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Abstract 
Recent advances in high-throughput chromosome conformation capture (Hi-C) techniques have allowed us to map genome-wide chromatin 
interactions and uncover higher-order chromatin structures, thereby shedding light on the principles of genome architecture and functions. 
However, statistical methods for detecting changes in large-scale chromatin organization such as topologically associating domains (TADs) are 
still lacking. Here, we proposed a new statistical method, DiffGR, for detecting differentially interacting genomic regions at the TAD level be
tween Hi-C contact maps. We utilized the stratum-adjusted correlation coefficient to measure similarity of local TAD regions. We then devel
oped a nonparametric approach to identify statistically significant changes of genomic interacting regions. Through simulation studies, we dem
onstrated that DiffGR can robustly and effectively discover differential genomic regions under various conditions. Furthermore, we successfully 
revealed cell type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets, and illustrated that DiffGR yielded 
consistent and advantageous results compared with state-of-the-art differential TAD detection methods. The DiffGR R package is published un
der the GNU General Public License (GPL) ≥ 2 license and is publicly available at https://github.com/wmalab/DiffGR.
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Introduction
Recent developments of chromatin conformation capture 
(3C)-based techniques — including chromosome conforma
tion capture-on-chip (4C) [1], chromosome conformation 
capture carbon copy (5C) [2], high-throughput chromosome 
conformation capture (Hi-C) [3–5], chromatin interaction 
analysis with paired-end tag sequencing (ChIA-PET) [6], and 
HiChIP [7] — have allowed high-throughput characterization 
of pairwise chromatin interactions in the cell nucleus, and 
provided an unprecedented opportunity to investigate the 
three-dimensional (3D) chromatin structures and to elucidate 
their roles in nuclear organization and gene expression regu
lation. Among these techniques, Hi-C and its variants [8–10] 
are of particular interest because of their ability to map chro
matin interactions at a genome-wide scale.

A Hi-C experiment yields a symmetric contact matrix in 
which each entry represents the chromatin contact frequency 
between the corresponding pair of genomic loci. A particu
larly important characteristic of Hi-C contact matrices is the 
presence of the topologically associating domains (TADs), 
which are functional units of chromatin with higher tendency 
of intra-domain interactions [11]. TADs are largely con
served across cell types and species. Moreover, CTCF and 
other chromatin binding proteins are enriched at the TAD 
boundaries, indicating that TAD boundary regions form 
chromatin loops and play an essential role in gene expression 
regulation [11,12].

Several computational methods have been developed to de
tect TADs in Hi-C contact maps. These methods can be catego
rized into two groups: one-dimensional (1D) statistic-based 
methods and two-dimensional (2D) contact matrix-based 
methods [13]. Of these, 1D statistic-based methods often take a 

sliding window approach along the diagonal of Hi-C contact 
matrix and compute a 1D statistic for each diagonal bin to de
tect TADs and/or TAD boundaries. For instance, Dixon et al. 
[11] introduced a statistic named directionality index (DI) to 
quantify whether a genomic locus preferentially interacts with 
upstream or downstream loci and developed a hidden Markov 
model to call TADs from DIs. Later, Crane et al. [14] proposed 
a novel TAD detection method, which computes an insulation 
score (IS) for each genomic bin by aggregating chromatin inter
actions within a square sliding through the diagonal and then 
searches for the minima along the IS profile as TAD boundaries. 
Unlike the 1D statistic-based methods which calculate statistics 
using local information, the 2D contact matrix-based methods 
utilize global information on the contact matrix to capture 
TAD structures. For example, the Armatus algorithm [15] iden
tifies consistent TAD patterns across different resolutions by 
maximizing a quality scoring function of domain partition using 
dynamic programming. In addition, L�evy-Leduc et al. [16] pro
posed a TAD boundary detection method named HiCseg, 
which performs a 2D block-wise segmentation via a maximum 
likelihood approach to partition each chromosome into its con
stituent TADs. Later, Wang et al. [17] introduced a clustering- 
based TAD calling method CHDF, which optimizes the clusters 
of the contact matrix by dynamic programming with an objec
tive function combining the sum of squared error and a penalty 
term in favor of domain regions with higher frequency of inter
actions. Recently, several review papers have quantitatively 
compared the performances of the aforementioned TAD calling 
methods and demonstrated that HiCseg detects a stable number 
of TADs against changes of sequencing coverage and maintains 
the highest reproducibility among Hi-C replicates across all res
olutions when compared with other TAD calling methods 
[18–20].
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With the fast accumulation of Hi-C datasets, there has 
been a growing interest in performing differential analysis of 
Hi-C contact matrices. To date, several computational tools 
have been developed for comparative Hi-C analysis, but the 
majority of them focused on the identification of differential 
chromatin interactions (DCIs), which represent different 
chromatin looping events between two Hi-C contact maps. In 
early studies, the most common strategy for DCI detection 
was to use the fold change values between two Hi-C contact 
maps. For instance, Wang et al. [21] used a simple fold 
change strategy to detect the influence of estrogen treatment 
on chromatin interactions in MCF-7 Hi-C samples. 
Additionally, Dixon et al. [22] utilized the fold change values 
of chromatin interactions to train a random forest model to 
discover the epigenetic signals that were more predictive of 
changes in interaction frequencies. In addition to these fold 
change-based approaches, another commonly utilized 
method for detecting DCIs was the binomial model imple
mented by the HOMER software [23]. In contrast, in more 
recent studies, count-based statistical methods, such as edgeR 
[24] and DESeq [25], have been adopted to identify pairwise 
chromatin interactions that show significant changes in con
tact frequencies. Among them, Lun and Smyth [26] presented 
a tool named diffHic for rigorous detection of differential 
interactions by leveraging the generalized linear model (nega
tive binomial regression) of edgeR, and demonstrated that 
edgeR outperformed the binomial model. Later, Stansfield 
et al. [27] introduced Minus vs. Distance (MD) normalization 
and performed Z-tests to detect statistically significant DCIs. 
While all these methods assumed independence among pair
wise interactions, which holds true only in coarse-resolution 
Hi-C maps, Djekidel et al. [28] presented a novel method, 
named FIND, which takes into account the dependency of 
adjacent loci at finer resolutions. Briefly, FIND utilizes a spa
tial Poisson process model to detect DCIs that show signifi
cant changes in interaction frequencies of both themselves 
and their neighborhood bins. Lastly, Cook et al. [29] intro
duced altered chromatin conformation statistics (ACCOST) 
to identify differential chromatin contacts by extending the 
DESeq model used in RNA sequencing (RNA-seq) analysis 
and repurposing the “size factor” to account for the notable 
genomic distance effect in Hi-C contact matrices.

In the cell nucleus, chromatin is organized at multiple levels, 
ranging from active and inactive chromosomal compartments 
and sub-compartments (on a multi-Mb scale) [3,9], TADs 
(0.5–2 Mb on average) [11], to fine-scale chromatin interacting 
loops [8,9]. Chromatin structures also exhibit multi-scale differ
ences among different cell types in their compartments, TADs, 
and chromatin loops. Among these, changes in TAD organiza
tions are of particular interest as TADs are strongly linked to 
cell type-specific gene expression [11]. For example, Taberlay 
et al. [30] have shown that genomic rearrangements in cancer 
cells are partly guided by changes in higher-order chromatin 
structures, such as TADs. They discovered that some large 
TADs in normal cells are further segmented into several smaller 
TADs in cancer cells, and these changes are tightly correlated 
with oncogene expression levels. Current differential analyses of 
TAD structures between different cell types and conditions are 
limited to the detection of TAD boundary changes. Recently, 
Chen et al. [13] proposed a TAD boundary detection approach 
named HiCDB, which is constructed based on local measures of 
relative insulation and multi-scale aggregation. In addition to 
calling TAD boundaries in single Hi-C sample, HiCDB also 

provides differential TAD boundary detection using the average 
values of relative insulation across multiple samples. Later, 
Cresswell and Dozmorov [31] developed TADCompare, which 
uses a spectral clustering-derived metric named eigenvector gap 
to identify differential and consensus TAD boundaries and track 
TAD boundary changes over time. Lastly, TADreg [32] intro
duced a versatile regression framework which generalizes the in
sulation score by estimating the relative insulating effects of 
genomic loci and adding a sparsity constraint. The TADreg 
framework was designed for TAD boundary detection, but also 
allowed differential TAD analysis across various conditions. 
The HiCDB, TADCompare, and TADreg methods focused on 
detecting changes in TAD boundaries rather than changes in 
chromatin organization within TADs. However, differential 
TAD boundaries do not necessarily indicate differential chroma
tin conformation within those regions. First, Hi-C contact ma
trices are often sparse and noisy, which might lead to unstable 
detection of TAD boundaries. Second, chromatin interactions 
within a TAD could be strengthened or weakened in another 
Hi-C sample, which would suggest different patterns of chroma
tin organization within the same TAD region. Unfortunately, 
few methods have been developed to detect differential TAD 
regions instead of boundaries. Recently, the Hi-C preprocessing 
and analysis tool HiCExplorer [33–35] expanded its functions 
to capture differential TAD regions by comparing the precom
puted TAD regions on the target Hi-C map with the same 
regions on the control map by accounting for the information 
in both intra-TAD and inter-TAD regions. However, such com
parison was only limited to the precomputed genomic regions 
in only one of the Hi-C conditions. Thus, appropriate statistical 
methods for detecting differentially interacting regions by con
sidering TAD regions across both conditions are still lacking.

To tackle this problem, we developed a novel statistical 
method, DiffGR, for detecting differential genomic regions at 
TAD level between two Hi-C contact maps. Briefly, DiffGR 
utilizes the stratum-adjusted correlation coefficient (SCC), 
which effectively eliminates the genomic distance effect in Hi- 
C data, to measure the similarity of local genomic regions be
tween two contact matrices. Subsequently, DiffGR applies a 
nonparametric permutation test on those SCC values to de
tect genomic regions with statistically significant differential 
interactions. We demonstrate, through simulation studies 
and real data analyses, that DiffGR can effectively and ro
bustly identify differentially interacting genomic regions at 
the TAD level.

Method
The DiffGR method detects differentially interacting genomic 
regions in three steps, as shown in Figure 1A, and described be
low in “Identifying candidate genomic regions”, “Measuring 
similarity of candidate regions between two Hi-C contact 
maps”, and “Detecting statistically significant differential 
regions”. In addition, the simulation settings are outlined in 
“Simulation settings”, and the real data preprocessing and anal
yses are described in “Real data preprocessing steps”.

Identifying candidate genomic regions
Suppose that we have two sets of Hi-C data and their corre
sponding contact frequency matrices as the input. First, we 
detect the TAD boundaries in each Hi-C data, separately. 
Specifically, we apply HiCseg [16] to the raw contact matri
ces and obtain the corresponding TAD boundaries. Note that 
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in this step one can change HiCseg with any other credible 
TAD caller, such as CDHF [17] or TADreg [32], whose 
detected TADs satisfy the non-overlapping and continuous 
properties. We choose HiCseg because it has been shown that 
HiCseg produces more robust and reliable TAD boundaries 
than other TAD calling methods [18,20,32]. We next com
bine the TAD boundaries from both Hi-C contact maps to 
identify the candidate genomic regions for subsequent analy
ses. TAD boundaries within two-bin distance are considered 
to be a common boundary shared by both Hi-C datasets and 
replaced by the middle bin locus. We then partition the ge
nome into non-overlapping candidate regions using the com
mon TAD boundaries, and categorize these candidate regions 
into the following three groups: (1) single-TAD candidate 
regions, (2) hierarchical-TAD candidate regions, and (3) 
complex-TAD candidate regions, as illustrated in Figure 1B.

We expect different patterns of differential features in these 
three kinds of candidate genomic regions. As to the differen
tial single-TAD regions, we would expect that strength 
changes occur in such areas. For differential hierarchical- 
TAD regions, one large interacting domain could be evidently 
split into two or more sub-domains, or vice versa, boundaries 
between TADs disappear and thus the corresponding 
domains merge in one of the contact maps. Lastly, domains 
might be split, merged, or shifted in a more complicated man
ner, thereby constructing an entirely new structure, which 
would be defined as differential complex-TAD regions. 
Unlike differential single-TAD regions, the differential 
hierarchical-TAD and complex-TAD regions represent more 
disruptive changes in the 3D structure of the chromatin.

Measuring similarity of candidate regions between 
two Hi-C contact maps
In the second step, we evaluate the similarity of each candidate 
region between the two samples. Suppose that a candidate geno
mic region is bounded by two common TAD boundaries shared 
by both Hi-C maps, and contains k unique TAD boundaries in 
either one of the two Hi-C maps (shown as blue points in  
Figure 1B). In the single-TAD candidate region, k ¼ 0; in the 
hierarchical-TAD or complex-TAD candidate regions, k≥1. For 

each candidate region, we consider all kþ2
2

� �

possible (sub-) 

TADs, which are separated by any pair of TAD boundaries 
within that region, as potential differential TADs. For each po
tential differential TAD, we calculate the SCC [36] rather than 
the standard Pearson or Spearman correlation coefficients 

(CCs) to measure the similarity of intra-TAD chromatin interac
tions between two Hi-C samples. The advantages of using SCC 
instead of standard CCs are shown in “Supplementary note 1” 
in File S1.

The SCC metric was introduced by Yang et al. [36] as a 
measure of similarity and reproducibility between two Hi-C 
contact matrices. To account for the pronounced distance- 
dependence effect in Hi-C contact maps, chromatin contacts 
are first stratified into K strata according to the genomic dis
tances of the contacting locus pairs, and the CCs of contacts 
within each stratum are calculated between two samples. 
These stratum-specific CCs are then aggregated to compute 
the SCC value using a weighted average approach, where the 
weights are derived from the Cochran–Mantel–Haenszel 
(CMH) statistic [37]. That is, the SCC ρ is calculated as: 

ρ ¼
XK

k¼1

Nkr2k
PK

k¼1 Nkr2k

 !

ρk (1) 

where Nk is the number of elements in the k-th stratum, r2k is 
the product of standard deviations of the elements in the k-th 
stratum of both samples, and ρk denotes the CC of the k-th 
stratum between two samples.

The original SCC metric is computed using the intra- 
chromosomal contact matrices with a predefined genomic 
distance limit. The resulting value has a range of � 1; 1½ � and 
can be interpreted in a way similar to the standard CC. Here, 
we use SCC as a local similarity measurement to evaluate 
each potential differential TAD between two Hi-C samples. 
In the SCC calculation, an upper limit of genomic distance is 
set to 10 Mb, because TADs are commonly smaller than 
10 Mb and distal interactions over a genomic distance larger 
than 10 Mb are often sparse and highly stochastic. In addi
tion, as the sparsity of Hi-C matrices might affect the preci
sion of SCC values, the locus pairs with zero contact 
frequencies in both samples are excluded from the 
calculation.

Hi-C contact maps are often sparse due to sequencing cover
age limits and contain various systematic biases. To solve these 
issues, when preprocessing the Hi-C contact matrices, we first 
smooth each contact map by a 2D mean filter [36], which sub
stitutes the contact count observed between each bin pair by the 
average contact count in its neighborhood. This smoothing pro
cess improves the contiguity of the TAD regions with elevated 
contact frequencies, thereby enhancing the domain structures. 

A BStep 1: Identify candidate regions

Hi-C matrix

TAD boudaries

Candidate genomic regions

Condition 1 Condition 2

Step 2: Measure similarity

Step 3: Detect differential regions

Hi-C matrix

TAD boudaries

Condition 1

Condition 2

Single-TAD Hierarchical-TAD Complex-TAD

Figure 1 Overview of DiffGR 

A. Workflow of the DiffGR algorithm. B. Illustration of three candidate types of differential genomic regions. The gray vertical bars represent the common TAD 
boundaries between two conditions, which partition the genome into three types of candidate regions. The blue points stand for unique TAD boundaries in only one 
of the two conditions. Hi-C, high-throughput chromosome conformation capture; TAD, topologically associating domain.
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Next, we utilize the Knight–Ruiz (KR) normalization [38] on 
the smoothed matrices to remove potential biases.

Detecting statistically significant differential regions
In the third step, we identify differential genomic regions by 
first finding differential TADs within these candidate regions. 
In each candidate genomic region, we calculate the SCC val
ues for all potential differential TADs as described above. 
Then, we develop a nonparametric permutation test to esti
mate the P values for these local SCC values. Additionally, 
we propose a quantile regression strategy to speed up the per
mutation test (see details in “Supplementary methods” in File 
S1). Finally, we consider a candidate region to be a differen
tially interacting genomic region, if at least one TAD within 
that region exhibits a statistically significant difference be
tween the two samples and the size of the largest differential 
TAD meeting this criterion is greater than one third of the 
length of the entire candidate region. The longest differential 
TADs within the detected differentially interacting genomic 
regions are defined as the noticeable differential areas.

Specifically, we perform the following nonparametric per
mutation test for each unique TAD size, as the local SCC val
ues are calculated for all potential differential TADs of 
various sizes.

Suppose that s is a potential differential TAD whose length 
is ls and the SCC value between two Hi-C samples is ρs. To 
assess the statistical significance of the observed SCC value 
ρs, the null distribution of SCC values for TADs of the same 
size is estimated via the following permutation procedure. To 
generate a random TAD with length ls, we first randomly se
lect ls positions from main diagonal of Hi-C contact matrix, 
then ls � 1 position from the first off-diagonal, … , and lastly 
1 position from the ðls � 1Þ-th off-diagonal. We subsequently 
extract contact counts of these randomly selected positions 
from the two Hi-C contact matrices to construct the per
muted TAD pair and calculate its SCC value. We repeat the 
aforementioned random TAD generation step N times 
(N ¼ 2000) and obtain the corresponding SCC values fρls

i g, 
i ¼ 1; . . . ;N. Then, the P value of the observed SCC value ρs 
can be computed as: 

ps ¼

PN
i¼1 Iðρls

i < ρsÞ

N
(2) 

where Ið�Þ is the indicator function. Lastly, we compare the P 
values with a pre-defined significance level α (by default 
α ¼ 0:05) to determine differential TADs meeting the signifi
cance threshold. Note that the permutation framework 
accounts for the multiple testing correction using the 
Benjamini–Hochberg procedure [39].

One potential issue of this permutation framework is the 
false detection of significantly differential TADs when the 
two samples are highly similar (e.g., biological replicates 
from same experiment). This is because the high similarity be
tween biological replicates would lead to high SCC values of 
the corresponding random TAD patterns. As a result, some 
non-differential TADs with relatively low SCC values would 
be falsely detected as differential ones. In order to reduce the 
number of false positives, we provide an option to filter the P 
values ps by an empirical or automatically calculated thresh
old. This optional filtering step allows us to pre-specify the 
meaningful SCC between the two Hi-C datasets that should 

be reached in order to call a differential TAD truly 
significant. 

padj
s ¼

0:5 if ps<α and ρs>θ
ps otherwise

�

(3) 

The threshold θ can normally be defined as 0.85, 
which corresponds to a clear margin separating non- 
replicates from biological/pseudo-replicates in the whole- 
chromosome similarity comparison between multiple cell 
lines [40]. Alternatively, θ can be calculated automatically as 

θ ¼ ρls
nrþρls

br
2 , where ρls

nr represents the mean α quantile of SCCs 

between non-replicate data and ρls
br is the mean α quantile of 

SCCs between their corresponding biological/pseudo- 
replicate data. Here, we call matrices from different cell lines 
as non-replicates, matrices from the same cell type as biologi
cal replicates, and matrices sampled from pooled biological 
replicates as pseudo-replicates.

Simulation settings
To evaluate the performance of the DiffGR method, we con
ducted a series of simulation experiments by varying the pro
portion of altered TADs, proportion of TAD alternation, 
noise level, and sequencing coverage level. Specifically, we 
utilized the published chromosome 1 contact matrix of K562 
cells at 50-kb resolution [9] as the original Hi-C data and 
simulated the altered Hi-C contact matrices as de
scribed below.

Single-TAD alternation
Since TADs are conserved genomic patterns and TAD bound
aries are relatively stable across cell types and even across 
species [11], our simulations primarily focused on the scenar
ios of single-TAD alternations. Suppose that we had an origi
nal Hi-C contact matrix M and its identified TAD 
boundaries. Each of our simulated Hi-C matrices contained 
two components: the signal matrix S and the noise matrix N, 
with a certain signal-to-noise ratio.

First, to construct the signal matrix S, we randomly se
lected a subset of TADs from original contact matrix to serve 
as the true differential TADs. Then, we replaced a certain 
portion of contact counts in each selected TAD by randomly 
sampling contact counts from the corresponding diagonals of 
the contact matrix. That is, for a chosen contact count lo
cated at the bin pair ði; j), we first searched all the bin pairs 
having the same genomic distance as bin pair ði; jÞ, i.e., 
AðvÞ ¼ k; lð Þ : k; l ¼ 1; . . . ;N; l ≥ k; l � k ¼ i � jj j

� �
and ran

domly selected one position from AðvÞ and used its corre
sponding read count to substitute the original value in bin 
pair ði; j). Second, we simulated the noise matrix N which 
represents the random ligation events in Hi-C experiments. 
Briefly, we generated these contacts by randomly choosing 
two bins, i and j, and adding one to the entry Nij in the noise 
matrix. The probability of sampling each bin in the bin pair 
was set proportional to the marginal count of that bin in the 
original matrix. The sampling process was repeated C times, 
where C was the total number of contacts in the original Hi- 
C contact matrix M. The resulting random ligation noise ma
trix N contained the same number of contacts as the original 
contact matrix M.

To summarize, we had the following parameters in our 
single-TAD simulations. (1) Proportion of altered TADs. 
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Using HiCseg, we detected 189 TADs with a mean size of 
1.2 Mb in the original K562 chromosome 1 contact matrix 
(Figure S1). By default, we set the proportion of altered 
TADs to be 50%, which can vary from 20% to 70%. 
(2) Proportion of TAD alternation. In the default setting, we 
substituted all contact counts in the selected TADs by ran
dom counts permuted from the matching diagonals in Hi-C 
maps. To reduce the degree of intra-TAD alternation, we 
gradually decreased the proportion of randomly substituted 
intra-TAD contacts from 100% to 10%. (3) Noise level, i.e., 
the ratio between the noise and signal matrices. The noise 
level was set to 10% by default, and varied from 1% to 80%.

For each simulation parameter setting, we generated 100 
altered Hi-C contact matrices to compare against the original 
contact matrix. To evaluate the accuracy of the detection 
results, we used the false detection rate which defines as inac
curate percentage and is computed as 1 � Accuracy ¼ FPþFN

N , 
where FP denotes the number of falsely detected differential 
regions, FN represents the number of falsely detected non- 
differential regions, and N is the total number of candidate 
regions being tested.

Hierarchical-TAD alternation
In addition to single-TAD alternation, we also simulated the al
ternation pattern of hierarchical-TADs. We randomly selected 
50% of the large TADs whose size was greater than 10 bins in 
the signal matrix to serve as the true differential TADs. For each 
of the selected large TAD, we chose a random sub-TAD bound
ary to split it into two smaller sub-TADs (each with size > 5 
bins). We then replaced all inter-sub-TAD contact counts by 
randomly sampled counts in Hi-C maps. Next, we validated the 
performance of DiffGR under the hierarchical-TAD condition 
with respect to different noise levels similar to the single-TAD 
simulations. Because the complex-TAD condition has compli
cated TAD boundaries between two samples and occurs less fre
quently in real data, we did not generate simulation data for 
this condition.

Simulating low-coverage contact matrices
Low sequencing depth of Hi-C experiments would lead to low- 
coverage and sparse contact matrices, and thus it could poten
tially affect the performance of the detection of differentially 
interacting regions. To simulate low-coverage contact matrices, 
we started with a deep-sequenced Hi-C contact map obtained 
from human GM12878 cells [9], and down-sampled the contact 
counts to generate lower-coverage matrices. Specifically, for 
each non-zero contact count Mij in the original matrix, we 
assumed that the simulated contact count follows a binomial 
distribution M

0

ij � BinomialðMij;pÞ, where the binomial param
eter p ¼ f0:2; 0:4; 0:6; 0:8; 1:0g represents the relative cov
erage level of the down-sampled contact matrix M0. In addition, 
10% noise were added to the down-sampled matrices.

Real data preprocessing steps
In our real data analysis, we used two published Hi-C datasets 
by Rao et al. (GSE63525) [9] and Dixon et al. (GSE35156) [11] 
downloaded from Gene Expression Omnibus (GEO). The Rao 
et al. [9] dataset includes five human cell types: B-lymphoblas
toid cells (GM12878), human mammary epithelial cells 
(HMECs), human umbilical vein endothelial cells (HUVECs), 
erythrocytic leukemia cells (K562), and normal human epider
mal keratinocytes (NHEKs). The GM12878 dataset contains 
two replicates, which were also pooled together in cell type- 

specific comparison. The Dixon et al. [11] dataset is from 
mouse embryonic stem (ES) and cortex cells. Two replicates 
from mouse ES cells were merged together in cell type-specific 
comparison. We applied DiffGR to detect differential genomic 
regions between each pair of cell types at 25-kb, 50-kb, and 
100-kb resolutions. Since some of these Hi-C datasets were not 
deeply sequenced, the local variations introduced by low 
sequencing coverage made it challenging to capture large 
domain structures, especially in fine-resolution analyses. 
Therefore, to enhance the domain structures, all contact matri
ces were first preprocessed by a 2D mean filter smoothing and 
then normalized by the KR method to eliminate potential 
biases. All analyses were performed in parallel using 8 cores on 
an Intel Core i7-8700K CPU @1.70 GHz with 32 GB of mem
ory allocation. The running time of DiffGR exhibited variation 
across different resolutions: 3 h for 25-kb, 40 min for 50-kb, 
and 10 min for 100-kb Hi-C contact maps.

In addition to Hi-C contact maps, chromatin immunopre
cipitation sequencing (ChIP-seq) and RNA-seq data from the 
same cell lines were also included in real data analyses. For 
ChIP-seq analysis, CTCF and histone modification 
(H3K4me2, H3K9me3, H3K27ac, and H3K27me3) datasets 
from five human cell lines in Rao et al. [9] were obtained 
from the encyclopedia of DNA elements (ENCODE) project 
[41,42] (https://www.encodeproject.org/). The ChIP-seq files 
were in Binary Alignment Map (BAM) format. The ChIP-seq 
peaks were called by MACS2 [43] and stored as narrowpeak/ 
broadpeak Browser Extensible Data (BED) format for the 
subsequent analyses. In addition, RNA-seq datasets were also 
obtained from the ENCODE project [42] for human 
GM12878 and K562 cells (GSE78552 and GSE78625) in 
read count format, and for mouse ES and cortex cells 
(GSM723776 and GSM723769) in Fragment Per Kilobase of 
transcript per Million mapped reads (FPKM) format.

Results
DiffGR accurately detected single-TAD differences 
in simulated datasets
To validate the accuracy and efficiency of our DiffGR 
method, we first generated pairs of original and simulated 
Hi-C contact matrices, where a given proportion of TADs in 
the simulated contact matrices were altered (see Method for 
details). We used the intra-chromosomal contact matrix of 
chromosome 1 in K562 cells at 50-kb resolution to serve as 
the original contact matrix. At the default setting, we altered 
50% of the original TADs by completely replacing the intra- 
TAD contact counts by randomly sampled counts outside the 
TAD regions. In addition, we added 10% random ligation 
noise into the altered contact matrices.

We first simulated Hi-C matrices with various proportions 
of altered TADs (20%, 30%, 40%, 50%, 60%, and 70%). 
With each proportion setting, we completely mutated the 
intra-TAD counts and added 10% noise, and repeated this 
simulation procedure 100 times. As expected, the perfor
mance of the DiffGR method depended on the proportion of 
altered TADs. As shown in Figure 2A and Table S1, when the 
proportion of altered TADs changed from 20% to 70%, the 
false detection rate increased from 0.01 to 0.21. One possible 
explanation of this observed trend is that when the majority 
of TADs are altered, the large differences between the origi
nal and altered matrices would affect the permutation test 
and therefore lead to inaccurate detection. However, 
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differential TADs rarely exist in large proportion in real data. 
The false detection rates of our method remained below 0.07 
when the proportion of altered TADs was smaller than or 
equal to 50%, which demonstrates that our method can accu
rately and reliably detect single-TAD differences under 
these conditions.

In the default simulation setting, we completely altered the 
selected TADs by substituting all intra-TAD contact counts 
by randomly sampled counts from the matching diagonals 
outside the TADs. To investigate the influence of the degree 
of TAD alternation on the DiffGR performance, we gener
ated a series of simulated contact matrices, in which half of 
original TADs were altered and the proportion of intra-TAD 
alternation varied from 10%, to 20%, 30%, 50%, 80%, and 
100%. In theory, TADs with higher degrees of alternation 
are easier to identify, whereas TADs with minor changes re
main difficult to be detected. As illustrated in Figure 2B and 
Table S2, the performance of DiffGR improved resulting in 
higher accuracy as the percentage of randomly substituted 
counts in altered TADs increased. Even with the most chal
lenging case where only 10% of the intra-TAD counts were 
altered, the accuracy of our method was 0.73, suggesting that 
DiffGR can effectively detect subtle TAD differences.

DiffGR performed stably against changes in noise 
and coverage levels
Next, we sought to evaluate the robustness of our method un
der various noise levels and sequencing coverage conditions.

In the earlier simulations, we added 10% noise to the simu
lated differential contact matrices. To evaluate the 

performance of our method under different noise levels, we 
fixed the proportion of altered TADs at 50% and the propor
tion of intra-TAD alternation at 100%, and simulated the 
differential contact matrices with a wide range of noise levels 
(1%, 5%, 10%, 20%, 50%, and 80%). Intuitively, a good 
detection method should easily discover the differential 
regions in the less noisy matrices, and it becomes more chal
lenging to detect the differential regions in the noisier cases. 
Our results demonstrate that DiffGR is able to correctly rank 
the simulated datasets. We observed a monotonic increasing 
trend of the false detection rate and a decreasing tendency of 
other precision measures as the noise levels raised (Figure 2C; 
Table S3). With moderate noise levels that were not greater 
than 20%, the accuracy of DiffGR remained above 0.93, in
dicating that our method can correctly detect differential 
TAD regions in such noisy cases.

The sequencing coverage of the Hi-C contact maps is another 
major factor that could affect the performance of our method. 
Considering two Hi-C replicates that have the same underlying 
TAD structures but different sequencing coverage levels, we ques
tioned whether our DiffGR method can correctly categorize 
them as non-differential. In other words, we intended to estimate 
the false positive rates caused by low-coverage and sparse Hi-C 
data. To directly investigate the influence of the sequencing cover
age on the detection of differential regions, we utilized the 
GM12878 chromosome 1 contact matrix as the original matrix, 
and generated a series of down-sampled contact matrices with 
lower coverage levels (20%, 40%, 60%, 80%, and 100%). The 
results showed that the average false detection rates remained be
low 0.05 for most coverage levels, except for the lowest coverage 
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Figure 2 Performance of single-TAD simulations 

The curves display the mean false detection rates at different levels of proportion of altered TADs (A), proportion of TAD alternation (B), noise (C), and sequencing 
coverage (D). Vertical bars represent 95% confidence intervals.
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level of 20% (Figure 2D; Table S4), demonstrating the robustness 
of our DiffGR method under low-coverage conditions.

DiffGR successfully detected hierarchical- 
TAD changes
In addition to single-TAD differences, hierarchical-TAD changes 
also exist in some genomic regions between different cell types. 
In these regions, one of the Hi-C contact maps exhibits a single 
dominant TAD structure, while the other Hi-C contact map 
presents two or more sub-TADs separated by additional bound
aries in between. Hierarchical-TADs are computationally chal
lenging to detect. Although the two Hi-C maps have different 
TAD boundaries, the chromatin interaction patterns within the 
sub-TADs could be very similar. Consequently, the CCs for the 
strata with small genomic distances might still remain high be
tween two contact maps. In addition, as the genomic distance 
increases, the weight of the corresponding stratum in the SCC 
calculation gradually declines. As a result, the SCC values are 
primarily contributed by CC values from strata with smaller ge
nomic distances, which makes it difficult to detect differential 
regions in the hierarchical-TAD cases.

To evaluate the performance of DiffGR in this more chal
lenging situation, we simulated contact matrices containing 
hierarchical-TAD structures with respect to varying noise lev
els (see Method for details), and then computed the false de
tection rate in a similar manner as in the single-TAD 
simulations. As demonstrated in Figure 3 and Table S5, the 
trend of the false detection rates and other measure statistics 
across various noise levels under the hierarchical-TAD setting 
was similar to the pattern observed in the single-TAD case 
(Figure 2C; Table S3). Furthermore, the false detection rates 
remained lower than 0.05 when the noise level was within 
50%. Taken together, these results indicate that DiffGR can 
reliably detect the differentially interacting genomic regions 
with hierarchical-TAD patterns.

DiffGR revealed cell type-specific genomic 
interacting regions
Besides validating our method on simulated datasets, we fur
ther applied DiffGR to detect cell type-specific differences in 
five human cell types (GM12878, HMEC, HUVEC, K562, 
and NHEK) [9] and in two mouse cell types (ES and cortex 
cells) [11]. In total, we conducted two comparisons between 
biological replicates in human GM12878 and mouse ES cells, 

and eleven pairwise comparisons between different cell types 
(ten pairs among five human cell types and one pair between 
two mouse cell types). In each pairwise comparison, we first 
applied HiCseg to identify TAD boundaries from the 50-kb 
contact matrix for each data and then partitioned the genome 
into three types of candidate regions: single-TAD candidate 
regions, hierarchical-TAD candidate regions, and complex- 
TAD candidate regions. Statistically significant differential 
genomic regions were identified between each comparison 
with false discovery rate (FDR) cutoff of 0.05.

We first sought to evaluate the performance of our method 
on biological replicates of Hi-C data. Previous studies have 
shown the high degree of similarity between biological repli
cates and dominant consistence between TAD boundaries in 
replicate data [9,11,40]. For the comparison between human 
GM12878 replicates, consistent with our expectations, the 
majority (89.55%) of the 2325 candidate genomic regions 
across the genome belonged to single-TAD type, and very 
few (2.45%) candidate genomic regions were detected as dif
ferential by our method (Figure S2). Specifically, only 1.97% 
of single-TADs were identified as differential, whereas 
6.17% and 4.94% were detected as differential in 
hierarchical-TAD and complex-TAD cases, respectively. 
Similar results were also witnessed in the comparison be
tween replicates in mouse ES cells: 83.42% candidate geno
mic regions were classified as single-TAD type and few 
(6.02%) were identified as differential (Table S6). Overall, 
our DiffGR results confirmed that these biological replicates 
displayed highly consistent chromatin structures with minor 
biological variations.

Next, we applied DiffGR to detect cell type-specific differen
ces. As illustrated in Figure 4, for the 10 pairwise comparisons 
among human cell types, 55.57% of all candidate genomic 
regions belonged to the single-TAD category (consistent with 
previous observations indicating that TAD boundaries are 
stable across cell types [11]), 31.88% to the hierarchical-TAD 
category, and 12.55% to the complex-TAD category. Our 
DiffGR analyses showed that only 24.26% of the single-TAD 
candidate regions showed statistically significant differences be
tween two samples; 59.24% of the hierarchical-TAD candidate 
regions were determined to be differential; while the differential 
proportion of the complex-TAD category was as high as 
89.82%. The differential results were largely consistent when 
the default TAD caller was changed from HiCseg to CHDF or 
TADreg, demonstrating the stability of the DiffGR algorithm 
over different TAD callers (“Supplementary note 2” in File S1). 
In addition, we found that the proportion of detected differen
tial regions varied largely across chromosomes, ranging from 
14% to 76% (Figure S3). For the comparison between mouse 
ES and cortex cells, 20.22% of the candidate genomic regions 
in the single-TAD category were identified as differential, while 
the proportion increased to 75.94% in the complex-TAD 
category (Table S7). These observations indicate that candidate 
genomic regions with more distinct patterns of TAD boundaries 
are more likely to be detected as differential between two Hi- 
C samples.

In addition to partitioning the genome at 50-kb resolution, 
we also performed differential analyses on the five human Hi- 
C datasets at 25-kb and 100-kb resolutions, separately. We 
calculated the overlapping rate (that is, the proportion of the 
genome that was classified into the same differential or non- 
differential status) between different resolutions. Overall, we 
observed a high consistency between the detected differential 
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The curve shows the mean false detection rates at various noise levels. 
Vertical bars represent 95% confidence intervals.
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regions across different resolutions, where the overlapping 
rate was 0.8207 between the detection results at 50-kb and 
100-kb resolutions, 0.8956 between those at 25-kb and 50-kb 
resolutions, and 0.7712 between those at 25-kb and 100-kb 
resolutions. These results demonstrate that DiffGR can 
robustly and consistently detect cell type-specific differential 
genomic regions across various resolutions.

Changes in CTCF and histone modification patterns 
were consistent with DiffGR detection results
As there is no ground truth of differential chromatin interact
ing regions in real data, we sought to evaluate the perfor
mance of our method by investigating the association 
between the changes in 1D epigenomic features and 3D geno
mic interaction regions. The chromatin architectural protein 
CTCF plays an essential role in establishing higher-order 
chromatin structures such as TADs. In addition, it has been 
shown that transcription factors and histone marks are 
enriched or depleted at TAD boundaries and are associated 
with active enhancers, promoters, and transcribed genes 
[11,12]. Therefore, we expected that differential bindings of 
transcription factors such as CTCF and histone modifications 
would be more likely located in differential genomic interact
ing regions.

To test this hypothesis, we then utilized the ChIP-seq data
sets of CTCF and histone modifications from the ENCODE 
project [41]. For each ChIP-seq dataset, we called the peaks 
via MACS2 [43] and detected differential peaks by DESeq2 
[25]. Then, we calculated the proportions of differential 
peaks that were located in DiffGR-detected differential geno
mic regions at 100-kb, 50-kb, and 25-kb resolutions. Further, 
we checked the significance of differential peak enrichment 

by randomly selecting a bundle of peaks (where the peak 
number is the same as the number of differential peaks 
detected by DESeq2) with 2000 times and calculating their 
corresponding percentages located in differential genomic 
regions to estimate the P values.

Table 1 summarizes the ChIP-seq analyses on the DiffGR 
detection results obtained from five human Hi-C datasets [9]. 
Overall, DiffGR-detected differential genomic regions were 
supported by 1D epigenomic features. In particular, we ob
served that the agreement between the changes in ChIP-seq 
signals and chromatin structures was improved in finer- 
resolution analyses. As shown in Table 1, 52.48% of the 
differential CTCF peaks appeared in DiffGR-detected differ
ential genomic regions at 100-kb resolution; whereas in the 
results at 25-kb resolution, 74.85% of differential CTCF 
peaks were located in differential genomic regions. In addi
tion, the histone modification datasets showed similar results 
concordant with the detection results of differentially inter
acting regions in Hi-C contact maps. At 25-kb resolution, the 
majority (>70%) of differential histone peaks showed signifi
cant consistency with differentially interacting regions for all 
four histone modification datasets, including H3K4me2, 
H3K9me3, H3K27ac, and H3K27me3. Collectively, these 
results indicate that the changes in CTCF bindings and his
tone modifications are in good agreement with the differences 
in genomic interacting regions. Furthermore, at finer resolu
tion DiffGR produces more accurate identification of differ
entially interacting genomic regions in higher agreement with 
the CTCF and histone modification data.

Differential RNA-seq analysis results were 
consistent with DiffGR detection
In addition to investigating the changes in 1D epigenomic fea
tures, we further studied the relationship between quantita
tive changes in gene expression levels and 3D genomic 
interaction regions. Previous studies have shown that topo
logical changes of 3D genome organization have a large effect 
on the cross-talk between enhancers and promoters, and 
therefore can alter gene expression [9,22]. Thus, we expected 
to observe an enrichment of differential expressed genes in 
DiffGR-detected differential genomic regions.

To evaluate this assumption, we first detected significant 
changes in gene expression levels between human GM12878 
and K562 cells using DESeq2 [25] and those between mouse 
ES and cortex cells using Ballgown [44]. Then, we calculated 
the percentage of differentially expressed genes (DEGs) that 
were located inside the DiffGR-identified differential genomic 
regions. To calculate the enrichment of DEGs, we randomly 
chose a set of genes, whose number is equivalent to the 
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Figure 4 Pie charts of DiffGR results obtained from human Hi-C  

datasets 

The DiffGR results from the ten pairwise comparisons among five human cell 
types (GM12878, HMEC, HUVEC, K562, and NHEK) [9] using the TAD caller 
HiCseg are summarized. The center pie chart presents the proportions of three 
categories of candidate regions. The three outer pie charts display the 
proportions of DiffGR-detected differential genomic regions, one for each 
candidate category. HMEC, human mammary epithelial cell; HUVEC, human 
umbilical vein endothelial cell; NHEK, normal human epidermal keratinocyte.

Table 1 Agreements between ChIP-seq data and DiffGR-detected 

differential genomic regions in human Hi-C datasets

100-kb resolution 50-kb resolution 25-kb resolution

CTCF 52.48%� 66.15%�� 74.85%�
H3K4me2 64.13%� 77.81%��� 81.05%���
H3K9me3 51.78%� 65.05%��� 72.05%���
H3K27ac 69.98%� 76.95%��� 82.56%���
H3K27me3 58.82%� 74.70%��� 83.00%���

Note: The proportions of differential ChIP-seq peaks located in DiffGR- 
detected differential genomic regions at 100-kb, 50-kb, and 25-kb 
resolutions were presented. �, P < 0.05; ��, P < 0.01; ���, P <
0.001. ChIP-seq, chromatin immunoprecipitation sequencing; Hi-C, high- 
throughput chromosome conformation capture.
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number of the DESeq2-detected DEGs, with 200 times, com
puted their corresponding proportions located in differential 
genomic regions, and then performed t-test for comparison. 
In summary, a total number of 8781 DEGs were detected be
tween human GM12878 and K562 cells, and 79.54% of 
them were located in DiffGR-detected differential genomic 
regions (P ¼ 3:72 × 10� 5, permutation test); whereas 2124 
DEGs were identified between mouse ES and cortex cells, 
and 61.66% were within DiffGR-detected differential geno
mic regions (P < 2:2 × 10� 16, permutation test). Taken to
gether, these results demonstrate that the changes of gene 
expression in RNA-seq data are highly consistent with the 
DiffGR detection results.

To further explore the potential functional roles of the 
genes located in differential genomic regions detected by 
DiffGR, we performed Gene Ontology (GO) enrichment 
analysis on those genes using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) [45]. As 
shown in Table 2, we observed a high enrichment of GO 
terms related to the immune responses, which is consistent 
with the immunological nature of GM12878 B-lymphoblas
toid cells.

DiffGR detection was supported by DCIs
Several Hi-C comparative studies have demonstrated that the 
majority of the chromatin structural changes tend to couple 
with the formation/disappearance of TADs [9,22], implying 
that changes in Hi-C interaction counts are likely to be ob
served within genomic regions at the TAD level. Hence, we 
checked DCIs between GM12878 and K562 cells at 50-kb 
resolution by FIND [28], and compared FIND results with 
our DiffGR results. As shown in Figure 5, the percentages of 
DCIs detected by FIND located within candidate genomic 
regions were dominant in the majority of chromosomes (with 
55.43% across the whole genome). In addition, 82.80% of 
the DCIs located in candidate genomic regions were classified 
into differential regions, demonstrating that DiffGR effec
tively detects the regions with significant changes in chroma
tin contacts.

Performance comparison with state-of-the-art 
differential TAD detection tools
To further investigate the performance of DiffGR, we com
pared the DiffGR results with three differential TAD bound
ary detection methods (HiCDB [13], TADCompare [31], and 
TADreg [32]) on both simulated and real data. In the simula
tion part, we compared all four methods using the synthetic 

data under the default setting (proportion of altered TADs ¼
50%, proportion of TAD alternation ¼ 100%, and noise 
level ¼ 10%), and calculated corresponding sensitivities and 
specificities. As shown in Table 3, the sensitivities of the three 
differential TAD boundary detection methods are all above 
70% and comparable to the sensitivity of DiffGR, while the 
specificities of the three differential TAD boundary detection 
methods are relatively low. These results demonstrate that 
HiCDB, TADCompare, and TADreg can accurately identify 
most differential TAD boundaries within differential regions, 
but falsely detect many non-differential boundaries within 
differential regions. We would like to point out that the simu
lation process was designed to check the robustness of 
DiffGR detection results by generating random structures 
within the predefined differential areas and keeping the origi
nal chromatin structures within non-differential regions. 
Therefore, differential TAD boundaries are expected to ap
pear within differential regions, while non-differential TAD 
boundaries may be located either within or outside the non- 
differential regions. As a result, the performance on specific
ities of the differential TAD boundary detection tools 
was affected.

Next, we compared the DiffGR results with three differen
tial TAD boundary detection methods on the five human Hi- 
C datasets by Rao et al. [9] and the two mouse datasets by 
Dixon et al. [11] at 50-kb resolution. Overall, the differential 
TAD boundaries identified by HiCDB, TADCompare, and 
TADreg were highly concordant with DiffGR-detected differ
entially interacting genomic regions. Notably, 73.86% of the 
HiCDB-detected, 76.25% of the TADCompare-detected, and 
71.90% of the TADreg-detected differential TAD boundaries 
displayed consistent results with our DiffGR detection in the 
human datasets. In addition, highly concordant rates were 
also witnessed in the mouse datasets with 59.56%, 62.01%, 
and 60.32% consistency rates with HiCDB, TADCompare, 
and TADreg, respectively.

Furthermore, we compared DiffGR with HiCExplorer 
[33–35], the only available tool for differential TAD region 
detection, on the five human Hi-C datasets by Rao et al. [9] 
at 50-kb resolution. We observed that 60.62% of the 2877 
HiCExplorer-identified differential regions overlapped with 
DiffGR-detected differential regions. To better compare the 
detection results of DiffGR and HiCExplorer, we then com
puted the concordant rates between HiCExplorer-detected 
differential regions and differential ChIP-seq peaks. As 
shown in Table 4, in comparison with DiffGR results, we ob
served a higher proportion of differential ChIP-seq peaks lo
cated in HiCExplorer-detected differential regions, but most 
of the enrichment are not statistically significant. These 
results indicate that HiCExplorer identifies a great amount of 
differential regions; however, some of its detected regions are 
not significant different based on 1D epigenomic evidence. 
Further, we investigated the advantages of DiffGR and 
HiCexplorer over TADCompare, and found that 
TADCompare-detected differential TAD boundaries within 
DiffGR-detected differential regions were located closer to the 
differential ChIP-seq peaks of CTCF and other histone modi
fications than those outside differential regions, while some 
disagreements were found in HiCExplorer-detected differen
tial regions (“Supplementary note 3” in File S1). Collectively, 
these results indicate that DiffGR-detected differential geno
mic regions have a better agreement with 1D epigenomic fea
tures than HiCExplorer-detected differential regions.

Table 2 Functional enrichment of genes located in differential 

genomic regions between GM12878 and K562

GO term FDR

GO:0046649 lymphocyte activation 2.7E–11
GO:0002376 immune system process 4.6E–11
GO:0002520 immune system development 2.3E–9
GO:0070663 regulation of leukocyte proliferation 5.2E–7
GO:0042113 B cell activation 7.7E–7
GO:0030183 B cell differentiation 2.2E–5

Note: Genes located within differential genomic regions at 25-kb resolution 
were utilized in GO enrichment analysis. Test results were reported by 
DAVID [45]. GO, Gene Ontology; FDR, false discovery rate; DAVID, 
Database for Annotation, Visualization and Integrated Discovery.
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An example of differentially interacting genomic 
regions between GM12878 and K562
Figure 6 illustrates a differential genomic region (chr13: 
75,850,000–78,300,000 bp) identified by DiffGR between hu
man GM12878 and K562 cells, which is a hierarchical-TAD re
gion showing a larger TAD in K562 cells and two sub-TADs in 
GM12878 cells. We observed that the sub-TAD boundary was 
located inside the MYC binding protein2 (MYCBP2) gene 
which encodes an E3 ubiquitin-protein ligase. Reduced expres
sion of the MYCBP2 gene has previously been observed in leu
kemia patients, which has been revealed that CK2 inhibitor 
takes the anti-leukemia effect through Ikaros-mediated regula
tion on MYCBP2 expression in high-risk leukemia [46]. 
Similarly, we observed a significant differential binding of 
CTCF at the sub-TAD boundary and an obvious loss of 

expression in K562 cells (immortalized myelogenous leukemia 
cells) compared to GM12878 cells (B-lymphocyte cells), which 
is consistent with the reported clinical association of MYCBP2 
low expression with acute leukemia [46].

Discussion and conclusion
With the fast accumulation of Hi-C datasets, there has been a 
dramatically increasing interest in comparative analysis of 
Hi-C contact maps. However, most existing methods for 
comparative Hi-C analyses focused on the identification of 
differential chromatin interactions, while few studies 
addressed the detection of differential chromatin organiza
tion at the TAD scale. To tackle this problem, we developed 
a novel method, DiffGR, for calling differentially interacting 
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Figure 5 Comparison between FIND and DiffGR 

Bar chart showing the proportions of FIND-detected DCIs located in candidate genomic regions (light gray) and differential genomic regions (dark gray) for all 
autosomes between GM12878 and K562. DCI, differential chromatin interaction.

Table 3 Performance comparison of DiffGR and three differential 

TAD boundary detection tools on simulated data

Sensitivity Specificity

Mean SD Mean SD

DiffGR 0.8871 0.0239 0.9904 0.0030
HiCDB 0.7758 0.0193 0.0630 0.0415
TADCompare 0.9568 0.0113 0.3128 0.0284
TADreg 0.7762 0.0660 0.3124 0.0303

Note: The definitions of the evaluation metrics sensitivity and specificity are 
explained in “Supplementary methods” in File S1. SD, standard deviation; 
TAD, topologically associating domain.

Table 4 Agreements between ChIP-seq data and differential genomic 

regions detected by DiffGR and HiCExplorer

DiffGR HiCExplorer

CTCF 66.15%�� 86.48%
H3K4me2 77.81%��� 86.11%
H3K9me3 65.05%��� 86.96%���
H3K27ac 76.95%��� 86.10%
H3K27me3 74.70%��� 85.21%

Note: The proportions of differential ChIP-seq peaks located in differential 
genomic regions detected by DiffGR and HiCExplorer at 50-kb resolution 
were presented. �, P < 0.05; ��, P < 0.01; ���, P < 0.001.
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genomic regions between two Hi-C contact maps. Taking ge
nomic distance features of Hi-C data into consideration, our 
algorithm utilized the SCC metric instead of the standard 
Pearson CC to measure the similarity of local genomic 
regions between Hi-C contact maps. Furthermore, we pro
posed a nonparametric permutation test to assess the statisti
cal significance of the local SCC values. In contrast to the 
parametric approaches that were used by most Hi-C data 
analysis methods, our nonparametric approach does not have 
a set of predefined assumptions about the nature of the null 
distribution and, therefore, is more robust and can be applied 
to more diverse data from real cases. Additionally, we utilized 
a nonparametric smoothing spline regression to speed up the 
permutation test and showed that the speed-up algorithm can 
steadily produce consistent outputs. Through empirical eval
uations, we have demonstrated that DiffGR can effectively 
discover differential regions in both simulated data and real 
Hi-C data from different cell types. That is, DiffGR produced 
robust and stable detection results under various noise and 
coverage levels in simulated data; DiffGR detection results in 
real data were effectively validated by the ChIP-seq and 
RNA-seq data; DiffGR produced consistent and advanta
geous results compared with state-of-the-art differential TAD 
boundary/region detection tools. To summarize, DiffGR pro
vides a statistically rigorous method for the detection of dif
ferentially interacting genomic regions in Hi-C contact maps 
from different cells and conditions, and therefore would facil
itate the investigation of their biological functions.

We envision a few possible extensions and future directions 
based on this work. First, our method performs pairwise 
comparison between Hi-C contact maps. One potential fu
ture direction is to design a more general statistical frame
work for differential analyses among three or more samples. 
Then, we could further assign the differentially interacting ge
nomic regions to cell type-specific or condition-specific 

changing areas. Second, we currently pool biological repli
cates together in our analyses. Extending DiffGR to incorpo
rate multiple biological replicates to detect reproducible 
differences would enhance the reliability of the detection 
results. Third, in our algorithm, we use the shared TAD 
boundaries between two samples to segment the genome into 
candidate genomic regions and then detect differential 
regions. Recently, notion of TADs being highly conserved 
across different cell types has been challenged [47,48], and 
there is an increasing recognition of the potential ambiguity 
in defining TAD boundaries when using different TAD call
ing methods [49]. Therefore, a more general approach to de
fine and classify the candidate genomic regions would be 
beneficial to better characterize the variability of chromatin 
interactions between different conditions. Lastly, our method 
is specifically designed for bulk Hi-C data. Given the high 
sparsity and variability of single-cell Hi-C contact matrices, 
identifying differential genomic regions at single-cell level 
remains a significant challenge.

Code availability
The DiffGR R package is publicly available at https://github. 
com/wmalab/DiffGR under the GNU General Public License 
(GPL) ≥ 2 license. The source code is also available at 
BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007313).
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Figure 6 An example of DiffGR-detected differential regions between GM12878 and K562 

Hi-C contact maps of the K562 and GM12878 cells at chr13:74,500,000–79,000,000 bp are displayed. The differential genomic region (chr13:75,850,000– 
78,300,000 bp, with SCC ¼ 0.6551 and P ¼ 0.0334) is shown in gray squares, and the TADs for each cell type are shown in black squares. The differential CTCF 
peak region is highlighted by the purple bars. RNA-seq, RNA sequencing.
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