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Abstract 

Analysis of factors that lead to the functionality of transcriptional activation domains remains a 
crucial and yet challenging task owing to the significant diversity in their sequences and their 
intrinsically disordered nature. Almost all existing methods that have aimed to predict activation 
domains have involved traditional machine learning approaches, such as logistic regression, that 
are unable to capture complex patterns in data or plain convolutional neural networks and have 
been limited in exploration of structural features. However, there is a tremendous potential in the 
inspection of the structural properties of activation domains, and an opportunity to investigate 
complex relationships between features of residues in the sequence. To address these, we have 
utilized the power of graph neural networks which can represent structural data in the form of 
nodes and edges, allowing nodes to exchange information among themselves. We have 
experimented with two kinds of graph formulations, one involving residues as nodes and the other 
assigning atoms to be the nodes. A logistic regression model was also developed to analyze feature 
importance. For all the models, several feature combinations were experimented with. The residue-
level GNN model with amino acid type, residue position, acidic/basic/aromatic property and 
secondary structure feature combination gave the best performing model with accuracy, F1 score 
and AUROC of 97.9%, 71% and 97.1% respectively which outperformed other existing methods 
in the literature when applied on the dataset we used. Among the other structure-based features 
that were analyzed, the amphipathic property of helices also proved to be an important feature for 
classification. Logistic regression results showed that the most dominant feature that makes a 
sequence functional is the frequency of different types of amino acids in the sequence. Our results 
consistent have shown that functional sequences have more acidic and aromatic residues whereas 
basic residues are seen more in non-functional sequences.  
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Introduction 

The key factors for activation of eukaryotic genes are gene-specific activators. Each of these 
proteins contain two obligatory domains: DNA-binding domains and activation domains (ADs). 
DNA-binding domains provide gene specificity by interacting with specific DNA sequences, while 
ADs, within the same transcription factors, drive transcription initiation by orchestrating dynamic 
nuclear interactions. The DNA-binding domains have very specific conserved sequences which 
determine a variation of structure motifs, which in turn define the specificity of interaction with 
target promoter DNA sequence1-3. In contrast, ADs are highly variable in sequence, intrinsically 
disordered, and engage in fuzzy interactions with multiple often uncertain targets. The enigma of 
ADs stands for decades4,5. Recently with the advent of high throughput experimental approaches 
based on breakthroughs of massive parallel DNA synthesis and sequencing, AD analysis has been 
elevated on the new level. 

The extremely high sequence variability of ADs, by some estimates >1024 sequence variants able 
to replace each other within the context of the same gene activator molecule6-8, make ADs an ideal 
target for machine learning (ML). Several attempts to develop ML models have been reported. 
The initial attempt based on the regression models allowed to define and test AD features which 
are important for the ML model performance6. Following the neural network (NN) based approach 
allowed to increase the accuracy of AD prediction7. However, the main reason for the higher 
accuracy of the NN model turns out to be the larger size of the dataset used for the ML training. 
When compared the regression model although slightly less accurate in prediction than NN model, 
allows better to see and develop ML features and to correlate them with the biochemical features 
of ADs8. Additional ML attempt using only sequences of natural transcription factors followed9, 
allowing to correlate ML with sequences existing in living cells. While the sequence features of 
ADs became clearer, understanding of structural AD features remains obscure. The recent 
availability of structure prediction methods such as AlphaFold10 and ESMFold11 as powerful tools 
for protein structure prediction allow their usage for the development of new ML models based on 
structural information, and the development and understanding of structural features of ADs. In 
this study we utilized ESMFold to convert the available dataset of annotated ADs7 into a dataset 
with ESMFold defined AD structures aiming to develop new ML models based on structural 
information and to gain information about structural features of ADs. ESMFold has aided in faster 
prediction of structures of the peptide sequences and with the large size of the dataset that we have 
used, this has helped in prompter analysis of results.  

Although recently there have been attempts at predicting and analyzing activation domains using 
neural network architectures7,9,12, these have mostly involved Convolutional Neural Networks 
(CNN). While traditional CNNs are known to capture local patterns in the data, they may not 
always be able to handle long-range dependencies in sequences. Consequently, it becomes difficult 
to investigate into the connection or dependency between residues that may not be next to each 
other in the sequence. Moreover, while traditional ML methods such as logistic regression allow 
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comprehension of the features that determine function of activation domains8, they may not 
capture the complex relationships between composition-based features or structure-based features.  

In our work, we have aimed to utilize the advantage of Graph Neural Networks (GNN)13, which, 
in the last decade, has gained increasing popularity in the field of bioinformatics14-18. GNNs can 
represent data in the structure of a graph with nodes and edges, allowing them to harness a special 
ability called ‘message-passing’ that can permit adjacent nodes to share information among 
themselves. This is advantageous in the sense that it helps to capture information regarding 
dependency between nodes if they are connected by edges regardless of where they are positioned. 
In our study, we have used a dataset of more than 1 million peptide sequences to train and validate 
GNNs that are able to perform binary classification to determine whether a sequence is functional 
or not. For formulating the GNN, we have firstly followed the technique used in GNN-DOVE15, 
where the graph nodes represent atoms in the peptide structure. After this, we have developed a 
modified GNN containing a new graph formulation with residues as the nodes that allows residues 
even at large distances to exchange information among themselves. To identify the most prominent 
features that determine function in these peptides, we have also trained a logistic regression model. 
We have found that our GNNs are more accurate than plain logistic regression. Moreover, residue-
level GNN outperforms atom-level GNN for classifying the peptides. We have experimented with 
several combinations of features and although secondary structure does not provide any 
meaningful contribution to the vanilla logistic regression model, addition of this feature in the 
residue-level GNN has led to the best performing model, compared to several other feature 
combinations that we experimented with, having accuracy, F1 score and AUROC scores of 97.9%, 
71% and 97.1% respectively. We have shown that this model outperforms other existing neural 
network methods applied on this task7,9,12. Moreover, we have also analyzed whether an alpha 
helix being amphipathic has any contribution to AD function on a subset of the entire dataset and 
have observed that addition of this feature also improves the performance of the baseline residue-
level GNN, indicating that the amphipathic property of a helix does have a meaningful contribution 
in determining functionality. Finally, through logistic regression, we have found that the most 
important feature that determines whether a sequence will be functional is the count or frequency 
of different kinds of amino acids in the sequence when compared to any other position-based or 
structure-based features. 

Materials and Methods 

Dataset 

To train, validate and test our graph neural network and logistic regression methods, we used the 
Gcn4 dataset7 which has a total of 1,054,335 peptide sequences, each having a length of 30 amino 
acids. Among them, 37,923 sequences are labelled to be functional. We divided the dataset into 
train, validation and test samples with a 75:15:10 ratio to conduct our experiments. The train-
validation-test split is shown in Table 1. 
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Total samples Training samples 

(75%) 
Validation samples 
(15%) 

Test samples (10%) 

1,054,335 790,751 158,150 105,434 
 
Table 1: Train-validation-test split of the dataset. 
 

 
 
Figure 1: Framework of Residue-level GNN and Atom-level GNN. Two graphs are built from the 
peptide structure. After applying Gate Augmented Mechanism with Attention, node embeddings 
are added and sent to a fully connected network (FCN). Output from FCN is passed through a 
sigmoid function to get a final probability value P which is a value between 0 and 1. 
 
Graph Neural Network (Atom-level GNN) 
 
To train the graph neural network, we first need to define the graph formulation. Since a graph is 
composed of nodes and edges, we will first define what these represent in our network. Let G(V,E) 
be a graph where V is the set of vertices or nodes and E is the set of edges of the graph. Two nodes 
are said to be adjacent if they are connected to each other by an edge. We can represent a graph’s 
edge using an adjacency matrix representation (A). 
 
In the atom-level GNN network, each node represents each atom in the sequence. We have 
computed several features for these nodes, and they are listed in Table 2, the first five rows of 
which have been taken directly from the GNN-DOVE15 paper. The edges in the network represent 
the connection or bond between atoms as well as the distances between them. We have used two 
graphs following the method in GNN-DOVE which are denoted by G1 and G2 that have their edges 
represented by two adjacency matrices A1 and A2 respectively. In graph G1, only atoms that are 
connected by covalent bonds have edges between them to prioritize information from atoms that 
are connected and adjacent to one another in the 3D structure, whereas in G2, atoms within a short 
distance i.e. 10Å have edges connecting them to capture information from nearby atoms or locality. 
For G2, the atoms do not need to have covalent bonds between them to be connected by edges. 
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This is done following GNN-DOVE architecture and in our case, it helps to prioritize information 
from atoms that are closer to each other. We can define the two adjacency matrices in the following 
way. Here dij represents the distance between atoms i and j. The parameters µ and s are learnable 
parameters with initial values set to 0 and 1 respectively. 
 

𝐴!"# = #1, 	𝑖𝑓	𝑎𝑡𝑜𝑚𝑠	𝑖	𝑎𝑛𝑑	𝑗	𝑎𝑟𝑒	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡	𝑏𝑜𝑛𝑑	𝑜𝑟	𝑖	 = 	𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ……….(1) 

 

𝐴$"# = ;𝑒
!(#$%!&)

(

) , 	𝑖𝑓	𝑑"# < 	10Å	
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

……….(2) 

 
 
Gate Augmented Mechanism with Attention 
 
We then apply Attention and Gate-Augmented Mechanism in the same way as that of GNN-
DOVE.  Let us explain the Gate-augmented graph attention layer. If xin represents the node 
features, we can write it as: xin = {x1in, x2in, …, xNin} where, x belongs to the real number space i.e. 
x Î ℝF with F denoting the dimension of the node feature. At first, to retrieve the relative 
importance between the i-th and j-th node, the pure graph attention coefficient eij is computed 
using the following set of equations: 
𝑥′" = 𝑊𝑥""%……………(3) 
𝑥′# = 𝑊𝑥#"%……………(4) 
𝑒"# = 𝑥′"

&𝐸𝑥′# + 𝑥′#
&𝐸𝑥′"……………(5) 

 
Equation 5 gives the pure graph attention coefficient. Here, W and E are learnable matrices. This 
coefficient is only computed for cases where we have positive values of Aij. To combine 
information from the pure graph attention coefficient with the adjacency matrix, we compute a 
normalized attention coefficient aij in equation 6. 
 

𝑎"# =	
'()	(,$%)

∑ '()	(,$%)%∈+$
𝐴"#…………..(6) 

 
Here, Ni represents the set of neighbors of i-th node. After this, we have calculated the updated 
node feature using the following equation: 
 
𝑥′′" =	∑ 𝑎"#𝑥′##	∈0$  …………. (7) 
 
Equation 7 therefore, allows the consideration of node features. Finally, we have used the gate 
mechanism where we incorporate information from the input by inserting a residual connection. 
The gated graph attention is, thus, given in Equation 9. 
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𝑐" = 	𝜎[𝐷(𝑥"||𝑥"11) + 𝑏]………….. (8) 
 
𝑥"234 = 𝑐"𝑥" + (1 − 𝑐")𝑥"′′…………… (9) 
 
Equation 8 finds the coefficient value ci first. 𝜎 represents a sigmoid function. D and b are learnable 
parameters. The symbol || represents concatenation. Equation 9 gives the linear combination of xi 
and xi''. If we denote this whole method involving attention and gate-augmented mechanism as 
gate-augmented graph attention layer (GAT), then we can use equation 10 to get the node 
embedding. 
 
𝑥"234 = 𝐺𝐴𝑇(𝑥""%, 𝐴) ……….. (10) 
 
Since we have two adjacency matrices, and as we use a shared GAT for both of them, we will have 
two types of such node embeddings, x1=GAT(xin,A1) and x2=GAT(xin,A2). To combine the 
information coming from adjacent and non-adjacent residues in the sequence, we added the 
embeddings of the two graphs. Note that equation 11 is different from the one in GNN-DOVE 
since in GNN-DOVE, x1 was subtracted from x2 to retrieve the information coming only from the 
intermolecular interactions. In our case, we want to combine the information from both adjacent 
and non-adjacent residues. So, the final output can be written as: 
 
𝑥234 =	𝑥! +	𝑥$……………. (11) 
 
The GAT mechanism is done thrice iteratively i.e. the 𝑥234 becomes 𝑥"% and the whole process is 
repeated thrice after which we sum up the node embeddings for the whole graph to get the final 
representation which can be seen in equation 12.  
 
𝑥56789 =	∑ 𝑥::	∈;  …………….. (12) 
 
This 𝑥56789	was then sent to a fully connected network with 4 layers and dimensions following 
the ones in GNN-DOVE15 (140 x 128 x 128 x 128). We have used RELU activation function 
between these layers. Finally, the output was sent through a sigmoid function to get one probability 
value between 0 and 1 which will represent the probability that a sequence is functional. 
Figure 1 shows the overall framework of atom-level GNN. The main idea has been borrowed from 
GNN-DOVE15. Two graphs are built from each peptide with atoms as nodes, and the final node 
embedding is obtained by adding the two node embeddings from the two types of graphs. This is 
done thrice iteratively after which the embedding is sent to a fully connected network. Figure 1 
shows the dimensions of the layers. The final output is the probability value P which is between 0 
and 1. 
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Atom-level GNN node features 
 
The atom-level GNN has the following two differences when compared to the original GNN-
DOVE: (1) After applying gate-augmented graph attention layer (GAT) on the input node feature 
xin, when we get two node embeddings, x1=GAT(xin,A1) and x2=GAT(xin,A2), they are added up to 
get the final embedding xout following equation 11, instead of subtraction in GNN-DOVE, since 
the goal in GNN-DOVE was to capture the information that only comes from the intermolecular 
interactions with other nodes in the protein complex model, whereas in our case, we are dealing 
with one peptide structure and want to combine the information from both adjacent and non-
adjacent atoms; (2) Along with the GNN-DOVE features, we have also added two more types of 
features which consider the position of the atoms in the sequence and the type of residue they 
belong to. These features are listed in Table 2. The first five rows represent GNN-DOVE features 
and have directly been taken from the GNN-DOVE15 paper. They represent composition-based 
features of the atoms. The sixth feature is a new one and it represents the position of the residue 
that this current node or atom is in. Since there are 30 residues in each sequence, there can be 30 
possible values and therefore this feature needs 30 columns for representation as it is one-hot 
encoded. The final feature represents the type of residue this atom belongs to. Since there are 20 
different types of amino acids, there can be 20 possible values for this feature. 
 
Feature name No. of columns for representation 
Atom type (C,N,O,H,S,F,P,Cl,Br,B,H) 10 
Degree or connections of atom (0,1,2,3,4,5) 6 
No. of connected H atoms (0,1,2,3,4) 5 
No. of implicit valence electrons (0,1,2,3,4,5) 6 
Aromatic (0 or 1) 1 
Position of residue the atom belongs to 30 
Type of residue the atom belongs to 20 
 
Table 2: List of features used in the Atom-level GNN. First five rows are taken from GNN-
DOVE15 paper. 
 
Graph Neural Network (Residue-level GNN) 
 
In the residue-level GNN network, the nodes represent the C-alpha atoms in the amino acids. Since 
all the sequences in our dataset have a length of 307, there are 30 nodes, each representing an amino 
acid residue’s C-alpha atom. These nodes have features, which are listed in Table 3 and described 
in detail in the next subsection. On the other hand, the edges represent the connection and distances 
between the residues in the sequence. Following the technique used in GNN-DOVE15, we define 
two graphs G1 and G2 which have their edges represented by two adjacency matrices A1 and A2 
respectively. G1 represents the graph where only adjacent residues are connected to each other. 
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Two residues are adjacent if their indices in the sequence are consecutive, and this has no 
connection to the physical distance between them. Therefore, A1 has only binary values. On the 
other hand, graph G2 is a graph that takes into consideration the Euclidean distance between the 
three-dimensional coordinates of the residues. We have updated the adjacency matrix definition, 
and the changed equations are given in equation (13) and equation (14).  
 

𝐴!"# = #1, 	𝑖𝑓	𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠	𝑖	𝑎𝑛𝑑	𝑗	𝑎𝑟𝑒	𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒	𝑡𝑜	𝑒𝑎𝑐ℎ	𝑜𝑡ℎ𝑒𝑟	𝑜𝑟	𝑖	 = 	𝑗
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ……….(13) 

 
𝐴$"# = O𝑒<=>$%……….(14) 
 
Here dij is the distance between i-th and j-th residues. Here, λ is a learnable parameter and the 
initial value of λ is set to be 0. The idea of graph formulation has been borrowed from GNN-
DOVE15 but this adjacency matrix A2 has a different definition since in GNN-DOVE15, non-zero 
values were only considered when two residues were within 10 Å distance and the distance 
equation used there decayed for larger distances. In our case, we consider all 30 residues and 
change the decay formula to ensure that information from all other 29 residues is incorporated into 
the adjacency matrix, rather than only considering nearby residues. This is introduced in the 
residue-level GNN to capture information from all the residues instead of limiting the 
neighborhood within a certain locality. 
 
After this, we apply the Attention and Gate Augmented Mechanism in the same way as we did in 
the atom-level GNN explained in the previous subsections. Figure 1 shows the overall framework 
of residue-level GNN. The main idea has been borrowed from GNN-DOVE15. Two graphs are 
built from each peptide with C-alpha atoms as nodes. The two node embeddings are added up and 
this process is repeated thrice before sending them to a fully connected network. The final output 
(P) is a value between 0 and 1. 
 
Node features (Residue-level GNN) 
 
We have computed some node features, i.e. for a sequence, we apply some features to each residue. 
All features are one hot encoded. They are listed in Table 3 and described in detail below. 
 

Feature name No. of columns for representation 

Position of residues 30 

Type of amino acid  20 

Type of residue (acidic, basic, aromatic) 3 
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Secondary structure (helix,beta,coil) 3 

pLDDT 7 

Relative accessible surface area 10 

Amphipathic index 6, 11, 24, 47 (depending on histogram bin-size) 

 

Table 3: List of features used in the Residue-level GNN. 

Since the length of the sequences is 307, one residue can be assigned to one out of 30 positions and 
that’s what the first feature represents. It is one hot encoded which means we place 1 under the 
column that corresponds to that residue’s position. As there are 20 possible amino acids, the second 
feature has 20 columns and the residue will get 1 under its corresponding amino acid name, and 
the rest will be 0. For the third feature, we are only considering the appearance of some special 
residues in the sequence: acidic: Aspartic acid (D), Glutamic acid (E); aromatic: Tryptophan (W), 
Phenylalanine (F), Tyrosine (Y); and basic: Arginine (R), Lysine (K), Histidine (H). Since there 
are three such sub-groups (acidic, basic and aromatic), we have used 3 columns for this feature. 
 
For secondary structure determination, we have used DSSP19 which gives 9 different types of 
structures as output. We have mapped these 9 to 3 being just alpha helix, beta sheet and coil, 
resulting in 3 columns for this feature representation.  
 
We have used a structure prediction method (ESMFold11) for determining the structures of these 
sequences. This method also provides a confidence value which is a per-residue estimate of how 
confidently it predicted the structure. This is called the predicted local distance difference test 
(pLDDT). These values range from 0 to 100 where 0 means least confident and 100 means most 
confident. We have divided this range up into bins of size 10 giving 10 different bins (0-10,10-
20,20-30….and so on). Since the dataset contained negligible samples with pLDDT less than 40, 
we have considered all values less than 40 to be one bin, which reduced the number of bins to 7 
finally. For the relative accessible surface area feature, we have used DSSP’s output again which, 
along with secondary structure information, also outputs the accessible surface area values of the 
residues in the sequence. The accessible surface area is the surface area of the residue that is 
exposed or accessible to a solvent. Since the sizes of the residues can vary greatly depending on 
the type of amino acid, that’s why they are normalized with the help of a maximal solvent 
accessibility for each residue, the values of which have been taken from Table 1 of Rost et al. 
(1994)20. So, we can get the definition of relative accessible surface area from equation 15. 
 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒	𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑎𝑟𝑒𝑎 = 	 7??,@@"AB,	@36C7?,	76,7

D7E"D7B	7??,@@"A"B"4F
…….(15) 
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These values range from 0 to 100 where 0 means least exposed i.e. the residue is completely buried 
whereas, 100 means greatly exposed. We again divided this range up into bins of size 10, which 
gives us 10 bins in total and hence, this feature has 10 columns. 
 
For the final feature, we have investigated the amphipathic index (AI) property of the data samples 
that have helices. An amphipathic alpha helix is basically a helix which contains both hydrophobic 
and hydrophilic residues arranged in a periodic manner such that one side of the helix becomes 
completely hydrophobic and the other becomes hydrophilic. The word ‘side’ here refers to two 
different faces of the helix that can be created if we look at the helical structure’s top view along 
its axis. We take the definition of amphipathic index of a helix from Cornette et al. (1987)21 and 
follow the method introduced in this paper to compute the amphipathic index of helices. According 
to Cornette et al. (1987), there are approximately 3.7 residues in one turn of an alpha helix, and 
therefore, we should notice a periodic variation in the hydrophobicity values of residues. This 
period should approximately be 3.7 residues per cycle. To detect this periodic variation, they 
calculate Fourier transform power spectrum using equation (16).  
 
𝑃(𝜔) 	= 	 S∑ ℎ:𝑐𝑜𝑠𝑘𝜔B<!

:GH U$ +	S∑ ℎ:𝑠𝑖𝑛𝑘𝜔B<!
:GH U$……….(16) 

 
Here, l represents the length of the peptide sequence, hk denotes the hydrophobicity value for the 
k-th residue in the sequence and 𝜔 is the angular frequency. The hydrophobicity values have been 
taken from the PRIFT21 scale. Since hydrophobicity values are periodic in amphipathic helices, 
there should be a noticeable peak in the power spectrum. The amphipathic index is defined as the 
measure of how much of the power spectrum is concentrated around this peak. Therefore, the 
formula for AI can be written in equation (17). 
 

𝐴𝐼[𝑃(𝜔)] 	= 	
,
(-° ∫ J(K)>K,,/°

0-°
,

,0/°∫ J(K)>K,0/°
/°

………..(17) 

 
The width of the interval in the numerator is set to represent approximately the distance between 
half the maxima on each side of the peak of the spectra. Therefore, the AI value corresponds to 
how much of the area is centered about the expected peak of the spectrum compared to the total 
area under the spectrum. If a helix is amphipathic, this value is expected to be high, whereas, if it 
is not amphipathic, the numerator should be smaller and therefore the AI value should also be less. 
Since amphipathic index is a property of helix, we have at first considered sequences that have 10 
consecutive residues that have been classified by DSSP to have a helical structure. There may be 
more than one such 10 length windows in a sequence. However, if there is no such window of 10 
consecutive alpha helices in a sample, it has been removed from the dataset, resulting in a reduced 
dataset for particularly this feature since amphipathic index is specific to samples that have at least 
some forms of alpha helix. Note that this sort of formulation may cause one residue to belong to 
multiple windows of helix. Therefore, for each residue, we have taken the average AI of all the AI 
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values corresponding to the different helix windows that the residue belongs to. So if we have a 
sequence s = {s1,s2….s30}, and if residues s1 to s11 are all part of a helix, then s2 must be a part of 
two 10-length windows, the first being the window range (w1) of s1 to s10, and the second (w2) 
being s2 to s11. Then if we get two AI values AI1 and AI2 for w1 and w2 respectively, we will take 
an average AI value, 𝐴𝐼7L5 =

MN,OMN(
$
. This AIavg will be the amphipathic index value corresponding 

to residue s2. Cornette et al. (1987) has mentioned 2 to be a reasonable cutoff meaning that it is 
more likely for a helix to be amphipathic if its AI value is greater than 2. We have then divided up 
the range of amphipathic index values to bins. Depending on the bin-size, the number of features 
may differ as well. For example, if the bin size is 1, then we only take the following bins: 0 to 1, 
1 to 2, 2 to 3, 3 to 4, 4 to 5 and none (if the residue falls in no helix) which give us 6 columns for 
this feature. In this way, we take bin sizes of 0.5, 0.2 and 0.1 as well resulting in 10, 23 and 45 
columns respectively.  
 
Table 3 shows the number of samples of interest for this amphipathic index feature i.e. samples 
with at least 1 window of 10 consecutive helices. We can observe that, more than 50% of the data 
contains no such helix, and as a result considering the whole dataset would mean that majority of 
the samples will have zeros under all the feature columns. Consequently, we only considered a 
reduced subset of samples as shown in Table 4. We have simply filtered out the sequences with 
no 10-length helix from the train, validation and test sets. 
 
 No. of samples in the full 

dataset 
No. of samples of interest 
(at least one 10-length helix) 

Train set 790,751 225,597 
Validation set 158,150 45,119 
Test set 105,434 30,080 
Total 1,054,335 300,796 
 
Table 4: Number of samples of interest (at least one 10-length helix window) for 
amphipathic index feature analysis. 
 
Logistic Regression 
 
To understand the importance of different kinds of features, we trained a logistic regression model 
with 13 different kinds of features. Logistic regression is a simple network, and the features were 
computed on a sequence level, rather than a residue level. For each sequence, we computed both 
sequence and structure-based features. Structure prediction was done with ESMFold and to predict 
secondary structure, we used DSSP. We computed the set of features listed in Table 5. 
 
Feature 
serial 

Name of feature No of columns for 
representation 
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 Sequence based features   
S1 Count of amino acids  20 
S2 Position of acidic residues 30 
S3 Position of basic residues 30 
S4 Position of aromatic residues  30 
S5 Difference between count of acidic and aromatic 

residues  
7 

 Structure based features  
S6 Radius of gyration  5 
S7 Secondary structure  3 
S8 Distance between acidic residues  10 
S9 Distance between basic residues  10 
S10 Distance between aromatic residues  10 
S11 Distance between acidic and basic residues  10 
S12 Distance between acidic and aromatic residues  10 
S13 Distance between aromatic and basic residues  10 
 
Table 5: List of features used in the Logistic Regression model. 
 
Logistic regression is a simple model and cannot handle complex representations of the data. We 
have computed features on a sequence-level for the regression model. There could be other features 
that are more suited for a residue-level or atom-level representation, but it will not be very 
meaningful to simply take an average of those embeddings to represent them on a sequence-level. 
Moreover, it was observed that the regression model achieved quite high accuracy (over 95%) with 
only sequence-based features and addition of more structure-based features was not improving the 
performance noticeably. Therefore, the model appears to have been saturated and adding more 
features may not contribute significantly. 
 
There are 5 types of sequence-based features and 8 types of structure-based features. The first 
sequence-based feature is the count of amino acids feature. Since there are 20 different types of 
amino acids, this feature contains 20 columns, each corresponding to a different type of amino 
acid. We counted the number of each type of amino acid across the sequence and put that value 
under the corresponding column. For example, if a sequence has 3 Tryptophan (W), we put 3 under 
the column of W.  
 
The second sequence-based feature represents the position of acidic residues. We have only 
considered the acidic residues for this feature which are Aspartic Acid (D) and Glutamic Acid (E). 
This feature contains 30 columns corresponding to 30 possible positions of the residues in the 
sequence. If a certain position contains any one of these 2 acidic residues, we assign 1 in that 
column, and 0 otherwise. The third and fourth features are computed in the same way as this one. 
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The difference is that we consider only basic residues in the third feature and aromatic residues in 
the fourth feature. By basic residues, we refer to Arginine (R), Lysine (K), and Histidine (H). By 
aromatic residues, we mean Phenylalanine (F), Tryptophan (W) and Tyrosine (Y). These two types 
of features were computed in the same way as that of the position of acidic residues and hence, 
they also contain 30 columns each. 
 
The final sequence-based feature is the acidic-aromatic balance which refers to the difference in 
the count of acidic and aromatic residues in the sequence. We count the total number of aromatic 
residues (say Nar) and the total number of acidic residues (say Nac) in the sequence and find the 
difference i.e. Nar - Nac. We divide this difference of count feature up into 7 bins or columns which 
are as follows: < -10, -10 to -5, -5 to < 0, 0, > 0 to +5, +5 to +10, > +10. The negative values mean 
that there are more acidic residues than aromatic residues and the positive values mean that there 
are more aromatic residues than acidic residues. 
 
Now let’s come to the structure-based features. The first one is the radius of gyration feature. 
Radius of gyration is the root mean square distance of particles from axis. In our case, we consider 
the center of the peptide structure to be the axis. Let the center coordinate be C(Cx,Cy,Cz) and let 
the coordinate of any atom be P(Px,Py,Pz). Then the distance between this atom and the center is 
the Euclidean distance between points P and C in the 3D coordinate system. The point C is 
obtained by taking the average coordinates of all the atoms in the peptide structure. Let S be the 
set of all atoms in one sequence and let the size of S be N. 
 
𝐶E =	

∑ J12	∈4
0

;….(18) 𝐶F =	
∑ J12	∈4

0
;…..(19) 𝐶P =	

∑ J12	∈4
0

; ….(20) 
 
We can get the x, y, and z coordinates of C from equations 18, 19 and 20 respectively. The distance 
between a point P and C is simply the Euclidian distance between the two and can be written as 
r(P,C): 
𝑟(𝑃, 𝐶) = 	X(𝑃E − 𝐶E)$ + (𝑃F − 𝐶F)$ + (𝑃P − 𝐶P)$……(21) 
 
Next, we compute the Radius of gyration value for a sequence using equation 22.  
 

𝑅5 =	
∑ 6$(+
$5,
0

………….(22) 
 
All these distance values are computed in Angstroms. The Rg values are again divided up into 5 
bins of length 5 each, which are: 5 to 10, 10 to 15, 15 to 20, 20 to 25 and 25 to 30 (there are no Rg 
values greater than 30 or less than 5 for our dataset). A smaller Rg value indicates that the protein 
is more compact, whereas a larger radius of gyration refers to a relatively longer peptide structure. 
The next 6 set of features are the distance-based features. We can divide them into two groups: the 
distance between same type of residues, and the distance between different types of residues. The 
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first group includes the distance between acidic residues, distance between basic residues and 
distance between aromatic residues. For computing the distance between acidic residues, we first 
considered the coordinates of the residues which we consider acidic (Aspartic acid and Glutamic 
acid). Then we compute all pairwise Euclidean distances between all possible pairs of acidic 
residues. For example, if there are 3 acidic residues (say a,b and c) in the sequence, then we 
compute all three possible distances distance(a,b), distance(b,c) and distance(c,a). Then we put 
these distance values in histograms. We consider 9 such intervals, each of size 10 (0-10,10-
20,….80-90) since there are no distance values greater than 90 and also consider an additional flag 
feature which receives binary values and will get 1 if there are no acidic residues at all, and 0 
otherwise. For distance between basic residues, we follow the same technique considering only 
basic amino acids (Arginine, Lysine and Histidine) and for distance between aromatic residues, 
we compute the features in the same way considering the aromatic amino acids (Tryptophan, 
Tyrosine and Phenylalanine). We now come to the discussion about the second group of distance-
based features which represent the distances between different kinds of residues. The first is 
distance between acidic and basic residues. We again take the coordinates of acidic residues and 
basic residues in the sequence and consider the pairwise distance between all possible pairs. For 
example, if there are 3 acidic residues and 2 basic residues then we have 3 x 2 = 6 possible pairs 
and hence, 6 possible distances. We again put them into bins of length 10 (0-10, 10-20,…..80-90) 
and keep a flag feature if either of acidic or basic residues is absent. 
 
 
Choice of structure prediction method 
 
In both our GNN and Logistic Regression methods, we needed to use structure-based features to 
train the models. But our input is only the sequence. For structure prediction from sequences, we 
have used ESMFold. We opted to use ESMFold over the more popular AlphaFold for mainly two 
reasons: (1) ESMFold is a lot faster than AlphaFold and given our dataset size (~1 million)7, we 
found this option more reasonable (2) We ran ESMFold and AlphaFold structure prediction 
methods on another set of 240 sequences (169 functional and 71 non-functional) that are also 
artificially generated. We then ran DSSP on these structures to get their secondary structure 
information. We considered a sequence to fall under the helix category if it had at least one window 
of 4 consecutive helices in its structure. It was seen that ESMFold predicted a lot more helices 
among the functional sequences compared to non-functional ones and this difference was seen to 
be statistically significant, whereas, for AlphaFold, no statistically significant result was seen. 
Table 6 gives the number of helices predicted by AlphaFold and ESMFold on the 240 sequences. 
 
 AlphaFold ESMFold 
Functional (169) 24 helices 59 helices 
Non-functional (71) 10 helices 15 helices 
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Table 6: Number of helices predicted by AlphaFold and ESMFold on the dataset of 240 
sequences. 
 
We wanted to see if these figures are statistically significant. Basically, we wanted to see if a 
certain sequence being functional has some connection with a structure prediction method 
predicting it to be helical or not. For that, we chose to perform Pearson’s chi-squared test where 
the null hypothesis is that there is no statistical significance between the number of helices in 
functional and non-functional sequences. For AlphaFold, we got a p-value of 0.98 which is greater 
than 0.05 showing that the result is not statistically significant. However, with ESMFold 
predictions, we got a p-value of 0.03 which is less than 0.05 showing that the result is statistically 
significant. Therefore, since we saw noticeable differences in the structures of functional and non-
functional sequences predicted by ESMFold, we chose to predict the structures of our ~1 million 
peptide sequences using this method. 
 
Training 
 
For training the data, we had to resample the training set since the dataset is very imbalanced. To 
balance the dataset, we repeated samples from the positive or functional pool of sequences, and 
eventually sampled the same number of positive and negative samples. However, we did not 
balance the validation set or the test set since the inference should be done on a dataset that 
represents the true unsampled distribution of the data and testing on a balanced dataset may 
overestimate the F1 score. 
 
For training the logistic regression model, we used L2 regularization or Ridge regression. For 
training Graph Neural Networks, we used the Adam optimizer and Binary Cross Entropy loss. We 
used a learning rate of 0.0001 for all the models and a dropout rate of 0.3 to avoid overfitting. For 
the residue-level GNN, we used a batch-size of 16,384 considering that the training set size is quite 
large. On the other hand, for training the atom-level GNN, we used a batch-size of 2048 given the 
computational resources. We used NVIDIA TITAN X (Pascal) (12GB), NVIDIA RTX A5500 
(24GB), and NVIDIA RTX A6000 (48GB) GPU for running the GNN-related experiments. We 
trained different models with various feature combinations, and they converged after 
approximately 350 epochs. 
 
Post-processing to deal with low precision  

Since we did not balance the test data, although the training was done on a balanced dataset, we 
observed very low precision and thus low F1-scores when we determined the predictions on our 
test set using a default threshold of 0.5 to classify the prediction as positive or negative. In binary 
classification, we need to set a threshold (which is usually 0.5) such that, if the predicted 
probability is greater than this threshold, the sample is classified as positive (or functional, in our 
case) and if the probability is smaller than the predetermined threshold, the sample is classified as 
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negative (or non-functional). Adjusting the threshold is a matter of trade-off between precision 
and recall since, if we increase the threshold, fewer samples are classified as positive, leading to 
more false negatives and hence, lower recall. But if we decrease the threshold, fewer samples are 
classified as negative, leading to lower precision. Since the problem we primarily faced was low 
precision that resulted from a very imbalanced test set containing only 3.5% functional sequences, 
we decided to experiment with higher thresholds. We used the validation set for this task. For 
every epoch, the trained model was tested on the validation set and predictions were determined 
using a set of 10 thresholds – 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. For example, 
for 350 epochs, we saved 350 models and chose the combination of the model and the threshold 
that resulted in the highest F1-score on the validation set. Later the predictions on the test set were 
determined based on this final model that we chose after the threshold adjustment task. 

Results 

Evaluation metric 

We used the following metrics for evaluating the performance of our models on the test set. Note 
that, samples that are truly functional and are predicted to be (1) functional, are true positives (2) 
non-functional, are false negatives. If they are truly non-functional and predicted to be (1) non-
functional, they are true negatives (2) functional, they are false positives.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	
2	 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

We have also used Area Under the Receiver Operating Characteristic (AUROC) curve as a 
performance metric. The Receiver Operating Characteristic curve is a graphical plot which is used 
to evaluate the performance of a binary classifier model. The X-axis denotes the False Positive 
Rate (FPR) and the Y-axis denotes the True Positive Rate (TPR). The FPR versus TPR values are 
plotted at different threshold points between 0 to 1. A curve whose area reaches 1 is a very accurate 
model that can differentiate between positives and negatives correctly at varied thresholds.  

Combining structure-based features with sequence-based features improves performance of 
logistic regression 
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For logistic regression, we have experimented with 3 kinds of models based on the type of features: 
(1) logistic regression with only sequence-based features, (2) logistic regression with only 
structure-based features, and (3) logistic regression with both sequence and structure-based 
features. The results are shown in Table 8 where it can be observed that only sequence-based 
features already perform very well, achieving 95.4% accuracy. In fact, if we compare only 
sequence-based features with only structure-based features, the former performs better for all 
metrics. This goes to show that the sequence alone has very powerful information that can 
distinguish between functional and non-functional samples. Compared to only structure-based 
features, they are a better classifier. However, if we combine all the sequence and structure-based 
features, the performance improves compared to the sequence-based features for all metrics. 
Although the accuracy improves very slightly – 95.4% to 95.5%, there is a decent increase in F1 
score – 48.3% to 49.6% which goes to show that the combined model is better at handling the 
imbalanced test set. There is also a slight increase in the area under the ROC curve – 94.1% to 
94.4%, telling us that the combined model can classify instances better at different thresholds. 
Both precision and recall are increased for the combined model, which means that both false 
negatives and false positives are reduced, leading to a better classifier overall when structure-based 
features are combined with sequence-based features. We can also view the confusion matrices in 
figure 2 to comprehend these results. Compared to figure 2(c), we can see more true positives and 
true negatives in figure 2(e). The combined logistic regression model classifies correctly 110 more 
samples that were not classified accurately by the sequence-only model. This goes to show that 
structural information is indeed relevant and useful for this classification task. 

Addition of secondary structure feature in residue-level GNN yields best results for all 
performance metrics 

For experimenting with our residue level GNN model, we have trained models with different 
feature combinations as shown in Table 7. 

Combination# Features  
1 Position of residues, Type of amino acid  
2 Position of residues, Type of amino acid, Type of residue – 

acidic/basic/aromatic 
3 Position of residues, Type of amino acid, Type of residue – 

acidic/basic/aromatic, Secondary Structure  
4 Position of residues, Type of amino acid, Type of residue – 

acidic/basic/aromatic, pLDDT  
5 Position of residues, Type of amino acid, Type of residue – 

acidic/basic/aromatic, Relative accessible surface area  
6 Position of residues, Type of amino acid, Type of residue – 

acidic/basic/aromatic, Amphipathic index (AI) 
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Table 7: Feature combinations used in the experiments for determining the performance of 
residue-level GNN models.  

The performance of these models (except row 6 which is shown in a different table – Table 10) 
are given in Table 8. We consider combination 2 with position of residues, type of amino acid, 
type of residue – acidic/basic/aromatic as the baseline and added other features to see if they 
improve performance any further. This combination already achieved really good performance, 
and although addition of pLDDT and accessible surface area did not improve the performance 
anymore, the addition of secondary structure as a feature improved the F1 score. Besides, we also 
experimented with the Amphipathic index feature on a subset of the dataset as explained in Table 
4 of the methods section and compared it with our baseline model that was trained, validated and 
tested on the same set of samples. These results are shown in Table 10. 

 

 

Table 8: Performance of Atom-level GNN, Residue-level GNN and Logistic Regression 
models. Combination numbers are mapped to features in Tables 7 and 9. 

From Table 8, we can observe that, compared to the baseline model (combination 2), combination 
3 which simply adds the secondary structure feature gives an increased F1 score of 71%. Its 
accuracy and AUROC are the same as that of the baseline but if we consider all three metrics – 
accuracy, F1 score and AUROC score, then combination 3 gives the best results in the whole table. 
This tells us that addition of secondary structure results in a model better at handling the 
imbalanced dataset, given its higher F1 score. It gives the best classifier among all the models that 
we experimented with on this dataset of more than 1 million sequences. Therefore, secondary 
structure feature is an important feature that can distinguish between functional and non-functional 
samples very well as shown by the residue-level GNN model, giving us a very high accuracy of 
97.9%, F1 score of 71% and AUROC of 97.1%. This result can also be understood better from 
figure 2. We can observe that among all the confusion matrices in figure 2, the highest number of 
true positives can be seen in figure 2(h) which corresponds to combination 3. This means that this 
feature combination can identify the highest number of functional sequences in the dataset 
compared to any other model.  

Model Atom-
GNN 
Combo#1 

Atom-
GNN 
Combo#2 

Residue-
GNN 
Combo#1 

Residue-
GNN 
Combo#2 

Residue-
GNN 
Combo#3 

Residue-
GNN 
Combo#4 

Residue-
GNN 
Combo#5 

Logistic 
Regression 
(sequence) 

Logistic 
Regression 
(structure) 

Logistic 
Regression 
(combined) 

Accuracy 0.972 0.974 0.979 0.979 0.979 0.978 0.978 0.954 0.948 0.955 
F1 score 0.631 0.659 0.704 0.702 0.710 0.701 0.700 0.483 0.424 0.496 
AUROC 0.964 0.967 0.969 0.971 0.971 0.969 0.971 0.941 0.918 0.944 
Precision 0.585 0.620 0.690 0.699 0.688 0.678 0.672 0.399 0.347 0.408 
Recall 0.686 0.703 0.719 0.705 0.734 0.727 0.731 0.614 0.545 0.632 
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Other features like pLDDT and accessible surface area have not improved the performance any 
further as shown in columns for combinations 4 and 5. Therefore, they have not been able to add 
any meaningful information to the binary classifier that we are developing.  

Both residue-level and atom-level GNN outperform logistic regression 

From Table 8, we can see that, all residue-level GNN models outperform the logistic regression 
models. This is quite intuitive since logistic regression is a very simple model and it cannot capture 
the complex relationships between nodes – something that we can do using graph neural networks. 
GNN can aggregate information from neighboring or adjacent nodes and can capture non-linear 
relationships in the data as opposed to logistic regression. Although logistic regression already 
achieves a very high accuracy on this dataset – 95.5%, residue-level GNN can make it even more 
accurate with 97.9% accuracy. One very crucial thing to note is that logistic regression gives very 
poor F1 scores compared to residue-level GNN. In fact, the F1 scores are below 50%. This implies 
that the logistic regression models cannot achieve a good balance between precision and recall, 
and we have observed that they give very low precision. We can thus conclude that a simple model 
like logistic regression may appear to be very accurate but given a low F1 score on the imbalanced 
test set, it is obvious that they are not doing a good job in identifying the correct number of 
functional instances and are seen to generate many false positives. Besides, the accuracy and 
AUROC scores are also lower compared to residue-level GNN implying that the graph neural 
networks are superior for this classification task compared to logistic regression. This can also be 
seen in figure 2 where both the true positives and true negatives in figure 2(c-e) are fewer compared 
to the atom-level GNN models as shown in figures 2(a,b) and residue-level GNN models in figure 
2(f-j) when trained and evaluated on the same dataset. 

Position of residues is an important feature as shown by the atom-level GNN results 

For experimenting with the atom-level GNN, we tried two combinations of features which are 
shown in Table 9. The GNN-DOVE features correspond to the first five rows of Table 2. 

Combination# Features 
1 GNN-DOVE features, Type of amino acid 
2 GNN-DOVE features, Type of amino acid, Position of residues 

Table 9: Feature combinations used in the experiments for determining the performance of 
atom-level GNN models. 

Both atom-level GNN models give high accuracies, but atom-level GNN combination 2 
outperforms atom-level GNN combination 1 for all performance metrics as we can see from Table 
8. Combination 2 simply adds the feature of position of residues to combination 1. Addition of this 
feature improves the performance of the GNN which means that out of the 30 possible positions, 
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where a particular residue is situated is important in determining the functionality of these peptide 
sequences. We can also comprehend this result from the confusion matrices in figures 2(a) and 
2(b). We can see more true positives and true negatives in figure 2(b) compared to figure 2(c). In 
fact, addition of the position feature allows the GNN to classify 272 more samples accurately, 
indicating that this is an important feature in determining functionality. 

Residue-level GNN outperforms atom-level GNN  

Although both Graph Neural Network models show better performance compared to logistic 
regression, among the two types of GNN, residue-level GNN is seen to perform better than atom-
level GNN. In fact, all the five residue-level models with different combinations of features 
perform better than both the atom-level models for all performance metrics as shown in Table 8. 
The observation implies that for this particular task, having residue-level nodes in the graph 
formulation is more suitable and provides enough information to classify the sequences. Having 
atom-based formulation provides additional information that appears to be redundant for our 
classification task. Moreover, in the atom-level GNN, we do not consider any atoms beyond 10 Å 
whereas in the residue-level GNN, we take into consideration all the residues in the entire 
sequence. This shows that information from residues that are distant is also important in the GNN 
which is rather intuitive since the peptide sequences are relatively small (only 30 residues). This 
can be clearly seen in figure 2 since any true positive or any true negative value among the residue-
level GNN models as shown in the confusion matrices of figure 2(f-j) are better than the true 
positive and true negative values respectively for the best atom-level GNN model as shown in 
figure 2(b). 

Amphipathic index is an important feature which improves performance compared to 
baseline model 

Depending on the size of the histogram bins, we have experimented with 4 different models for 
analyzing the Amphipathic index (AI) feature. These are shown in Table 10. 

Model Residue-
GNN 
(Combo#2) 

Residue-
GNN 
(Combo#6) 
bin-size = 1 

Residue-
GNN 
(Combo#6) 
bin-size = 0.5 

Residue-
GNN 
(Combo#6) 
bin-size = 0.2 

Residue-
GNN 
(Combo#6) 
bin-size = 0.1 

Accuracy 0.975 0.974 0.978 0.977 0.973 
F1-score 0.594 0.594 0.614 0.594 0.574 
AUROC 0.969 0.967 0.969 0.966 0.966 
Precision 0.487 0.479 0.535 0.521 0.468 
Recall 0.761 0.782 0.721 0.691 0.741 
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Table 10: Performance of residue-level GNN with feature combination 6 for different bin-sizes 
on the smaller subset of the original dataset. 

It can be observed that compared to the baseline model shown in the first column of Table 10, 
addition of amphipathic index feature improves performance with a bin size of 0.5 and 0.2. But 
with a bin size of 0.5, we get higher accuracy, F1 score as well as similar AUROC scores. 
Therefore, for this subset of the dataset, the best model considering all three metrics of accuracy, 
F1 score and AUROC is given by the model in the third column with feature combination 6 and 
bin size of 0.5. The bin sizes were adjusted to see if we can get any feature representation of 
Amphipathic index that can give us a better classifier and this has been achieved on the reduced 
subset of the original dataset, leading to an accuracy of 97.8% compared to the baseline model’s 
performance of 97.5%. The F1 score is seen to have an even more noticeable increase – from 
59.4% to 61.4% which implies that it does a much better job at handling class imbalance in the 
dataset. We can thus conclude that the amphipathic index feature is an important feature which has 
a meaningful contribution in determining whether a certain peptide sequence will be functional or 
not. From figure 2, we can observe that the confusion matrix in figure 2(m) representing the 
addition of amphipathic index feature with bin-size 0.5 gives the highest number of true negatives 
among figures 2(k-o) which represent models trained and evaluated for analyzing the amphipathic 
index feature.  

 

(a)                                              (b) 

 

    (c)                    (d)                                              (e) 
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                        (f)                                (g)                                (h)                                 (i) 

 

                    (j)                               (k)                                     (l)                                   (m) 

 

             (n)                                     (o) 

Figure 2: Confusion matrices for Atom-level GNN models (a,b), Logistic regression models (c-
e), and Residue-level GNN models (f-o). The top left, top right, bottom left and bottom right 
cells in each matrix represent true negatives, false positives, false negatives and true positives 
respectively. 

Amino acid count is the most important feature according to logistic regression  

With logistic regression, we have conducted a feature importance test analysis in two different 
ways. The first is where we trained models with individual features for all 13 kinds of features. 
The results achieved are given in Table 11. The second is where we trained 13 models again, but 
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this time, we left 1 feature out every time to check the fall of accuracy for removing that type of 
feature. This result is shown in Table 12. 

Model S1 S2 S3 S4 S5 S6 S7  S8 S9 S10 S11 S12 S13 
Accuracy 0.951 0.904 0.899 0.856 0.626 0.382 0.616 0.688 0.900 0.616 0.876 0.944 0.928 
F1 score 0.450 0.234 0.219 0.143 0.093 0.079 0.091 0.102 0.218 0.093 0.072 0.354 0.103 
AUROC 0.932 0.827 0.817 0.722 0.593 0.551 0.601 0.664 0.695 0.622 0.567 0.885 0.619 
Precision 0.373 0.163 0.150 0.090 0.051 0.042 0.049 0.057 0.151 0.051 0.049 0.299 0.092 
Recall 0.568 0.413 0.401 0.339 0.539 0.750 0.540 0.499 0.392 0.556 0.135 0.435 0.117 

Table 11: Performance of 13 logistic regression models trained with individual features (Method 
1). Serial numbers are mapped to features in Table 5. 

 

Model No S1 No 
S2 

No 
S3 

No S4 No S5 No S6 No S7  No S8 No S9 No 
S10 

No 
S11 

No 
S12 

No 
S13 

Accuracy 0.949 0.954 0.954 0.954 0.954 0.955 0.954 0.955 0.954 0.954 0.954 0.955 0.955 
F1 score 0.437 0.489 0.491 0.492 0.496 0.497 0.493 0.496 0.495 0.496 0.487 0.495 0.495 
AUROC 0.924 0.942 0.944 0.944 0.944 0.944 0.943 0.944 0.944 0.944 0.943 0.944 0.944 
Precision 0.358 0.402 0.404 0.405 0.408 0.409 0.405 0.408 0.407 0.408 0.401 0.408 0.409 
Recall 0.561 0.624 0.625 0.626 0.632 0.633 0.631 0.633 0.633 0.632 0.621 0.630 0.629 

Table 12: Performance of 13 logistic regression models trained by leaving 1 feature out every time 
(Method 2). Serial numbers are mapped to features in Table 5. 

From Table 11, we can see that the most important feature is the count of amino acids which 
already achieves an accuracy of 95.1%. The combination of all the 13 types of features gives us 
95.5%. This goes to show that the amino acid count itself contributes to almost the entirety of the 
accuracy achieved. On the other hand, we can see that some features like the radius of gyration 
leads to a completely random model as it gives us only 38.2% accuracy. Another thing to note is 
that the F1 score for all models apart from the one with the count of amino acids feature is 
significantly low – not even 25%. Other features like difference between count of acidic and 
aromatic residues, secondary structure, distance between acidic residues and distance between 
basic residues do not give very good accuracy with all of them being in a range of 61-62%. 
Although addition of secondary structure feature was seen to show good results in residue-level 
GNN, logistic regression could not capture the information from this feature well. 

From Table 12, we can see one particular result which is consistent with Table 11. The fall of 
accuracy is the largest when we remove the count of amino acids feature. In order to evaluate the 
consistency between these two methods to judge the importance of features, we plotted a 
correlation graph of the two methods shown in figure 3. It shows us that both the methods agree 
on the amino acid count feature being the most important one. Although there are some other 
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features that show decent accuracy by Method 1, they do not indicate high importance by Method 
2 as the fall of accuracy is negligible when those features are removed. Clearly, the amino acid 
count feature dominates over the others in contributing to a high accuracy. Therefore, we have 
analyzed this feature in detail in the following subsection.  

. 

Figure 3: Correlation between two methods for feature importance test. X axis denotes the 
accuracies achieved by models trained with 13 types of features individually (Table 11). Y axis 
denotes the fall of accuracy when each of the 13 features are removed, one at a time (Difference 
between combined accuracy – 95.5% and accuracy values in Table 12). Serial numbers are mapped 
to features in Table 5. Data point 1 at the top right corresponds to the amino acid count feature. 

Aromatic (W,F,Y) and acidic (D,E) residues are important for functionality whereas basic 
(R,K,H) residues have the opposite effect 

Since the amino acid count feature is predominantly the most important and crucial feature as 
shown by both methods 1 and 2 conducted for testing feature importance by logistic regression, 
we have analyzed this feature in more detail. The benefit of using logistic regression is that the 
feature coefficients obtained after training the model can allow us to determine which features 
contribute positively and which ones contribute negatively to the classification task. In logistic 
regression, the outcome depends on the sum of the products of features and their learned 
parameters or coefficients. The magnitudes of these coefficients determine how strongly the 
features contribute to the model and the sign of the coefficients determine whether they contribute 
positively or negatively. In our context, a positive sign means that the feature is usually noticed in 
functional sequences whereas a negative sign means that the feature is detrimental to functionality.  

We have plotted the coefficients for the count of amino acids feature in figure 4 which are sorted 
based on their magnitudes. It can be observed that Tryptophan (W) has the highest positive impact 
on functionality whereas Arginine (R) has the most negative impact. Moreover, Lysine (K) is also 
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seen to have a very large negative coefficient, indicating that R and K are usually seen in non-
functional sequences. Another basic residue Histidine (H) also shows a negative coefficient but 
the magnitude is not as high compared to R and K. Acidic residues such as Aspartic acid (D) and 
Glutamic acid (E) as well as two other aromatic residues Phenylalanine (F) and Tyrosine (Y) have 
quite large positive coefficients which tell us that these residues are necessary for a sequence to be 
functional. All outcomes above are consistent with previously published results6. 

 

Figure 4: Coefficient values for the count of amino acids feature obtained by logistic regression. 
The X-axis here represents the coefficients whereas the Y-axis gives the amino acid 1 letter codes. 

Comparison with other methods 

For comparing our model’s performance with other methods, we have tested three neural network 
architectures, all developed for predicting activation domains. The first is ADPred7 which was 
previously trained on the same set of sequences that we are using. They have provided as input the 
30-length sequence to a convolutional neural network (CNN) followed by a dense neural network, 
which finally outputs a probability value. According to the suggestion of the authors, we have 
considered a threshold of 0.8 on the probability value of the 16th residue to classify a sequence as 
positive or negative. After testing this method using our test set of 1,05,434 sequences, the 
accuracy achieved is 95.7% and the F1 score is 60.6% with an AUROC of 96.7%. Compared to 
this, our best model (residue-level GNN with feature combination#3) that gives accuracy, F1 score 
and AUROC of 97.9%, 71% and 97.1% respectively performs better. One thing to note is that their 
precision is quite low – 46.9% indicating that this method falsely predicts many non-functional 
sequences to be functional. The second method we compared with is PADDLE9 which also uses a 
deep convolutional neural network. Since PADDLE outputs a numerical value between -1 to 12, 
we have converted this into a classification task. According to the suggestion of the authors, we 
have considered both 4 and 6 as thresholds and to be stringent, we have also considered less than 
4 to be negatives and greater than 6 to be positives. For all three cases, our method’s accuracy, F1 
score and AUROC are better than those of PADDLE. These results are shown in Table 12. Another 
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thing that we observe here is that the F1 score is less for PADDLE compared to both our method 
and ADPred. 

Model Residue-level 
GNN 
Combo#3 

ADPred PADDLE 
(threshold = 
4) 

PADDLE 
(threshold = 
6) 

PADDLE 
(neg < 4, pos 
> 6) 

Accuracy 0.979 0.957 0.967 0.967 0.962 
F1 score 0.710 0.606 0.337 0.140 0.163 
AUROC 0.971 0.967 0.913 0.913 0.913 
Precision 0.688 0.469 0.604 0.776 0.776 
Recall 0.734 0.857 0.234 0.077 0.091 

Table 12: Comparison between our method and (1) ADPred and (2) PADDLE. 

Besides, we have also compared our method with Mahatma et al. (2023)12 which also uses the 
dataset we have used, but a balanced one. Instead of experimenting with 1,054,335 sequences, they 
have taken all the 37,923 functional samples and appended 37,922 non-functional samples to 
create their dataset. They have also used CNN in their neural network architecture and combined 
it with two bidirectional long short-term memory (biLSTM) layers. They report an accuracy of 
91.95% as well as F1 scores obtained using different architectures and parameters. The highest F1 
score they reported is 91.95%. To conduct a fair comparison with their method, we have evaluated 
our best model (residue-level GNN with feature combination 3) on a subset of our original test set. 
Our original test set contains 3,730 functional samples. In the new test set, we have included all 
these 3,730 positive samples and appended equal number of negative samples to create a balanced 
test set. These negative samples were randomly selected, and the task was conducted for 10 
iterations so that we can allow different negative samples to be considered while testing. Every 
iteration thus resulted in a different test set with fixed positive samples but different negative 
samples. Since this test set is balanced, we used a default threshold of 0.5 to classify the sequences. 
The comparison results are shown in Table 13. 

  

Model 

Mahatma 
et al  

Residue 
GNN 
Iteration 
1 

Residue 
GNN 
Iteration 
2 

Residue 
GNN 
Iteration 
3 

Residue 
GNN 
Iteration 
4 

Residue 
GNN 
Iteration 
5 

Residue 
GNN 
Iteration 
6 

Residue 
GNN 
Iteration 
7 

Residue 
GNN 
Iteration 
8 

Residue 
GNN 
Iteration 
9 

Residue 
GNN 
Iteration 
10 

Accuracy 91.95% 92.71% 92.84% 92.96% 93.22% 93.15% 93.06% 93.10% 92.86% 93.14% 92.95% 

F1 score 91.95% 92.68% 92.81% 92.92% 93.16% 93.10% 93.01% 93.05% 92.82% 93.08% 92.91% 

Table 13: Comparison between our method and Mahatma et al. (2023). 
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It can be observed from Table 13 that, for all iterations, our method outperformed Mahatma et al. 
(2023) in terms of both accuracy and F1 score. This attests to our method’s advantage over others 
even if we consider a balanced dataset for this classification task.  

Conclusion 

We have utilized a Graph Neural Network for identifying sequences that are functional 
transcriptional activation domains and achieved highly accurate models. Analysis of different 
feature combinations has allowed us to judge which properties of these sequences and structures 
have meaningful contribution to AD function. Although there has been some investigation into the 
impact of secondary structure on the functionality of these peptides7,9,12, our method extensively 
analyses several structure-based features apart from only secondary structure as properties of 
individual residues and atoms. We have been able to achieve a performance better than other 
existing methods and have also identified the most important feature through a logistic regression 
model.  

Our experiments have revealed that the secondary structure feature does have a meaningful 
contribution in classifying functional sequences as it helps to achieve a higher recall i.e. fewer 
false negatives and addition of this feature gives us the best performing model for all the 
performance metrics – accuracy, F1 score and AUROC. This goes to show that whether a peptide 
sequence is a functional transcriptional activation domain or not does depend on the secondary 
structures of the peptide i.e. whether the residues fall into a helix, beta or coil structure. Moreover, 
the results concerning amphipathic index suggest that the hydrophobic and hydrophilic nature 
being present on the opposite faces of the peptide also affects the function of the peptides. We 
have seen that the most important feature that distinguishes whether a peptide will be functional 
or not is the frequency of amino acids. After analyzing this feature in greater detail, we have found 
that the presence of acidic and aromatic residues is necessary for the peptide to be a functional 
transcriptional activation domain. On the other hand, presence of basic residues is detrimental to 
the function of the peptides. As future work, we can focus on analyzing some more structure-based 
features. 
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