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Abstract

Analysis of factors that lead to the functionality of transcriptional activation domains remains a
crucial and yet challenging task owing to the significant diversity in their sequences and their
intrinsically disordered nature. Almost all existing methods that have aimed to predict activation
domains have involved traditional machine learning approaches, such as logistic regression, that
are unable to capture complex patterns in data or plain convolutional neural networks and have
been limited in exploration of structural features. However, there is a tremendous potential in the
inspection of the structural properties of activation domains, and an opportunity to investigate
complex relationships between features of residues in the sequence. To address these, we have
utilized the power of graph neural networks which can represent structural data in the form of
nodes and edges, allowing nodes to exchange information among themselves. We have
experimented with two kinds of graph formulations, one involving residues as nodes and the other
assigning atoms to be the nodes. A logistic regression model was also developed to analyze feature
importance. For all the models, several feature combinations were experimented with. The residue-
level GNN model with amino acid type, residue position, acidic/basic/aromatic property and
secondary structure feature combination gave the best performing model with accuracy, F1 score
and AUROC of 97.9%, 71% and 97.1% respectively which outperformed other existing methods
in the literature when applied on the dataset we used. Among the other structure-based features
that were analyzed, the amphipathic property of helices also proved to be an important feature for
classification. Logistic regression results showed that the most dominant feature that makes a
sequence functional is the frequency of different types of amino acids in the sequence. Our results
consistent have shown that functional sequences have more acidic and aromatic residues whereas
basic residues are seen more in non-functional sequences.


https://doi.org/10.1101/2024.05.08.593266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.08.593266; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

The key factors for activation of eukaryotic genes are gene-specific activators. Each of these
proteins contain two obligatory domains: DNA-binding domains and activation domains (ADs).
DNA-binding domains provide gene specificity by interacting with specific DNA sequences, while
ADs, within the same transcription factors, drive transcription initiation by orchestrating dynamic
nuclear interactions. The DNA-binding domains have very specific conserved sequences which
determine a variation of structure motifs, which in turn define the specificity of interaction with
target promoter DNA sequence!-. In contrast, ADs are highly variable in sequence, intrinsically
disordered, and engage in fuzzy interactions with multiple often uncertain targets. The enigma of
ADs stands for decades*>. Recently with the advent of high throughput experimental approaches
based on breakthroughs of massive parallel DNA synthesis and sequencing, AD analysis has been
elevated on the new level.

The extremely high sequence variability of ADs, by some estimates >10%* sequence variants able
to replace each other within the context of the same gene activator molecule®$, make ADs an ideal
target for machine learning (ML). Several attempts to develop ML models have been reported.
The initial attempt based on the regression models allowed to define and test AD features which
are important for the ML model performance®. Following the neural network (NN) based approach
allowed to increase the accuracy of AD prediction’. However, the main reason for the higher
accuracy of the NN model turns out to be the larger size of the dataset used for the ML training.
When compared the regression model although slightly less accurate in prediction than NN model,
allows better to see and develop ML features and to correlate them with the biochemical features
of ADs®. Additional ML attempt using only sequences of natural transcription factors followed’,
allowing to correlate ML with sequences existing in living cells. While the sequence features of
ADs became clearer, understanding of structural AD features remains obscure. The recent
availability of structure prediction methods such as AlphaFold!° and ESMFold!! as powerful tools
for protein structure prediction allow their usage for the development of new ML models based on
structural information, and the development and understanding of structural features of ADs. In
this study we utilized ESMFold to convert the available dataset of annotated ADs’ into a dataset
with ESMFold defined AD structures aiming to develop new ML models based on structural
information and to gain information about structural features of ADs. ESMFold has aided in faster
prediction of structures of the peptide sequences and with the large size of the dataset that we have
used, this has helped in prompter analysis of results.

Although recently there have been attempts at predicting and analyzing activation domains using
neural network architectures’”»!2, these have mostly involved Convolutional Neural Networks
(CNN). While traditional CNNs are known to capture local patterns in the data, they may not
always be able to handle long-range dependencies in sequences. Consequently, it becomes difficult
to investigate into the connection or dependency between residues that may not be next to each
other in the sequence. Moreover, while traditional ML methods such as logistic regression allow
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comprehension of the features that determine function of activation domains®, they may not
capture the complex relationships between composition-based features or structure-based features.

In our work, we have aimed to utilize the advantage of Graph Neural Networks (GNN)!3, which,
in the last decade, has gained increasing popularity in the field of bioinformatics!4!8, GNNs can
represent data in the structure of a graph with nodes and edges, allowing them to harness a special
ability called ‘message-passing’ that can permit adjacent nodes to share information among
themselves. This is advantageous in the sense that it helps to capture information regarding
dependency between nodes if they are connected by edges regardless of where they are positioned.
In our study, we have used a dataset of more than 1 million peptide sequences to train and validate
GNNss that are able to perform binary classification to determine whether a sequence is functional
or not. For formulating the GNN, we have firstly followed the technique used in GNN-DOVE',
where the graph nodes represent atoms in the peptide structure. After this, we have developed a
modified GNN containing a new graph formulation with residues as the nodes that allows residues
even at large distances to exchange information among themselves. To identify the most prominent
features that determine function in these peptides, we have also trained a logistic regression model.
We have found that our GNNs are more accurate than plain logistic regression. Moreover, residue-
level GNN outperforms atom-level GNN for classifying the peptides. We have experimented with
several combinations of features and although secondary structure does not provide any
meaningful contribution to the vanilla logistic regression model, addition of this feature in the
residue-level GNN has led to the best performing model, compared to several other feature
combinations that we experimented with, having accuracy, F1 score and AUROC scores of 97.9%,
71% and 97.1% respectively. We have shown that this model outperforms other existing neural
network methods applied on this task’*-12. Moreover, we have also analyzed whether an alpha
helix being amphipathic has any contribution to AD function on a subset of the entire dataset and
have observed that addition of this feature also improves the performance of the baseline residue-
level GNN, indicating that the amphipathic property of a helix does have a meaningful contribution
in determining functionality. Finally, through logistic regression, we have found that the most
important feature that determines whether a sequence will be functional is the count or frequency
of different kinds of amino acids in the sequence when compared to any other position-based or
structure-based features.

Materials and Methods
Dataset

To train, validate and test our graph neural network and logistic regression methods, we used the
Gcen4 dataset” which has a total of 1,054,335 peptide sequences, each having a length of 30 amino
acids. Among them, 37,923 sequences are labelled to be functional. We divided the dataset into
train, validation and test samples with a 75:15:10 ratio to conduct our experiments. The train-
validation-test split is shown in Table 1.
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Total samples Training samples Validation samples | Test samples (10%)
(75%) (15%)
1,054,335 790,751 158,150 105,434

Table 1: Train-validation-test split of the dataset.
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Figure 1: Framework of Residue-level GNN and Atom-level GNN. Two graphs are built from the
peptide structure. After applying Gate Augmented Mechanism with Attention, node embeddings
are added and sent to a fully connected network (FCN). Output from FCN is passed through a
sigmoid function to get a final probability value P which is a value between 0 and 1.

Graph Neural Network (Atom-level GNN)

To train the graph neural network, we first need to define the graph formulation. Since a graph is
composed of nodes and edges, we will first define what these represent in our network. Let G(V,E)
be a graph where V is the set of vertices or nodes and E is the set of edges of the graph. Two nodes
are said to be adjacent if they are connected to each other by an edge. We can represent a graph’s
edge using an adjacency matrix representation (A).

In the atom-level GNN network, each node represents each atom in the sequence. We have
computed several features for these nodes, and they are listed in Table 2, the first five rows of
which have been taken directly from the GNN-DOVE' paper. The edges in the network represent
the connection or bond between atoms as well as the distances between them. We have used two
graphs following the method in GNN-DOVE which are denoted by G! and G? that have their edges
represented by two adjacency matrices A! and A? respectively. In graph G!, only atoms that are
connected by covalent bonds have edges between them to prioritize information from atoms that
are connected and adjacent to one another in the 3D structure, whereas in G2, atoms within a short
distance i.e. 10A have edges connecting them to capture information from nearby atoms or locality.
For G2, the atoms do not need to have covalent bonds between them to be connected by edges.
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This is done following GNN-DOVE architecture and in our case, it helps to prioritize information
from atoms that are closer to each other. We can define the two adjacency matrices in the following
way. Here d;; represents the distance between atoms 1 and j. The parameters p and G are learnable
parameters with initial values set to 0 and 1 respectively.

1, if atomsiand j are connected by covalent bond ori = j

1.. ol
4 Y710, otherwise e (D)
~@y-w? )
Ay ={e ¢, ifd;<10A )

0, otherwise

Gate Augmented Mechanism with Attention

We then apply Attention and Gate-Augmented Mechanism in the same way as that of GNN-
DOVE. Let us explain the Gate-augmented graph attention layer. If x™ represents the node
features, we can write it as: x = {x;”, x2", ..., xn""} where, x belongs to the real number space i.e.
x € RF with F denoting the dimension of the node feature. At first, to retrieve the relative
importance between the i-th and j-th node, the pure graph attention coefficient e; is computed
using the following set of equations:

x =W (3)
x'] = ijin ............... (4)
el'j = x’lTEx,j + x’jTEx’l' ............... (5)

Equation 5 gives the pure graph attention coefficient. Here, W and E are learnable matrices. This
coefficient is only computed for cases where we have positive values of 4;. To combine
information from the pure graph attention coefficient with the adjacency matrix, we compute a
normalized attention coefficient a;; in equation 6.

__ exp(e)) 3
a;; = Z—jENieXp(eij) (joneeeeeneennn(6)

Here, N; represents the set of neighbors of i-th node. After this, we have calculated the updated
node feature using the following equation:

x”i = Zj EN; aijx,j ............. (7)

Equation 7 therefore, allows the consideration of node features. Finally, we have used the gate
mechanism where we incorporate information from the input by inserting a residual connection.
The gated graph attention is, thus, given in Equation 9.
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¢, = o[DCe|lx) +b].ceeeeninnni. (8)
xiout = CiX; + (1 - Ci)xi” ............... (9)

Equation 8 finds the coefficient value c; first. o represents a sigmoid function. D and b are learnable
parameters. The symbol || represents concatenation. Equation 9 gives the linear combination of x;
and x;". If we denote this whole method involving attention and gate-augmented mechanism as
gate-augmented graph attention layer (GAT), then we can use equation 10 to get the node
embedding.

X0 = GAT (x;™, A) ..o, (10)

Since we have two adjacency matrices, and as we use a shared GAT for both of them, we will have
two types of such node embeddings, x'=GAT(x" A") and x’=GAT(x"™ A°?). To combine the
information coming from adjacent and non-adjacent residues in the sequence, we added the
embeddings of the two graphs. Note that equation 11 is different from the one in GNN-DOVE
since in GNN-DOVE, x! was subtracted from x? to retrieve the information coming only from the
intermolecular interactions. In our case, we want to combine the information from both adjacent
and non-adjacent residues. So, the final output can be written as:

The GAT mechanism is done thrice iteratively i.e. the x°*¢ becomes x‘* and the whole process is
repeated thrice after which we sum up the node embeddings for the whole graph to get the final
representation which can be seen in equation 12.

Xgraph = Zk EG XK vvvvrnrrnnnennnns (12)

This xg,.qpn Was then sent to a fully connected network with 4 layers and dimensions following
the ones in GNN-DOVE" (140 x 128 x 128 x 128). We have used RELU activation function
between these layers. Finally, the output was sent through a sigmoid function to get one probability
value between 0 and 1 which will represent the probability that a sequence is functional.

Figure 1 shows the overall framework of atom-level GNN. The main idea has been borrowed from
GNN-DOVE'". Two graphs are built from each peptide with atoms as nodes, and the final node
embedding is obtained by adding the two node embeddings from the two types of graphs. This is
done thrice iteratively after which the embedding is sent to a fully connected network. Figure 1
shows the dimensions of the layers. The final output is the probability value P which is between 0
and 1.
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Atom-level GNN node features

The atom-level GNN has the following two differences when compared to the original GNN-
DOVE: (1) After applying gate-augmented graph attention layer (GAT) on the input node feature
xin, when we get two node embeddings, x'=GAT(x™ A') and x’=GAT(x",4°), they are added up to
get the final embedding x** following equation 11, instead of subtraction in GNN-DOVE, since
the goal in GNN-DOVE was to capture the information that only comes from the intermolecular
interactions with other nodes in the protein complex model, whereas in our case, we are dealing
with one peptide structure and want to combine the information from both adjacent and non-
adjacent atoms; (2) Along with the GNN-DOVE features, we have also added two more types of
features which consider the position of the atoms in the sequence and the type of residue they
belong to. These features are listed in Table 2. The first five rows represent GNN-DOVE features
and have directly been taken from the GNN-DOVE!? paper. They represent composition-based
features of the atoms. The sixth feature is a new one and it represents the position of the residue
that this current node or atom is in. Since there are 30 residues in each sequence, there can be 30
possible values and therefore this feature needs 30 columns for representation as it is one-hot
encoded. The final feature represents the type of residue this atom belongs to. Since there are 20
different types of amino acids, there can be 20 possible values for this feature.

Feature name No. of columns for representation
Atom type (C,N,O,H,S,F,P,Cl,Br,B,H) 10

Degree or connections of atom (0,1,2,3,4,5) 6

No. of connected H atoms (0,1,2,3,4) 5

No. of implicit valence electrons (0,1,2,3,4,5) | 6

Aromatic (0 or 1) 1

Position of residue the atom belongs to 30

Type of residue the atom belongs to 20

Table 2: List of features used in the Atom-level GNN. First five rows are taken from GNN-
DOVE' paper.

Graph Neural Network (Residue-level GNN)

In the residue-level GNN network, the nodes represent the C-alpha atoms in the amino acids. Since
all the sequences in our dataset have a length of 307, there are 30 nodes, each representing an amino
acid residue’s C-alpha atom. These nodes have features, which are listed in Table 3 and described
in detail in the next subsection. On the other hand, the edges represent the connection and distances
between the residues in the sequence. Following the technique used in GNN-DOVE!®, we define
two graphs G! and G? which have their edges represented by two adjacency matrices A! and A?
respectively. G' represents the graph where only adjacent residues are connected to each other.
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Two residues are adjacent if their indices in the sequence are consecutive, and this has no
connection to the physical distance between them. Therefore, A! has only binary values. On the
other hand, graph G? is a graph that takes into consideration the Euclidean distance between the
three-dimensional coordinates of the residues. We have updated the adjacency matrix definition,
and the changed equations are given in equation (13) and equation (14).

Al = {1, if residues i and j are consecutive to each other ori = j
Y 0, otherwise

A2 ={eMu.......... (14)
Here dj is the distance between i-th and j-th residues. Here, 4 is a learnable parameter and the
initial value of 4 is set to be 0. The idea of graph formulation has been borrowed from GNN-
DOVE' but this adjacency matrix 42 has a different definition since in GNN-DOVE'>, non-zero
values were only considered when two residues were within 10 A distance and the distance
equation used there decayed for larger distances. In our case, we consider all 30 residues and
change the decay formula to ensure that information from all other 29 residues is incorporated into
the adjacency matrix, rather than only considering nearby residues. This is introduced in the
residue-level GNN to capture information from all the residues instead of limiting the
neighborhood within a certain locality.

After this, we apply the Attention and Gate Augmented Mechanism in the same way as we did in
the atom-level GNN explained in the previous subsections. Figure 1 shows the overall framework
of residue-level GNN. The main idea has been borrowed from GNN-DOVE". Two graphs are
built from each peptide with C-alpha atoms as nodes. The two node embeddings are added up and
this process is repeated thrice before sending them to a fully connected network. The final output
(P) is a value between 0 and 1.

Node features (Residue-level GNN)

We have computed some node features, i.e. for a sequence, we apply some features to each residue.
All features are one hot encoded. They are listed in Table 3 and described in detail below.

Feature name No. of columns for representation
Position of residues 30
Type of amino acid 20

Type of residue (acidic, basic, aromatic) 3
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Secondary structure (helix,beta,coil) 3

pLDDT 7

Relative accessible surface area 10

Amphipathic index 6, 11, 24, 47 (depending on histogram bin-size)

Table 3: List of features used in the Residue-level GNN.

Since the length of the sequences is 307, one residue can be assigned to one out of 30 positions and
that’s what the first feature represents. It is one hot encoded which means we place 1 under the
column that corresponds to that residue’s position. As there are 20 possible amino acids, the second
feature has 20 columns and the residue will get 1 under its corresponding amino acid name, and
the rest will be 0. For the third feature, we are only considering the appearance of some special
residues in the sequence: acidic: Aspartic acid (D), Glutamic acid (E); aromatic: Tryptophan (W),
Phenylalanine (F), Tyrosine (Y); and basic: Arginine (R), Lysine (K), Histidine (H). Since there
are three such sub-groups (acidic, basic and aromatic), we have used 3 columns for this feature.

For secondary structure determination, we have used DSSP!® which gives 9 different types of
structures as output. We have mapped these 9 to 3 being just alpha helix, beta sheet and coil,
resulting in 3 columns for this feature representation.

We have used a structure prediction method (ESMFold!!) for determining the structures of these
sequences. This method also provides a confidence value which is a per-residue estimate of how
confidently it predicted the structure. This is called the predicted local distance difference test
(pLDDT). These values range from 0 to 100 where 0 means least confident and 100 means most
confident. We have divided this range up into bins of size 10 giving 10 different bins (0-10,10-
20,20-30....and so on). Since the dataset contained negligible samples with pLDDT less than 40,
we have considered all values less than 40 to be one bin, which reduced the number of bins to 7
finally. For the relative accessible surface area feature, we have used DSSP’s output again which,
along with secondary structure information, also outputs the accessible surface area values of the
residues in the sequence. The accessible surface area is the surface area of the residue that is
exposed or accessible to a solvent. Since the sizes of the residues can vary greatly depending on
the type of amino acid, that’s why they are normalized with the help of a maximal solvent
accessibility for each residue, the values of which have been taken from Table 1 of Rost et al.
(1994)%°. So, we can get the definition of relative accessible surface area from equation 15.

accessible surface area

Relative accessible surface area = : — ... (15)
maximal accessibility

10
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These values range from 0 to 100 where 0 means least exposed i.e. the residue is completely buried
whereas, 100 means greatly exposed. We again divided this range up into bins of size 10, which
gives us 10 bins in total and hence, this feature has 10 columns.

For the final feature, we have investigated the amphipathic index (AI) property of the data samples
that have helices. An amphipathic alpha helix is basically a helix which contains both hydrophobic
and hydrophilic residues arranged in a periodic manner such that one side of the helix becomes
completely hydrophobic and the other becomes hydrophilic. The word ‘side’ here refers to two
different faces of the helix that can be created if we look at the helical structure’s top view along
its axis. We take the definition of amphipathic index of a helix from Cornette et al. (1987)*! and
follow the method introduced in this paper to compute the amphipathic index of helices. According
to Cornette et al. (1987), there are approximately 3.7 residues in one turn of an alpha helix, and
therefore, we should notice a periodic variation in the hydrophobicity values of residues. This
period should approximately be 3.7 residues per cycle. To detect this periodic variation, they
calculate Fourier transform power spectrum using equation (16).

P(w) = [Zi5 hkcoskw]z + [T hksinkw]z .......... (16)

Here, / represents the length of the peptide sequence, 4 denotes the hydrophobicity value for the
k-th residue in the sequence and w is the angular frequency. The hydrophobicity values have been
taken from the PRIFT?! scale. Since hydrophobicity values are periodic in amphipathic helices,
there should be a noticeable peak in the power spectrum. The amphipathic index is defined as the
measure of how much of the power spectrum is concentrated around this peak. Therefore, the
formula for Al can be written in equation (17).

L pw)d
AI[P(w)] = Zlos P

WfologooP(w)dw
The width of the interval in the numerator is set to represent approximately the distance between
half the maxima on each side of the peak of the spectra. Therefore, the Al value corresponds to
how much of the area is centered about the expected peak of the spectrum compared to the total
area under the spectrum. If a helix is amphipathic, this value is expected to be high, whereas, if it
is not amphipathic, the numerator should be smaller and therefore the Al value should also be less.
Since amphipathic index is a property of helix, we have at first considered sequences that have 10
consecutive residues that have been classified by DSSP to have a helical structure. There may be
more than one such 10 length windows in a sequence. However, if there is no such window of 10
consecutive alpha helices in a sample, it has been removed from the dataset, resulting in a reduced
dataset for particularly this feature since amphipathic index is specific to samples that have at least
some forms of alpha helix. Note that this sort of formulation may cause one residue to belong to
multiple windows of helix. Therefore, for each residue, we have taken the average Al of all the Al
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values corresponding to the different helix windows that the residue belongs to. So if we have a
sequence s = {sy,52....530}, and if residues s; to s;; are all part of a helix, then s> must be a part of
two 10-length windows, the first being the window range (w;) of s; to 519, and the second (w2)
being s> to s7;. Then if we get two Al values Al; and AI> for w; and w> respectively, we will take

AL +AI
an average Al value, Aly,y = ———

. This Al.,; will be the amphipathic index value corresponding

to residue s2. Cornette et al. (1987) has mentioned 2 to be a reasonable cutoff meaning that it is
more likely for a helix to be amphipathic if its Al value is greater than 2. We have then divided up
the range of amphipathic index values to bins. Depending on the bin-size, the number of features
may differ as well. For example, if the bin size is 1, then we only take the following bins: 0 to 1,
1to2,2to03,3to4,4to5 and none (if the residue falls in no helix) which give us 6 columns for
this feature. In this way, we take bin sizes of 0.5, 0.2 and 0.1 as well resulting in 10, 23 and 45
columns respectively.

Table 3 shows the number of samples of interest for this amphipathic index feature i.e. samples
with at least 1 window of 10 consecutive helices. We can observe that, more than 50% of the data
contains no such helix, and as a result considering the whole dataset would mean that majority of
the samples will have zeros under all the feature columns. Consequently, we only considered a
reduced subset of samples as shown in Table 4. We have simply filtered out the sequences with
no 10-length helix from the train, validation and test sets.

No. of samples in the full
dataset

No. of samples of interest
(at least one 10-length helix)

Train set 790,751 225,597
Validation set 158,150 45,119
Test set 105,434 30,080
Total 1,054,335 300,796

Table 4: Number of samples of interest (at least one 10-length helix window) for
amphipathic index feature analysis.

Logistic Regression

To understand the importance of different kinds of features, we trained a logistic regression model
with 13 different kinds of features. Logistic regression is a simple network, and the features were
computed on a sequence level, rather than a residue level. For each sequence, we computed both
sequence and structure-based features. Structure prediction was done with ESMFold and to predict
secondary structure, we used DSSP. We computed the set of features listed in Table 5.

No of columns for
representation

Feature | Name of feature

serial
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Sequence based features

S1 Count of amino acids 20

S2 Position of acidic residues 30

S3 Position of basic residues 30

S4 Position of aromatic residues 30

S5 Difference between count of acidic and aromatic 7
residues

Structure based features

S6 Radius of gyration 5

S7 Secondary structure 3

S8 Distance between acidic residues 10
S9 Distance between basic residues 10
S10 Distance between aromatic residues 10
S11 Distance between acidic and basic residues 10
S12 Distance between acidic and aromatic residues 10
S13 Distance between aromatic and basic residues 10

Table 5: List of features used in the Logistic Regression model.

Logistic regression is a simple model and cannot handle complex representations of the data. We
have computed features on a sequence-level for the regression model. There could be other features
that are more suited for a residue-level or atom-level representation, but it will not be very
meaningful to simply take an average of those embeddings to represent them on a sequence-level.
Moreover, it was observed that the regression model achieved quite high accuracy (over 95%) with
only sequence-based features and addition of more structure-based features was not improving the
performance noticeably. Therefore, the model appears to have been saturated and adding more
features may not contribute significantly.

There are 5 types of sequence-based features and 8 types of structure-based features. The first
sequence-based feature is the count of amino acids feature. Since there are 20 different types of
amino acids, this feature contains 20 columns, each corresponding to a different type of amino
acid. We counted the number of each type of amino acid across the sequence and put that value
under the corresponding column. For example, if a sequence has 3 Tryptophan (W), we put 3 under
the column of W.

The second sequence-based feature represents the position of acidic residues. We have only
considered the acidic residues for this feature which are Aspartic Acid (D) and Glutamic Acid (E).
This feature contains 30 columns corresponding to 30 possible positions of the residues in the
sequence. If a certain position contains any one of these 2 acidic residues, we assign 1 in that
column, and 0 otherwise. The third and fourth features are computed in the same way as this one.
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The difference is that we consider only basic residues in the third feature and aromatic residues in
the fourth feature. By basic residues, we refer to Arginine (R), Lysine (K), and Histidine (H). By
aromatic residues, we mean Phenylalanine (F), Tryptophan (W) and Tyrosine (Y). These two types
of features were computed in the same way as that of the position of acidic residues and hence,
they also contain 30 columns each.

The final sequence-based feature is the acidic-aromatic balance which refers to the difference in
the count of acidic and aromatic residues in the sequence. We count the total number of aromatic
residues (say N.-) and the total number of acidic residues (say N.¢) in the sequence and find the
difference i.e. Nur - Nae. We divide this difference of count feature up into 7 bins or columns which
are as follows: <-10, -10 to -5, -5 t0 <0, 0, > 0 to +5, +5 to +10, > +10. The negative values mean
that there are more acidic residues than aromatic residues and the positive values mean that there
are more aromatic residues than acidic residues.

Now let’s come to the structure-based features. The first one is the radius of gyration feature.
Radius of gyration is the root mean square distance of particles from axis. In our case, we consider
the center of the peptide structure to be the axis. Let the center coordinate be C(C;x, C,,C;) and let
the coordinate of any atom be P(Px,P),P-). Then the distance between this atom and the center is
the Euclidean distance between points P and C in the 3D coordinate system. The point C is
obtained by taking the average coordinates of all the atoms in the peptide structure. Let S be the
set of all atoms in one sequence and let the size of S be V.

2 Py 2 Py hX Py
Cy = %;....(18) C, = %;...‘.(19) C, = %; ....(20)
We can get the x, y, and z coordinates of C from equations 18, 19 and 20 respectively. The distance
between a point P and C is simply the Euclidian distance between the two and can be written as
r(P,C):

r(P,0) = (P, —C)2+ (B, —C)*+ (P, —C)>%...... (21)

Next, we compute the Radius of gyration value for a sequence using equation 22.

All these distance values are computed in Angstroms. The R, values are again divided up into 5
bins of length 5 each, which are: 5 to 10, 10 to 15, 15 to 20, 20 to 25 and 25 to 30 (there are no R,
values greater than 30 or less than 5 for our dataset). A smaller R, value indicates that the protein
is more compact, whereas a larger radius of gyration refers to a relatively longer peptide structure.
The next 6 set of features are the distance-based features. We can divide them into two groups: the
distance between same type of residues, and the distance between different types of residues. The
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first group includes the distance between acidic residues, distance between basic residues and
distance between aromatic residues. For computing the distance between acidic residues, we first
considered the coordinates of the residues which we consider acidic (Aspartic acid and Glutamic
acid). Then we compute all pairwise Euclidean distances between all possible pairs of acidic
residues. For example, if there are 3 acidic residues (say a,b and c) in the sequence, then we
compute all three possible distances distance(a,b), distance(b,c) and distance(c,a). Then we put
these distance values in histograms. We consider 9 such intervals, each of size 10 (0-10,10-
20,....80-90) since there are no distance values greater than 90 and also consider an additional flag
feature which receives binary values and will get 1 if there are no acidic residues at all, and 0
otherwise. For distance between basic residues, we follow the same technique considering only
basic amino acids (Arginine, Lysine and Histidine) and for distance between aromatic residues,
we compute the features in the same way considering the aromatic amino acids (Tryptophan,
Tyrosine and Phenylalanine). We now come to the discussion about the second group of distance-
based features which represent the distances between different kinds of residues. The first is
distance between acidic and basic residues. We again take the coordinates of acidic residues and
basic residues in the sequence and consider the pairwise distance between all possible pairs. For
example, if there are 3 acidic residues and 2 basic residues then we have 3 x 2 = 6 possible pairs
and hence, 6 possible distances. We again put them into bins of length 10 (0-10, 10-20,.....80-90)
and keep a flag feature if either of acidic or basic residues is absent.

Choice of structure prediction method

In both our GNN and Logistic Regression methods, we needed to use structure-based features to
train the models. But our input is only the sequence. For structure prediction from sequences, we
have used ESMFold. We opted to use ESMFold over the more popular AlphaFold for mainly two
reasons: (1) ESMFold is a lot faster than AlphaFold and given our dataset size (~1 million)’, we
found this option more reasonable (2) We ran ESMFold and AlphaFold structure prediction
methods on another set of 240 sequences (169 functional and 71 non-functional) that are also
artificially generated. We then ran DSSP on these structures to get their secondary structure
information. We considered a sequence to fall under the helix category if it had at least one window
of 4 consecutive helices in its structure. It was seen that ESMFold predicted a lot more helices
among the functional sequences compared to non-functional ones and this difference was seen to
be statistically significant, whereas, for AlphaFold, no statistically significant result was seen.
Table 6 gives the number of helices predicted by AlphaFold and ESMFold on the 240 sequences.

AlphaFold ESMFold
Functional (169) 24 helices 59 helices
Non-functional (71) 10 helices 15 helices

15


https://doi.org/10.1101/2024.05.08.593266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.08.593266; this version posted May 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 6: Number of helices predicted by AlphaFold and ESMFold on the dataset of 240
sequences.

We wanted to see if these figures are statistically significant. Basically, we wanted to see if a
certain sequence being functional has some connection with a structure prediction method
predicting it to be helical or not. For that, we chose to perform Pearson’s chi-squared test where
the null hypothesis is that there is no statistical significance between the number of helices in
functional and non-functional sequences. For AlphaFold, we got a p-value of 0.98 which is greater
than 0.05 showing that the result is not statistically significant. However, with ESMFold
predictions, we got a p-value of 0.03 which is less than 0.05 showing that the result is statistically
significant. Therefore, since we saw noticeable differences in the structures of functional and non-
functional sequences predicted by ESMFold, we chose to predict the structures of our ~1 million
peptide sequences using this method.

Training

For training the data, we had to resample the training set since the dataset is very imbalanced. To
balance the dataset, we repeated samples from the positive or functional pool of sequences, and
eventually sampled the same number of positive and negative samples. However, we did not
balance the validation set or the test set since the inference should be done on a dataset that
represents the true unsampled distribution of the data and testing on a balanced dataset may
overestimate the F1 score.

For training the logistic regression model, we used L2 regularization or Ridge regression. For
training Graph Neural Networks, we used the Adam optimizer and Binary Cross Entropy loss. We
used a learning rate of 0.0001 for all the models and a dropout rate of 0.3 to avoid overfitting. For
the residue-level GNN, we used a batch-size of 16,384 considering that the training set size is quite
large. On the other hand, for training the atom-level GNN, we used a batch-size of 2048 given the
computational resources. We used NVIDIA TITAN X (Pascal) (12GB), NVIDIA RTX A5500
(24GB), and NVIDIA RTX A6000 (48GB) GPU for running the GNN-related experiments. We
trained different models with various feature combinations, and they converged after
approximately 350 epochs.

Post-processing to deal with low precision

Since we did not balance the test data, although the training was done on a balanced dataset, we
observed very low precision and thus low F1-scores when we determined the predictions on our
test set using a default threshold of 0.5 to classify the prediction as positive or negative. In binary
classification, we need to set a threshold (which is usually 0.5) such that, if the predicted
probability is greater than this threshold, the sample is classified as positive (or functional, in our
case) and if the probability is smaller than the predetermined threshold, the sample is classified as
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negative (or non-functional). Adjusting the threshold is a matter of trade-off between precision
and recall since, if we increase the threshold, fewer samples are classified as positive, leading to
more false negatives and hence, lower recall. But if we decrease the threshold, fewer samples are
classified as negative, leading to lower precision. Since the problem we primarily faced was low
precision that resulted from a very imbalanced test set containing only 3.5% functional sequences,
we decided to experiment with higher thresholds. We used the validation set for this task. For
every epoch, the trained model was tested on the validation set and predictions were determined
using a set of 10 thresholds — 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. For example,
for 350 epochs, we saved 350 models and chose the combination of the model and the threshold
that resulted in the highest F1-score on the validation set. Later the predictions on the test set were
determined based on this final model that we chose after the threshold adjustment task.

Results
Evaluation metric

We used the following metrics for evaluating the performance of our models on the test set. Note
that, samples that are truly functional and are predicted to be (1) functional, are true positives (2)
non-functional, are false negatives. If they are truly non-functional and predicted to be (1) non-
functional, they are true negatives (2) functional, they are false positives.

True positives + True negatives

Accuracy =
y Total number of samples
o True positives
Precision = — "
True positives + False positives
True positives
Recall =

True positives + False negatives

2 X Precision X Recall

F1 =
score Precision + Recall

We have also used Area Under the Receiver Operating Characteristic (AUROC) curve as a
performance metric. The Receiver Operating Characteristic curve is a graphical plot which is used
to evaluate the performance of a binary classifier model. The X-axis denotes the False Positive
Rate (FPR) and the Y-axis denotes the True Positive Rate (TPR). The FPR versus TPR values are
plotted at different threshold points between 0 to 1. A curve whose area reaches 1 is a very accurate
model that can differentiate between positives and negatives correctly at varied thresholds.

Combining structure-based features with sequence-based features improves performance of
logistic regression
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For logistic regression, we have experimented with 3 kinds of models based on the type of features:
(1) logistic regression with only sequence-based features, (2) logistic regression with only
structure-based features, and (3) logistic regression with both sequence and structure-based
features. The results are shown in Table 8 where it can be observed that only sequence-based
features already perform very well, achieving 95.4% accuracy. In fact, if we compare only
sequence-based features with only structure-based features, the former performs better for all
metrics. This goes to show that the sequence alone has very powerful information that can
distinguish between functional and non-functional samples. Compared to only structure-based
features, they are a better classifier. However, if we combine all the sequence and structure-based
features, the performance improves compared to the sequence-based features for all metrics.
Although the accuracy improves very slightly — 95.4% to 95.5%, there is a decent increase in F1
score — 48.3% to 49.6% which goes to show that the combined model is better at handling the
imbalanced test set. There is also a slight increase in the area under the ROC curve — 94.1% to
94.4%, telling us that the combined model can classify instances better at different thresholds.
Both precision and recall are increased for the combined model, which means that both false
negatives and false positives are reduced, leading to a better classifier overall when structure-based
features are combined with sequence-based features. We can also view the confusion matrices in
figure 2 to comprehend these results. Compared to figure 2(c), we can see more true positives and
true negatives in figure 2(e). The combined logistic regression model classifies correctly 110 more
samples that were not classified accurately by the sequence-only model. This goes to show that
structural information is indeed relevant and useful for this classification task.

Addition of secondary structure feature in residue-level GNN yields best results for all
performance metrics

For experimenting with our residue level GNN model, we have trained models with different
feature combinations as shown in Table 7.

Combination# Features

1 Position of residues, Type of amino acid

2 Position of residues, Type of amino acid, Type of residue —
acidic/basic/aromatic

3 Position of residues, Type of amino acid, Type of residue —
acidic/basic/aromatic, Secondary Structure

4 Position of residues, Type of amino acid, Type of residue —
acidic/basic/aromatic, pLDDT

5 Position of residues, Type of amino acid, Type of residue —
acidic/basic/aromatic, Relative accessible surface area

6 Position of residues, Type of amino acid, Type of residue —
acidic/basic/aromatic, Amphipathic index (Al)
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Table 7: Feature combinations used in the experiments for determining the performance of
residue-level GNN models.

The performance of these models (except row 6 which is shown in a different table — Table 10)
are given in Table 8. We consider combination 2 with position of residues, type of amino acid,
type of residue — acidic/basic/aromatic as the baseline and added other features to see if they
improve performance any further. This combination already achieved really good performance,
and although addition of pLDDT and accessible surface area did not improve the performance
anymore, the addition of secondary structure as a feature improved the F1 score. Besides, we also
experimented with the Amphipathic index feature on a subset of the dataset as explained in Table
4 of the methods section and compared it with our baseline model that was trained, validated and

tested on the same set of samples. These results are shown in Table 10.

Model Atom- Atom- Residue- | Residue- | Residue- | Residue- | Residue- | Logistic Logistic Logistic
GNN GNN GNN GNN GNN GNN GNN Regression | Regression | Regression
Combo#1 | Combo#2 | Combo#l | Combo#2 | Combo#3 | Combo#4 | Combo#5 | (sequence) | (structure) | (combined)

Accuracy | 0.972 0.974 0.979 0.979 0.979 0.978 0.978 0.954 0.948 0.955

F1 score | 0.631 0.659 0.704 0.702 0.710 0.701 0.700 0.483 0.424 0.496

AUROC | 0.964 0.967 0.969 0.971 0.971 0.969 0.971 0.941 0.918 0.944

Precision | 0.585 0.620 0.690 0.699 0.688 0.678 0.672 0.399 0.347 0.408

Recall 0.686 0.703 0.719 0.705 0.734 0.727 0.731 0.614 0.545 0.632
Table 8: Performance of Atom-level GNN, Residue-level GNN and Logistic Regression

models. Combination numbers are mapped to features in Tables 7 and 9.

From Table 8, we can observe that, compared to the baseline model (combination 2), combination
3 which simply adds the secondary structure feature gives an increased F1 score of 71%. Its
accuracy and AUROC are the same as that of the baseline but if we consider all three metrics —
accuracy, F1 score and AUROC score, then combination 3 gives the best results in the whole table.
This tells us that addition of secondary structure results in a model better at handling the
imbalanced dataset, given its higher F1 score. It gives the best classifier among all the models that
we experimented with on this dataset of more than 1 million sequences. Therefore, secondary
structure feature is an important feature that can distinguish between functional and non-functional
samples very well as shown by the residue-level GNN model, giving us a very high accuracy of
97.9%, F1 score of 71% and AUROC of 97.1%. This result can also be understood better from
figure 2. We can observe that among all the confusion matrices in figure 2, the highest number of
true positives can be seen in figure 2(h) which corresponds to combination 3. This means that this
feature combination can identify the highest number of functional sequences in the dataset
compared to any other model.
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Other features like pLDDT and accessible surface area have not improved the performance any
further as shown in columns for combinations 4 and 5. Therefore, they have not been able to add
any meaningful information to the binary classifier that we are developing.

Both residue-level and atom-level GNN outperform logistic regression

From Table 8, we can see that, all residue-level GNN models outperform the logistic regression
models. This is quite intuitive since logistic regression is a very simple model and it cannot capture
the complex relationships between nodes — something that we can do using graph neural networks.
GNN can aggregate information from neighboring or adjacent nodes and can capture non-linear
relationships in the data as opposed to logistic regression. Although logistic regression already
achieves a very high accuracy on this dataset — 95.5%, residue-level GNN can make it even more
accurate with 97.9% accuracy. One very crucial thing to note is that logistic regression gives very
poor F1 scores compared to residue-level GNN. In fact, the F1 scores are below 50%. This implies
that the logistic regression models cannot achieve a good balance between precision and recall,
and we have observed that they give very low precision. We can thus conclude that a simple model
like logistic regression may appear to be very accurate but given a low F1 score on the imbalanced
test set, it is obvious that they are not doing a good job in identifying the correct number of
functional instances and are seen to generate many false positives. Besides, the accuracy and
AUROC scores are also lower compared to residue-level GNN implying that the graph neural
networks are superior for this classification task compared to logistic regression. This can also be
seen in figure 2 where both the true positives and true negatives in figure 2(c-¢) are fewer compared
to the atom-level GNN models as shown in figures 2(a,b) and residue-level GNN models in figure
2(f-j) when trained and evaluated on the same dataset.

Position of residues is an important feature as shown by the atom-level GNN results

For experimenting with the atom-level GNN, we tried two combinations of features which are
shown in Table 9. The GNN-DOVE features correspond to the first five rows of Table 2.

Combination# Features
1 GNN-DOVE features, Type of amino acid
2 GNN-DOVE features, Type of amino acid, Position of residues

Table 9: Feature combinations used in the experiments for determining the performance of
atom-level GNN models.

Both atom-level GNN models give high accuracies, but atom-level GNN combination 2
outperforms atom-level GNN combination 1 for all performance metrics as we can see from Table
8. Combination 2 simply adds the feature of position of residues to combination 1. Addition of this
feature improves the performance of the GNN which means that out of the 30 possible positions,
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where a particular residue is situated is important in determining the functionality of these peptide
sequences. We can also comprehend this result from the confusion matrices in figures 2(a) and
2(b). We can see more true positives and true negatives in figure 2(b) compared to figure 2(c). In
fact, addition of the position feature allows the GNN to classify 272 more samples accurately,
indicating that this is an important feature in determining functionality.

Residue-level GNN outperforms atom-level GNN

Although both Graph Neural Network models show better performance compared to logistic
regression, among the two types of GNN, residue-level GNN is seen to perform better than atom-
level GNN. In fact, all the five residue-level models with different combinations of features
perform better than both the atom-level models for all performance metrics as shown in Table 8.
The observation implies that for this particular task, having residue-level nodes in the graph
formulation is more suitable and provides enough information to classify the sequences. Having
atom-based formulation provides additional information that appears to be redundant for our
classification task. Moreover, in the atom-level GNN, we do not consider any atoms beyond 10 A
whereas in the residue-level GNN, we take into consideration all the residues in the entire
sequence. This shows that information from residues that are distant is also important in the GNN
which is rather intuitive since the peptide sequences are relatively small (only 30 residues). This
can be clearly seen in figure 2 since any true positive or any true negative value among the residue-
level GNN models as shown in the confusion matrices of figure 2(f-j) are better than the true

positive and true negative values respectively for the best atom-level GNN model as shown in
figure 2(b).

Amphipathic index is an important feature which improves performance compared to
baseline model

Depending on the size of the histogram bins, we have experimented with 4 different models for
analyzing the Amphipathic index (Al) feature. These are shown in Table 10.

Model Residue- Residue- Residue- Residue- Residue-
GNN GNN GNN GNN GNN
(Combo#2) (Combo#6) (Combo#6) (Combo#6) (Combo#6)
bin-size = 1 bin-size = 0.5 | bin-size = 0.2 | bin-size = 0.1

Accuracy 0.975 0.974 0.978 0.977 0.973
F1-score 0.594 0.594 0.614 0.594 0.574
AUROC 0.969 0.967 0.969 0.966 0.966
Precision 0.487 0.479 0.535 0.521 0.468
Recall 0.761 0.782 0.721 0.691 0.741
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Table 10: Performance of residue-level GNN with feature combination 6 for different bin-sizes
on the smaller subset of the original dataset.

It can be observed that compared to the baseline model shown in the first column of Table 10,
addition of amphipathic index feature improves performance with a bin size of 0.5 and 0.2. But
with a bin size of 0.5, we get higher accuracy, F1 score as well as similar AUROC scores.
Therefore, for this subset of the dataset, the best model considering all three metrics of accuracy,
F1 score and AUROC is given by the model in the third column with feature combination 6 and
bin size of 0.5. The bin sizes were adjusted to see if we can get any feature representation of
Amphipathic index that can give us a better classifier and this has been achieved on the reduced
subset of the original dataset, leading to an accuracy of 97.8% compared to the baseline model’s
performance of 97.5%. The F1 score is seen to have an even more noticeable increase — from
59.4% to 61.4% which implies that it does a much better job at handling class imbalance in the
dataset. We can thus conclude that the amphipathic index feature is an important feature which has
a meaningful contribution in determining whether a certain peptide sequence will be functional or
not. From figure 2, we can observe that the confusion matrix in figure 2(m) representing the
addition of amphipathic index feature with bin-size 0.5 gives the highest number of true negatives
among figures 2(k-0) which represent models trained and evaluated for analyzing the amphipathic
index feature.

Confusion Matrix for Atom-GNN Combo#1 Confusion Matrix for Atom-GNN Combo#2

Negative 99891 1813 Negative 100099 1605
3 z
¥ ¥

Positive 1173 2557 Positive 1109 2621

Negative Positive Negative Positive

Predicted predicted
Confusion Matrix for Logistic Regression (sequence) Confusion Matrix for Logistic Regression (structure) Confusion Matrix for Logistic Regression (combined)
Negative 98250 3454 Negative 97883 3821 Negative 98295 3409

Actual
Actual
nctual

Positive 1441 2289 Positive 1698 2032 Positive 1376 2354

Negative Positive Negative Positive Negative Positive
Predicted Predicted predicted

(c) (d) (e)
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Confusion Matrix for Residue-GNN Combo#1

Confusion Matrix for Residue-GNN Combo#2 Confussion Matrix for Residue-GNN Combo#3 Confusion Matrix for Residue-GNN Combo#4
Negative 100500 1204 f— 100572 1132 Negative 100459 1245 Negative 100415 1289
E 5 3 E
g F H 3
< F] 4 ¥
Positive 1048 2682 Fositive 1099 2631 Positive 991 2739 Positive. 1019 2711
Negative Positive Negative Positive Negative Positive Negative Positive
Predicted Predicted Predicted

predicted

® (2 (h) (1)

) ’ AP Confusion Matrix for Residue-GNN Combo#6(bin-size=0.5)
Confusion Matrix for Residue-GNN Combo#5  Confusion Matrix for Residue-GNN Combo#2{reduced dataset) Confusion Matrix for Residue-GNN C ize=1)
Negative 100371 1333 Negative 28763 586 Negative 28726 623 Negative 28891 458
k4 <
Positive 1004 2726 Positive 175 556 Positive 159 572 Positive 204 527
MNegative Positive Negative Positive Negative Positive Negative Positive
Predicted Predicted Predicted Predicted

G) ) 1) (m)

Confusion Matrix for Residue-GNN Combo#6(bin-size=0.2)

Confusion Matrix for Residue-GNN Combo#6(bin-size=0.1)

Negative 28884 465 Negative 28734 615
E H
B B
Positive 226 505 Positive 189 542
Negative Positive Negative Positive
Predicted Predicted

(n) (0)

Figure 2: Confusion matrices for Atom-level GNN models (a,b), Logistic regression models (c-
e), and Residue-level GNN models (f-0). The top left, top right, bottom left and bottom right
cells in each matrix represent true negatives, false positives, false negatives and true positives

respectively.
Amino acid count is the most important feature according to logistic regression
With logistic regression, we have conducted a feature importance test analysis in two different

ways. The first is where we trained models with individual features for all 13 kinds of features.
The results achieved are given in Table 11. The second is where we trained 13 models again, but
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this time, we left 1 feature out every time to check the fall of accuracy for removing that type of
feature. This result is shown in Table 12.

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Accuracy 0.951 | 0.904 | 0.899 | 0.856 | 0.626 | 0.382 | 0.616 | 0.688 | 0.900 | 0.616 | 0.876 | 0.944 | 0.928
F1 score 0.450 | 0.234 | 0.219 | 0.143 | 0.093 | 0.079 | 0.091 | 0.102 | 0.218 | 0.093 | 0.072 | 0.354 | 0.103
AUROC 0.932 | 0.827 | 0.817 | 0.722 | 0.593 | 0.551 | 0.601 | 0.664 | 0.695 | 0.622 | 0.567 | 0.885 | 0.619
Precision 0.373 | 0.163 | 0.150 | 0.090 | 0.051 | 0.042 | 0.049 | 0.057 | 0.151 | 0.051 | 0.049 | 0.299 | 0.092
Recall 0.568 | 0.413 | 0.401 | 0.339 | 0.539 | 0.750 | 0.540 | 0.499 | 0.392 | 0.556 | 0.135 | 0.435 | 0.117

Table 11: Performance of 13 logistic regression models trained with individual features (Method
1). Serial numbers are mapped to features in Table 5.

Model NoSI1 | No No NoS4 | NoS5 | NoS6 | NoS7 | NoS8 | NoS9 | No No No No
S2 S3 S10 S11 S12 S13
Accuracy 0.949 | 0.954 | 0.954 | 0.954 | 0.954 | 0.955 | 0.954 | 0.955 | 0.954 | 0.954 | 0.954 | 0.955 | 0.955
F1 score 0.437 | 0.489 | 0.491 | 0.492 | 0.496 | 0.497 | 0.493 | 0.496 | 0.495 | 0.496 | 0.487 | 0.495 | 0.495
AUROC 0.924 | 0.942 | 0.944 | 0.944 | 0944 | 0.944 | 0943 | 0.944 | 0.944 | 0.944 | 0.943 | 0.944 | 0.944
Precision 0.358 | 0.402 | 0.404 | 0.405 | 0.408 | 0.409 | 0.405 | 0.408 | 0.407 | 0.408 | 0.401 | 0.408 | 0.409
Recall 0.561 | 0.624 | 0.625 | 0.626 | 0.632 | 0.633 | 0.631 | 0.633 | 0.633 | 0.632 | 0.621 | 0.630 | 0.629

Table 12: Performance of 13 logistic regression models trained by leaving 1 feature out every time
(Method 2). Serial numbers are mapped to features in Table 5.

From Table 11, we can see that the most important feature is the count of amino acids which
already achieves an accuracy of 95.1%. The combination of all the 13 types of features gives us
95.5%. This goes to show that the amino acid count itself contributes to almost the entirety of the
accuracy achieved. On the other hand, we can see that some features like the radius of gyration
leads to a completely random model as it gives us only 38.2% accuracy. Another thing to note is
that the F1 score for all models apart from the one with the count of amino acids feature is
significantly low — not even 25%. Other features like difference between count of acidic and
aromatic residues, secondary structure, distance between acidic residues and distance between
basic residues do not give very good accuracy with all of them being in a range of 61-62%.
Although addition of secondary structure feature was seen to show good results in residue-level
GNN, logistic regression could not capture the information from this feature well.

From Table 12, we can see one particular result which is consistent with Table 11. The fall of
accuracy is the largest when we remove the count of amino acids feature. In order to evaluate the
consistency between these two methods to judge the importance of features, we plotted a
correlation graph of the two methods shown in figure 3. It shows us that both the methods agree
on the amino acid count feature being the most important one. Although there are some other
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features that show decent accuracy by Method 1, they do not indicate high importance by Method
2 as the fall of accuracy is negligible when those features are removed. Clearly, the amino acid
count feature dominates over the others in contributing to a high accuracy. Therefore, we have
analyzed this feature in detail in the following subsection.

Correlation between methods 1 and 2 for testing feature importance

¢

0.6 1

e e e
w s 8
L L L

e
[X]
|

Fall of accuracy by leave 1 out

¢ ¥
§ ¢ @
é ¢ @& .’L2'1 0.13
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Individual accuracies

e
-
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Figure 3: Correlation between two methods for feature importance test. X axis denotes the
accuracies achieved by models trained with 13 types of features individually (Table 11). Y axis
denotes the fall of accuracy when each of the 13 features are removed, one at a time (Difference
between combined accuracy — 95.5% and accuracy values in Table 12). Serial numbers are mapped
to features in Table 5. Data point 1 at the top right corresponds to the amino acid count feature.

Aromatic (W,F,Y) and acidic (D,E) residues are important for functionality whereas basic
(R, K,H) residues have the opposite effect

Since the amino acid count feature is predominantly the most important and crucial feature as
shown by both methods 1 and 2 conducted for testing feature importance by logistic regression,
we have analyzed this feature in more detail. The benefit of using logistic regression is that the
feature coefficients obtained after training the model can allow us to determine which features
contribute positively and which ones contribute negatively to the classification task. In logistic
regression, the outcome depends on the sum of the products of features and their learned
parameters or coefficients. The magnitudes of these coefficients determine how strongly the
features contribute to the model and the sign of the coefficients determine whether they contribute
positively or negatively. In our context, a positive sign means that the feature is usually noticed in
functional sequences whereas a negative sign means that the feature is detrimental to functionality.

We have plotted the coefficients for the count of amino acids feature in figure 4 which are sorted
based on their magnitudes. It can be observed that Tryptophan (W) has the highest positive impact
on functionality whereas Arginine (R) has the most negative impact. Moreover, Lysine (K) is also
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seen to have a very large negative coefficient, indicating that R and K are usually seen in non-
functional sequences. Another basic residue Histidine (H) also shows a negative coefficient but
the magnitude is not as high compared to R and K. Acidic residues such as Aspartic acid (D) and
Glutamic acid (E) as well as two other aromatic residues Phenylalanine (F) and Tyrosine (Y) have
quite large positive coefficients which tell us that these residues are necessary for a sequence to be
functional. All outcomes above are consistent with previously published results®.

Coefficients for amino acid count feature

Amino Acid count feature
T ARSI AP00 0T _ZE2A-<mm0O =

71‘00 70?75 70'50 70‘25 UIOO UiS U.‘SO 0. ;’5
Feature coefficients

Figure 4: Coefficient values for the count of amino acids feature obtained by logistic regression.
The X-axis here represents the coefficients whereas the Y-axis gives the amino acid 1 letter codes.

Comparison with other methods

For comparing our model’s performance with other methods, we have tested three neural network
architectures, all developed for predicting activation domains. The first is ADPred’” which was
previously trained on the same set of sequences that we are using. They have provided as input the
30-length sequence to a convolutional neural network (CNN) followed by a dense neural network,
which finally outputs a probability value. According to the suggestion of the authors, we have
considered a threshold of 0.8 on the probability value of the 16" residue to classify a sequence as
positive or negative. After testing this method using our test set of 1,05,434 sequences, the
accuracy achieved is 95.7% and the F1 score is 60.6% with an AUROC of 96.7%. Compared to
this, our best model (residue-level GNN with feature combination#3) that gives accuracy, F1 score
and AUROC of 97.9%, 71% and 97.1% respectively performs better. One thing to note is that their
precision is quite low — 46.9% indicating that this method falsely predicts many non-functional
sequences to be functional. The second method we compared with is PADDLE® which also uses a
deep convolutional neural network. Since PADDLE outputs a numerical value between -1 to 12,
we have converted this into a classification task. According to the suggestion of the authors, we
have considered both 4 and 6 as thresholds and to be stringent, we have also considered less than
4 to be negatives and greater than 6 to be positives. For all three cases, our method’s accuracy, F1
score and AUROC are better than those of PADDLE. These results are shown in Table 12. Another
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thing that we observe here is that the F1 score is less for PADDLE compared to both our method
and ADPred.

Model Residue-level | ADPred PADDLE PADDLE PADDLE
GNN (threshold = | (threshold = | (neg <4, pos
Combo#3 4) 6) > 6)

Accuracy 0.979 0.957 0.967 0.967 0.962

F1 score 0.710 0.606 0.337 0.140 0.163

AUROC 0.971 0.967 0913 0913 0913

Precision 0.688 0.469 0.604 0.776 0.776

Recall 0.734 0.857 0.234 0.077 0.091

Table 12: Comparison between our method and (1) ADPred and (2) PADDLE.

Besides, we have also compared our method with Mahatma et al. (2023)!? which also uses the
dataset we have used, but a balanced one. Instead of experimenting with 1,054,335 sequences, they
have taken all the 37,923 functional samples and appended 37,922 non-functional samples to
create their dataset. They have also used CNN in their neural network architecture and combined
it with two bidirectional long short-term memory (biLSTM) layers. They report an accuracy of
91.95% as well as F1 scores obtained using different architectures and parameters. The highest F1
score they reported is 91.95%. To conduct a fair comparison with their method, we have evaluated
our best model (residue-level GNN with feature combination 3) on a subset of our original test set.
Our original test set contains 3,730 functional samples. In the new test set, we have included all
these 3,730 positive samples and appended equal number of negative samples to create a balanced
test set. These negative samples were randomly selected, and the task was conducted for 10
iterations so that we can allow different negative samples to be considered while testing. Every
iteration thus resulted in a different test set with fixed positive samples but different negative
samples. Since this test set is balanced, we used a default threshold of 0.5 to classify the sequences.
The comparison results are shown in Table 13.

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.08.593266; this version posted May 12, 2024. The copyright holder for this preprint (which

Mahatma | Residue | Residue | Residue | Residue | Residue | Residue | Residue | Residue | Residue | Residue
et al GNN GNN GNN GNN GNN GNN GNN GNN GNN GNN
Model Iteration | Iteration | Iteration | Iteration | Iteration | Iteration | Iteration | Iteration | Iteration | Iteration
1 2 3 4 5 6 7 8 9 10
Accuracy | 91.95% 92.71% | 92.84% | 92.96% | 93.22% | 93.15% | 93.06% | 93.10% | 92.86% | 93.14% | 92.95%
F1 score | 91.95% 92.68% | 92.81% | 92.92% | 93.16% | 93.10% | 93.01% | 93.05% | 92.82% | 93.08% | 92.91%

Table 13: Comparison between our method and Mahatma et al. (2023).
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It can be observed from Table 13 that, for all iterations, our method outperformed Mahatma et al.
(2023) in terms of both accuracy and F1 score. This attests to our method’s advantage over others
even if we consider a balanced dataset for this classification task.

Conclusion

We have utilized a Graph Neural Network for identifying sequences that are functional
transcriptional activation domains and achieved highly accurate models. Analysis of different
feature combinations has allowed us to judge which properties of these sequences and structures
have meaningful contribution to AD function. Although there has been some investigation into the
impact of secondary structure on the functionality of these peptides”!2, our method extensively
analyses several structure-based features apart from only secondary structure as properties of
individual residues and atoms. We have been able to achieve a performance better than other
existing methods and have also identified the most important feature through a logistic regression
model.

Our experiments have revealed that the secondary structure feature does have a meaningful
contribution in classifying functional sequences as it helps to achieve a higher recall i.e. fewer
false negatives and addition of this feature gives us the best performing model for all the
performance metrics — accuracy, F1 score and AUROC. This goes to show that whether a peptide
sequence is a functional transcriptional activation domain or not does depend on the secondary
structures of the peptide i.e. whether the residues fall into a helix, beta or coil structure. Moreover,
the results concerning amphipathic index suggest that the hydrophobic and hydrophilic nature
being present on the opposite faces of the peptide also affects the function of the peptides. We
have seen that the most important feature that distinguishes whether a peptide will be functional
or not is the frequency of amino acids. After analyzing this feature in greater detail, we have found
that the presence of acidic and aromatic residues is necessary for the peptide to be a functional
transcriptional activation domain. On the other hand, presence of basic residues is detrimental to
the function of the peptides. As future work, we can focus on analyzing some more structure-based
features.
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