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Abstract

Jeffbenite (Mg;Al,Si30,) is a tetragonal phase found in so far only in superdeep
diamonds, and its thermoelastic parameters are a prerequisite for determining
entrapment pressures as it is regarded as a potential indicator for superdeep diamonds.
In this study, the thermoelastic properties of synthetic Fe® "_jeffbenite were measured
up to 33.7 GPa and 750 K. High-temperature static compression data were fitted,
giving (8K7/07)p = -0.0107(4) GPa/K and a7 = 3.50(3) x 10° K''. The thermoelastic
properties and phase stability are applied to modelling isomekes, or P-T paths
intersecting possible conditions of entrapment in diamond. We calculate that under
ideal exhumation, jeffbenite entrapped at mantle transition zone conditions will
exhibit a high remnant pressure at 300 K (Pi,c) of ~5.0 GPa. Elastic geobarometry on
future finds of jeffbenite inclusions can use the new equation of state to estimate
entrapment pressures for this phase with still highly uncertain stability field in the

mantle.
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Plain Language Summary

Ongoing superdeep diamonds research is providing new insights into the Earth's deep
mantle. Natural superdeep diamonds and its inclusions can show compelling evidence
for retrograde conversion from the lower mantle or transition zone precursors; along
with carbonate melt-peridotite reactions. Jeffbenite with a composition of
Mg;AlLSi30p,, found in so far only in superdeep diamonds can be regarded as a
potential indicator mineral for superdeep diamonds. Recent synthesis of Fe'-rich
jeftbenite provides an opportunity for in-situ measurements to study the
thermodynamic properties of jeftbenite at deep-mantle conditions. Thus, in this study,
we explored the high pressure and temperature stability and thermoelastic properties
of Fe-bearing jeftbenite up to 33.7 GPa and 750 K. The thermoelastic data and phase
stability were measured and the results are applied to modelling the isomekes, or P-T
paths intersecting possible conditions of entrapment and along which the pressure on
the inclusion is equal to the external pressure on the diamond host. Our finding can be
applied to determining entrapment pressures in such diamond inclusions in future
finds and its primary or retrograde history is essential in understanding mantle

dynamics and the hidden consequences of plate tectonics.
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1. Introduction

Natural diamonds and their hosted inclusions provide unique insights into the
Earth’s deep mantle to at least ~1000 km depth (Nestola et al., 2018; Pearson et al.,
2014; Shirey et al., 2013; Walter et al., 2011). Superdeep diamonds, from below 300-
km depth, contain inclusions normally showing evidence for retrograde phase
transitions from lower mantle or transition zone precursors, along with carbonate
melt-peridotite reactions (Harte, 2010; Stachel et al., 2005; Thomson et al., 2016;
Walter et al., 2008). Majoritic garnets are the only numerous inclusion population that
largely retains its structure and chemical properties without retrograde re-
equilibrations, and until now, the very high Fe**/YFe ratio (>0.8) observed in high-
pressure majoritic inclusions have revealed a much deeper orogenic carbonatite origin
and redox states of the deep Earth (Kiseeva et al., 2018; Nestola et al. 2023b; Tao et
al., 2018; Xu et al., 2017). However, in some superdeep diamonds, jeffbenite appears
instead of majoritic garnet, especially from Brazil’s Juina district and from Kankan in
Guinea (Bulanova et al., 2010; Hayman et al., 2005; Hutchison et al., 2001;
Zedgenizov et al., 2014, 2020). The recent synthesis of Fe-rich jeffbenite with high
Fe’™ content by Smyth et al. (2022) provides an opportunity for laboratory
experiments to study the thermodynamic properties of jeffbenite at deep-mantle
conditions.

Prior to establishment as jeffbenite (Nestola et al., 2016), the tetragonal phase
with ideal formula Mg;Al,Si;0;, was referred to as TAPP (Tetragonal almandine-
pyrope phase) (Harris et al., 1997) and is very similar to that of almandine-pyrope
garnet compositions but with an unusual high ratio of Fe’*/(Fe**+Fe’") (Harris et al.,
1997; McCammon et al., 1997). Thus, despite having garnet stoichiometry, TAPP was
speculated to have its own stability field due to its lower density and modified crystal
structure (Armstrong and Walter, 2012; Finger and Conrad, 2000; Harris et al., 1997;
Smyth et al., 2022; Wang et al., 2021).

Recently, Nestola et al. (2023a) calculated the phase diagram of jeffbenite from

its thermodynamic properties and using density functional theory, predicting that
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pyrope should be stable over jeffbenite at mantle conditions. Given that the study of
Nestola et al. (2023a) was performed on Mg-end member jeftbenite and the
conditions of synthesis at 15 GPa and 1200 °C for ferromagnesian jeffbenite (Smyth
et al., 2022), suggests that ferric iron likely plays an important role in the stability of
this phase. It leaves open to question whether jeftbenite inclusions found in superdeep
diamonds represent equilibrium conditions of entrapment, or are retrograde.

The high-pressure behavior of jeffbenite synthesized by Smyth et al. (2022) was
studied at 300 K by Wang et al. (2021), who reported the high-pressure crystal
structure evolution, compressibility, and possible spin state change of iron.
Knowledge of the P-V-T equation of state for jeftbenite would permit future
measurement of the remnant pressure of an inclusion in diamond to estimate its
entrapment pressure using inclusion-diamond barometry (e.g., Angel et al., 2022).
This paper focuses on determining the P-V-T equation of state of ferromagnesian
jeffbenite, (Mga32Alp03Fe®"| 2Fe’177Si285012), which may have a stability field in
the transition zone or uppermost lower mantle distinct from majoritic garnet. Results
are used to model the potential entrapment pressures of jeftbenite-rich inclusions in

diamond.

2. Materials and Methods

High-quality single crystals of Al-free, ferromagnesian jeffbenite measuring up
to 200 um in longest dimension were synthesized from a stoichiometric mixture of
FeO, Fe,03, Si0,, MgO and Mg(OH), powders in a multi-anvil press at 15 GPa and
1200 °C at Bayerisches Geoinstitut, University of Bayreuth, Germany. Details of the
sample synthesis and compositional characterization are reported in Smyth et al.
(2022), including the determination of Fe*'/SFe = 0.65(1) by synchrotron Mdssbauer
spectroscopy. The bulk chemical composition of 34.49 wt% SiO,, 18.63 wt% MgO,
44.23 wt% FeO and 0.31 wt% Al,Os; was obtained using a JEOL 8230 electron
microprobe at the University of Colorado, and because the H,O content was below

detection using FTIR spectroscopy, the stoichiometry of this jeffbenite can be written
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as Mg, 30Alg03F e2+1_2gFe3 1 77812 85012. Smyth et al. (2002) found the lattice parameters
of five crystals from the original batch to be similar, and refined the structure from
one in space group /-42d with a = 6.6449(3) A, ¢ = 18.4823(9) A, and ¥ = 816.08(9)
A®. For the high pressure-temperature study, crystals of jeffbenite from the same
synthesis run were screened for clean optical extinction under a polarizing-light
microscope and polished to ~10 pm thickness.

A BX90-type DAC equipped with 300-um flat culets diamond anvils was used
for high P-T measurements with a miniature resistive heater described by Kantor et al.
(2012). A gold foil for pressure determination and a polished crystal were loaded
together into the sample chamber in a neon pressure medium using the GSECARS gas
loading system (Rivers et al., 2008). A closed-loop feedback was used to control the
power against the temperature measured at a K-type thermocouple in contact with one
of the diamond anvils (Zhang et al., 2022). During the diffraction experiments, the
temperature fluctuation was ~1 K at 450 K and ~3 K at 750 K. Au foil was used as the
pressure calibrant and the pressure certainties are 0.2 GPa or less. In-situ high P-T
single-crystal XRD experiments were conducted up to 33.7 GPa and 750 K at the 13-
BM-C experimental station of the Advanced Photon Source, Argonne National
Laboratory. The incident X-ray beam at 13 BMC was monochromated to 0.4340 A
with a focal spot size of 12 x 18 um? (Zhang et al., 2017). Data were analyzed by the
APEX3 Crystallography Software Suite and SHELXL package (Sheldrick, 2008). P-
V-T data were fitted by the EoSFit7-GUI program (Gonzalez-Platas et al., 2016). The
isomeke P-T paths of diamond-jeftbenite pairs were modelled by the EoSFit7Pinc
(Angel et al., 2017).

3. Results and Discussion
3.1 Isothermal equation of state at Room-7

Lattice parameters and the unit-cell volume of jeffbenite at high-P and high-T
conditions were analyzed using the APEX3 software (Bruker), summarized in Table

S1 in Supporting Information. There is no indication of phase transition up to 33.7
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GPa and 750 K. Additionally, the unit-cell reference volume, V7 = 816.5(1.7) A®, was
obtained prior to compression, which is consistent with previously reported values
(Nestola et al., 2023a; Smyth et al., 2022; Wang et al., 2021). However, the room-T7'
volume of 783.5(1.3) A’ determined for a synthetic Ti-bearing jeffbenite (Armstrong
and Walter, 2012) is significantly lower than Fe-rich jeftbenite in this study.

Because we used the crystals from same synthesis batch as the 300 K static
compression data from Wang et al. (2021), those data were incorporated into the P-V-
T dataset and fitted together to a third-order Birch-Murnaghan equation of state
(BM3-EoS) using error-weighted least squares with EoSFit7c (Angel et al., 2014).
The resulting BM3 parameters are: Vry = 816.3(1) A’; K = 191(2) GPa; and K7y’ =
2.1(2) (Figure 1, dashed line). The P-V data yields values of Kry = 171(1) GPa when
assuming a pressure derivative of Kpp' = 4.

Compared with the room-temperature compression data alone (Wang et al.,
2021), the isothermal bulk modulus (Ky) of jeffbenite from the combined P-V-T EoS
is about 5% higher than the value Ky = 182(1) GPa from Wang et al. (2021). The
fitted Kpo' from this P-V-T study is somewhat lower than Ky’ = 2.7(1) from Wang et
al. (2021). Nestola et al. (2023a) used first-principles density functional theory (DFT)
to calculate the EoS parameters of Mg-jeffbenite and found Ky = 175.39 GPa and K’
=4.09, suggesting that the incorporation of iron may increase the incompressibility of
jeftbenite.

The compressibility of pyrope-almandine series garnets using synthetic single-
crystal samples show Ky ranges from 163.7(1.7)-172.6(1.5) GPa with Kp' 5.6-6.4

(Milani et al., 2015). For comparison, Zou et al. (2012) measured K, = 167(6) GPa
and Ky = 4.6(3) for synthetic Mg3;Al,Si301, pyrope garnet. Ismailova et al. (2017)
determined the compressibility of majoritic garnets along the Fe;Al,Si3012-FesSisO12
solid solution containing 23 to 76 % Fe and found a range in K7y from 159(1) to
172(1) GPa. Compared to our results for jeftbenite with Kry = 191 GPa suggests that
jeffbenite is less compressible than all other iron-rich garnets (Table S2).

As for the high-pressure form of majorite garnet with tetrahedral structure and
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similar compositions along the majorite-pyrope series, the adiabatic bulk moduli fall
in the range from 160 to 173 GPa (Sinogeikin et al., 1997; Sinogeikin and Bass,
2002). Static compression studies of single-crystal majoritic garnet include Yagi et al.
(1992) finding Ky = 161.12 GPa and Hazen et al. (1994) finding Ky = 169.3 GPa, both
for fixed Ky’ = 4 and not containing iron (Table S1). Thus, based on the measurements
of adiabatic bulk moduli on majoritic garnet, it is obvious that jeffbenite is less
compressible. The higher incompressibility of iron-rich jeffbenite, combined with
previous high-pressure structure refinements suggests that Fe’" substitution for Si in
the tetrahedral site may be a factor in stabilizing jeffbenite at high pressure conditions

(Wang et al., 2021).

3.2 Thermal equation of state of jeffbenite

Having established a reliable compression curve for jeffbenite at room
temperature, we next fitted the thermal equation of state parameters by combining
with the Holland Powell-type thermal pressure model, and the temperature derivative
of the bulk modulus (0K7/0r)p (Angel et al., 2014; Fei, 1995; Holland and Powell,
2011) (Text S1). The high P-T unit-cell volumes for jeffbenite are plotted in Figure 2,
together with the isotherms calculated using the thermoelastic parameters derived
from the current fits. The P-T path during data collection is shown in Supplementary
Information Figure S1. The thermoelastic parameters (0Kp/0r)p, ar, Ko, and Ky
obtained in this study with the high-temperature BM3-EoS are: V= 815.7(2) A%; Ky =
191(2) GPa; Ko’ = 2.09); (0K1/07)p = -0.0107(4) GPa/K; and a7 = 3.50(3) x 10° K.
In addition, by fixing the ¥y, Ko, and Ky’ to the values obtained at 300 K, the resulting
thermal parameters are (0K v/d7)p = -0.0093(1) GPa/K, and a7 = 3.095(1) x 107 K.

Nestola et al. (2023a) also reported the volume thermal expansion coefficient and
the temperature derivative of the bulk modulus for pure jeffbenite (Mg;Al>Si30,)
based on ab initio computations, finding aoy = 1.717 x 10° K and (8Kp/d7)p = -
0.020 GPa/K, respectively. We obtained a larger value for ayy with a lower

temperature derivative of the bulk modulus compared with the computational study of
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Nestola et al. (2023a) on Mg-jeftbenite without iron.

Du et al. (2015) measured the thermal expansion of pyrope and the derived
volume thermal expansivity agy is 2.74(5) x 10 K. The thermoelastic parameters of
synthetic MgzAl>Si30;, pyrope have also been investigated up to 19 GPa and 1700 K
by Zou et al. (2012), who reported (6K 7/07)p = -0.021(9) GPa/K and oy = 2.89(33) x
10° K. Similarly, Wang et al. (1998) found (0K70/d7)p = -0.020(1) GPa/K and ayy =
2.5 x 107 K for Pys;Mjss obtained in multi-anvil apparatus. Our value for the
thermal expansion coefficient of jeftbenite is lower than the majoritic garnet with
mid-ocean ridge basalt (MORB) composition, with a = 2.03)x10° K!' + T x
1.0(5)x10—8 K% (Nishihara et al., 2005). However, there is lack thermal expansion
data of tetragonal majorite at simultaneous high P-T conditions for more systematic
comparisons. Our fitted values of ayy and (0K7y/0r)p for Fe-jeffbenite of 3.095-3.503
x 107 K and -0.01 GPa/K, respectively, are remarkably different from previous
results on majorite-pyrope garnets, further suggesting unique phase space for

jeftbenite.

4. Application to superdeep diamond

Jeffbenite is a newly named mineral (Nestola et al., 2016) after its discovery as
inclusions in super-deep diamond from the Brazil’s Juina district and Kankan in
Guinea (Brenker et al., 2002; Bulanova et al., 2010; Hayman et al., 2005; Hutchison
et al., 2001; Zedgenizov et al., 2020). The jeffbenite-containing diamonds partially
overlap with the locations where majorite garnets are also known as inclusions. Using
the current thermoelastic results, we calculated the entrapment isomekes for jeftbenite
in comparison to majoritic garnet in diamond. Entrapment isomekes give the P and T
conditions ideally decompressed from the entrapment depth where the pressure on the
inclusion is equal to the external pressure on the diamond host, thereby providing a
means to calculate in reverse the possible entrapment depths from the remnant
pressure on an inclusion in a diamond at room pressure (Angel et al., 2015; Angel et
al., 2017).

Since the remnant pressure on a naturally recovered jeftbenite inclusion has not
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yet been determined, as an example entrapment isomeke, we will take the mantle

transition-zone conditions of synthesis for this material (Smyth et al., 2022) at 15 GPa
and 1200 °C as an entrapment condition from which to model the predicted residual

pressure of a jeftbenite inclusion (Pj,;) compared with majoritic garnet. Figure 3
presents the example entrapment isomekes for ferromagnesian jeffbenite and majoritic

garnet of MORB composition using a hypothetical entrapment condition of 15 GPa
and 1200 °C using the P-V-T equations of state from this study for jeffbenite, and

from Nishihara et al. (2005) for majoritic garnet. The differences in the slope for the
example entrapment isomeke of jeffbenite and majoritic garnet is due to differences in
their thermal expansion coefficients, resulting in different values of Proo, the isomeke
pressure at room temperature. The resulting Py, values therefore also differ. In our
example, the predicted Pr,oc for jeffbenite is ~11.5 GPa, whereas the predicted Proot for
majoritic garnet is ~1 GPa lower. Consequently, the calculated Py, for majoritic
garnet found in the same diamond would be lower than that of jeffbenite. Isothermal
decompression in our example would lead to a predicted Pi,. = 5.00 GPa for jeffbenite
and 4.58 GPa for majoritic garnet. Although these are relatively high inclusion
pressures, they are on the order of what has been observed for inclusions entrapped in
the mantle transition zone (Genzel et al., 2023). It is possible that jeffbenite and
majoritic garnet have overlapping stability fields at transition zone conditions but
form under different chemical environments.

Based on our thermoelastic data, if jeffbenite is a retrograde phase from
bridgmanite, a volume change about 22% would be required (31.78 g/mol for
jeffbenite vs ~25 g/mol for bridgmanite). Such a high-volume change can be
accommodated by diamond only within its plastic deformation regime, but more
details on fractures and plastic deformation are needed for jeffbenite inclusions to
properly estimate the possibility of transformation from bridgmanite to jeffbenite.
Nevertheless, our presented thermal EoS still gives a good description of the thermal
expansion behavior for jeftbenite over a large temperature and pressure range and

could be applied to elastic thermobarometry of diamond-hosted inclusions of
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jeftbenite in the future.

Jeftbenite inclusions, although rare, can provide direct evidence of super-deep
origins of diamonds and the presence of such Fe*'-rich inclusions may also reflect
extreme redox changes during subducted slab dehydration-rehydration processes in
the transition zone or uppermost lower mantle (Nestola et al., 2023a; Tao et al., 2018).
Notably, the recently reported high Fe’* content in majoritic garnet inclusions
(Fe’'/YFe > ~0.81) from the deep upper mantle have raised questions about what
controls the redox state in these garnets (Kiseeva et al., 2018; Tao et al., 2018; Xu et
al., 2017).

In Fe-jeffbenite, charge balance most likely occurs through the removal of Si on
the tetrahedral site to accommodate the additional positive charge, and the excess Si
would probably be incorporated into a coexisting phase, such as clinopyroxene in our
case (Smyth et al., 2022). Substitution mechanisms such as Si*" + Fe*" = 2F¢’”
suggest that ability for jeftbenite to incorporate Fe** may play a potential role in
stabilizing it over majoritic garnet. As the oxygen fugacity is above the IW buffer, the
high Fe** concentration of jeffbenite in the mantle might reflect extreme redox
changes (Nestola et al., 2023b). At some depths, the Fe*"-jeffbenite inclusions might
be a product of a redox reaction involving carbonatitic magmas and carbonates is as
the oxidizing agent which responsible for generating the high Fe*" of these deep
mantle inclusions (Lorenzon et al., 2022; Thomson et al., 2016). The question
remains, whether or not Fe’'-jeffbenite is a redox reaction product during diamond
formation at different depths in the slab, or whether it possesses a distinct stability
field within certain mantle compositions. The abundance of jeftbenite as an inclusion
in super-deep diamonds makes determining its primary or retrograde history essential

in understanding mantle dynamics.

5. Conclusions
The high-pressure high-temperature equation of state of synthetic Fe-jeffbenite
was determined by synchrotron-based, single-crystal XRD at pressures up to ~34 GPa

and temperatures up to 750 K. The thermoelastic parameters of Fe-jeffbenite are now
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determined and can be applied to determining entrapment pressures in future finds.
Compared with majoritic garnet, the smaller thermal expansivity of jeffbenite likely
gives rise to a broader pressure and temperature stability field in the upper lower

mantle.
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455  Figure 1 300 K static compression of Fe-jeftbenite from this study and Wang et al.
456  (2021). The two diamond-shaped points represent volumes for Ti-jeffbenite from
457  Armstrong and Walter (2012).
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460  Figure 2 Pressure-volume-temperature data for jeffbenite from the current study
461  combined with 300 K compression data on the same material from Wang et al. (2021),

462  shown as grey shaded circles.
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Figure 3 Example entrapment isomekes for ferromagnesian jeftbenite and majoritic
garnet of MORB composition with a common entrapment pressure of 15 GPa and
1200 °C. The P-T conditions are calculated using the thermoelastic equation of state
for jeffbenite from this study, and from Nishihara et al. (2005) for majoritic garnet.
The diamond-graphite equilibrium phase boundary is also shown (Day, 2012).
Compared with majoritic garnet, a jeffbenite inclusion entrapped in the mantle

transition zone is predicted to exhibit a higher remnant pressure, Pipc.
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