.3
Mw (Reid et al., 2012) and aftershocks as low
as 4.3 Mw (Sims and Garvin, 1995). Affected
areas can extend for several square kilometers
(Greene et al., 1991). The cross-cutting rela-
tionships of sand boils along the Erb Settle-
ment outcrop attest to this and indicate episodic
earthquake activity during lake sedimentation.
Sand boils are covered by a fine-grained clastic
drape, the base of which also truncates deformed
bedding in the slump as an intraformational
unconformity. The upper surfaces of all sand
boils preserve bioturbation structures (Fig. 3D),
confirming invertebrate activity at the sediment-
water interface. Hence, sufficient time elapsed
between sand-boil eruption, clastic draping, and
for invertebrate colonization.

Although relevant geotechnical proper-
ties cannot be measured directly, some can be
inferred. Organic-rich mud of the underlying
Frederick Brook Member possessed a high
water content and smectite (St. Peter and John-
ston, 2009), known to lower shear strength. We
propose that biogenic methane generated from
these carbon-rich sediments also increased pore-
water pressures and reduced effective stress,
possibly equivalent to pore-water pressure alone
(Gillott, 1968). This intrinsic weakness of the
organic mud may have led to sediment failure on
very shallow gradients, especially if these were
shaken by frequent seismic activity. An angle of

repose for these sediments below 3° is plausible
(Fig. S3; ASTM, 1985), and dewatering of this
sediment via tremors would act to stabilize the
lake-bottom accumulation (Bartetzko and Kopf,
2007; Sammartini et al., 2021). Most slumps that
originated during this time conform to bedding-
parallel slab failures.

Fossiliferous rift-lake deposits are an
anomaly in the stratigraphic record. This is
particularly true for the Mississippian of North
America, where terrestrial deposits are mainly
of coastal plain and deltaic origin (Peters et al.,
2018). The occurrence of an interior rift-basin
setting is even more unusual. Acadian seismicity
in the Maritimes likely was as frequent as seen
today in East African rift systems. For example,
Lake Tanganyika experienced 421 earthquakes
>4.5 Mw between 2020 and 2024 (https://www
.usgs.gov/programs/earthquake-hazards/). There
are no reports of either sand boils or cohesive
block slumping during this interval; these struc-
tures occur infrequently. The probability of such
a slump in which rooted, non-woody trees are
transferred to the lake bottom and preserved is
an even more improbable occurrence. Encoun-
tering evidence of this taphonomic phenomenon
is even more improbable when considering that
the trees are confined to an area of >125 m? in
the Sanford Quarry.

CONCLUSIONS
Clear geological evidence of seismicity in a
fully continental setting is directly associated

with the wholesale deposition and preserva-
tion of intact trees in a Tournaisian rift lake.
Earthquake magnitudes were, at a minimum,
4.6 Mw and likely stronger based on a field
of sand boils capping the fossiliferous inter-
val. An array of soft-sediment deformational
structures—ball-and-flame, load-casts, and con-
volute-and-contorted bedding—envelop plant
fossils that represent not only the forest-floor
litter but elements of the forest itself. This is
the first example of an extremely improbable,
evidenced as probable, event where non-woody
intact trees are preserved due to sediment fail-
ure of marginal lake sites as a consequence of
seismicity.
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