

Revisiting the early days of conjugated polyyne synthesis. Syntheses and structures of Bis(triethylsilyl) Polyynediyl Adducts $\text{Et}_3\text{Si}(\text{C}\equiv\text{C})_n\text{SiEt}_3$ previously regarded as Unisolable ($n = 6, 8, 12$)[‡]

Sourajit Dey Baksi, Aayushi Arora, Nattamai Bhuvanesh, Joseph H. Reibenspies, John A. Gladysz*

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA

ARTICLE INFO

Keywords:

Polyynes
Trialkylsilylalkynes
Oxidative coupling
Crystal structures
X-ray powder diffraction
Hay coupling reaction
Cadiot-Chodkiewicz reaction

ABSTRACT

An overview of bis(triethylsilyl) polyynediyl adducts $\text{R}_3\text{Si}(\text{C}\equiv\text{C})_n\text{SiR}_3$ with $n \geq 5$ is followed by syntheses of TESC_xTES where $x = 8, 12, 16$, and 24 ($\text{TES} = \text{SiEt}_3$; $x = 2n$). In a seminal 1972 study, the last three were presented as too unstable to isolate and thus only characterized by UV-visible spectroscopy. Although not a rational route, $\text{TESC}_{24}\text{TES}$ is consistently obtained from the reaction of *trans*-(C_6F_5)(*p*-tol₃P)₂Pt(C≡C)₅SiEt₃ and crude HC_8TES under Hay oxidative cross coupling conditions. The latter contains some HC_8H and TESC_8TES . Hay oxidative homocouplings of HC_4TES and crude HC_8TES afford TESC_8TES (83%) and $\text{TESC}_{16}\text{TES}$ (5%). A Cadiot-Chodkiewicz reaction of BrC_4Br and HC_4TES (2 equiv) yields $\text{TESC}_{12}\text{TES}$ (11%). All of these compounds are crystalline, and the crystal structures of TESC_8TES and $\text{TESC}_{16}\text{TES}$ are determined. The ¹³C{¹H} NMR and UV-visible properties are also compared.

1. Introduction

The synthesis of extended conjugated polyynes, defined for the purposes of this paper as consisting of five or more triple bonds ($\text{C}_{\geq 10}$), has been of great interest in a variety of contexts [1]. Some of these involve modeling the polymeric sp carbon allotrope carbyne [2], in particular its electronic structure. Others relate to the many synthetic challenges associated with preparing monodisperse samples with very high sp chain lengths C_x ($x = 40\text{--}52$ and beyond) [3-5]. Polyynes also provide opportunities for syntheses of new carbon-based materials [6], a subject in its infancy from the standpoint of machine-generatable C_x precursors [7].

Much of the foundation of this field was laid some 52 years ago with the seminal work of Walton and his coworkers [8-9], although other earlier contributors merit note in passing [10]. Walton's exploratory studies were carried out in an era where ¹³C NMR spectroscopy was not yet a routine tool, and his increasingly labile higher polyynes were characterized solely by UV-visible spectroscopy *in situ*. Walton sought a library of compounds with triethylsilyl endgroups, TESC_xTES , as represented in **Scheme 1**. One key building block was HC_4TES , which can

be prepared on multigram scales and could be oxidatively homocoupled under Hay conditions [11] to give TESC_8TES , or cross coupled with HC_2TES to give TESC_6TES . These are the last polyynes in this series that can be considered "fully characterized" apart from NMR data (mp, IR and UV-visible spectroscopy, mass spectrometry, microanalysis) [8].

When Walton attempted monoprotodesilylations of TESC_xTES ($x = 6, 8$), mixtures of HC_xH , HC_xTES , and TESC_xTES formed. Nonetheless, after column chromatography, solutions enriched in HC_xTES could be obtained in unspecified yields. These were oxidatively homocoupled to $\text{TESC}_{12}\text{TES}$ and $\text{TESC}_{16}\text{TES}$, which were reported to rapidly decompose at 20°C and -20°C, respectively, although the latter could be obtained as white crystals upon solvent removal at -30°C. Subsequent desilylations afforded solutions of HC_{12}TES and HC_{16}TES , with a 36% yield assigned to the latter based upon an estimated extinction coefficient of a UV-visible band. These were oxidatively homocoupled to solutions of $\text{TESC}_{24}\text{TES}$ and $\text{TESC}_{32}\text{TES}$, with some HC_{16}TES persisting in the latter. Relevant to other topics below, a $\text{TESC}_{20}\text{TES}$ solution was prepared by the oxidative cross coupling of HC_{16}TES and HC_4TES . Related cross couplings afforded $\text{TESC}_{10}\text{TES}$, $\text{TESC}_{14}\text{TES}$, and $\text{TESC}_{18}\text{TES}$, sometimes with trace impurities.

[‡] This article is dedicated with great affection to Prof. Dr. Thomas Strassner on the occasion of his 60th birthday.

* Corresponding author. John A. Gladysz.

E-mail address: gladysz@mail.chem.tamu.edu (J.A. Gladysz).

Since Walton's time, polyynes with trialkylsilyl endgroups have played a considerable role in the development of this field. Subsequently studied series are depicted in **Scheme 1** [12-15]. The first and most extensive, with tri(isopropyl)silyl endgroups (TIPSC_xTIPS), has been chiefly elaborated by Tykwinski [12], with supporting contributions from Anderson [13] and other researchers and their teams [14,16]. In sharp contrast to Walton's polyyne portfolio, TIPSC₂₀TIPS was easily isolated and stable to 105°C. A DSC exotherm indicated decomposition near 123°C. The greatly enhanced stability versus TESC₂₀TES was attributed to the increased bulk of the TIPS endgroup. Aryl-substituted silicon endgroups (SiR₂Ar, SiRAR₂, SiAr₃) would also seem to have promise, but to our knowledge none have yet been installed on pentaynes or higher homologs [17].

In developing this chemistry, reactions other than those applied by Walton were often employed, such as the Fritsch-Buttenberg-Wiechell rearrangement used to access certain lower homologs of TIPSC₂₀TIPS. The route reported by Goroff and coworkers for the bis(trimethylsilyl) adduct **TMSC₁₀TMS**, a three-component coupling of **IC₆I** and **TMSC₂TMSn** (2×, TMSn = SnMe₃; cat. *trans*-Pd(PPh₃)₂Cl₂/CuI, 60%) [15a], is relevant to a synthesis given below. Under similar conditions, the reaction of the digold complex **Ph₃PAuC₆AuPPh₃** and **IC₂TMS** (2×) also gives **TMSC₁₀TMS** (38%) [15b].

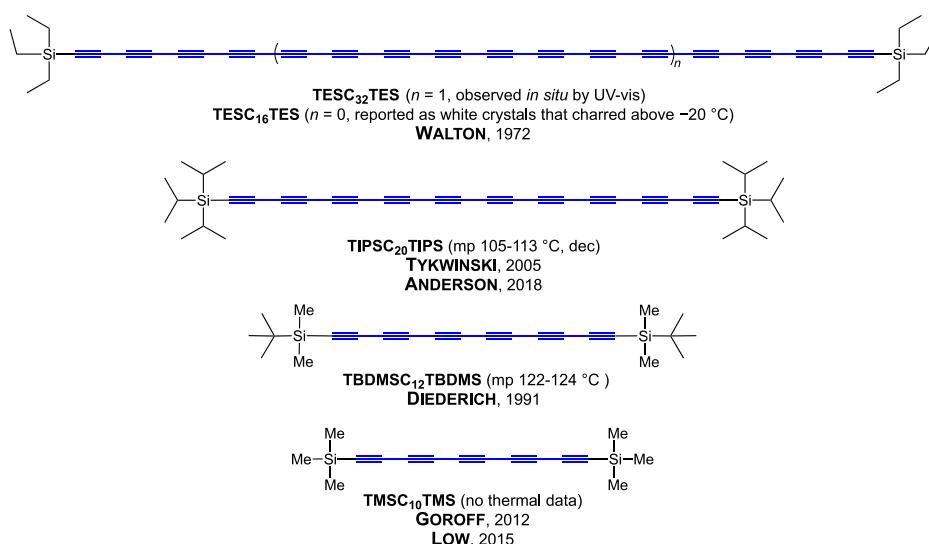
We recently detailed a series of cross coupling reactions using Walton's eight carbon building block **HC₈TES**, as exemplified in **Scheme 2** [4,8]. These studies were directed at diplatinum polyyneadiyl complexes with sp carbon chains as long as C₅₂. During certain procedures, minor polyyne byproducts consistently formed but were removed under workup conditions. These carried TES endgroups, were commonly crystalline, and challenged conventional dogma regarding Walton's compounds. In this paper, we present a modernized description and characterization of polyynes of the formula **TESC_xTES** (*x* = 24, 16, 12).

2. Results

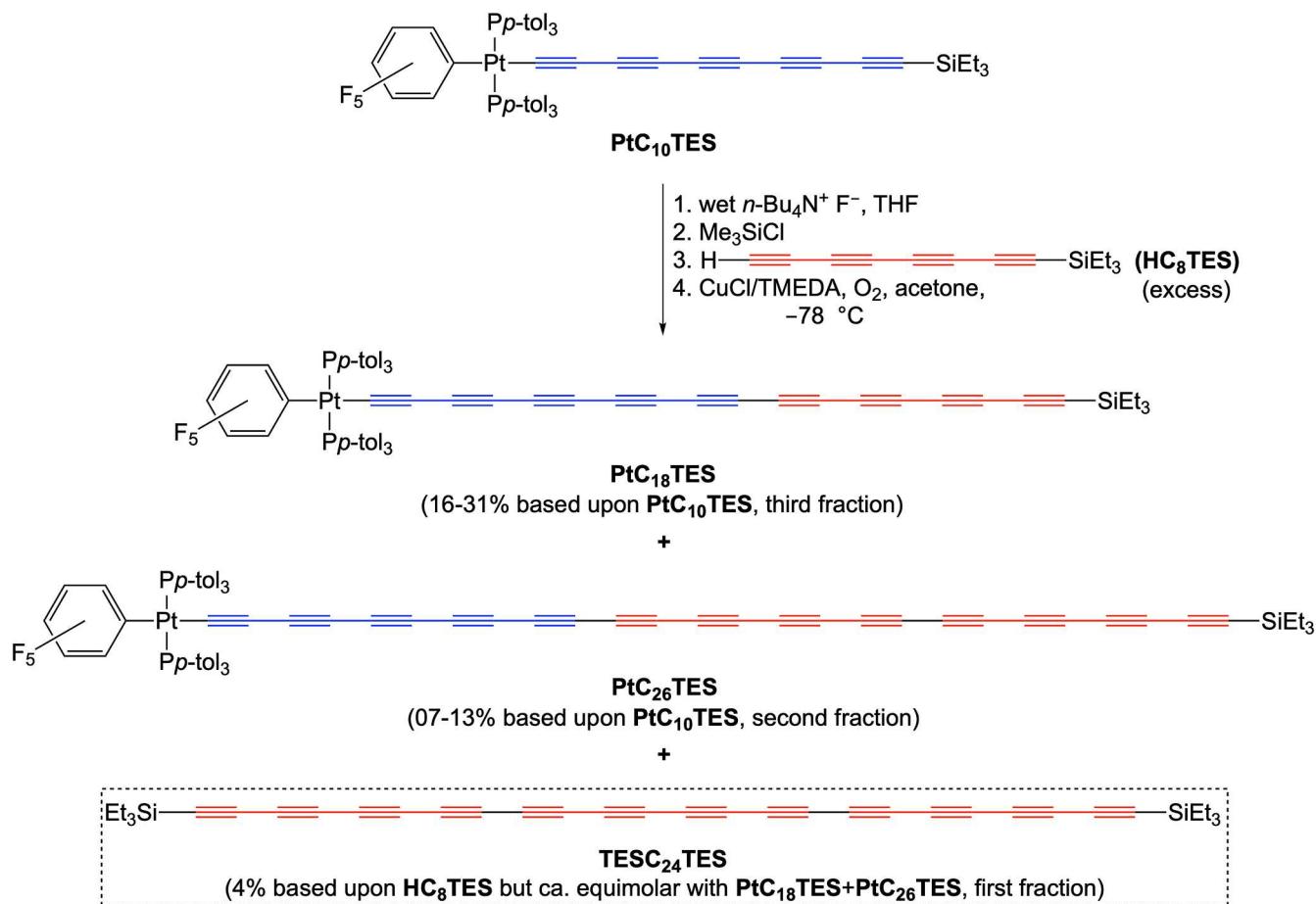
2.1. Syntheses

For this section, a roughly chronological structure is employed. In the published conversion of **PtC₁₀TES** to **PtC₁₈TES** and **PtC₂₆TES** in **Scheme 2** (Pt = *trans*-(C₆F₅)(*p*-tol₃P)₂Pt), a large excess of the cross coupling partner **HC₈TES** was used. The **PtC₂₆TES** is most economically viewed as arising from an *in situ* protodesilylation of **PtC₁₈TES** followed by a second coupling with **HC₈TES**, but there are other possibilities. This was a key stockpiling step en route to **PtC₅₂Pt** [4], and the yield ranges

represent multiple runs.


As shown in **Scheme 3**, the **HC₈TES** is generated from **TESC₈TES** [4, 8,18] by our version of Walton's protocol, which has been previously reported but is reproduced in the supporting information (SI) [4]. The samples contain **HC₈H** and **TESC₈TES**, and in exploratory work a subsequent (partial) chromatographic purification was carried out, parallel to Walton [19]. However it was later found that comparable yields of the platinum products in **Scheme 2** could be obtained using the **HC₈H/HC₈TES/TEC₈TES** mixture (termed "crude **HC₈TES**") directly.

In one such run, a chromatographic workup at <10°C gave **PtC₁₈TES** (16%) and **PtC₂₆TES** (7%) as previously disclosed, and additionally **TESC₂₄TES**. The molar quantity obtained was close to that of the two platinum products summed, but the formal yield was lower as it must be based upon **HC₈TES** (4%, see experimental section). Although **TESC₂₄TES** was easily isolated as a bright orange microcrystalline solid, it slowly turned brown and then black over the course of an hour at room temperature. Thus, it was stored at -35°C and could be kept in CH₂Cl₂ solutions at this temperature for at least 2 weeks.


The reproducible generation of **TESC₂₄TES** in **Scheme 2** presents an interesting mechanistic puzzle. Given the five triple bonds in the platinum educt **PtC₁₀TES**, and twelve in **TESC₂₄TES**, it is highly unlikely that the former is involved. Perhaps **HC₈H** can cross couple with two equivalents of **HC₈TES**. But the homocoupling of **HC₈TES** to give **TESC₁₆TES** would seem nearly equally likely. Possibly the fluoride ion unique to this sequence plays a role.

Although Walton reported that **TESC₁₆TES** decomposed at -20°C, we were emboldened by the stability of **TESC₂₄TES** and attempted a Hay oxidative homocoupling [11] of "crude **HC₈TES**". As shown in **Scheme 3** (bottom), workup at room temperature gave **TESC₁₆TES** as air stable orange needles in 5% yield, as calculated in the experimental section. Interestingly, no **TESC₂₄TES** was detected, including mass spectrometric assays. The sample was low melting (36°C), but displayed no special thermal instability. If it had been produced in **Scheme 2**, it would have eluted close to **PtC₂₆TES**.

In connection with another research project [20], an authentic sample and ¹³C{¹H} NMR spectrum of **TESC₁₂TES** was required. Consideration was given to repeating Walton's route, with the idea that a stable product could be obtained from his solutions. However, the yield of the precursor **TESC₆TES** was not specified, and the subsequent monodesilylation to **HC₆TES** was noted as poorly selective above. Alternative preparative routes to **HC₆TES** could not be found in the literature [21]. Thus, the assembly of **TESC₁₂TES** from four readily available C₄ precursors was attempted. As shown in **Scheme 4**, the

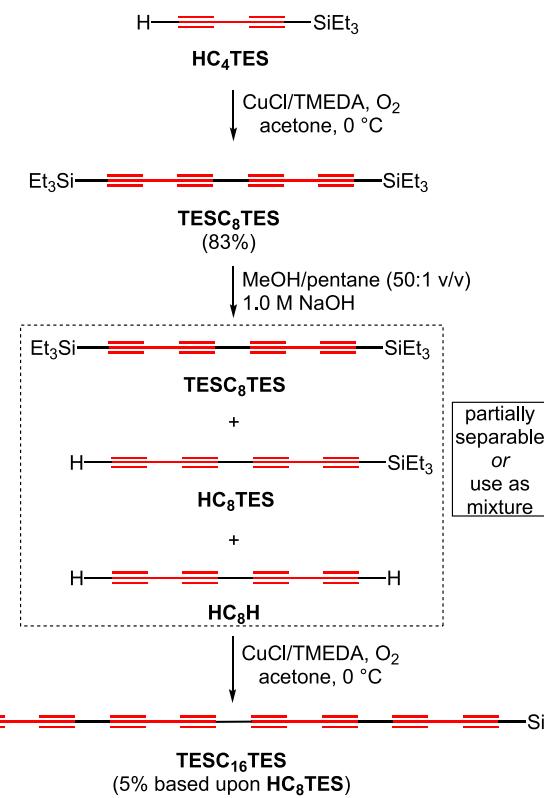
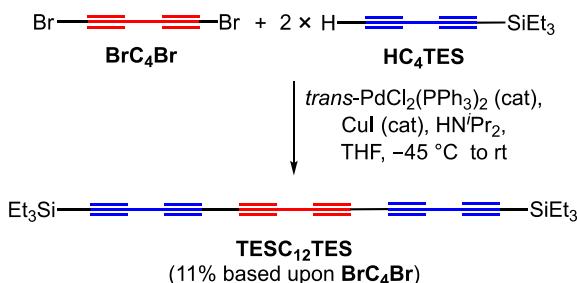
Scheme 1. Classes of conjugated polyynes (C₁₀ and higher) with trialkylsilyl endgroups.

Scheme 2. Cross coupling reactions that yield **TESC₂₄TES** as byproduct.

brominated diyne **BrC₄Br** [22] was condensed with 2.2 equiv of **HC₄TES** under Cadiot-Chodkiewicz conditions [23]. This can be viewed as a palladium and copper catalyzed HBr elimination, aided by stoichiometric quantities of an amine base. Although the yield of **TESC₁₂TES** was modest (11%), in part due to the competing formation of **TESC₈TES** (2% based upon **HC₄TES**), the quantities sufficed for our purposes.

2.2. Physical characterization

The three newly isolated compounds, **TESC₁₂TES**, **TESC₁₆TES**, and **TESC₂₄TES**, were characterized by NMR (¹H, ¹³C{¹H}) and UV-visible spectroscopy and mass spectrometry. NMR spectra that indicate high purities are provided in the SI. Key ¹³C{¹H} NMR data are summarized in Table 1, together with literature data for lower homologs [24] to better illustrate monotonic chemical shift trends. These are in quite close agreement with those seen by Tykwiński with **TIPSC_xTIPS**. The SiC≡C signals of the platinum complexes **PtC_xTES** are also included in Table 1, and show the weakening influence of platinum as the sp chain elongates.



UV-visible spectra recorded in CH_2Cl_2 or hexane are summarized in Table 2. The λ_{max} and ϵ values for **TESC₈TES**, **TESC₁₂TES**, **TESC₁₆TES** are in very good agreement with Tykwiński's analogs **TIPSC₈TIPS**, **TIPSC₁₂TIPS**, and **TIPSC₁₆TIPS** [12]. Walton observed similar λ_{max} values, as documented in the footnotes in Table 2, and molar extinction coefficients generally followed parallel trends. The most pronounced differences were with low intensity bands associated with **TESC₈TES**. These have a special origin [1b,25,26] and were less evident in our initial spectra. However, when concentrations were increased ca. 100-fold (Table 2), they became clearly visible. As a check, a comparable spectrum of **TIPSC₈TIPS** was recorded, and a similar series of bands observed.

All of our compounds showed signs of crystallinity. Crystals of **TESC₁₆TES** and **TESC₈TES** suitable for X-ray diffraction could be grown. Despite much effort over many months, **TESC₂₄TES** proved to be a "near miss", but powder X-ray diffraction verified the crystalline nature of the samples (Fig. s1). The structures of **TESC₈TES** and **TESC₁₆TES** could be solved as summarized in Table 3 and the experimental section. The latter exhibited two independent molecules in the unit cell. Thermal ellipsoid plots are provided in Fig. 1, and key metrical parameters are summarized in Table 4.

3. Discussion

The above data provide a reset on the way Walton's extensive studies of **TESC_xTES** are viewed. With the likely exception of **TESC₃₂TES**, all of his polyynes described in the introduction should now be regarded as isolable. There are many cases where over the course of time, advances in techniques, instrumentation, and experimental sophistication have led to breakthroughs in isolating compounds previously regarded as unstable or labile. Walton's syntheses have an advantage in their systematic nature. In contrast, our routes to **TESC_xTES** (Schemes 2-4) approach such molecules from three different directions, and the preparatively impractical yields leave much to be desired.

There are now a fair number of crystal structures of extended polyynes in the literature, with the longest being **PtC₂₄Pt** for symmetrical substitution and **PtC₂₆TES** for unsymmetrical [4,27]. The structures in Fig. 1 do not exhibit any new phenomena, but the raw data are of value, as they enable statistically sounder experimental conclusions regarding bond length alternation (BLA), a key question as the sp chains are extended. The most commonly used BLA parameters are included in Table 4. Tykwiński was able to obtain a number of crystal structures in

Scheme 3. Syntheses of TESC_8TES , HC_8TES , and $\text{TESC}_{16}\text{TES}$.Scheme 4. Synthesis of $\text{TESC}_{12}\text{TES}$.

Table 1
 $^{13}\text{C}\{^1\text{H}\}$ NMR data (sp signals only, δ /ppm, 126 MHz/CDCl₃) for TESC_xTES and analogous monoplatinum compounds PtC_xTES .

compound	$\text{Si}\equiv\text{C}$	$\text{SiC}\equiv\text{C}$	others
$\text{TESC}_2\text{TES}^a$	113.1	–	–
$\text{TESC}_4\text{TES}^b$	83.3	89.4	–
$\text{TESC}_8\text{TES}^c$	86.5	89.0	62.3, 61.8
$\text{TESC}_{12}\text{TES}^c$	87.8	88.9	62.8, 62.7, 62.6, 61.7
$\text{TESC}_{16}\text{TES}$	88.3	88.7	63.3, 63.1, 63.0, 62.7, 62.5, 61.6
$\text{TESC}_{24}\text{TES}$	88.7	88.7	63.9, 63.8, 63.6, 63.5, 63.4, 63.1, 62.9, 62.5, 62.4, 61.5
PtC_8TES^d	82.9	90.2	see reference [4]
$\text{PtC}_{12}\text{TES}^d$	86.2	89.4	see reference [4]
$\text{PtC}_{16}\text{TES}^d$	87.6	89.0	see reference [4]
$\text{PtC}_{24}\text{TES}^d$	88.5	88.8	see reference [4]

^a Data in C₆D₆ from reference [24a].^b Data from reference [24b] and independently confirmed in this study.^c Data in CD₂Cl₂ (δ /ppm, sp signals only): TESC_8TES 87.3, 88.9, 62.4, and 61.6; $\text{TESC}_{12}\text{TES}$ 88.6, 88.7, 63.0, 62.9, 62.6, and 61.5.^d Data from reference [4].

the $\text{TIPSC}_x\text{TIPS}$ series [12], the most relevant being the octayne $\text{TIPSC}_{16}\text{TIPS}$ and tetrayne $\text{TIPSC}_8\text{TIPS}$, the counterparts of the two structures in Fig. 1. These exhibited packing motifs different from those of the TES analogs, as reflected by different space groups or values of Z . Tykwiński's work also included a careful analysis of $^{13}\text{C}\{^1\text{H}\}$ NMR spectra, and the chemical shift trends in Table 1 are virtually superimposable upon his.

Bulky endgroups are widely viewed as contributing to the stability of extended polyynes [1,3-5,12,22]. The sp chains are generally regarded as the loci of decomposition, and gigantic substituents sterically enforce greater chain/chain separations. Tykwiński carefully assayed the stabilities of $\text{TIPSC}_x\text{TIPS}$ ($x = 6, 8, 10, 12, 16, 20$) by DSC and capillary thermolyses. The octayne $\text{TIPSC}_{16}\text{TIPS}$ melted at 93–95°C and decomposed near 132°C (DSC), whereas $\text{TESC}_{16}\text{TES}$ melts at 36°C and decomposes at 106°C (closed capillary). In any case, despite the upward revision of the stabilities of TESC_xTES , we still believe in the operation of a steric effect that renders the TIPS adducts somewhat more stable.

To sum, there is now a much clearer picture of the isolabilities and stabilities of bis(triethylsilyl) adducts of polyynes. However, there remains much room for improvement in synthetic methodologies. Towards this end, we have recently developed new $(\text{C}\equiv\text{C})_n\text{SiR}_3$ coupling reactions that proceed in high yields at room temperature and hold promise for the generation of still longer TESC_xTES assemblies [20].

4. Experimental section

4.1. General data

Reactions were conducted under dry inert atmospheres using conventional Schlenk techniques, but workups were carried out in air. Chemicals were treated as follows: THF, hexanes, diethyl ether, and CH₂Cl₂, passed through a Glass Contour solvent purification system; acetone, treated with CaH₂; pentane, MeOH, EtOH (3 × ACS grade), CuCl (99%/Alfa Aesar or 98%/Acros), CuI (99%/Acros), TMEDA (Alfa Aesar), *trans*-Pd(PPh₃)₂Cl₂ (98%/Sigma-Aldrich), HN'Pr₂ (99+%/Alfa

Table 2UV-visible data for TESC_xTES and $\text{TIPSC}_x\text{TIPS}$.

compound	solvent	conc. (mol/L)	wavelength (nm) [ε ($\text{M}^{-1}\text{cm}^{-1}$)]
$\text{TESC}_8\text{TES}^{a,b}$	CH_2Cl_2	1.02×10^{-5}	258 [266000], 236 [166000], 224 [77600]
$\text{TESC}_8\text{TES}^{b,c}$	CH_2Cl_2	4.6×10^{-3}	390 [45], 377 [70], 366 [109], 351 [130], 336 [490], 317 [600], 298 [790], 284 [750], 281 [840], 270 [745], 261 [843] ^c
$\text{TESC}_{12}\text{TES}^{a,d}$	CH_2Cl_2	1.12×10^{-5}	303 [314000], 287 [281000], 269 [156000], 256 [60000], 244 [29100]
$\text{TESC}_{16}\text{TES}^{a,e}$	CH_2Cl_2	2.15×10^{-5}	341 [513000], 322 [403000], 302 [187000], 282 [78000], 267 [26500]
$\text{TESC}_{24}\text{TES}^{f,g}$	CH_2Cl_2	1.08×10^{-6}	406 [521000], 373 [411000], 342 [211000], 323 [77000], 306 [23400]
$\text{TIPSC}_8\text{TIPS}^h$	hexanes	—	260 [157000], 248 [130000], 239 [84000]
$\text{TIPSC}_8\text{TIPS}^{c,h}$	hexanes	1.82×10^{-3}	378 [187], 371 [163], 351 [278], 345 [254], 327 [286], 320 [286], 303 [852], 285 [824], 275 [1965] ^c
$\text{TIPSC}_{12}\text{TIPS}^h$	hexanes	—	304 [359000], 286 [262000], 271 [112000], 258 [43100], 245 [24200]
$\text{TIPSC}_{16}\text{TIPS}^h$	hexanes	—	339 [603000], 319 [505000], 301 [237000], 285 [89200], 271 [31700]

^a The log [ε] values reported by Walton in Table 2 of reference [8] for TESC_xTES ($x = 8, 12, 16$) have been converted to ε for comparison purposes.

^b Data of Walton from reference [8] (λ_{max} , $[\varepsilon]$, hexane): 376 (109), 370 (89), 361 (30), 349 (190), 345 (151), 336 (40), 326 (151), 322 (141), 314 (40), 257 (270000), 244 (186000) 232 (66000) 222 (21000).

^c Data for the more intense bands at longer wavelengths could not be accurately determined at this elevated concentration; please refer to the more dilute (preceding) sample.

^d Data of Walton from reference [8] (λ_{max} , $[\varepsilon]$, hexane): 299 (407000), 283 (324000), 268 (129000), 254 (42700), 242 (41700).

^e Data of Walton from reference [8] (λ_{max} , $[\varepsilon]$, hexane): 336 (447000), 316 (398000), 299 (182000), 283 (56200), 270 (19900).

^f Data of Walton from reference [8] (λ_{max} , hexane): 390, 365, 343, 325, 309.

^g Due to the quantity of sample available, the concentration and ε value is considered accurate to only two significant digits.

^h Data from reference [12].

Aesar), Me_3SiCl (Sigma-Aldrich), NaOH (98%/Sigma-Aldrich), HCl (97%/Sigma-Aldrich), $n\text{-Bu}_4\text{N}^+\text{F}^-$ (1.0 M in THF, 5 wt% water/Acros), CDCl_3 (Cambridge Isotope Laboratories), MgSO_4 (Fisher Chemical), and silica gel (Acros, Fluoroflash or 60M Macherey-Nagel), used as received.

NMR spectra were obtained on standard 500 MHz spectrometers and referenced as follows (δ /ppm): ^1H , residual CHCl_3 (7.24); $^{13}\text{C}\{^1\text{H}\}$, internal CDCl_3 (77.0). Mass spectra were recorded using a Thermo Scientific Q Exactive Focus (APCI) instrument. Thin-layer chromatography (TLC) was carried out on EMD Silica Gel 60 F_{254} aluminum plates and visualized using 254 or 365 nm lamps.

5. Caution

Polyynes normally possess highly positive heats of formation and may be regarded as energy-rich materials that are intrinsically thermodynamically unstable. Many explosions or rapid exothermic decompositions of polyynes have been reported [28]. These most frequently involve species with $(\text{C}\equiv\text{C})_n\text{X}$ linkages ($\text{X} = \text{H}$, halide, $n > 2$). Regardless, all polyynes should be treated as potentially explosive and appropriate safety precautions taken.

5.1. $\text{TESC}_{12}\text{TES}$

A Schlenk flask was charged with BrC_4Br (0.212 g, 1.03 mmol) [22], HC_4TES (0.373 g, 2.27 mmol) [27], *trans*- $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (0.0029 g, 0.0041 mmol), CuI (0.0016 g, 0.0082 mmol), and THF (30 mL) with stirring, and cooled to -45°C (dry ice/acetonitrile). After 0.5 h, HNiPr_2 (0.4 mL) was added. After 2 h (TLC showed no remaining educt), the mixture was warmed to rt and diethyl ether (15 mL) and saturated

Table 3

Summary of crystallographic data.

	TESC_8TES	$\text{TESC}_{16}\text{TES}$
empirical formula	$\text{C}_{20}\text{H}_{30}\text{Si}_2$	$\text{C}_{28}\text{H}_{30}\text{Si}_2$
formula weight	326.62	422.70
temperature [K]	110.0	110.0
diffractometer	Bruker Venture	Bruker Venture
wavelength [\AA]	1.54178	1.54178
crystal system	orthorhombic	triclinic
space group	$Pca2_1$	$P-1$
unit cell dimensions		
a [\AA]	19.3910(9)	7.2835(3)
b [\AA]	8.0666(4)	14.4399(7)
c [\AA]	13.6638(7)	25.7214(11)
α [$^\circ$]	90	89.423(2)
β [$^\circ$]	90	88.525(2)
γ [$^\circ$]	90	75.824(2)
volume [\AA^3]	2137.28(18)	2621.9(2)
Z/Z'	4/1	4/2
ρ_{calc} [Mg/m^3]	1.015	1.071
μ [nm^{-1}]	1.452	1.293
$F(000)$	2064	904
crystal size [mm]	$0.28 \times 0.15 \times 0.05$	$0.14 \times 0.03 \times 0.03$
Θ range [$^\circ$]	4.560 to 70.108	1.718 to 70.625
index ranges	$-23 \leq h \leq 23$ $-9 \leq k \leq 9$ $-16 \leq l \leq 16$	$-8 \leq h \leq 8$ $-17 \leq k \leq 17$ $-31 \leq l \leq 31$
reflections collected	23344	48209
independent reflections	4044 [$R(\text{int}) = 0.0440$]	9977 [$R(\text{int}) = 0.0446$]
data/restraints/parameters	3880/1/205	8778/0/553
goodness-of-fit on F^2	1.144	1.076
final R indices [$I > 2\sigma(I)$]	$R1 = 0.0340, wR^2 = 0.0843$	$R1 = 0.0561, wR^2 = 0.1382$
R indices (all data)	$R1 = 0.0366, wR^2 = 0.0868$	$R1 = 0.0636, wR^2 = 0.1441$
largest diff. peak/hole [e\AA^{-3}]	0.239 and -0.171	0.845 and -0.506

aqueous NH_4Cl (15 mL) were added. The organic layer was separated, washed with H_2O (2×15 mL) and brine (1×15 mL), and dried (MgSO_4). The solvents were removed by rotary evaporation (0°C) to give a brownish oil. The residue was dry-loaded on a silica gel column (2×20 cm, packed in hexanes, ice-jacketed) and eluted with hexanes to give (following rotary evaporation at $<10^\circ\text{C}$) first $\text{TESC}_{12}\text{TES}$ as an orange-yellow oil (0.0269 g, 0.072 mmol, 7% based upon BrC_4Br) and then TESC_8TES as a yellow oil (0.035 g, 0.027 mmol, 2% based upon HC_4TES). Additional $\text{TESC}_{12}\text{TES}$ was recovered from intermediate fractions by preparative TLC (silica gel, hexanes; 0.0154 g, 0.0412 mmol, 4% following rotary evaporation at $<10^\circ\text{C}$). MeOH was added to the combined oily residues at 4°C , which gave $\text{TESC}_{12}\text{TES}$ as a dark yellow powder, which was collected by vacuum filtration (11% total yield), mp 45°C (open capillary).

NMR (δ /ppm, CDCl_3): ^1H (500 MHz) 0.99 (t , $^3J_{\text{HH}} = 7.8$ Hz, 18H, CH_3), 0.65 (q , $^3J_{\text{HH}} = 7.9$ Hz, 12H, SiCH_2); $^{13}\text{C}\{^1\text{H}\}$ (126 MHz, cryoprobe) 88.9 (s, $\text{C}\equiv\text{CSi}$) [29], 87.8 (s, $\text{C}\equiv\text{CSi}$) [29], 62.8, 62.7, 62.6, 61.7 (4 s, $\text{SiC}\equiv\text{C}(\text{C}\equiv\text{C})_3$), 7.4 (s, SiCH_2CH_3), 4.2 (s, $^1J_{\text{CSI}} = 56.6$ Hz [30], SiCH_2); NMR (δ /ppm, CD_2Cl_2): ^1H (500 MHz) 1.00 (t , $^3J_{\text{HH}} = 7.8$ Hz, 18H, CH_3), 0.66 (q , $^3J_{\text{HH}} = 7.9$ Hz, 12H, SiCH_2); $^{13}\text{C}\{^1\text{H}\}$ (126 MHz, cryoprobe) 88.7 (s, $\text{C}\equiv\text{CSi}$) [29], 88.6 (s, $\text{C}\equiv\text{CSi}$) [29], 63.0, 62.9, 62.6, 61.5 (4 s, $\text{SiC}\equiv\text{C}(\text{C}\equiv\text{CCCC})_2$), 7.5 (s, SiCH_2CH_3), 4.4 (s, $^1J_{\text{CSI}} = 56.7$ Hz [30], SiCH_2).

IR (powder film, cm^{-1}) 2147/2033 (m/m, $\nu_{\text{C}\equiv\text{C}}$). MS (APCI $^-$) [31]: 374 ($[\text{TESC}_{12}\text{TES}]^-$, 100%).

5.2. $\text{TESC}_{16}\text{TES}$

A three-neck round-bottom flask was fitted with a gas dispersion tube, charged with “crude HC_8TES ” (see SI; from 8.97 mmol of TESC_8TES and in ca. 30 mL of pentane; ca. 3 mmol of HC_8TES) and acetone (150 mL) and cooled to 0°C . A Schlenk flask was charged with

Fig. 1. Thermal ellipsoid plots (50% probability level) for TESC_8TES and $\text{TESC}_{16}\text{TES}$ with hydrogen atoms omitted. For $\text{TESC}_{16}\text{TES}$, only one of the two independent molecules in the unit cell is shown.

CuCl (0.750 g, 7.58 mmol), acetone (20 mL), and TMEDA (0.375 mL, 0.291 g, 2.05 mmol) with stirring (0.5 h), after which a green solid separated from a blue supernatant. Then oxygen was aspirated through the tube and the blue supernatant added with stirring. After 15 min, the cold bath was removed. After 90 min, the mixture was poured into aqueous HCl (2.0 M, 200 mL), which was extracted with diethyl ether (3×150 mL). The combined extracts were dried (MgSO_4). The solvents were removed by rotary evaporation to give a brownish oil. The residue was dissolved in a minimum of HCl/EtOH (1:100 v/v) and kept at -35°C . Needles formed, which were collected by filtration, washed with cold EtOH , and air-dried to give $\text{TESC}_{16}\text{TES}$ as orange needles (0.286 g, 0.068 mmol, 5% assuming a requirement for two equiv of HC_8TES), mp 36°C (open or sealed capillary), with the melt turning brown at ca. 78°C and then black at 106°C (closed capillary).

NMR (δ/ppm , CDCl_3): ^1H (500 MHz) 0.98 (t, $^3J_{\text{HH}} = 7.9$ Hz, 18H, CH_3), 0.64 (q, $^3J_{\text{HH}} = 7.9$ Hz, 12H, SiCH_2), $^{13}\text{C}\{^1\text{H}\}$ (126 MHz, cryoprobe) 88.7 (s, $\text{C}\equiv\text{CSi}$) [29], 88.3 (s, $\text{C}\equiv\text{CSi}$) [29], 63.3, 63.1, 63.0, 62.7, 62.5, 61.6 (6 s, $\text{SiC}\equiv\text{C}(\text{C}\equiv\text{C})_3$), 7.4 (s, SiCH_2CH_3), 4.2 (s, $^1J_{\text{CSI}} = 56.6$ Hz [30], SiCH_2).

IR (powder film, cm^{-1}) 2130/2026 (m/m, $\nu_{\text{C}\equiv\text{C}}$). MS (APCI $^-$) [31]: 422 ($[\text{TESC}_{16}\text{TES}]^-$), 100%.

5.3. $\text{TESC}_{24}\text{TES}$

A three-neck flask was fitted with a gas dispersion tube, charged with $\text{PtC}_{10}\text{TES}$ (0.203 g, 0.168 mmol) and THF (200 mL), and cooled to -78°C . A Schlenk flask was charged with CuCl (0.240 g, 2.42 mmol), acetone (20 mL), and TMEDA (0.675 mL, 0.523 g, 4.48 mmol) with stirring (0.5 h), after which a green solid separated from a blue supernatant. Then wet $n\text{-Bu}_4\text{N}^+\text{F}^-$ (1.0 M in THF, 5 wt% water, 0.08 mL, 0.08 mmol) was added to the three-neck flask with stirring. After 5 min (TLC showed no remaining educt), Me_3SiCl (0.10 mL, 0.84 mmol) and a -35°C pentane solution of “crude HC_8TES ” (see SI; from 8.97 mmol of TESC_8TES and in ca. 30 mL of pentane; ca. 3 mmol of HC_8TES) were added. Then oxygen was aspirated through the tube and the blue supernatant slowly added with stirring. After 50 min, hexanes (150 mL) were added. The suspension was filtered through a pad of silica gel (5 \times 7 cm, packed in 1:1 v/v acetone/hexanes), which was rinsed (1:1 v/v acetone/hexanes) until the filtrate became colorless. The solvents were

removed from the filtrate by rotary evaporation at $<10^\circ\text{C}$. The red-brown residue was chromatographed on a silica gel column (4.5 \times 30 cm, packed in hexanes), eluted with a 3:0 to 2:1 v/v hexanes/ CH_2Cl_2 gradient. The solvents were removed from the product-containing fractions by rotary evaporation at $<10^\circ\text{C}$ to give (in order of elution) (1) $\text{TESC}_{24}\text{TES}$ that was further treated as described below, (2) $\text{PtC}_{26}\text{TES}$ as a brown-orange solid (0.015 g, 0.011 mmol, 7% based upon $\text{PtC}_{10}\text{TES}$), and (3) $\text{PtC}_{18}\text{TES}$ as a dark orange solid (0.035 g, 0.027 mmol, 16% based upon $\text{PtC}_{10}\text{TES}$). The $\text{TESC}_{24}\text{TES}$ was recrystallized from acidified ethanol (EtOH/HCl , v/v, 100:1) to give a bright orange solid (0.020 g, 0.039 mmol, 4% assuming a requirement for three equiv of HC_8TES) that gradually turned brown and eventually black in less than an hour if left at room temperature.

NMR (δ/ppm , CDCl_3): ^1H (500 MHz, cryoprobe): 1.01 (t, $^3J_{\text{HH}} = 7.9$ Hz, 18H, CH_3), 0.65 (q, $^3J_{\text{HH}} = 7.9$ Hz, 12H, SiCH_2CH_3); $^{13}\text{C}\{^1\text{H}\}$ (125 MHz, cryoprobe): 88.73 (s, $\text{C}\equiv\text{CSi}$) [29], 88.70 (s, $\text{C}\equiv\text{CSi}$) [29], 63.9, 63.8, 63.6, 63.5, 63.4, 63.1, 62.9, 62.5, 62.4, 61.5 (10 s, $\text{SiC}\equiv\text{C}(\text{C}\equiv\text{C})_5$), 7.4 (s, SiCH_2CH_3), 4.2 (s, SiCH_2).

IR (powder film, cm^{-1}) 2126/2012 (m/m, $\nu_{\text{C}\equiv\text{C}}$). MS (APCI $^-$) [31]: 518 ($[\text{TESC}_{24}\text{TES}]^-$), 100%.

5.4. Crystallizations and X-ray diffraction

A. A CH_2Cl_2 solution of TESC_8TES was layered with hexanes and kept at -35°C . After 7 d, colorless blocks were collected and data obtained per Table 3. Cell parameters were determined from 45 data frames taken at widths of 1° and refined with 9705 reflections using APEX3 [32]. Data were corrected for Lorentz and polarization factors, and (using SADABS) [33] crystal decay and absorption effects. The non-centrosymmetric space group ($Pca2_1$) was determined from systematic reflection conditions and statistical tests, and was confirmed by SHELXT [34]. Hydrogen atoms were placed in idealized positions and refined using a riding model. All non-hydrogen atoms were refined anisotropically. The Flack parameter was refined to 0.156(9) [35]. The absolute structure was determined using Bayesian statistics on Bijvoet differences, which using Olex2 results in 0.171(9) [36]. The structure was refined (weighted least squares refinement on F^2) to convergence [34,37].

Table 4
Crystallographic distances [Å] and angles [°] for **TESC₈TES** and **TESC₁₆TES**.

	TESC₁₆TES (molecule 1)	TESC₁₆TES (molecule 2) ^a	TESC₈TES
Si1-C1	1.855(2)	1.859(2)	1.856(3)
C1≡C2	1.208(3)	1.202(3)	1.210(4)
C2-C3	1.370(3)	1.372(3)	1.365(4)
C3≡C4	1.211(3)	1.211(3)	1.212(4)
C4-C5	1.355(3)	1.358(3)	1.365(4)
C5≡C6	1.212(3)	1.211(3)	1.205(4)
C6-C7	1.356(3)	1.355(3)	1.375(4)
C7≡C8	1.215(3)	1.216(3)	1.206(4)
C8-C9	1.351(3)	1.355(3)	—
C9≡C10	1.212(3)	1.213(3)	—
C10-C11	1.354(3)	1.355(3)	—
C11≡C12	1.215(3)	1.212(3)	—
C12-C13	1.354(3)	1.358(3)	—
C13≡C14	1.209(3)	1.210(3)	—
C14-C15	1.372(3)	1.369(3)	—
C15≡C16	1.206(3)	1.207(3)	—
Co ^b -Si2	1.853(2)	1.859(2)	1.856(3)
avg. C≡C	1.211	1.210	1.208
avg. C-C	1.359	1.360	1.368
BLA(avg) ^c	0.148	0.150	0.160
BLA ^d	0.138	0.141	0.157
sum, bond lengths, Si1 to Si2	22.908(3)	22.922(3)	12.650(4)
Si1…Si2	22.561	22.484	12.603
Si1-C1-C2	175.9(2)	172.7(2)	174.3(3)
C1-C2-C3	178.9(2)	176.6(2)	178.0(3)
C2-C3-C4	179.3(3)	177.1(2)	177.8(3)
C3-C4-C5	178.9(2)	175.7(2)	178.9(3)
C4-C5-C6	178.6(2)	176.5(2)	178.3(3)
C5-C6-C7	178.9(3)	178.2(2)	178.6(3)
C6-C7-C8	178.1(3)	179.4(2)	179.1(3)
C8-C9-C10	176.2(3)	179.2(2)	—
C9-C10-C11	176.4(3)	179.5(2)	—
C10-C11-C12	176.6(3)	178.5(2)	—
C11-C12-C13	176.7(3)	178.9(2)	—
C12-C13-C14	175.9(2)	177.4(2)	—
C13-C14-C15	177.2(2)	175.7(2)	—
C14-C15-C16	178.2(3)	175.9(3)	—
C(0-1)-Co ^b -Si2	175.7(2)	172.7(2)	174.3(3)
avg. bond angle, Si1 to Si2	177.4	177.3	177.3

^a For this molecule, the atoms are numbered differently from the cif file.

^b The sp carbon atom connected to the triethylsilyl group.

^c BLA(avg) = (avg. C-C) – (avg. C≡C).

^d BLA = absolute value of the length of the central carbon-carbon bond (C≡C for $n = \text{odd}$; C-C for $n = \text{even}$; $n = \text{number of C≡C units}$) minus the average length of the two adjacent bonds.

- A CH_2Cl_2 solution of **TESC₁₂TES** was layered with MeOH and kept at -35°C . After 6 d, microcrystalline dark yellow needles were collected. However, crystals suitable for X-ray analyses could not be obtained.
- A CH_2Cl_2 solution of **TESC₁₆TES** was layered with hexanes and kept at -35°C . After 12 d, orange needles were collected, and data obtained per **Table 3**. Cell parameters were determined from 45 data frames taken at widths of 1° and refined with 9580 reflections using APEX3 [32]. Data were corrected for Lorentz and polarization factors, and (using SADABS) [33] crystal decay and absorption effects. The space group was determined from systematic reflection conditions and statistical tests, and was confirmed by SHELXT [34]. Elongated thermal ellipsoids on atoms C23-C28 suggested disorder, but modeling efforts did not improve either the reliability factors or thermal ellipsoids. Hydrogen atom positions were placed in idealized positions and refined using a riding model. All non-hydrogen atoms were refined anisotropically. Two independent molecules were found in the unit cell. The structure was refined (weighted least squares refinement on F^2) to convergence [34,37].
- A CH_2Cl_2 solution of **TESC₂₄TES** was layered with hexanes and kept at -35°C . After 14 d, brown microcrystalline needles were collected, which were ground to fine particles of uniform size. The powder was

loaded into a two-circle goniometer in a radiation safety enclosure. The X-ray source (1kW Cu tube; 1.54060 Å) was maintained at an operating current of 40 kV and 25 mA. A standard Bragg-Brentano para-focusing mode was used for the optics, with the X-ray diverging from a DS slit (1 mm) at the tube to strike the sample and then converging at a position sensitive X-ray Detector (Lynx-Eye, Bruker-AXS). The two-circle 218 mm diameter θ - θ goniometer was computer controlled with independent stepper motors and optical encoders for the θ circle with the smallest angular step size of 0.0001° (20). Data collection (see Figure S1) used the automated COMMANDER program and a DQL file. Data were analyzed by the program EVA.

Supplementary data

CCDC 2366801 (**TESC₈TES**) and 2366802 (**TESC₁₆TES**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Supplementary materials

The synthesis and isolation of **TESC₈TES**, generation of pentane solutions of **HC₈TES**, and powder XRD, NMR, and mass spectrometric data.

CRediT authorship contribution statement

Sourajit Dey Baksi: Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation. **Aayushi Arora:** Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation. **Nattamai Bhuvanesh:** Validation, Software, Resources, Methodology. **Joseph H. Reibenspies:** Validation, Software, Resources, Methodology. **John A. Gladysz:** Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare no competing financial interest.

Data availability

Data will be made available on request.

Acknowledgements

The US National Science Foundation (NSF; CHE-1900549) and Welch Foundation (A-2189) are thanked for support.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at [doi:10.1016/j.jorgchem.2024.123308](https://doi.org/10.1016/j.jorgchem.2024.123308).

References

- [1] a) For synthetic milestones, see W.A. Chalifoux, R.R. Tykwiński, Synthesis of extended polyynes: toward carbyne, *Comptes Rendus Chimie* 12 (2009) 341–358, <https://doi.org/10.1016/j.crcr.2008.10.004>; b) Y. Gao, R.R. Tykwiński, Advances in polyynes to model carbyne, *Acc. Chem. Res.* 55 (2022) 3616–3630, <https://doi.org/10.1021/acs.accounts.2c00662>.
- [2] a) C.-F. Lv, X.-G. Yang, C.-X. Shan, One-dimensional sp carbon: synthesis, properties, and modifications, *Chin. Phys. B* 31 (2022) 128103, <https://doi.org/10.1088/1674-1056/ac872f>; b) B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: the

one-dimensional *sp* carbon, *Sci. Adv.* 1 (2015) e1500857, <https://doi.org/10.1126/sciadv.1500857>.

[3] a) W.A. Chalifoux, R.R. Tykwinski, Synthesis of polyynes to model the *sp*-carbon allotrope carbyne, *Nature Chem.* 2 (2010) 967–971, <https://doi.org/10.1038/nchem.828>;
b) Y. Gao, Y. Hou, F.G. Gárnez, M.J. Ferguson, J. Casado, R.R. Tykwinski, The loss of endgroup effects in long pyridyl-endcapped oligoynes on the way to carbyne, *Nature Chem.* 12 (2020) 1143–1149, <https://doi.org/10.1038/s41557-020-0550-0>.

[4] A. Arora, S. Dey Baksi, N. Weisbach, H. Amini, N. Bhuvanesh, J.A. Gladysz, Monodisperse molecular models for the *sp* carbon allotrope carbyne; syntheses, structures, and properties of diplatinum polyynediyl complexes with PtC₂₀Pt to PtC₅₂Pt linkages, *ACS Cent. Sci.* 9 (2023) 2225–2240, <https://doi.org/10.1021/acscentsci.3c01090>.

[5] C.W. Patrick, Y. Gao, P. Gupta, A.L. Thompson, A.W. Parker, H.L. Anderson, Masked alkynes for synthesis of threaded carbon chains, *Nature Chem.* 16 (2024) 193–200, <https://doi.org/10.1038/s41557-023-01374-z>.

[6] M.R. Bryce, A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics, *J. Mater. Chem. C* 9 (2021) 10524–10546, <https://doi.org/10.1039/DTC01406D>.

[7] a) R.-S. Zhang, J.-W. Jiang, The art of designing carbon allotropes, *Front. Phys.* 14 (2019) 13401, <https://doi.org/10.1007/s11467-018-0836-5>;
b) Q. Fan, H. Liu, C. Ren, S. Yun, U. Schwingenschlögl, High-throughput design of three-dimensional carbon allotropes with *Pmna* space group, *Materials Today Advances* 22 (2024) 100486, <https://doi.org/10.1016/j.mtadv.2024.100486>.

[8] R. Eastmond, T.R. Johnson, D.R.M. Walton, Silylation as a protective method for terminal alkynes in oxidative couplings, *Tetrahedron* 28 (1972) 4601–4616, [https://doi.org/10.1016/0040-4020\(72\)80041-3](https://doi.org/10.1016/0040-4020(72)80041-3).

[9] T.R. Johnson, D.R.M. Walton, Silylation as a Protective Method in Acetylene Chemistry, *Tetrahedron* 28 (1972) 5221–5236, [https://doi.org/10.1016/S0040-4020\(01\)88941-9](https://doi.org/10.1016/S0040-4020(01)88941-9).

[10] a) F. Bohlmann, Die Polyine, *Angew. Chem.* 65 (1953) 385–408, <https://doi.org/10.1002/ange.19530651502>;
b) E.R.H. Jones, H.H. Lee, M.C. Whiting, Researches on acetylenic compounds. Part LXIV. The preparation of conjugated octa- and deca-acetylenic compounds, *J. Chem. Soc.* (1960) 3483–3489, <https://doi.org/10.1039/JR9600003483>;
c) A.M. Sladkov, Y.P. Kudryavtsev, Polyynes, *Russ. Chem. Rev.* 32 (1963) 229–243, <https://doi.org/10.1070/RC1963v03n05ABEH001338>.

[11] A.S. Hay, Oxidative couplings of acetylenes. II, *J. Org. Chem.* 27 (1962) 3320–3321, <https://doi.org/10.1021/jo01056a511>.

[12] S. Eisler, A.D. Slepkov, E. Elliott, T. Luu, R. McDonald, F.A. Hegmann, R. R. Tykwinski, Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response, *J. Am. Chem. Soc.* 127 (2005) 2666–2676, <https://doi.org/10.1021/ja0445261>.

[13] D.R. Kohn, P. Gawel, Y. Xiong, K.E. Christensen, H.L. Anderson, Synthesis of polyynes using dicobalt masking groups, *J. Org. Chem.* 83 (2018) 2077–2086, <https://doi.org/10.1021/acs.joc.7b03015>.

[14] Y. Rubin, S.S. Lin, C.B. Knobler, J. Anthony, A.M. Boldi, F. Diederich, Solution-spray flash vacuum pyrolysis: new method for the synthesis of linear polyynes with odd numbers of C≡C bonds from substituted 3,4-dialkynyl-3-cyclobutene-1,2-diones, *J. Am. Chem. Soc.* 113 (1991) 6943–6949, <https://doi.org/10.1021/ja00018a035>.

[15] a) R.C. DeCicco, A. Black, L. Li, N.S. Goroff, An iterative method for the synthesis of symmetric polyynes, *Eur. J. Org. Chem.* (2012) 4699–4704, <https://doi.org/10.1002/ejoc.201200442>;
b) D.C. Milan, O.A. Al-Owaedi, M.-C. Oerthel, S. Marqués-González, R.J. Brooke, M.R. Bryce, P. Cea, J. Ferrer, S.J. Higgins, C.J. Lambert, P.J. Low, D.Z. Manrique, S. Martin, R.J. Nichols, W. Schwarzscher, V.M. García-Suárez, Solvent dependence of the single molecule conductance of oligoyno-based molecular wires, *J. Phys. Chem. C* 120 (2016) 15666–15674, <https://doi.org/10.1021/acs.jpcc.5b08877>.

[16] Y. Tobe, R. Umeda, N. Iwasa, M. Sonoda, Expanded Radialenes with Bicyclo[4.3.1]decatriene Units: New Precursors to Cyclo[*n*]carbons, *Chem. Eur. J.* 9 (2003) 5549–5559, <https://doi.org/10.1002/chem.200305051>.

[17] For efforts in this direction, see W.A. Chalifoux, M.J. Ferguson, R.R. Tykwinski, Tris(biphenyl-4-yl)silyl-Endcapped Polyynes, *Eur. J. Org. Chem.* (2007) 1001–1006, <https://doi.org/10.1002/ejoc.200600878>.

[18] Additional literature: F. Yonehara, Y. Kido, M. Yamaguchi, Unusually high *ortho*-selectivity in electrophilic aromatic substitution promoted by GaCl₃, *Chem. Commun.* (2000) 1189–1190, <https://doi.org/10.1039/B00321H>.

[19] See footnote s11 of reference [4]. The TES₆TES elutes first from silica gel, but quantitative separations from HC₈H are seldom achieved. The HC₈H elutes last while partially decomposing (sometimes with a noticeable exotherm) on the column.

[20] B. K. Collins, J. A. Gladysz, submitted to *Chem. Eur. J.*

[21] Synthesis of a mixture containing TES₆TES: I. Curbet, S. Colombel-Rouen, R. Manguin, A. Clermont, A. Quelhas, D.S. Müller, T. Roisnel, O. Baslé, Y. Trolez, M. Mauduit, Expedient synthesis of conjugated triynes *via* alkyne metathesis *Chem. Sci.* 11 (2020) 4934–4938, <https://doi.org/10.1039/D0SC01124J>.

[22] R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward Metal-Capped One-Dimensional Carbon Allotropes: Wirelike C₆–C₂₀ Polyynediyl Chains That Span Two Redox-Active (η^5 -C₅Me₅)Re(NO)(PPh₃)₂ Endgroups, *J. Am. Chem. Soc.* 122 (2000) 810–822, <https://doi.org/10.1021/ja992747z>. Please see the general cautionary note regarding polyynes in the experimental section. We have yet to experience any problems with Br₂C₄Br, although it is a strong lacrymator.

[23] S. Radhika, N.A. Harry, M. Neetha, G. Anilkumar, Recent trends and applications of the Cadiot-Chodkiewicz reaction, *Org. Biomol. Chem.* 17 (2019) 9081–9094, <https://doi.org/10.1039/C9OB01757G>.

[24] a) M. Nobis, J. Futter, M. Moxter, S. Inoue, B. Rieger, Photo-activity of silacycloprenes and their application in metal-free curing of silicones, *ChemSusChem* 16 (2022) e202201957, <https://doi.org/10.1002/cssc.202201957>;
b) J. Szyling, A. Szymańska, A. Franczyk, J. Walkowiak, [Pt(PPh₃)₄]-catalyzed selective diboration of symmetrical and unsymmetrical 1,3-Dynes, *J. Org. Chem.* 87 (2022) 10651–10663, <https://doi.org/10.1021/acs.joc.2c00844> (see the supporting information therein).

[25] F. Zhuravlev, J.A. Gladysz, Electronic structure and chain-length effects in diplatinum polyynediyl complexes *trans,trans*-[(X)(R₃P)₂Pt(C≡C)_nPt(PR₃)₂(X)]: a computational investigation, *Chem. Eur. J.* 10 (2004) 6510–6522, <https://doi.org/10.1002/chem.20040064>.

[26] See also Figure 5 of Q. Zheng, J.C. Bohling, T.B. Peters, A.C. Frisch, F. Hampel, J. A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: a series of isolable complexes in which C₆, C₈, C₁₀, C₁₂, C₁₆, C₂₀, C₂₄, and C₂₈ Polyynediyl chains span two platinum atoms, *Chem. Eur. J.* 12 (2006) 6486–6505, <https://doi.org/10.1002/chem.200600615>.

[27] H. Amini, N. Weisbach, S. Gauthier, H. Kuhn, N. Bhuvanesh, F. Hampel, J. H. Reibenspies, J.A. Gladysz, Trapping of terminal platinopolyynes by Copper(I) catalyzed click cycloadditions; probes of labile intermediates in syntheses of complexes with extended sp carbon chains, and crystallographic studies, *Chem. Eur. J.* 27 (2021) 12619–12634, <https://doi.org/10.1002/chem.202101725>.

[28] a) G.E. Jones, D.A. Kendrick, A.B. Holmes, 1,4-BIS(TRIMETHYLSILYL)BUTA-1,3-DIYNE, *Org. Synth.* 65 (1987) 52–59, <https://doi.org/10.15227/orgsyn.065.0052>;
b) W. de Graaf, A. Smits, J. Boersma, G. van Koten, W.P.M. Hoekstra, Synthesis of Marasin and 9-Me-Marasin (Nonane- and Deca-6,8-dyne-3,4-dienol), *Tetrahedron* 44 (1988) 6699–6704, [https://doi.org/10.1016/S0040-4020\(01\)90110-3](https://doi.org/10.1016/S0040-4020(01)90110-3);
c) S. Bock, P.J. Low, A Safe and Simple Synthesis of 1,4-Bis(trimethylsilyl)buta-1,3-diyne, *Aust. J. Chem.* 71 (2018) 307–310, <https://doi.org/10.1071/CH17402>;
d) D.F. Perepichka, S. Jeeva, Chemical safety: trimethylsilylacetylene explosion, *Chem. Eng. News* 88 (2010) 2. <http://cen.acs.org/articles/88/i3/Chemical-Safety-Trimethylsilylacetylene-Explosion.html>.

[29] This signal is assigned by analogy to chemical shift trends established for TIPSC₈TIPS in reference [12].

[30] This coupling represents a satellite (d; 29_{Si} = 4.67%), and is not reflected in the peak multiplicity given.

[31] m/z, most intense peak of the isotope envelope.

[32] APEX3, "Program for Data Collection on Area Detectors, BRUKER AXS Inc., Madison, WI, USA, 2012.

[33] G. M. Sheldrick, SADABS, *Program for Absorption Correction for Data from Area Detector Frames*, Bruker AXS Inc., Madison, WI 53711-5373 USA.

[34] a) G. M. Sheldrick, SHELXT – Integrated space-group and crystal structure determination, *Acta Cryst. A71* (2015) 3–8, <https://doi.org/10.1107/S2053273314026370>;
b) G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Cryst. C71* (2015) 3–8, <https://doi.org/10.1107/S053229614024218>.

[35] H.D. Flack, On enantiomorph-polarity estimation, *Acta Cryst. A39* (1983) 876–881, <https://doi.org/10.1107/S0108767383001762> (theory for correct and inverted configurations: 0 and 1).

[36] a) R.W.W. Hooft, L.H. Straver, A.L. Spek, Determination of absolute structure using Bayesian statistics on Bijvoet differences, *J. Appl. Cryst.* 41 (2008) 96–103, <https://doi.org/10.1107/S0021889807059870>;
b) A.L. Thompson, D.J. Watkin, X-ray crystallography and chirality: understanding the limitations, *Tetrahedron: Asymmetry* 20 (2009) 712–717, <https://doi.org/10.1016/j.tetasy.2009.02.025>.

[37] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.* 42 (2009) 339–341, <https://doi.org/10.1107/S0021889808042726>.