

1 Thermoelastic properties of Fe^{3+} -rich jeffbenite and application to

2 superdeep diamond barometry

4 Fei Qin^{1*}, Fei Wang², Joseph R. Smyth³, Dongzhou Zhang⁴, Jingui Xu⁵, Steven D.
5 Jacobsen^{6*}

⁸ ¹School of Earth Sciences and Resources, China University of Geosciences (Beijing),
⁹ Beijing, China

¹⁰ ²Bayerisches Geoinstitut, Universiteit Bayreuth, D-95440 Bayreuth, Germany

11 ³Department of Geological Sciences, University of Colorado, Boulder, USA

⁴School of Ocean and Earth Science and Technology, Hawai'i Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii, USA

14 ⁵Key Laboratory for High-Temperature and High-Pressure Study of the Earth's
15 Interior, Institute of Chemistry, Chinese Academy of Sciences, Guiyang, Guizhou
16 China

17 ⁶Department of Earth and Planetary Sciences, Northwestern University, Evanston,
18 Illinois, USA

19

20

21 Correspondence author: Fei Qin (fei.qin@cugb.edu.cn)

22 Steven D. Jacobsen (s-jacobsen@northwestern.edu)

23

24

25

20

27 **Abstract**

28 Jeffbenite ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$) is a tetragonal phase found in so far only in superdeep
29 diamonds, and its thermoelastic parameters are a prerequisite for determining
30 entrapment pressures as it is regarded as a potential indicator for superdeep diamonds.
31 In this study, the thermoelastic properties of synthetic Fe^{3+} -jeffbenite were measured
32 up to 33.7 GPa and 750 K. High-temperature static compression data were fitted,
33 giving $(\partial K_{T0}/\partial T)_P = -0.0107(4)$ GPa/K and $\alpha_T = 3.50(3) \times 10^{-5}$ K⁻¹. The thermoelastic
34 properties and phase stability are applied to modelling isomekes, or *P-T* paths
35 intersecting possible conditions of entrapment in diamond. We calculate that under
36 ideal exhumation, jeffbenite entrapped at mantle transition zone conditions will
37 exhibit a high remnant pressure at 300 K (P_{inc}) of ~ 5.0 GPa. Elastic geobarometry on
38 future finds of jeffbenite inclusions can use the new equation of state to estimate
39 entrapment pressures for this phase with still highly uncertain stability field in the
40 mantle.

41

42

43 **Plain Language Summary**

44 Ongoing superdeep diamonds research is providing new insights into the Earth's deep
45 mantle. Natural superdeep diamonds and its inclusions can show compelling evidence
46 for retrograde conversion from the lower mantle or transition zone precursors; along
47 with carbonate melt-peridotite reactions. Jeffbenite with a composition of
48 $Mg_3Al_2Si_3O_{12}$, found in so far only in superdeep diamonds can be regarded as a
49 potential indicator mineral for superdeep diamonds. Recent synthesis of Fe^{3+} -rich
50 jeffbenite provides an opportunity for in-situ measurements to study the
51 thermodynamic properties of jeffbenite at deep-mantle conditions. Thus, in this study,
52 we explored the high pressure and temperature stability and thermoelastic properties
53 of Fe-bearing jeffbenite up to 33.7 GPa and 750 K. The thermoelastic data and phase
54 stability were measured and the results are applied to modelling the isomekes, or P - T
55 paths intersecting possible conditions of entrapment and along which the pressure on
56 the inclusion is equal to the external pressure on the diamond host. Our finding can be
57 applied to determining entrapment pressures in such diamond inclusions in future
58 finds and its primary or retrograde history is essential in understanding mantle
59 dynamics and the hidden consequences of plate tectonics.

60

61 **1. Introduction**

62 Natural diamonds and their hosted inclusions provide unique insights into the
63 Earth's deep mantle to at least ~1000 km depth (Nestola et al., 2018; Pearson et al.,
64 2014; Shirey et al., 2013; Walter et al., 2011). Superdeep diamonds, from below 300-
65 km depth, contain inclusions normally showing evidence for retrograde phase
66 transitions from lower mantle or transition zone precursors, along with carbonate
67 melt-peridotite reactions (Harte, 2010; Stachel et al., 2005; Thomson et al., 2016;
68 Walter et al., 2008). Majoritic garnets are the only numerous inclusion population that
69 largely retains its structure and chemical properties without retrograde re-
70 equilibrations, and until now, the very high $\text{Fe}^{3+}/\sum\text{Fe}$ ratio (>0.8) observed in high-
71 pressure majoritic inclusions have revealed a much deeper orogenic carbonatite origin
72 and redox states of the deep Earth (Kiseeva et al., 2018; Nestola et al. 2023b; Tao et
73 al., 2018; Xu et al., 2017). However, in some superdeep diamonds, jeffbenite appears
74 instead of majoritic garnet, especially from Brazil's Juina district and from Kankan in
75 Guinea (Bulanova et al., 2010; Hayman et al., 2005; Hutchison et al., 2001;
76 Zedgenizov et al., 2014, 2020). The recent synthesis of Fe-rich jeffbenite with high
77 Fe^{3+} content by Smyth et al. (2022) provides an opportunity for laboratory
78 experiments to study the thermodynamic properties of jeffbenite at deep-mantle
79 conditions.

80 Prior to establishment as jeffbenite (Nestola et al., 2016), the tetragonal phase
81 with ideal formula $\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$ was referred to as TAPP (Tetragonal almandine-
82 pyrope phase) (Harris et al., 1997) and is very similar to that of almandine-pyrope
83 garnet compositions but with an unusual high ratio of $\text{Fe}^{3+}/(\text{Fe}^{2+}+\text{Fe}^{3+})$ (Harris et al.,
84 1997; McCammon et al., 1997). Thus, despite having garnet stoichiometry, TAPP was
85 speculated to have its own stability field due to its lower density and modified crystal
86 structure (Armstrong and Walter, 2012; Finger and Conrad, 2000; Harris et al., 1997;
87 Smyth et al., 2022; Wang et al., 2021).

88 Recently, Nestola et al. (2023a) calculated the phase diagram of jeffbenite from
89 its thermodynamic properties and using density functional theory, predicting that

90 pyrope should be stable over jeffbenite at mantle conditions. Given that the study of
91 Nestola et al. (2023a) was performed on Mg-end member jeffbenite and the
92 conditions of synthesis at 15 GPa and 1200 °C for ferromagnesian jeffbenite (Smyth
93 et al., 2022), suggests that ferric iron likely plays an important role in the stability of
94 this phase. It leaves open to question whether jeffbenite inclusions found in superdeep
95 diamonds represent equilibrium conditions of entrapment, or are retrograde.

96 The high-pressure behavior of jeffbenite synthesized by Smyth et al. (2022) was
97 studied at 300 K by Wang et al. (2021), who reported the high-pressure crystal
98 structure evolution, compressibility, and possible spin state change of iron.
99 Knowledge of the *P-V-T* equation of state for jeffbenite would permit future
100 measurement of the remnant pressure of an inclusion in diamond to estimate its
101 entrapment pressure using inclusion-diamond barometry (e.g., Angel et al., 2022).
102 This paper focuses on determining the *P-V-T* equation of state of ferromagnesian
103 jeffbenite, $(\text{Mg}_{2.32}\text{Al}_{0.03}\text{Fe}^{2+}_{1.28}\text{Fe}^{3+}_{1.77}\text{Si}_{2.85}\text{O}_{12})$, which may have a stability field in
104 the transition zone or uppermost lower mantle distinct from majoritic garnet. Results
105 are used to model the potential entrapment pressures of jeffbenite-rich inclusions in
106 diamond.

107

108 **2. Materials and Methods**

109 High-quality single crystals of Al-free, ferromagnesian jeffbenite measuring up
110 to 200 μm in longest dimension were synthesized from a stoichiometric mixture of
111 FeO , Fe_2O_3 , SiO_2 , MgO and $\text{Mg}(\text{OH})_2$ powders in a multi-anvil press at 15 GPa and
112 1200 °C at Bayerisches Geoinstitut, University of Bayreuth, Germany. Details of the
113 sample synthesis and compositional characterization are reported in Smyth et al.
114 (2022), including the determination of $\text{Fe}^{3+}/\Sigma\text{Fe} = 0.65(1)$ by synchrotron Mössbauer
115 spectroscopy. The bulk chemical composition of 34.49 wt% SiO_2 , 18.63 wt% MgO ,
116 44.23 wt% FeO and 0.31 wt% Al_2O_3 was obtained using a JEOL 8230 electron
117 microprobe at the University of Colorado, and because the H_2O content was below
118 detection using FTIR spectroscopy, the stoichiometry of this jeffbenite can be written

119 as $Mg_{2.32}Al_{0.03}Fe^{2+}_{1.28}Fe^{3+}_{1.77}Si_{2.85}O_{12}$. Smyth et al. (2002) found the lattice parameters
120 of five crystals from the original batch to be similar, and refined the structure from
121 one in space group $I-42d$ with $a = 6.6449(3)$ Å, $c = 18.4823(9)$ Å, and $V = 816.08(9)$
122 Å³. For the high pressure-temperature study, crystals of jeffbenite from the same
123 synthesis run were screened for clean optical extinction under a polarizing-light
124 microscope and polished to ~10 µm thickness.

125 A BX90-type DAC equipped with 300-µm flat culets diamond anvils was used
126 for high P - T measurements with a miniature resistive heater described by Kantor et al.
127 (2012). A gold foil for pressure determination and a polished crystal were loaded
128 together into the sample chamber in a neon pressure medium using the GSECARS gas
129 loading system (Rivers et al., 2008). A closed-loop feedback was used to control the
130 power against the temperature measured at a K-type thermocouple in contact with one
131 of the diamond anvils (Zhang et al., 2022). During the diffraction experiments, the
132 temperature fluctuation was ~1 K at 450 K and ~3 K at 750 K. Au foil was used as the
133 pressure calibrant and the pressure certainties are ±0.2 GPa or less. *In-situ* high P - T
134 single-crystal XRD experiments were conducted up to 33.7 GPa and 750 K at the 13-
135 BM-C experimental station of the Advanced Photon Source, Argonne National
136 Laboratory. The incident X-ray beam at 13 BMC was monochromated to 0.4340 Å
137 with a focal spot size of 12 × 18 µm² (Zhang et al., 2017). Data were analyzed by the
138 APEX3 Crystallography Software Suite and SHELXL package (Sheldrick, 2008). P -
139 V - T data were fitted by the EoSFit7-GUI program (Gonzalez-Platas et al., 2016). The
140 isomeke P - T paths of diamond-jeffbenite pairs were modelled by the EoSFit7Pinc
141 (Angel et al., 2017).

142

143 3. Results and Discussion

144 3.1 Isothermal equation of state at Room- T

145 Lattice parameters and the unit-cell volume of jeffbenite at high- P and high- T
146 conditions were analyzed using the APEX3 software (Bruker), summarized in Table
147 S1 in Supporting Information. There is no indication of phase transition up to 33.7

148 GPa and 750 K. Additionally, the unit-cell reference volume, $V_{T0} = 816.5(1.7)$ Å³, was
149 obtained prior to compression, which is consistent with previously reported values
150 (Nestola et al., 2023a; Smyth et al., 2022; Wang et al., 2021). However, the room- T
151 volume of 783.5(1.3) Å³ determined for a synthetic Ti-bearing jeffbenite (Armstrong
152 and Walter, 2012) is significantly lower than Fe-rich jeffbenite in this study.

153 Because we used the crystals from same synthesis batch as the 300 K static
154 compression data from Wang et al. (2021), those data were incorporated into the P - V -
155 T dataset and fitted together to a third-order Birch-Murnaghan equation of state
156 (BM3-EoS) using error-weighted least squares with EoSFit7c (Angel et al., 2014).
157 The resulting BM3 parameters are: $V_{T0} = 816.3(1)$ Å³; $K_{T0} = 191(2)$ GPa; and $K_{T0}' =$
158 2.1(2) (Figure 1, dashed line). The P - V data yields values of $K_{T0} = 171(1)$ GPa when
159 assuming a pressure derivative of $K_{T0}' \equiv 4$.

160 Compared with the room-temperature compression data alone (Wang et al.,
161 2021), the isothermal bulk modulus (K_0) of jeffbenite from the combined P - V - T EoS
162 is about 5% higher than the value $K_{T0} = 182(1)$ GPa from Wang et al. (2021). The
163 fitted K_{T0}' from this P - V - T study is somewhat lower than $K_{T0}' = 2.7(1)$ from Wang et
164 al. (2021). Nestola et al. (2023a) used first-principles density functional theory (DFT)
165 to calculate the EoS parameters of Mg-jeffbenite and found $K_{T0} = 175.39$ GPa and K_0'
166 = 4.09, suggesting that the incorporation of iron may increase the incompressibility of
167 jeffbenite.

168 The compressibility of pyrope-almandine series garnets using synthetic single-
169 crystal samples show K_{T0} ranges from 163.7(1.7)–172.6(1.5) GPa with K_{T0}' 5.6–6.4
170 (Milani et al., 2015). For comparison, Zou et al. (2012) measured $K_0 = 167(6)$ GPa
171 and $K_0' = 4.6(3)$ for synthetic Mg₃Al₂Si₃O₁₂ pyrope garnet. Ismailova et al. (2017)
172 determined the compressibility of majoritic garnets along the Fe₃Al₂Si₃O₁₂–Fe₄Si₄O₁₂
173 solid solution containing 23 to 76 % Fe and found a range in K_{T0} from 159(1) to
174 172(1) GPa. Compared to our results for jeffbenite with $K_{T0} = 191$ GPa suggests that
175 jeffbenite is less compressible than all other iron-rich garnets (Table S2).

176 As for the high-pressure form of majorite garnet with tetrahedral structure and

177 similar compositions along the majorite-pyrope series, the adiabatic bulk moduli fall
178 in the range from 160 to 173 GPa (Sinogeikin et al., 1997; Sinogeikin and Bass,
179 2002). Static compression studies of single-crystal majoritic garnet include Yagi et al.
180 (1992) finding $K_0 = 161.12$ GPa and Hazen et al. (1994) finding $K_0 = 169.3$ GPa, both
181 for fixed $K_0' = 4$ and not containing iron (Table S1). Thus, based on the measurements
182 of adiabatic bulk moduli on majoritic garnet, it is obvious that jeffbenite is less
183 compressible. The higher incompressibility of iron-rich jeffbenite, combined with
184 previous high-pressure structure refinements suggests that Fe^{3+} substitution for Si in
185 the tetrahedral site may be a factor in stabilizing jeffbenite at high pressure conditions
186 (Wang et al., 2021).

187

188 **3.2 Thermal equation of state of jeffbenite**

189 Having established a reliable compression curve for jeffbenite at room
190 temperature, we next fitted the thermal equation of state parameters by combining
191 with the Holland Powell-type thermal pressure model, and the temperature derivative
192 of the bulk modulus $(\partial K_{T0}/\partial T)_P$ (Angel et al., 2014; Fei, 1995; Holland and Powell,
193 2011) (Text S1). The high P - T unit-cell volumes for jeffbenite are plotted in Figure 2,
194 together with the isotherms calculated using the thermoelastic parameters derived
195 from the current fits. The P - T path during data collection is shown in Supplementary
196 Information Figure S1. The thermoelastic parameters $(\partial K_{T0}/\partial T)_P$, α_T , K_0 , and K_0'
197 obtained in this study with the high-temperature BM3-EoS are: $V_0 = 815.7(2)$ Å³; $K_0 =$
198 191(2) GPa; $K_0' = 2.0(9)$; $(\partial K_{T0}/\partial T)_P = -0.0107(4)$ GPa/K; and $\alpha_T = 3.50(3) \times 10^{-5}$ K⁻¹.
199 In addition, by fixing the V_0 , K_0 , and K_0' to the values obtained at 300 K, the resulting
200 thermal parameters are $(\partial K_{T0}/\partial T)_P = -0.0093(1)$ GPa/K, and $\alpha_T = 3.095(1) \times 10^{-5}$ K⁻¹.

201 Nestola et al. (2023a) also reported the volume thermal expansion coefficient and
202 the temperature derivative of the bulk modulus for pure jeffbenite ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$)
203 based on *ab initio* computations, finding $\alpha_{0V} = 1.717 \times 10^{-5}$ K⁻¹ and $(\partial K_{T0}/\partial T)_P = -$
204 0.020 GPa/K, respectively. We obtained a larger value for α_{0V} with a lower
205 temperature derivative of the bulk modulus compared with the computational study of

206 Nestola et al. (2023a) on Mg-jeffbenite without iron.

207 Du et al. (2015) measured the thermal expansion of pyrope and the derived
208 volume thermal expansivity α_{0V} is $2.74(5) \times 10^{-5} \text{ K}^{-1}$. The thermoelastic parameters of
209 synthetic $\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$ pyrope have also been investigated up to 19 GPa and 1700 K
210 by Zou et al. (2012), who reported $(\partial K_{T0}/\partial T)_P = -0.021(9) \text{ GPa/K}$ and $\alpha_{0V} = 2.89(33) \times$
211 10^{-5} K^{-1} . Similarly, Wang et al. (1998) found $(\partial K_{T0}/\partial T)_P = -0.020(1) \text{ GPa/K}$ and $\alpha_{0V} =$
212 $2.5 \times 10^{-5} \text{ K}^{-1}$ for $\text{Py}_{62}\text{Mj}_{38}$ obtained in multi-anvil apparatus. Our value for the
213 thermal expansion coefficient of jeffbenite is lower than the majoritic garnet with
214 mid-ocean ridge basalt (MORB) composition, with $\alpha = 2.0(3) \times 10^{-5} \text{ K}^{-1} + T \times$
215 $1.0(5) \times 10^{-8} \text{ K}^{-2}$ (Nishihara et al., 2005). However, there is lack thermal expansion
216 data of tetragonal majorite at simultaneous high P - T conditions for more systematic
217 comparisons. Our fitted values of α_{0V} and $(\partial K_{T0}/\partial T)_P$ for Fe-jeffbenite of $3.095 \text{--} 3.503$
218 $\times 10^{-5} \text{ K}^{-1}$ and -0.01 GPa/K , respectively, are remarkably different from previous
219 results on majorite-pyrope garnets, further suggesting unique phase space for
220 jeffbenite.

221

222 4. Application to superdeep diamond

223 Jeffbenite is a newly named mineral (Nestola et al., 2016) after its discovery as
224 inclusions in super-deep diamond from the Brazil's Juina district and Kankan in
225 Guinea (Brenker et al., 2002; Bulanova et al., 2010; Hayman et al., 2005; Hutchison
226 et al., 2001; Zedgenizov et al., 2020). The jeffbenite-containing diamonds partially
227 overlap with the locations where majorite garnets are also known as inclusions. Using
228 the current thermoelastic results, we calculated the entrapment isomekes for jeffbenite
229 in comparison to majoritic garnet in diamond. Entrapment isomekes give the P and T
230 conditions ideally decompressed from the entrapment depth where the pressure on the
231 inclusion is equal to the external pressure on the diamond host, thereby providing a
232 means to calculate in reverse the possible entrapment depths from the remnant
233 pressure on an inclusion in a diamond at room pressure (Angel et al., 2015; Angel et
234 al., 2017).

235 Since the remnant pressure on a naturally recovered jeffbenite inclusion has not

236 yet been determined, as an example entrapment isomeke, we will take the mantle
237 transition-zone conditions of synthesis for this material (Smyth et al., 2022) at 15 GPa
238 and 1200 °C as an entrapment condition from which to model the predicted residual
239 pressure of a jeffbenite inclusion (P_{inc}) compared with majoritic garnet. Figure 3
240 presents the example entrapment isomekes for ferromagnesian jeffbenite and majoritic
241 garnet of MORB composition using a hypothetical entrapment condition of 15 GPa
242 and 1200 °C using the P - V - T equations of state from this study for jeffbenite, and
243 from Nishihara et al. (2005) for majoritic garnet. The differences in the slope for the
244 example entrapment isomeke of jeffbenite and majoritic garnet is due to differences in
245 their thermal expansion coefficients, resulting in different values of P_{foot} , the isomeke
246 pressure at room temperature. The resulting P_{inc} values therefore also differ. In our
247 example, the predicted P_{foot} for jeffbenite is ~11.5 GPa, whereas the predicted P_{foot} for
248 majoritic garnet is ~1 GPa lower. Consequently, the calculated P_{inc} for majoritic
249 garnet found in the same diamond would be lower than that of jeffbenite. Isothermal
250 decompression in our example would lead to a predicted $P_{\text{inc}} = 5.00$ GPa for jeffbenite
251 and 4.58 GPa for majoritic garnet. Although these are relatively high inclusion
252 pressures, they are on the order of what has been observed for inclusions entrapped in
253 the mantle transition zone (Genzel et al., 2023). It is possible that jeffbenite and
254 majoritic garnet have overlapping stability fields at transition zone conditions but
255 form under different chemical environments.

256 Based on our thermoelastic data, if jeffbenite is a retrograde phase from
257 bridgmanite, a volume change about 22% would be required (31.78 g/mol for
258 jeffbenite vs ~25 g/mol for bridgmanite). Such a high-volume change can be
259 accommodated by diamond only within its plastic deformation regime, but more
260 details on fractures and plastic deformation are needed for jeffbenite inclusions to
261 properly estimate the possibility of transformation from bridgmanite to jeffbenite.
262 Nevertheless, our presented thermal EoS still gives a good description of the thermal
263 expansion behavior for jeffbenite over a large temperature and pressure range and
264 could be applied to elastic thermobarometry of diamond-hosted inclusions of

265 jeffbenite in the future.

266 Jeffbenite inclusions, although rare, can provide direct evidence of super-deep
267 origins of diamonds and the presence of such Fe^{3+} -rich inclusions may also reflect
268 extreme redox changes during subducted slab dehydration-rehydration processes in
269 the transition zone or uppermost lower mantle (Nestola et al., 2023a; Tao et al., 2018).
270 Notably, the recently reported high Fe^{3+} content in majoritic garnet inclusions
271 ($\text{Fe}^{3+}/\sum\text{Fe} > \sim 0.81$) from the deep upper mantle have raised questions about what
272 controls the redox state in these garnets (Kiseeva et al., 2018; Tao et al., 2018; Xu et
273 al., 2017).

274 In Fe-jeffbenite, charge balance most likely occurs through the removal of Si on
275 the tetrahedral site to accommodate the additional positive charge, and the excess Si
276 would probably be incorporated into a coexisting phase, such as clinopyroxene in our
277 case (Smyth et al., 2022). Substitution mechanisms such as $\text{Si}^{4+} + \text{Fe}^{2+} = 2\text{Fe}^{3+}$
278 suggest that ability for jeffbenite to incorporate Fe^{3+} may play a potential role in
279 stabilizing it over majoritic garnet. As the oxygen fugacity is above the IW buffer, the
280 high Fe^{3+} concentration of jeffbenite in the mantle might reflect extreme redox
281 changes (Nestola et al., 2023b). At some depths, the Fe^{3+} -jeffbenite inclusions might
282 be a product of a redox reaction involving carbonatitic magmas and carbonates as
283 the oxidizing agent which responsible for generating the high Fe^{3+} of these deep
284 mantle inclusions (Lorenzon et al., 2022; Thomson et al., 2016). The question
285 remains, whether or not Fe^{3+} -jeffbenite is a redox reaction product during diamond
286 formation at different depths in the slab, or whether it possesses a distinct stability
287 field within certain mantle compositions. The abundance of jeffbenite as an inclusion
288 in super-deep diamonds makes determining its primary or retrograde history essential
289 in understanding mantle dynamics.

290

291 **5. Conclusions**

292 The high-pressure high-temperature equation of state of synthetic Fe-jeffbenite
293 was determined by synchrotron-based, single-crystal XRD at pressures up to ~ 34 GPa
294 and temperatures up to 750 K. The thermoelastic parameters of Fe-jeffbenite are now

295 determined and can be applied to determining entrapment pressures in future finds.
296 Compared with majoritic garnet, the smaller thermal expansivity of jeffbenite likely
297 gives rise to a broader pressure and temperature stability field in the upper lower
298 mantle.

299

300 **Open Research**

301 Data supporting the findings of this study are available at Qin (2023).

302

303 **Acknowledgements**

304 This research was supported by National Natural Science Foundation of China
305 (grant 42202040) and the SinoProbe laboratory of Chinese Academy of Geological
306 Sciences (grant 202208). SDJ Acknowledges support from the US National Science
307 Foundation grant EAR-1853521. Work performed at GSECARS (Sector 13) of the
308 Advanced photon Source (APS) is supported by the NSF EAR-1634415 and the
309 Department of Energy (DOE) DE-FG02-94ER1446. The APS at Argonne National
310 Laboratory is supported by the DOE, Office of Science, under Contract No. DE-
311 AC02-06CH11357. Experiments at Sector 13-BM-C of the APS used the PX^2
312 facility, supported by GSECARS and COMPRES under NSF Cooperative Agreement
313 EAR-1661511. Use of the COMPRES-GSECARS gas loading system was supported
314 by COMPRES under NSF Cooperative Agreement EAR-1606856.

315

316 **References**

317 Angel, R.J., Gonzalez-Platas, J., & Alvaro, M. (2014). EosFit7c and a Fortran module (library) for
318 equation of state calculations. *Zeitschrift Krystallographie*, 229(5), 405–419.

319 Angel, R. J., Alvaro, M., Nestola, F., & Mazzucchelli, M. L. (2015). Diamond thermoelastic properties
320 and implications for determining the pressure of formation of diamond-inclusion systems. *Russian
321 Geology and Geophysics*, 56(1-2), 211–220.

322 Angel, R. J., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2017). A simple GUI for host-inclusion
323 elastic thermobarometry. *American Mineralogist*, 102, 1957–1960.

324 Angel, R. J., Alvaro, M., & Nestola, F. (2022). Crystallographic methods for non-destructive
325 characterization of mineral inclusions in diamonds. *Reviews in Mineralogy and Geochemistry*,
326 88(1), 257–305.

327 Armstrong, L. S., & Walter, M. J. (2012). Tetragonal almandine pyrope phase (TAPP): retrograde Mg-
328 perovskite from subducted oceanic crust? *European Journal of Mineralogy*, 24(4), 587–597.

329 Brenker, F. E., Stachel, T., & Harris, J. W. (2002). Exhumation of lower mantle inclusions in diamond:
330 ATEM investigation of retrograde phase transitions, reactions and exsolution. *Earth and Planetary
331 Science Letters*, 198(1–2), 1–9.

332 Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., & Gobbo, L.
333 (2010). Mineral inclusions in sublithospheric diamonds from collier 4 kimberlite pipe, Juina,
334 Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. *Contributions
335 to Mineralogy and Petrology*, 160(4), 489–510.

336 Day, H. W. (2012). A revised diamond-graphite transition curve. *American Mineralogist*, 97(1), 52–62.

337 Du, W., Clark, S. M., & Walker, D. (2015). Thermo-compression of pyrope-grossular garnet solid
338 solutions: Non-linear compositional dependence. *American Mineralogist*, 100(1), 215–222.

339 Fei, Y. (1995). Thermal expansion. In: Ahrens TJ (ed) *Mineral physics and crystallography: a
340 handbook of physical constants*. American Geophysical Union, Washington DC, pp 29–44.

341 Finger, L. W., & Conrad, P. G. (2000). The crystal structure of “tetragonal almandine-pyrope phase”
342 (TAPP): A reexamination. *American Mineralogist*, 85(11–12), 1804–1807.

343 Genzel, P. T., Pamato, M. G., Novella, D., Santello, L., Lorenzon, S., Shirey, S. B., ... & Brenker, F. E.
344 (2023). Geobarometric evidence for a LM/TZ origin of CaSiO₃ in a sublithospheric diamond.
345 *Geochemical Perspectives Letters*, 25, 41–45.

346 Gonzalez-Platas, J., Alvaro, M., Nestola, F., & Angel, R. J. (2016). EosFit7-GUI: A new GUI tool for
347 equation of state calculations, analyses, and teaching. *Journal of Applied Crystallography*, 49,
348 1377–1382.

349 Harris, J., Hutchison, M. T., Hursthouse, M., Light, M., & Harte, B. (1997). A new tetragonal silicate
350 mineral occurring as inclusions in lower mantle diamonds. *Nature*, 387(6632): 486–488.

351 Harte, B. (2010). Diamond formation in the deep mantle: the record of mineral inclusions and their
352 distribution in relation to mantle dehydration zones. *Mineralogical Magazine*, 74(2), 189–215.

353 Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso
354 (Juina area, Mato Grosso, Brazil). *Contributions to Mineralogy and Petrology*, 149(4), 430–445.

355 Hazen, R. M., Downs, R. T., Conrad, P. G., Finger, L. W. & Gasparik, T. (1994). Comparative
356 compressibilities of majorite-type garnets. *Physics and Chemistry of Minerals*, 21, 344–349.

357 Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic
358 dataset for phases of petrological interest, involving a new equation of state for solids. *Journal of
359 metamorphic. Geology*, 29(3), 333–383.

360 Hutchison, M. T., Hursthouse, M., & Light, M. (2001). Mineral inclusions in diamonds: associations
361 and chemical distinctions around the 670-km discontinuity. *Contributions to Mineralogy and
362 Petrology*, 142(1), 119–126.

363 Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., ... & Dubrovinsky, L.
364 (2012). BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements.
365 *Review of Scientific Instruments*, 83(12).

366 Kiseeva, E. S., Vasiukov, D. M., Wood, B. J., McCammon, C., Stachel, T., Bykov, M., ... &
367 Dubrovinsky, L. (2018). Oxidized iron in garnets from the mantle transition zone. *Nature
368 Geoscience*, 11(2), 144–147.

369 Ismailova, L., Bykov, M., Bykova, E., Bobrov, A., Kupenko, I., Cerantola, V., ... & Dubrovinsky, L.
370 (2017). Effect of composition on compressibility of skiaigite-Fe-majorite garnet. *American
371 mineralogist*, 102(1), 184–191.

372 Lorenzon, S., Novella, D., Nimis, P., Jacobsen, S. D., Thomassot, E., Pamato, M. G., ... & Nestola, F.

373 (2022). Ringwoodite and zirconia inclusions indicate downward travel of super-deep diamonds.
374 *Geology*, 50(9), 996–1000.

375 McCammon, C., Hutchison, M., & Harris, J. (1997). Ferric iron content of mineral inclusions in
376 diamonds from Sao Luiz: A view into the lower mantle. *Science*, 278(5337), 434–436.

377 Milani, S., Nestola, F., Alvaro, M., Pasqual, D., Mazzucchelli, M. L., Domeneghetti, M. C., & Geiger,
378 C. A. (2015). Diamond–garnet geobarometry: The role of garnet compressibility and expansivity.
379 *Lithos*, 227, 140–147.

380 Nestola, F., Burnham, A. D., Peruzzo, L., Taurom L., Alvaro, M., Walter, M. J., Gunter, M., Anzolini,
381 C., & Kohn, S. C. (2016). Tetragonal almandine pyrope phase, TAPP: finally a name for it, the
382 new mineral jefbenite. *Mineralogical Magazine*, 80(7), 1219–1232.

383 Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D. G., Pamato, M. G., ... & Davidson, J.
384 (2018). CaSiO_3 perovskite in diamond indicates the recycling of oceanic crust into the lower
385 mantle. *Nature*, 555(7695), 237–241.

386 Nestola, F., Prencipe, M., & Belmonte, D. (2023a). $\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$ jeffbenite inclusion in super-deep
387 diamonds is thermodynamically stable at very shallow Earth’s depths. *Scientific Reports*, 13(1),
388 1–10.

389 Nestola, F., Regier, M. E., Luth, R. W., Pearson, D. G., Stachel, T., McCammon, C., ... & Harris, J. W.
390 (2023b). Extreme redox variations in a superdeep diamond from a subducted slab. *Nature*,
391 613(7942), 85–89.

392 Nishihara, Y., Aoki, I., Takahashi, E., Matsukage, K. N., & Funakoshi, K. I. (2005). Thermal equation
393 of state of majorite with MORB composition. *Physics of the Earth and Planetary Interiors*, 148(1),
394 73–84.

395 Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., ... & Vincze, L.
396 (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond.
397 *Nature*, 507(7491), 221–224.

398 Qin, F. (2023). Data files for thermoelastic properties of Fe^{3+} -rich jeffbenite [Dataset]. Zenodo.
399 <https://doi.org/10.5281/zenodo.10056631>.

400 Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M., & Jacobsen, S. D. (2008). The
401 COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon
402 Source. *High Pressure Research*, 28(3), 273–292.

403 Sheldrick, G. M. (2008). A short history of SHELX. *Acta Crystallographica Section A*, 64(Pt 1), 112–
404 122.

405 Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P., ... & Walter, M. J. (2013).
406 Diamonds and the geology of mantle carbon. *Reviews in Mineralogy and Geochemistry*, 75(1),
407 355–421.

408 Sinogeikin, S. V., & Bass, J. D. (2002). Elasticity of Majorite and a Majorite-Pyrope solid solution to
409 high pressure: Implications for the Transition Zone. *Geophysical Research Letters*, 29(2), 4-1.

410 Sinogeikin, S. V., Bass, J. D., O’Neill, B., & Gasparik, T. (1997). Elasticity of tetragonal end-member
411 majorite and solid solutions in the system $\text{Mg}_4\text{Si}_4\text{O}_{12}$ – $\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$. *Physics and Chemistry of
412 Minerals*, 24(2), 115–121.

413 Smyth, J. R., Wang, F., Alp, E. E., Bell, A. S., Posner, E. S., & Jacobsen, S. D. (2022). Ferromagnesian
414 jeffbenite synthesized at 15 GPa and 1200 °C. *American Mineralogist: Journal of Earth and
415 Planetary Materials*, 107(3), 405–412.

416 Stachel, T., Brey, G. P., & Harris, J. W. (2005). Inclusions in sublithospheric diamonds: glimpses of

417 deep Earth. *Elements*, 1(2), 73–78.

418 Tao, R. B., Fei, Y. W., Bullock, E. S., Xu, C., & Zhang, L. F. (2018). Experimental investigation of
419 Fe³⁺-rich majoritic garnet and its effect on majorite geobarometer. *Geochimica et Cosmochimica
420 Acta*, 225, 1–16.

421 Thomson, A. R., Walter, M. J., Kohn, S. C., & Brooker, R. A. (2016). Slab melting as a barrier to deep
422 carbon subduction. *Nature*, 529, 76–79, <https://doi.org/10.1038/nature16174>.

423 Walter, M. J., Bulanova, G. P., Armstrong, L. S., Keshav, S., Blundy, J. D., Gudfinnsson, G., ... &
424 Gobbo, L. (2008). Primary carbonatite melt from deeply subducted oceanic crust. *Nature*,
425 454(7204), 622–625.

426 Walter, M. J., Kohn, S. C., Araujo, D., Bulanova, G. P., Smith, C. B., Gaillou, E., ... & Shirey, S. B.
427 (2011). Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral
428 inclusions. *Science*, 334(6052), 54–57.

429 Wang, F., Thompson, E. C., Zhang, D., Alp, E. E., Zhao, J., Smyth, J. R., & Jacobsen, S. D. (2021).
430 High-pressure crystal structure and equation of state of ferromagnesian jeffbenite: implications for
431 stability in the transition zone and uppermost lower mantle. *Contributions to Mineralogy and
432 Petrology*, 176(11), 1–13.

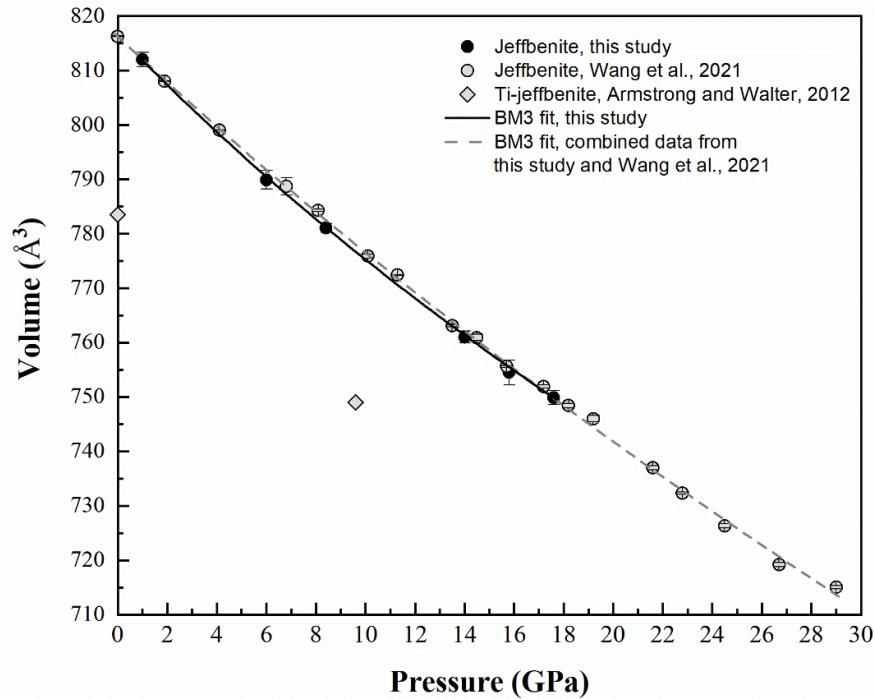
433 Wang, Y., Weidner, D. J., Zhang, J., Gwanrnesia, G. D., & Liebermann, R. C. (1998). Thermal equation
434 of state of garnets along the pyrope-majorite join. *Physics of the Earth and Planetary Interiors*,
435 105(1-2), 59–71.

436 Xu, C., Kynický, J., Tao, R., Liu, X., Zhang, L., Pohanka, M., ... & Fei, Y. (2017). Recovery of an
437 oxidized majorite inclusion from Earth's deep asthenosphere. *Science Advances*, 3(4), e1601589.

438 Yagi, T., Uchiyama, Y., Akaogi, M. & Ito, E. (1992). Isothermal compression curve of MgSiO₃
439 tetragonal garnet. *Physics of the Earth and Planetary Interiors*, 74, 1–7.

440 Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014). Local variations of carbon
441 isotope composition in diamonds from São-Luis (Brazil): evidence for heterogenous carbon
442 reservoir in sublithospheric mantle. *Chemical Geology*, 363, 114–124.

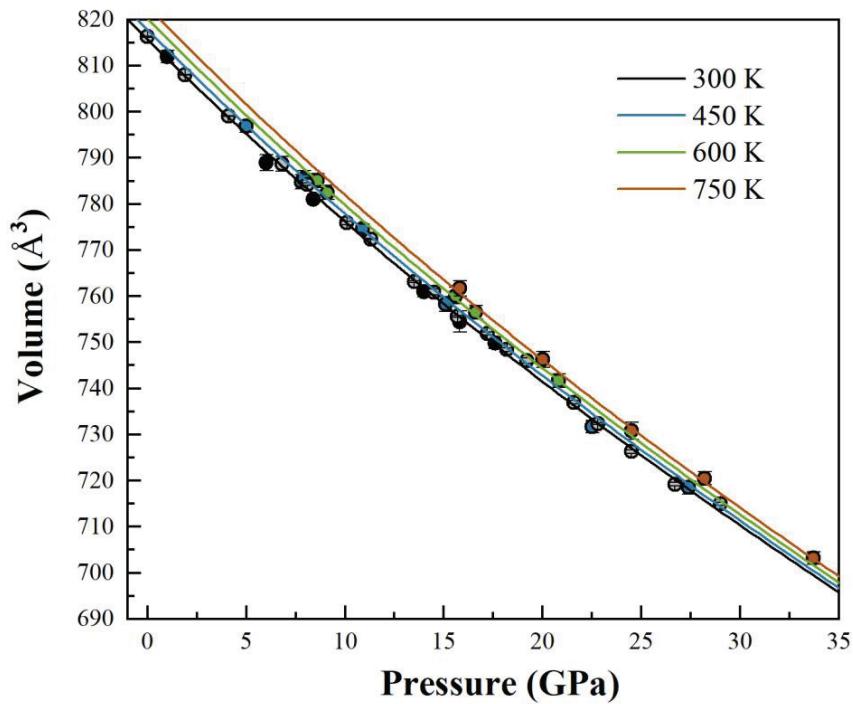
443 Zedgenizov, D. A., Kagi, H., Ohtani, E., Tsujimori, T., & Komatsu, K. (2020). Retrograde phases of
444 former bridgmanite inclusions in superdeep diamonds. *Lithos*, 370, 105659.


445 Zhang, D., Dera, P. K., Eng, P. J., Stubbs, J. E., Zhang, J. S., Prakapenka, V. B., & Rivers, M. L. (2017)
446 High pressure single crystal diffraction at PX² JoVE (Journal of Visualized Experiments), (119),
447 e54660.

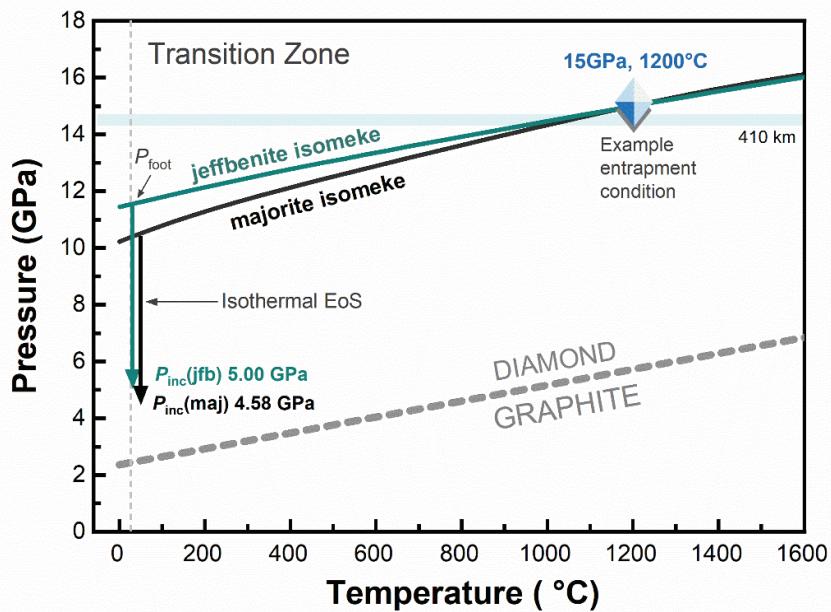
448 Zhang, D., Xu, J., Dera, P. K., Rivers, M. L., Eng, P. J., Prakapenka, V. B., & Stubbs, J. E. (2022).
449 Recent developments on high-pressure single-crystal X-ray diffraction at the Partnership for
450 eXtreme Xtallography (PX2) program. *Physics and Chemistry of Minerals*, 49(6), 19.

451 Zou, Y. T., Gréaux, S., Irifune, T., Whitaker, M. L., Shinmei, T., & Higo, Y. (2012). Thermal
452 equation of state of Mg₃Al₂Si₃O₁₂ pyrope garnet up to 19 GPa and 1700 K. *Physics and
453 Chemistry of Minerals*, 39, 589–598.

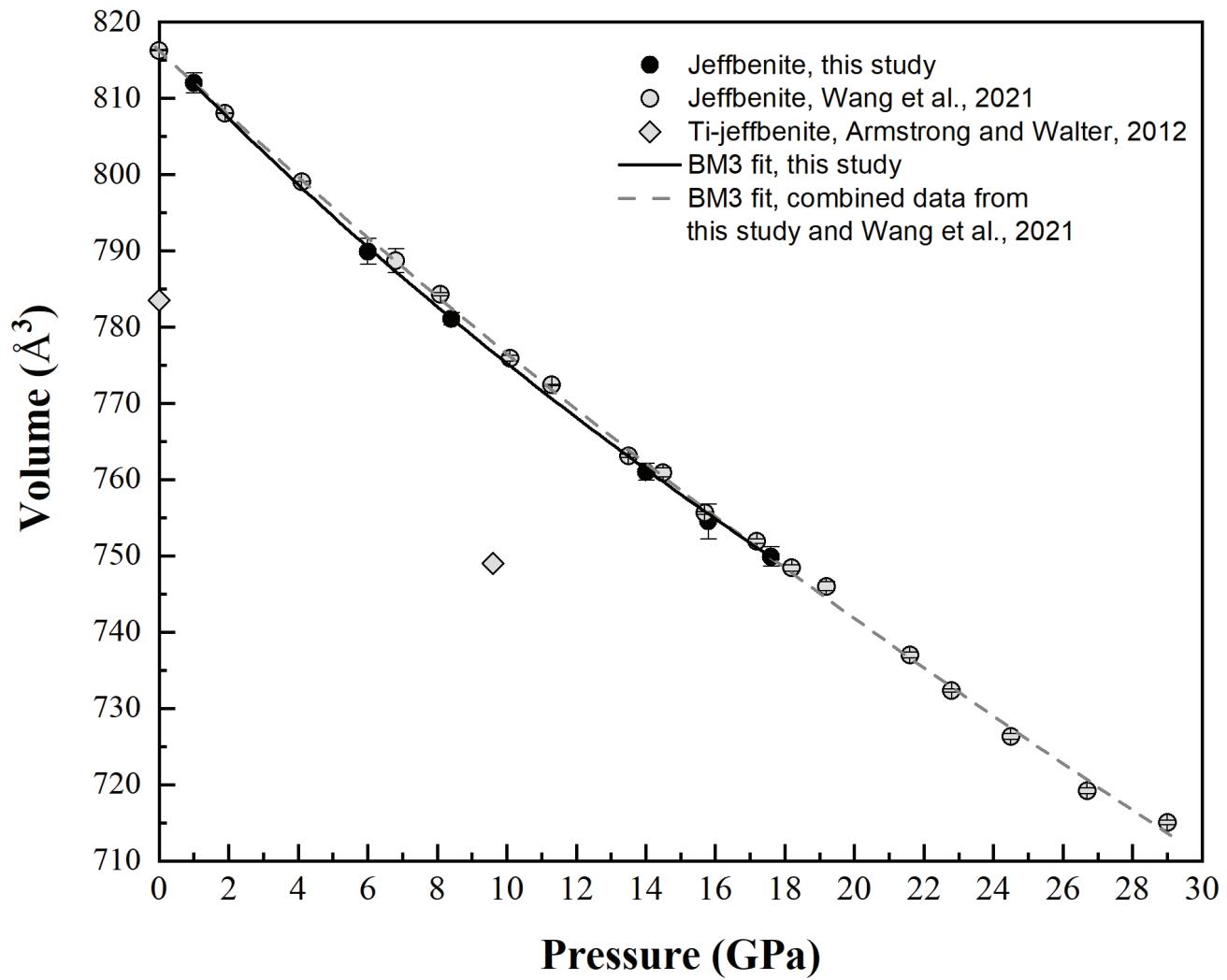
454


455 **Figure 1** 300 K static compression of Fe-jeffbenite from this study and Wang et al.
456 (2021). The two diamond-shaped points represent volumes for Ti-jeffbenite from
457 Armstrong and Walter (2012).

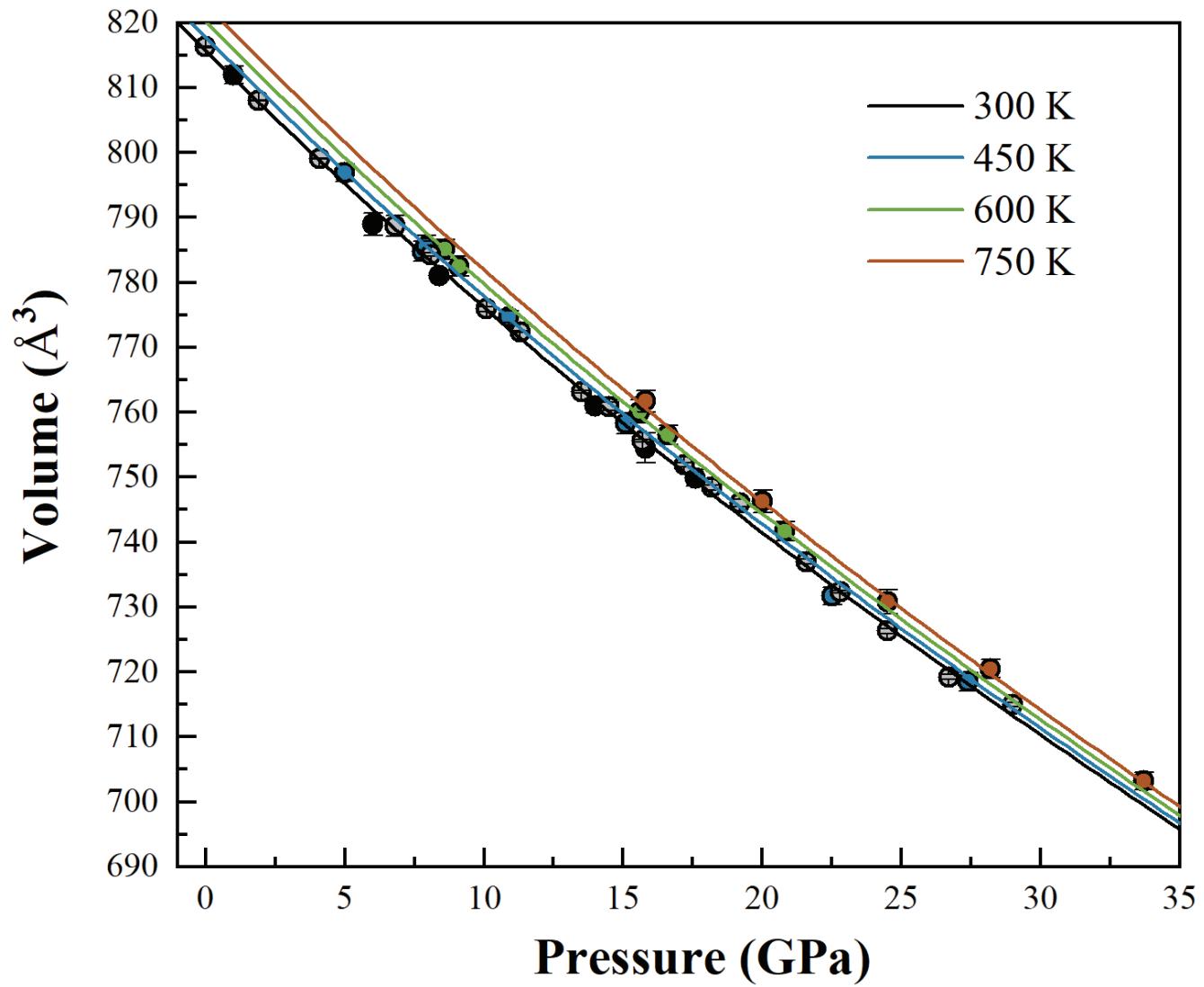
458


459

460 **Figure 2** Pressure-volume-temperature data for jeffbenite from the current study
461 combined with 300 K compression data on the same material from Wang et al. (2021),
462 shown as grey shaded circles.


463
464

465 **Figure 3** Example entrapment isomekes for ferromagnesian jeffbenite and majoritic
 466 garnet of MORB composition with a common entrapment pressure of 15 GPa and
 467 1200 °C. The P - T conditions are calculated using the thermoelastic equation of state
 468 for jeffbenite from this study, and from Nishihara et al. (2005) for majoritic garnet.
 469 The diamond-graphite equilibrium phase boundary is also shown (Day, 2012).
 470 Compared with majoritic garnet, a jeffbenite inclusion entrapped in the mantle
 471 transition zone is predicted to exhibit a higher remnant pressure, P_{inc} .



472
 473

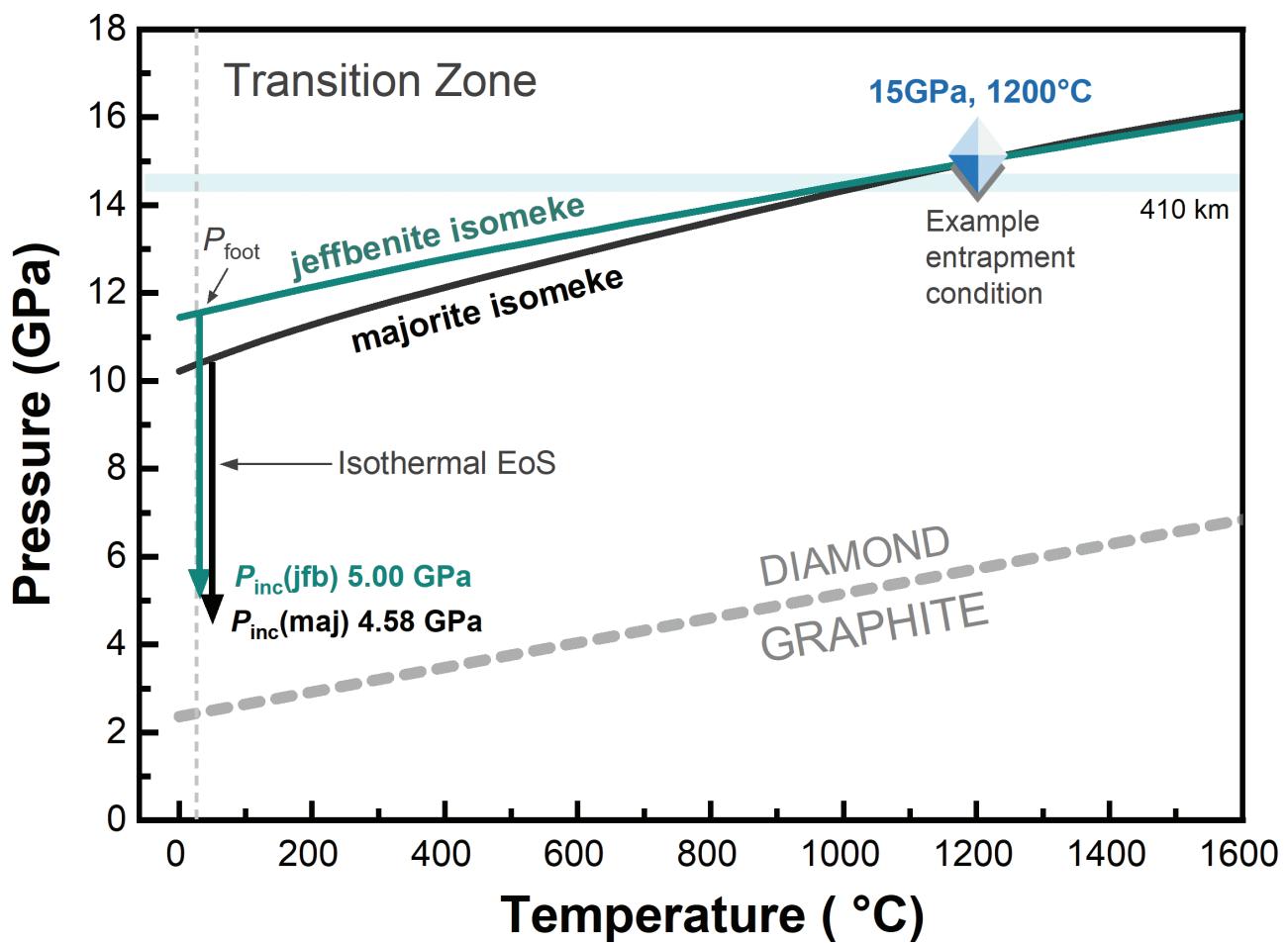

Figure 1.

Figure 2.

Figure 3.

