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Abstract

Recent advances in high-throughput chromosome conformation capture (Hi-C) techniques have allowed us to map genome-wide chromatin
interactions and uncover higher-order chromatin structures, thereby shedding light on the principles of genome architecture and functions.
However, statistical methods for detecting changes in large-scale chromatin organization such as topologically associating domains (TADs) are
still lacking. Here, we proposed a new statistical method, DiffGR, for detecting differentially interacting genomic regions at the TAD level be-
tween Hi-C contact maps. We utilized the stratum-adjusted correlation coefficient to measure similarity of local TAD regions. We then devel-
oped a nonparametric approach to identify statistically significant changes of genomic interacting regions. Through simulation studies, we dem-
onstrated that DiffGR can robustly and effectively discover differential genomic regions under various conditions. Furthermore, we successfully
revealed cell type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets, and illustrated that DiffGR yielded
consistent and advantageous results compared with state-of-the-art differential TAD detection methods. The DiffGR R package is published un-

Huiling Liu

der the GNU General Public License (GPL) > 2 license and is publicly available at https://github.com/wmalab/DiffGR.
Key words: Hi-C; Differential analysis; Topologically associating domain; Stratum-adjusted correlation coefficient; Nonparametric method.

Introduction

Recent developments of chromatin conformation capture
(3C)-based techniques — including chromosome conforma-
tion capture-on-chip (4C) [1], chromosome conformation
capture carbon copy (5C) [2], high-throughput chromosome
conformation capture (Hi-C) [3-5], chromatin interaction
analysis with paired-end tag sequencing (ChIA-PET) [6], and
HiChIP [7] — have allowed high-throughput characterization
of pairwise chromatin interactions in the cell nucleus, and
provided an unprecedented opportunity to investigate the
three-dimensional (3D) chromatin structures and to elucidate
their roles in nuclear organization and gene expression regu-
lation. Among these techniques, Hi-C and its variants [8-10]
are of particular interest because of their ability to map chro-
matin interactions at a genome-wide scale.

A Hi-C experiment yields a symmetric contact matrix in
which each entry represents the chromatin contact frequency
between the corresponding pair of genomic loci. A particu-
larly important characteristic of Hi-C contact matrices is the
presence of the topologically associating domains (TADs),
which are functional units of chromatin with higher tendency
of intra-domain interactions [11]. TADs are largely con-
served across cell types and species. Moreover, CTCF and
other chromatin binding proteins are enriched at the TAD
boundaries, indicating that TAD boundary regions form
chromatin loops and play an essential role in gene expression
regulation [11,12].

Several computational methods have been developed to de-
tect TADs in Hi-C contact maps. These methods can be catego-
rized into two groups: one-dimensional (1D) statistic-based
methods and two-dimensional (2D) contact matrix-based
methods [13]. Of these, 1D statistic-based methods often take a

sliding window approach along the diagonal of Hi-C contact
matrix and compute a 1D statistic for each diagonal bin to de-
tect TADs and/or TAD boundaries. For instance, Dixon et al.
[11] introduced a statistic named directionality index (DI) to
quantify whether a genomic locus preferentially interacts with
upstream or downstream loci and developed a hidden Markov
model to call TADs from DIs. Later, Crane et al. [14] proposed
a novel TAD detection method, which computes an insulation
score (IS) for each genomic bin by aggregating chromatin inter-
actions within a square sliding through the diagonal and then
searches for the minima along the IS profile as TAD boundaries.
Unlike the 1D statistic-based methods which calculate statistics
using local information, the 2D contact matrix-based methods
utilize global information on the contact matrix to capture
TAD structures. For example, the Armatus algorithm [15] iden-
tifies consistent TAD patterns across different resolutions by
maximizing a quality scoring function of domain partition using
dynamic programming. In addition, Lévy-Leduc et al. [16] pro-
posed a TAD boundary detection method named HiCseg,
which performs a 2D block-wise segmentation via a maximum
likelihood approach to partition each chromosome into its con-
stituent TADs. Later, Wang et al. [17] introduced a clustering-
based TAD calling method CHDF, which optimizes the clusters
of the contact matrix by dynamic programming with an objec-
tive function combining the sum of squared error and a penalty
term in favor of domain regions with higher frequency of inter-
actions. Recently, several review papers have quantitatively
compared the performances of the aforementioned TAD calling
methods and demonstrated that HiCseg detects a stable number
of TADs against changes of sequencing coverage and maintains
the highest reproducibility among Hi-C replicates across all res-
olutions when compared with other TAD calling methods
[18-20].
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With the fast accumulation of Hi-C datasets, there has
been a growing interest in performing differential analysis of
Hi-C contact matrices. To date, several computational tools
have been developed for comparative Hi-C analysis, but the
majority of them focused on the identification of differential
chromatin interactions (DClIs), which represent different
chromatin looping events between two Hi-C contact maps. In
early studies, the most common strategy for DCI detection
was to use the fold change values between two Hi-C contact
maps. For instance, Wang et al. [21] used a simple fold
change strategy to detect the influence of estrogen treatment
on chromatin interactions in MCF-7 Hi-C samples.
Additionally, Dixon et al. [22] utilized the fold change values
of chromatin interactions to train a random forest model to
discover the epigenetic signals that were more predictive of
changes in interaction frequencies. In addition to these fold
change-based approaches, another commonly utilized
method for detecting DCIs was the binomial model imple-
mented by the HOMER software [23]. In contrast, in more
recent studies, count-based statistical methods, such as edgeR
[24] and DESeq [25], have been adopted to identify pairwise
chromatin interactions that show significant changes in con-
tact frequencies. Among them, Lun and Smyth [26] presented
a tool named diffHic for rigorous detection of differential
interactions by leveraging the generalized linear model (nega-
tive binomial regression) of edgeR, and demonstrated that
edgeR outperformed the binomial model. Later, Stansfield
et al. [27] introduced Minus vs. Distance (MD) normalization
and performed Z-tests to detect statistically significant DClIs.
While all these methods assumed independence among pair-
wise interactions, which holds true only in coarse-resolution
Hi-C maps, Dijekidel et al. [28] presented a novel method,
named FIND, which takes into account the dependency of
adjacent loci at finer resolutions. Briefly, FIND utilizes a spa-
tial Poisson process model to detect DCIs that show signifi-
cant changes in interaction frequencies of both themselves
and their neighborhood bins. Lastly, Cook et al. [29] intro-
duced altered chromatin conformation statistics (ACCOST)
to identify differential chromatin contacts by extending the
DESeq model used in RNA sequencing (RNA-seq) analysis
and repurposing the “size factor” to account for the notable
genomic distance effect in Hi-C contact matrices.

In the cell nucleus, chromatin is organized at multiple levels,
ranging from active and inactive chromosomal compartments
and sub-compartments (on a multi-Mb scale) [3,9], TADs
(0.5-2 Mb on average) [11], to fine-scale chromatin interacting
loops [8,9]. Chromatin structures also exhibit multi-scale differ-
ences among different cell types in their compartments, TADs,
and chromatin loops. Among these, changes in TAD organiza-
tions are of particular interest as TADs are strongly linked to
cell type-specific gene expression [11]. For example, Taberlay
et al. [30] have shown that genomic rearrangements in cancer
cells are partly guided by changes in higher-order chromatin
structures, such as TADs. They discovered that some large
TADs in normal cells are further segmented into several smaller
TADs in cancer cells, and these changes are tightly correlated
with oncogene expression levels. Current differential analyses of
TAD structures between different cell types and conditions are
limited to the detection of TAD boundary changes. Recently,
Chen et al. [13] proposed a TAD boundary detection approach
named HiCDB, which is constructed based on local measures of
relative insulation and multi-scale aggregation. In addition to
calling TAD boundaries in single Hi-C sample, HiCDB also
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provides differential TAD boundary detection using the average
values of relative insulation across multiple samples. Later,
Cresswell and Dozmorov [31] developed TADCompare, which
uses a spectral clustering-derived metric named eigenvector gap
to identify differential and consensus TAD boundaries and track
TAD boundary changes over time. Lastly, TADreg [32] intro-
duced a versatile regression framework which generalizes the in-
sulation score by estimating the relative insulating effects of
genomic loci and adding a sparsity constraint. The TADreg
framework was designed for TAD boundary detection, but also
allowed differential TAD analysis across various conditions.
The HiCDB, TADCompare, and TADreg methods focused on
detecting changes in TAD boundaries rather than changes in
chromatin organization within TADs. However, differential
TAD boundaries do not necessarily indicate differential chroma-
tin conformation within those regions. First, Hi-C contact ma-
trices are often sparse and noisy, which might lead to unstable
detection of TAD boundaries. Second, chromatin interactions
within a TAD could be strengthened or weakened in another
Hi-C sample, which would suggest different patterns of chroma-
tin organization within the same TAD region. Unfortunately,
few methods have been developed to detect differential TAD
regions instead of boundaries. Recently, the Hi-C preprocessing
and analysis tool HiCExplorer [33-35] expanded its functions
to capture differential TAD regions by comparing the precom-
puted TAD regions on the target Hi-C map with the same
regions on the control map by accounting for the information
in both intra-TAD and inter-TAD regions. However, such com-
parison was only limited to the precomputed genomic regions
in only one of the Hi-C conditions. Thus, appropriate statistical
methods for detecting differentially interacting regions by con-
sidering TAD regions across both conditions are still lacking.

To tackle this problem, we developed a novel statistical
method, DiffGR, for detecting differential genomic regions at
TAD level between two Hi-C contact maps. Briefly, DiffGR
utilizes the stratum-adjusted correlation coefficient (SCC),
which effectively eliminates the genomic distance effect in Hi-
C data, to measure the similarity of local genomic regions be-
tween two contact matrices. Subsequently, DiffGR applies a
nonparametric permutation test on those SCC values to de-
tect genomic regions with statistically significant differential
interactions. We demonstrate, through simulation studies
and real data analyses, that DiffGR can effectively and ro-
bustly identify differentially interacting genomic regions at
the TAD level.

Method

The DiffGR method detects differentially interacting genomic
regions in three steps, as shown in Figure 1A, and described be-
low in “Identifying candidate genomic regions”, “Measuring
similarity of candidate regions between two Hi-C contact
maps”, and “Detecting statistically significant differential
regions”. In addition, the simulation settings are outlined in
“Simulation settings”, and the real data preprocessing and anal-
yses are described in “Real data preprocessing steps”.

Identifying candidate genomic regions

Suppose that we have two sets of Hi-C data and their corre-
sponding contact frequency matrices as the input. First, we
detect the TAD boundaries in each Hi-C data, separately.
Specifically, we apply HiCseg [16] to the raw contact matri-
ces and obtain the corresponding TAD boundaries. Note that
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Figure 1 Overview of DiffGR

Hierarchical-TAD Complex-TAD

A. Workflow of the DiffGR algorithm. B. lllustration of three candidate types of differential genomic regions. The gray vertical bars represent the common TAD
boundaries between two conditions, which partition the genome into three types of candidate regions. The blue points stand for unique TAD boundaries in only one
of the two conditions. Hi-C, high-throughput chromosome conformation capture; TAD, topologically associating domain.

in this step one can change HiCseg with any other credible
TAD caller, such as CDHF [17] or TADreg [32], whose
detected TADs satisfy the non-overlapping and continuous
properties. We choose HiCseg because it has been shown that
HiCseg produces more robust and reliable TAD boundaries
than other TAD calling methods [18,20,32]. We next com-
bine the TAD boundaries from both Hi-C contact maps to
identify the candidate genomic regions for subsequent analy-
ses. TAD boundaries within two-bin distance are considered
to be a common boundary shared by both Hi-C datasets and
replaced by the middle bin locus. We then partition the ge-
nome into non-overlapping candidate regions using the com-
mon TAD boundaries, and categorize these candidate regions
into the following three groups: (1) single-TAD candidate
regions, (2) hierarchical-TAD candidate regions, and (3)
complex-TAD candidate regions, as illustrated in Figure 1B.
We expect different patterns of differential features in these
three kinds of candidate genomic regions. As to the differen-
tial single-TAD regions, we would expect that strength
changes occur in such areas. For differential hierarchical-
TAD regions, one large interacting domain could be evidently
split into two or more sub-domains, or vice versa, boundaries
between TADs disappear and thus the corresponding
domains merge in one of the contact maps. Lastly, domains
might be split, merged, or shifted in a more complicated man-
ner, thereby constructing an entirely new structure, which
would be defined as differential complex-TAD regions.
Unlike differential single-TAD regions, the differential
hierarchical-TAD and complex-TAD regions represent more
disruptive changes in the 3D structure of the chromatin.

Measuring similarity of candidate regions between
two Hi-C contact maps

In the second step, we evaluate the similarity of each candidate
region between the two samples. Suppose that a candidate geno-
mic region is bounded by two common TAD boundaries shared
by both Hi-C maps, and contains k unique TAD boundaries in
either one of the two Hi-C maps (shown as blue points in
Figure 1B). In the single-TAD candidate region, k = 0; in the
hierarchical-TAD or complex-TAD candidate regions, k>1. For

each candidate region, we consider all 2) possible (sub-)

+
2
TADs, which are separated by any pair of TAD boundaries
within that region, as potential differential TADs. For each po-
tential differential TAD, we calculate the SCC [36] rather than

the standard Pearson or Spearman correlation coefficients

(CCs) to measure the similarity of intra-TAD chromatin interac-
tions between two Hi-C samples. The advantages of using SCC
instead of standard CCs are shown in “Supplementary note 1”
in File S1.

The SCC metric was introduced by Yang et al. [36] as a
measure of similarity and reproducibility between two Hi-C
contact matrices. To account for the pronounced distance-
dependence effect in Hi-C contact maps, chromatin contacts
are first stratified into K strata according to the genomic dis-
tances of the contacting locus pairs, and the CCs of contacts
within each stratum are calculated between two samples.
These stratum-specific CCs are then aggregated to compute
the SCC value using a weighted average approach, where the
weights are derived from the Cochran-Mantel-Haenszel
(CMH) statistic [37]. That is, the SCC p is calculated as:

(1)

where N, is the number of elements in the k-th stratum, r, is
the product of standard deviations of the elements in the k-th
stratum of both samples, and p, denotes the CC of the k-th
stratum between two samples.

The original SCC metric is computed using the intra-
chromosomal contact matrices with a predefined genomic
distance limit. The resulting value has a range of [-1,1] and
can be interpreted in a way similar to the standard CC. Here,
we use SCC as a local similarity measurement to evaluate
each potential differential TAD between two Hi-C samples.
In the SCC calculation, an upper limit of genomic distance is
set to 10 Mb, because TADs are commonly smaller than
10 Mb and distal interactions over a genomic distance larger
than 10 Mb are often sparse and highly stochastic. In addi-
tion, as the sparsity of Hi-C matrices might affect the preci-
sion of SCC values, the locus pairs with zero contact
frequencies in both samples are excluded from the
calculation.

Hi-C contact maps are often sparse due to sequencing cover-
age limits and contain various systematic biases. To solve these
issues, when preprocessing the Hi-C contact matrices, we first
smooth each contact map by a 2D mean filter [36], which sub-
stitutes the contact count observed between each bin pair by the
average contact count in its neighborhood. This smoothing pro-
cess improves the contiguity of the TAD regions with elevated
contact frequencies, thereby enhancing the domain structures.
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Next, we utilize the Knight-Ruiz (KR) normalization [38] on
the smoothed matrices to remove potential biases.

Detecting statistically significant differential regions

In the third step, we identify differential genomic regions by
first finding differential TADs within these candidate regions.
In each candidate genomic region, we calculate the SCC val-
ues for all potential differential TADs as described above.
Then, we develop a nonparametric permutation test to esti-
mate the P values for these local SCC values. Additionally,
we propose a quantile regression strategy to speed up the per-
mutation test (see details in “Supplementary methods” in File
S1). Finally, we consider a candidate region to be a differen-
tially interacting genomic region, if at least one TAD within
that region exhibits a statistically significant difference be-
tween the two samples and the size of the largest differential
TAD meeting this criterion is greater than one third of the
length of the entire candidate region. The longest differential
TADs within the detected differentially interacting genomic
regions are defined as the noticeable differential areas.

Specifically, we perform the following nonparametric per-
mutation test for each unique TAD size, as the local SCC val-
ues are calculated for all potential differential TADs of
various sizes.

Suppose that s is a potential differential TAD whose length
is I; and the SCC value between two Hi-C samples is p,. To
assess the statistical significance of the observed SCC value
s, the null distribution of SCC values for TADs of the same
size is estimated via the following permutation procedure. To
generate a random TAD with length [, we first randomly se-
lect I positions from main diagonal of Hi-C contact matrix,
then [; — 1 position from the first off-diagonal, ..., and lastly
1 position from the (I; — 1)-th off-diagonal. We subsequently
extract contact counts of these randomly selected positions
from the two Hi-C contact matrices to construct the per-
muted TAD pair and calculate its SCC value. We repeat the
aforementioned random TAD generation step N times
(N =2000) and obtain the corresponding SCC values {pfs},
i=1,...,N. Then, the P value of the observed SCC value p;
can be computed as:

N I,
> i Loy <ps)

N @)

ps =

where I(+) is the indicator function. Lastly, we compare the P
values with a pre-defined significance level a (by default
a = 0.05) to determine differential TADs meeting the signifi-
cance threshold. Note that the permutation framework
accounts for the multiple testing correction using the
Benjamini-Hochberg procedure [39].

One potential issue of this permutation framework is the
false detection of significantly differential TADs when the
two samples are highly similar (e.g., biological replicates
from same experiment). This is because the high similarity be-
tween biological replicates would lead to high SCC values of
the corresponding random TAD patterns. As a result, some
non-differential TADs with relatively low SCC values would
be falsely detected as differential ones. In order to reduce the
number of false positives, we provide an option to filter the P
values p; by an empirical or automatically calculated thresh-
old. This optional filtering step allows us to pre-specify the
meaningful SCC between the two Hi-C datasets that should
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be reached in order to call a differential TAD truly
significant.

ai _ [ 0.5 if p<a and p;>0 3)
s ps  otherwise

The threshold 6 can normally be defined as 0.85,
which corresponds to a clear margin separating non-
replicates from biological/pseudo-replicates in the whole-
chromosome similarity comparison between multiple cell
lines [40]. Alternatively, @ can be calculated automatically as

Is s
0= %, where p% represents the mean a quantile of SCCs
between non-replicate data and plbsr is the mean a quantile of
SCCs between their corresponding biological/pseudo-
replicate data. Here, we call matrices from different cell lines
as non-replicates, matrices from the same cell type as biologi-
cal replicates, and matrices sampled from pooled biological
replicates as pseudo-replicates.

Simulation settings

To evaluate the performance of the DiffGR method, we con-
ducted a series of simulation experiments by varying the pro-
portion of altered TADs, proportion of TAD alternation,
noise level, and sequencing coverage level. Specifically, we
utilized the published chromosome 1 contact matrix of K562
cells at 50-kb resolution [9] as the original Hi-C data and
simulated the altered Hi-C contact matrices as de-
scribed below.

Single-TAD alternation

Since TADs are conserved genomic patterns and TAD bound-
aries are relatively stable across cell types and even across
species [11], our simulations primarily focused on the scenar-
ios of single-TAD alternations. Suppose that we had an origi-
nal Hi-C contact matrix M and its identified TAD
boundaries. Each of our simulated Hi-C matrices contained
two components: the signal matrix S and the noise matrix N,
with a certain signal-to-noise ratio.

First, to construct the signal matrix S, we randomly se-
lected a subset of TADs from original contact matrix to serve
as the true differential TADs. Then, we replaced a certain
portion of contact counts in each selected TAD by randomly
sampling contact counts from the corresponding diagonals of
the contact matrix. That is, for a chosen contact count lo-
cated at the bin pair (7,7), we first searched all the bin pairs
having the same genomic distance as bin pair (i,j), i.e.,
Aw)={(k,D):k,I=1,... N;I>k, | —k=|i—j|} and ran-
domly selected one position from A(v) and used its corre-
sponding read count to substitute the original value in bin
pair (i,j). Second, we simulated the noise matrix N which
represents the random ligation events in Hi-C experiments.
Briefly, we generated these contacts by randomly choosing
two bins, 7 and j, and adding one to the entry Nj; in the noise
matrix. The probability of sampling each bin in the bin pair
was set proportional to the marginal count of that bin in the
original matrix. The sampling process was repeated C times,
where C was the total number of contacts in the original Hi-
C contact matrix M. The resulting random ligation noise ma-
trix N contained the same number of contacts as the original
contact matrix M.

To summarize, we had the following parameters in our
single-TAD simulations. (1) Proportion of altered TADs.
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Using HiCseg, we detected 189 TADs with a mean size of
1.2 Mb in the original K562 chromosome 1 contact matrix
(Figure S1). By default, we set the proportion of altered
TADs to be 50%, which can vary from 20% to 70%.
(2) Proportion of TAD alternation. In the default setting, we
substituted all contact counts in the selected TADs by ran-
dom counts permuted from the matching diagonals in Hi-C
maps. To reduce the degree of intra-TAD alternation, we
gradually decreased the proportion of randomly substituted
intra-TAD contacts from 100% to 10%. (3) Noise level, i.e.,
the ratio between the noise and signal matrices. The noise
level was set to 10% by default, and varied from 1% to 80%.

For each simulation parameter setting, we generated 100
altered Hi-C contact matrices to compare against the original
contact matrix. To evaluate the accuracy of the detection
results, we used the false detection rate which defines as inac-
curate percentage and is computed as 1 — Accuracy = FEN,
where FP denotes the number of falsely detected d1fferent1al
regions, FN represents the number of falsely detected non-
differential regions, and N is the total number of candidate
regions being tested.

Hierarchical-TAD alternation

In addition to single-TAD alternation, we also simulated the al-
ternation pattern of hierarchical-TADs. We randomly selected
50% of the large TADs whose size was greater than 10 bins in
the signal matrix to serve as the true differential TADs. For each
of the selected large TAD, we chose a random sub-TAD bound-
ary to split it into two smaller sub-TADs (each with size > 5
bins). We then replaced all inter-sub-TAD contact counts by
randomly sampled counts in Hi-C maps. Next, we validated the
performance of DiffGR under the hierarchical-TAD condition
with respect to different noise levels similar to the single-TAD
simulations. Because the complex-TAD condition has compli-
cated TAD boundaries between two samples and occurs less fre-
quently in real data, we did not generate simulation data for
this condition.

Simulating low-coverage contact matrices

Low sequencing depth of Hi-C experiments would lead to low-
coverage and sparse contact matrices, and thus it could poten-
tially affect the performance of the detection of differentially
interacting regions. To simulate low-coverage contact matrices,
we started with a deep-sequenced Hi-C contact map obtained
from human GM 12878 cells [9], and down-sampled the contact
counts to generate lower-coverage matrices. Specifically, for
each non-zero contact count M; in the original matrix, we
assumed that the simulated contact count follows a binomial
distribution M;,- ~ Binomial(Mj;, p), where the binomial param-
eter p = {0.2, 0.4, 0.6, 0.8, 1.0} represents the relative cov-
erage level of the down-sampled contact matrix M’. In addition,
10% noise were added to the down-sampled matrices.

Real data preprocessing steps

In our real data analysis, we used two published Hi-C datasets
by Rao et al. (GSE63525) [9] and Dixon et al. (GSE35156) [11]
downloaded from Gene Expression Omnibus (GEO). The Rao
et al. [9] dataset includes five human cell types: B-lymphoblas-
toid cells (GM12878), human mammary epithelial cells
(HMEGs), human umbilical vein endothelial cells (HUVECs),
erythrocytic leukemia cells (K562), and normal human epider-
mal keratinocytes (NHEKs). The GM12878 dataset contains
two replicates, which were also pooled together in cell type-

specific comparison. The Dixon et al. [11] dataset is from
mouse embryonic stem (ES) and cortex cells. Two replicates
from mouse ES cells were merged together in cell type-specific
comparison. We applied DiffGR to detect differential genomic
regions between each pair of cell types at 25-kb, 50-kb, and
100-kb resolutions. Since some of these Hi-C datasets were not
deeply sequenced, the local variations introduced by low
sequencing coverage made it challenging to capture large
domain structures, especially in fine-resolution analyses.
Therefore, to enhance the domain structures, all contact matri-
ces were first preprocessed by a 2D mean filter smoothing and
then normalized by the KR method to eliminate potential
biases. All analyses were performed in parallel using 8 cores on
an Intel Core i7-8700K CPU @1.70 GHz with 32 GB of mem-
ory allocation. The running time of DiffGR exhibited variation
across different resolutions: 3 h for 25-kb, 40 min for 50-kb,
and 10 min for 100-kb Hi-C contact maps.

In addition to Hi-C contact maps, chromatin immunopre-
cipitation sequencing (ChIP-seq) and RNA-seq data from the
same cell lines were also included in real data analyses. For
ChIP-seq analysis, CTCF and histone modification
(H3K4me2, H3K9me3, H3K27ac, and H3K27me3) datasets
from five human cell lines in Rao et al. [9] were obtained
from the encyclopedia of DNA elements (ENCODE) project
[41,42] (https://www.encodeproject.org/). The ChIP-seq files
were in Binary Alignment Map (BAM) format. The ChIP-seq
peaks were called by MACS2 [43] and stored as narrowpeak/
broadpeak Browser Extensible Data (BED) format for the
subsequent analyses. In addition, RNA-seq datasets were also
obtained from the ENCODE project [42] for human
GM12878 and K562 cells (GSE78552 and GSE78625) in
read count format, and for mouse ES and cortex cells
(GSM723776 and GSM723769) in Fragment Per Kilobase of
transcript per Million mapped reads (FPKM) format.

Results

DiffGR accurately detected single-TAD differences
in simulated datasets

To validate the accuracy and efficiency of our DiffGR
method, we first generated pairs of original and simulated
Hi-C contact matrices, where a given proportion of TADs in
the simulated contact matrices were altered (see Method for
details). We used the intra-chromosomal contact matrix of
chromosome 1 in K562 cells at 50-kb resolution to serve as
the original contact matrix. At the default setting, we altered
50% of the original TADs by completely replacing the intra-
TAD contact counts by randomly sampled counts outside the
TAD regions. In addition, we added 10% random ligation
noise into the altered contact matrices.

We first simulated Hi-C matrices with various proportions
of altered TADs (20%, 30%, 40%, 50%, 60%, and 70%).
With each proportion setting, we completely mutated the
intra-TAD counts and added 10% noise, and repeated this
simulation procedure 100 times. As expected, the perfor-
mance of the DiffGR method depended on the proportion of
altered TADs. As shown in Figure 2A and Table S1, when the
proportion of altered TADs changed from 20% to 70%, the
false detection rate increased from 0.01 to 0.21. One possible
explanation of this observed trend is that when the majority
of TADs are altered, the large differences between the origi-
nal and altered matrices would affect the permutation test
and therefore lead to inaccurate detection. However,
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differential TADs rarely exist in large proportion in real data.
The false detection rates of our method remained below 0.07
when the proportion of altered TADs was smaller than or
equal to 50%, which demonstrates that our method can accu-
rately and reliably detect single-TAD differences under
these conditions.

In the default simulation setting, we completely altered the
selected TADs by substituting all intra-TAD contact counts
by randomly sampled counts from the matching diagonals
outside the TADs. To investigate the influence of the degree
of TAD alternation on the DiffGR performance, we gener-
ated a series of simulated contact matrices, in which half of
original TADs were altered and the proportion of intra-TAD
alternation varied from 10%, to 20%, 30%, 50%, 80%, and
100%. In theory, TADs with higher degrees of alternation
are easier to identify, whereas TADs with minor changes re-
main difficult to be detected. As illustrated in Figure 2B and
Table S2, the performance of DiffGR improved resulting in
higher accuracy as the percentage of randomly substituted
counts in altered TADs increased. Even with the most chal-
lenging case where only 10% of the intra-TAD counts were
altered, the accuracy of our method was 0.73, suggesting that
DiffGR can effectively detect subtle TAD differences.

DiffGR performed stably against changes in noise
and coverage levels
Next, we sought to evaluate the robustness of our method un-
der various noise levels and sequencing coverage conditions.

In the earlier simulations, we added 10% noise to the simu-
lated differential contact matrices. To evaluate the

performance of our method under different noise levels, we
fixed the proportion of altered TADs at 50% and the propor-
tion of intra-TAD alternation at 100%, and simulated the
differential contact matrices with a wide range of noise levels
(1%, 5%, 10%, 20%, 50%, and 80%). Intuitively, a good
detection method should easily discover the differential
regions in the less noisy matrices, and it becomes more chal-
lenging to detect the differential regions in the noisier cases.
Our results demonstrate that DiffGR is able to correctly rank
the simulated datasets. We observed a monotonic increasing
trend of the false detection rate and a decreasing tendency of
other precision measures as the noise levels raised (Figure 2C;
Table S3). With moderate noise levels that were not greater
than 20%, the accuracy of DiffGR remained above 0.93, in-
dicating that our method can correctly detect differential
TAD regions in such noisy cases.

The sequencing coverage of the Hi-C contact maps is another
major factor that could affect the performance of our method.
Considering two Hi-C replicates that have the same underlying
TAD structures but different sequencing coverage levels, we ques-
tioned whether our DiffGR method can correctly categorize
them as non-differential. In other words, we intended to estimate
the false positive rates caused by low-coverage and sparse Hi-C
data. To directly investigate the influence of the sequencing cover-
age on the detection of differential regions, we utilized the
GM12878 chromosome 1 contact matrix as the original matrix,
and generated a series of down-sampled contact matrices with
lower coverage levels (20%, 40%, 60%, 80%, and 100%). The
results showed that the average false detection rates remained be-
low 0.05 for most coverage levels, except for the lowest coverage
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level of 20% (Figure 2D; Table S4), demonstrating the robustness
of our DiffGR method under low-coverage conditions.

DiffGR successfully detected hierarchical-
TAD changes

In addition to single-TAD differences, hierarchical-TAD changes
also exist in some genomic regions between different cell types.
In these regions, one of the Hi-C contact maps exhibits a single
dominant TAD structure, while the other Hi-C contact map
presents two or more sub-TADs separated by additional bound-
aries in between. Hierarchical-TADs are computationally chal-
lenging to detect. Although the two Hi-C maps have different
TAD boundaries, the chromatin interaction patterns within the
sub-TADs could be very similar. Consequently, the CCs for the
strata with small genomic distances might still remain high be-
tween two contact maps. In addition, as the genomic distance
increases, the weight of the corresponding stratum in the SCC
calculation gradually declines. As a result, the SCC values are
primarily contributed by CC values from strata with smaller ge-
nomic distances, which makes it difficult to detect differential
regions in the hierarchical-TAD cases.

To evaluate the performance of DiffGR in this more chal-
lenging situation, we simulated contact matrices containing
hierarchical-TAD structures with respect to varying noise lev-
els (see Method for details), and then computed the false de-
tection rate in a similar manner as in the single-TAD
simulations. As demonstrated in Figure 3 and Table S5, the
trend of the false detection rates and other measure statistics
across various noise levels under the hierarchical-TAD setting
was similar to the pattern observed in the single-TAD case
(Figure 2C; Table S3). Furthermore, the false detection rates
remained lower than 0.05 when the noise level was within
50%. Taken together, these results indicate that DiffGR can
reliably detect the differentially interacting genomic regions
with hierarchical-TAD patterns.

DiffGR revealed cell type-specific genomic
interacting regions

Besides validating our method on simulated datasets, we fur-
ther applied DiffGR to detect cell type-specific differences in
five human cell types (GM12878, HMEC, HUVEC, K562,
and NHEK) [9] and in two mouse cell types (ES and cortex
cells) [11]. In total, we conducted two comparisons between
biological replicates in human GM12878 and mouse ES cells,
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Figure 3 Performance of hierarchical-TAD simulations

The curve shows the mean false detection rates at various noise levels.
Vertical bars represent 95% confidence intervals.

and eleven pairwise comparisons between different cell types
(ten pairs among five human cell types and one pair between
two mouse cell types). In each pairwise comparison, we first
applied HiCseg to identify TAD boundaries from the 50-kb
contact matrix for each data and then partitioned the genome
into three types of candidate regions: single-TAD candidate
regions, hierarchical-TAD candidate regions, and complex-
TAD candidate regions. Statistically significant differential
genomic regions were identified between each comparison
with false discovery rate (FDR) cutoff of 0.05.

We first sought to evaluate the performance of our method
on biological replicates of Hi-C data. Previous studies have
shown the high degree of similarity between biological repli-
cates and dominant consistence between TAD boundaries in
replicate data [9,11,40]. For the comparison between human
GM12878 replicates, consistent with our expectations, the
majority (89.55%) of the 2325 candidate genomic regions
across the genome belonged to single-TAD type, and very
few (2.45%) candidate genomic regions were detected as dif-
ferential by our method (Figure S2). Specifically, only 1.97%
of single-TADs were identified as differential, whereas
6.17% and 4.94% were detected as differential in
hierarchical-TAD and complex-TAD cases, respectively.
Similar results were also witnessed in the comparison be-
tween replicates in mouse ES cells: 83.42% candidate geno-
mic regions were classified as single-TAD type and few
(6.02%) were identified as differential (Table S6). Overall,
our DiffGR results confirmed that these biological replicates
displayed highly consistent chromatin structures with minor
biological variations.

Next, we applied DiffGR to detect cell type-specific differen-
ces. As illustrated in Figure 4, for the 10 pairwise comparisons
among human cell types, 55.57% of all candidate genomic
regions belonged to the single-TAD category (consistent with
previous observations indicating that TAD boundaries are
stable across cell types [11]), 31.88% to the hierarchical-TAD
category, and 12.55% to the complex-TAD category. Our
DiffGR analyses showed that only 24.26% of the single-TAD
candidate regions showed statistically significant differences be-
tween two samples; 59.24% of the hierarchical-TAD candidate
regions were determined to be differential; while the differential
proportion of the complex-TAD category was as high as
89.82%. The differential results were largely consistent when
the default TAD caller was changed from HiCseg to CHDF or
TADreg, demonstrating the stability of the DiffGR algorithm
over different TAD callers (“Supplementary note 2” in File S1).
In addition, we found that the proportion of detected differen-
tial regions varied largely across chromosomes, ranging from
14% to 76% (Figure S3). For the comparison between mouse
ES and cortex cells, 20.22% of the candidate genomic regions
in the single-TAD category were identified as differential, while
the proportion increased to 75.94% in the complex-TAD
category (Table S7). These observations indicate that candidate
genomic regions with more distinct patterns of TAD boundaries
are more likely to be detected as differential between two Hi-
C samples.

In addition to partitioning the genome at 50-kb resolution,
we also performed differential analyses on the five human Hi-
C datasets at 25-kb and 100-kb resolutions, separately. We
calculated the overlapping rate (that is, the proportion of the
genome that was classified into the same differential or non-
differential status) between different resolutions. Overall, we
observed a high consistency between the detected differential
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Figure 4 Pie charts of DiffGR results obtained from human Hi-C
datasets

The DiffGR results from the ten pairwise comparisons among five human cell
types (GM12878, HMEC, HUVEC, K562, and NHEK) [9] using the TAD caller
HiCseg are summarized. The center pie chart presents the proportions of three
categories of candidate regions. The three outer pie charts display the
proportions of DiffGR-detected differential genomic regions, one for each
candidate category. HMEC, human mammary epithelial cell; HUVEC, human
umbilical vein endothelial cell; NHEK, normal human epidermal keratinocyte.

regions across different resolutions, where the overlapping
rate was 0.8207 between the detection results at 50-kb and
100-kb resolutions, 0.8956 between those at 25-kb and 50-kb
resolutions, and 0.7712 between those at 25-kb and 100-kb
resolutions. These results demonstrate that DiffGR can
robustly and consistently detect cell type-specific differential
genomic regions across various resolutions.

Changes in CTCF and histone modification patterns
were consistent with DiffGR detection results

As there is no ground truth of differential chromatin interact-
ing regions in real data, we sought to evaluate the perfor-
mance of our method by investigating the association
between the changes in 1D epigenomic features and 3D geno-
mic interaction regions. The chromatin architectural protein
CTCF plays an essential role in establishing higher-order
chromatin structures such as TADs. In addition, it has been
shown that transcription factors and histone marks are
enriched or depleted at TAD boundaries and are associated
with active enhancers, promoters, and transcribed genes
[11,12]. Therefore, we expected that differential bindings of
transcription factors such as CTCF and histone modifications
would be more likely located in differential genomic interact-
ing regions.

To test this hypothesis, we then utilized the ChIP-seq data-
sets of CTCF and histone modifications from the ENCODE
project [41]. For each ChIP-seq dataset, we called the peaks
via MACS2 [43] and detected differential peaks by DESeq2
[25]. Then, we calculated the proportions of differential
peaks that were located in DiffGR-detected differential geno-
mic regions at 100-kb, 50-kb, and 25-kb resolutions. Further,
we checked the significance of differential peak enrichment
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Table 1 Agreements between ChIP-seq data and DiffGR-detected
differential genomic regions in human Hi-C datasets

100-kb resolution  50-kb resolution 25-kb resolution

CTCF 52.48%* 66.15%** 74.85%*

H3K4me2  64.13%* 77.81%*** 81.05%***
H3K9me3  51.78%* 65.05%*** 72.05%***
H3K27ac 69.98%* 76.95%*** 82.56%***

H3K27me3 58.82%* 74.70%*** 83.00% ***

Note: The proportions of differential ChIP-seq peaks located in DiffGR-
detected differential genomic regions at 100-kb, 50-kb, and 25-kb
resolutions were presented. *, P < 0.05; **, P < 0.01; ** P <
0.001. ChIP-seq, chromatin immunoprecipitation sequencing; Hi-C, high-
throughput chromosome conformation capture.

by randomly selecting a bundle of peaks (where the peak
number is the same as the number of differential peaks
detected by DESeq2) with 2000 times and calculating their
corresponding percentages located in differential genomic
regions to estimate the P values.

Table 1 summarizes the ChIP-seq analyses on the DiffGR
detection results obtained from five human Hi-C datasets [9].
Overall, DiffGR-detected differential genomic regions were
supported by 1D epigenomic features. In particular, we ob-
served that the agreement between the changes in ChIP-seq
signals and chromatin structures was improved in finer-
resolution analyses. As shown in Table 1, 52.48% of the
differential CTCF peaks appeared in DiffGR-detected differ-
ential genomic regions at 100-kb resolution; whereas in the
results at 25-kb resolution, 74.85% of differential CTCF
peaks were located in differential genomic regions. In addi-
tion, the histone modification datasets showed similar results
concordant with the detection results of differentially inter-
acting regions in Hi-C contact maps. At 25-kb resolution, the
majority (>70%) of differential histone peaks showed signifi-
cant consistency with differentially interacting regions for all
four histone modification datasets, including H3K4me2,
H3K9me3, H3K27ac, and H3K27me3. Collectively, these
results indicate that the changes in CTCF bindings and his-
tone modifications are in good agreement with the differences
in genomic interacting regions. Furthermore, at finer resolu-
tion DiffGR produces more accurate identification of differ-
entially interacting genomic regions in higher agreement with
the CTCF and histone modification data.

Differential RNA-seq analysis results were
consistent with DiffGR detection

In addition to investigating the changes in 1D epigenomic fea-
tures, we further studied the relationship between quantita-
tive changes in gene expression levels and 3D genomic
interaction regions. Previous studies have shown that topo-
logical changes of 3D genome organization have a large effect
on the cross-talk between enhancers and promoters, and
therefore can alter gene expression [9,22]. Thus, we expected
to observe an enrichment of differential expressed genes in
DiffGR-detected differential genomic regions.

To evaluate this assumption, we first detected significant
changes in gene expression levels between human GM12878
and K562 cells using DESeq2 [25] and those between mouse
ES and cortex cells using Ballgown [44]. Then, we calculated
the percentage of differentially expressed genes (DEGs) that
were located inside the DiffGR-identified differential genomic
regions. To calculate the enrichment of DEGs, we randomly
chose a set of genes, whose number is equivalent to the
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Table 2 Functional enrichment of genes located in differential
genomic regions between GM12878 and K562

GO term FDR
GO:0046649 lymphocyte activation 2.7E-11
G0:0002376 immune system process 4.6E-11
G0:0002520 immune system development 2.3E-9
GO:0070663 regulation of leukocyte proliferation 5.2E-7
G0O:0042113 B cell activation 7.7E-7
GO:0030183 B cell differentiation 2.2E-5

Note: Genes located within differential genomic regions at 25-kb resolution
were utilized in GO enrichment analysis. Test results were reported by
DAVID [45]. GO, Gene Ontology; FDR, false discovery rate; DAVID,
Database for Annotation, Visualization and Integrated Discovery.

number of the DESeq2-detected DEGs, with 200 times, com-
puted their corresponding proportions located in differential
genomic regions, and then performed #-test for comparison.
In summary, a total number of 8781 DEGs were detected be-
tween human GM12878 and K562 cells, and 79.54% of
them were located in DiffGR-detected differential genomic
regions (P = 3.72 x 107>, permutation test); whereas 2124
DEGs were identified between mouse ES and cortex cells,
and 61.66% were within DiffGR-detected differential geno-
mic regions (P < 2.2 X 10716, permutation test). Taken to-
gether, these results demonstrate that the changes of gene
expression in RNA-seq data are highly consistent with the
DiffGR detection results.

To further explore the potential functional roles of the
genes located in differential genomic regions detected by
DiffGR, we performed Gene Ontology (GO) enrichment
analysis on those genes using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [45]. As
shown in Table 2, we observed a high enrichment of GO
terms related to the immune responses, which is consistent
with the immunological nature of GM12878 B-lymphoblas-
toid cells.

DiffGR detection was supported by DCls

Several Hi-C comparative studies have demonstrated that the
majority of the chromatin structural changes tend to couple
with the formation/disappearance of TADs [9,22], implying
that changes in Hi-C interaction counts are likely to be ob-
served within genomic regions at the TAD level. Hence, we
checked DClIs between GM12878 and K562 cells at 50-kb
resolution by FIND [28], and compared FIND results with
our DiffGR results. As shown in Figure 5, the percentages of
DCIs detected by FIND located within candidate genomic
regions were dominant in the majority of chromosomes (with
55.43% across the whole genome). In addition, 82.80% of
the DCIs located in candidate genomic regions were classified
into differential regions, demonstrating that DiffGR effec-
tively detects the regions with significant changes in chroma-
tin contacts.

Performance comparison with state-of-the-art
differential TAD detection tools

To further investigate the performance of DiffGR, we com-
pared the DiffGR results with three differential TAD bound-
ary detection methods (HiCDB [13], TADCompare [31], and
TADreg [32]) on both simulated and real data. In the simula-
tion part, we compared all four methods using the synthetic

data under the default setting (proportion of altered TADs =
50%, proportion of TAD alternation = 100%, and noise
level = 10%), and calculated corresponding sensitivities and
specificities. As shown in Table 3, the sensitivities of the three
differential TAD boundary detection methods are all above
70% and comparable to the sensitivity of DiffGR, while the
specificities of the three differential TAD boundary detection
methods are relatively low. These results demonstrate that
HiCDB, TADCompare, and TADreg can accurately identify
most differential TAD boundaries within differential regions,
but falsely detect many non-differential boundaries within
differential regions. We would like to point out that the simu-
lation process was designed to check the robustness of
DiffGR detection results by generating random structures
within the predefined differential areas and keeping the origi-
nal chromatin structures within non-differential regions.
Therefore, differential TAD boundaries are expected to ap-
pear within differential regions, while non-differential TAD
boundaries may be located either within or outside the non-
differential regions. As a result, the performance on specific-
ities of the differential TAD boundary detection tools
was affected.

Next, we compared the DiffGR results with three differen-
tial TAD boundary detection methods on the five human Hi-
C datasets by Rao et al. [9] and the two mouse datasets by
Dixon et al. [11] at 50-kb resolution. Overall, the differential
TAD boundaries identified by HiCDB, TADCompare, and
TADreg were highly concordant with DiffGR-detected differ-
entially interacting genomic regions. Notably, 73.86% of the
HiCDB-detected, 76.25% of the TADCompare-detected, and
71.90% of the TADreg-detected differential TAD boundaries
displayed consistent results with our DiffGR detection in the
human datasets. In addition, highly concordant rates were
also witnessed in the mouse datasets with 59.56%, 62.01%,
and 60.32% consistency rates with HICDB, TADCompare,
and TADreg, respectively.

Furthermore, we compared DiffGR with HiCExplorer
[33-35], the only available tool for differential TAD region
detection, on the five human Hi-C datasets by Rao et al. [9]
at 50-kb resolution. We observed that 60.62% of the 2877
HiCExplorer-identified differential regions overlapped with
DiffGR-detected differential regions. To better compare the
detection results of Diff GR and HiCExplorer, we then com-
puted the concordant rates between HiCExplorer-detected
differential regions and differential ChIP-seq peaks. As
shown in Table 4, in comparison with DiffGR results, we ob-
served a higher proportion of differential ChIP-seq peaks lo-
cated in HiCExplorer-detected differential regions, but most
of the enrichment are not statistically significant. These
results indicate that HiCExplorer identifies a great amount of
differential regions; however, some of its detected regions are
not significant different based on 1D epigenomic evidence.
Further, we investigated the advantages of DiffGR and
HiCexplorer —over TADCompare, and found that
TADCompare-detected differential TAD boundaries within
DiffGR-detected differential regions were located closer to the
differential ChIP-seq peaks of CTCF and other histone modi-
fications than those outside differential regions, while some
disagreements were found in HiCExplorer-detected differen-
tial regions (“Supplementary note 3” in File S1). Collectively,
these results indicate that DiffGR-detected differential geno-
mic regions have a better agreement with 1D epigenomic fea-
tures than HiCExplorer-detected differential regions.
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Figure 5 Comparison between FIND and DiffGR

Bar chart showing the proportions of FIND-detected DCls located in candidate genomic regions (light gray) and differential genomic regions (dark gray) for all

autosomes between GM12878 and K562. DCI, differential chromatin interaction.

Table 3 Performance comparison of DiffGR and three differential
TAD boundary detection tools on simulated data

Table 4 Agreements between ChIP-seq data and differential genomic
regions detected by DiffGR and HiCExplorer

Sensitivity Specificity
Mean SD Mean SD
DiffGR 0.8871 0.0239 0.9904 0.0030
HiCDB 0.7758 0.0193 0.0630 0.0415
TADCompare 0.9568 0.0113 0.3128 0.0284
TADreg 0.7762 0.0660 0.3124 0.0303

Note: The definitions of the evaluation metrics sensitivity and specificity are
explained in “Supplementary methods” in File S1. SD, standard deviation;
TAD, topologically associating domain.

An example of differentially interacting genomic
regions between GM12878 and K562

Figure 6 illustrates a differential genomic region (chrl3:
75,850,000-78,300,000 bp) identified by DiffGR between hu-
man GM12878 and K562 cells, which is a hierarchical-TAD re-
gion showing a larger TAD in K562 cells and two sub-TADs in
GM12878 cells. We observed that the sub-TAD boundary was
located inside the MYC binding protein2 (MYCBP2) gene
which encodes an E3 ubiquitin-protein ligase. Reduced expres-
sion of the MYCBP2 gene has previously been observed in leu-
kemia patients, which has been revealed that CK2 inhibitor
takes the anti-leukemia effect through Ikaros-mediated regula-
tion on MYCBP2 expression in high-risk leukemia [46].
Similarly, we observed a significant differential binding of
CTCF at the sub-TAD boundary and an obvious loss of

DiffGR HiCExplorer
CTCF 66.15%** 86.48%
H3K4me2 77.81%*** 86.11%
H3K9me3 65.05 % *** 86.96% ***
H3K27ac 76.95 % *** 86.10%
H3K27me3 74.70%*** 85.21%

Note: The proportions of differential ChIP-seq peaks located in differential
genomic regions detected by DiffGR and HiCExplorer at 50-kb resolution
were presented. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

expression in K562 cells (immortalized myelogenous leukemia
cells) compared to GM12878 cells (B-lymphocyte cells), which
is consistent with the reported clinical association of MYCBP2
low expression with acute leukemia [46].

Discussion and conclusion

With the fast accumulation of Hi-C datasets, there has been a
dramatically increasing interest in comparative analysis of
Hi-C contact maps. However, most existing methods for
comparative Hi-C analyses focused on the identification of
differential chromatin interactions, while few studies
addressed the detection of differential chromatin organiza-
tion at the TAD scale. To tackle this problem, we developed
a novel method, DiffGR, for calling differentially interacting
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Figure 6 An example of DiffGR-detected differential regions between GM12878 and K562

Hi-C contact maps of the K562 and GM12878 cells at chr13:74,500,000-79,000,000 bp are displayed. The differential genomic region (chr13:75,850,000-
78,300,000 bp, with SCC = 0.6551 and P = 0.0334) is shown in gray squares, and the TADs for each cell type are shown in black squares. The differential CTCF

peak region is highlighted by the purple bars. RNA-seq, RNA sequencing.

genomic regions between two Hi-C contact maps. Taking ge-
nomic distance features of Hi-C data into consideration, our
algorithm utilized the SCC metric instead of the standard
Pearson CC to measure the similarity of local genomic
regions between Hi-C contact maps. Furthermore, we pro-
posed a nonparametric permutation test to assess the statisti-
cal significance of the local SCC values. In contrast to the
parametric approaches that were used by most Hi-C data
analysis methods, our nonparametric approach does not have
a set of predefined assumptions about the nature of the null
distribution and, therefore, is more robust and can be applied
to more diverse data from real cases. Additionally, we utilized
a nonparametric smoothing spline regression to speed up the
permutation test and showed that the speed-up algorithm can
steadily produce consistent outputs. Through empirical eval-
uations, we have demonstrated that DiffGR can effectively
discover differential regions in both simulated data and real
Hi-C data from different cell types. That is, DiffGR produced
robust and stable detection results under various noise and
coverage levels in simulated data; DiffGR detection results in
real data were effectively validated by the ChIP-seq and
RNA-seq data; DiffGR produced consistent and advanta-
geous results compared with state-of-the-art differential TAD
boundary/region detection tools. To summarize, DiffGR pro-
vides a statistically rigorous method for the detection of dif-
ferentially interacting genomic regions in Hi-C contact maps
from different cells and conditions, and therefore would facil-
itate the investigation of their biological functions.

We envision a few possible extensions and future directions
based on this work. First, our method performs pairwise
comparison between Hi-C contact maps. One potential fu-
ture direction is to design a more general statistical frame-
work for differential analyses among three or more samples.
Then, we could further assign the differentially interacting ge-
nomic regions to cell type-specific or condition-specific

changing areas. Second, we currently pool biological repli-
cates together in our analyses. Extending DiffGR to incorpo-
rate multiple biological replicates to detect reproducible
differences would enhance the reliability of the detection
results. Third, in our algorithm, we use the shared TAD
boundaries between two samples to segment the genome into
candidate genomic regions and then detect differential
regions. Recently, notion of TADs being highly conserved
across different cell types has been challenged [47,48], and
there is an increasing recognition of the potential ambiguity
in defining TAD boundaries when using different TAD call-
ing methods [49]. Therefore, a more general approach to de-
fine and classify the candidate genomic regions would be
beneficial to better characterize the variability of chromatin
interactions between different conditions. Lastly, our method
is specifically designed for bulk Hi-C data. Given the high
sparsity and variability of single-cell Hi-C contact matrices,
identifying differential genomic regions at single-cell level
remains a significant challenge.

Code availability

The DiffGR R package is publicly available at https://github.
com/wmalab/DiffGR under the GNU General Public License
(GPL) > 2 license. The source code is also available at
BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007313).
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