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Abstract. Despite the numerous ways now available to quantify which parts or subsystems of
a network are most important, there remains a lack of centrality measures that are related to the
complexity of information flows and are derived directly from entropy measures. Here, we introduce
a ranking of edges based on how each edge’s removal would change a system’s von Neumann entropy
(VNE), which is a spectral-entropy measure that has been adapted from quantum information theory
to quantify the complexity of information dynamics over networks. We show that a direct calculation
of such rankings is computationally ine�cient (or unfeasible) for large networks, since the possible
removal of M edges requires that one compute all the eigenvalues of M distinct matrices. To overcome
this limitation, we employ spectral perturbation theory to estimate VNE perturbations and derive
an approximate edge-ranking algorithm that is accurate and has a computational complexity that
scales as O(MN) for networks with N nodes. Focusing on a form of VNE that is associated with
a transport operator e

��L, where L is a graph Laplacian matrix and � > 0 is a di↵usion timescale
parameter, we apply this approach to diverse applications including a network encoding polarized
voting patterns of the 117th U.S. Senate, a multimodal transportation system including roads and
metro lines in London, and a multiplex brain network encoding correlated human brain activity.
Our experiments highlight situations where the edges that are considered to be most important for
information di↵usion complexity can dramatically change as one considers short, intermediate, and
long timescales � for di↵usion.
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von Neumann entropy, edge ranking
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1. Introduction. Centrality analysis [10, 83]—i.e., determining the importance
of substructures including nodes [11, 36, 48], edges [47, 74, 95, 116], and subgraphs
[37, 114]—is a fundamental pursuit of network science. Quantifying their importance
supports diverse applications ranging from the ranking of webpages [14, 69], athletes/
athletic teams [16, 87, 97], and academics/academic institutions [19, 29, 99, 112],
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926 J. KAZIMER ET AL.

to the identification of potential intervention targets for dynamical processes over
networks: examples include congestion points for transportation systems [54, 58],
influencers in social networks [67, 68, 72], vaccination strategies [96, 100], as well as
points of fragility for critical infrastructures [56, 95] and biological networks [2, 59].
Given the broad impact of this interdisciplinary field, new methodological advances
continue to be developed including the extension of centralities to generalized types
of networks (e.g., temporal networks [86, 112], multilayer and multiplex networks
[25, 26, 27, 104, 113, 118], hypergraphs and simplicial complexes [8, 38, 119]), com-
paring various centralities for specific applications [61, 108], deriving centralities that
cater to particular dynamical systems [95, 115], and building stronger theoretical foun-
dations using tools from statistics [23], mathematics [35], and machine learning [51].

Herein, we aim to further align the study of centrality with information theory
and entropy measures, and in particular, to contribute to the growing interface be-
tween network science and quantum information theory [4, 24, 25, 43, 45, 76, 88]. For
a recent overview of the topic, we refer the reader to [44]. Our approach is partly
motivated by node entanglement [46], which was recently proposed as a node central-
ity measure stemming from the study of a network’s von Neumann entropy (VNE)
[123]. VNE was originally developed as an information-theoretic measure to quantify
disorder within quantum-mechanical systems, and it has played a crucial role in the
development of quantum information theory [123, 126]. More recently, it has been
extended as a spectral-entropy measure that quantifies the structural complexity of
graphs [13, 25, 76], has been generalized to preserve the subadditivity property [24]
as later clarified in section 2.2, and has been applied to a variety of interconnected
systems, from molecular biology [42] to neuroscience [7]. Of particular relevance is
previous research showing that VNE is a natural measure to quantify the complexity of
the interplay between structure and information di↵usion over a network [44, 45]. We
also note in passing that there exist other centrality measures [18, 75, 85, 94, 120, 121]
that also utilize entropy in some way, but which are not derived from VNE nor relate
to the complexity of information di↵usion. Generally speaking, the literature relating
edge centrality measures to entropy is lacking, and in particular, no centrality measure
for edges has been previously derived using VNE.

In this work, we develop a VNE-based measure for edge importance. (Although
our methods easily extend to nodes and subgraphs, we will not explicitly use them so
here.) We develop a framework that ranks edges based on how VNE would change if
each edge were separately removed. We interpret these rankings from the perspective
of information di↵usion over networks [44, 45] so that the node rankings are directly
associated with the spectral complexity of information di↵usion. The top-ranked
edge is the one whose removal would most increase VNE, thereby most increasing
the spectral complexity of information di↵usion. As such, our approach complements
the numerous existing centralities that relate to information-spreading dynamics over
networks including betweenness [41], Katz centrality [64], communicability [34, 36],
and many others [9, 35, 67, 68, 72]. These existing methods typically aim to iden-
tify nodes/edges that are important either as sources for broadcasting information
or as crucial bottlenecks for information pathways, and as such, they do not provide
a notion of centrality as it relates to the complexity/heterogeneity of information

di↵usion. Our work highlights how the extension of some concepts used in quan-
tum information theory to network science, and centrality analysis in particular, can
provide complementary insights into the importance of network substructures (e.g.,
edges) with respect to a system’s functional complexity and how their roles change as
one considers di↵erent timescales for information di↵usion.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

2/
24

 to
 1

29
.7

2.
21

0.
17

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 927

Our methodology is also motivated by prior centrality analyses [80, 95, 114, 116]
that utilize spectral perturbation theory to more e�ciently estimate the impact of
node, edge, or subgraph removals on the perturbed spectral properties of networks
(or functions thereof [115]). Specifically, as a spectral-entropy measure, the computa-
tion of VNE requires calculation of the full set of eigenvalues for a graph’s Laplacian
matrix. (See section 2 for our general definition.) Computing all the eigenvalues
of a large matrix is well known to be computationally expensive, and so naively re-
computing the eigenvalues to obtain the new VNE that occurs after an edge removal
is computationally demanding and is infeasible for large networks. (See section 3.3
for numerical evidence and a discussion.) Thus motivated, we employ spectral per-
turbation theory to e�ciently approximate changes to VNE and approximate the
subsequent ranking of edges based on those perturbations. We show that the compu-
tational complexity of the approximate rankings in the limit of large N reduces to at
most O(N) per edge, allowing the framework to e↵ectively scale to large networks.

We investigate the true and approximate rankings of edges in terms of VNE
change for three empirical networks: a voting-similarity network for the 117th U.S.
Senate, a multimodal transportation network encoding roads and metro lines, and a
multiplex brain network with two layers that represent correlated brain activity at
di↵erent frequency bands. We focus on a version of VNE based on a transport op-
erator e��L, where L is a graph Laplacian matrix and � > 0 is a di↵usion timescale

parameter. Interestingly, we find that our measure for a network’s most important
edges is significantly influenced by � in that the top-ranked edges at a short timescale
are often very di↵erent from those at an intermediate and/or long timescale. This
result is interesting because it highlights the multiscale nature of importance for fun-
damental units of a network. Our numerical experiments reveal three di↵erent types
of network structures that systematically cause such a reordering e↵ect: community
structure in the U.S. Senate voting network, the relative speed between roads and
metro lines for the transportation network, and the strength of coupling between
network layers for the multiplex brain network. These experiments also highlight the
potential broad utility of our proposed entropy-based rankings for diverse applications
across the social, physical, and biological sciences.

The remainder of this paper is organized as follows: we present background in-
formation in section 2, methodology in section 3, numerical experiments in section 4,
and a discussion in section 5. A codebase that reproduces our findings can be found
at [66].

2. Background information. We first provide background information Lapla-
cian matrices and their spectral properties (section 2.1), VNE as a measure of spectral
complexity for information di↵usion (section 2.2), and prior centrality measures that
stem from spectral perturbation theory (section 2.3).

2.1. Laplacian matrices and the di↵usion equation. LetG(V,E) be a graph
with a set V = {1, . . . ,N} of nodes and a set E ⇢ V ⇥ V of undirected edges, each of
which can have a positive weight Wij > 0. We assume that there are no self-edges.
The graph can be equivalently defined by a symmetric adjacency matrix A with entries
Aij = Wij if (i, j) 2 E and Aij = 0 otherwise. We define M = 1

2

P
ij Aij as the total

weight of edges. (The factor of 1/2 arises since each edge appears twice in the matrix
A.) For unweighted graphs, Aij = Aji = 1 for each edge (i, j) so that M equals the
number of edges. We further define D = diag[d1, . . . , dN ], where each di =

P
j Aij

encodes the weighted degree (i.e., strength) of node i. The unnormalized Laplacian
matrix (also called combinatorial Laplacian) is given by a size-N square matrix
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928 J. KAZIMER ET AL.

L=D�A.(2.1)

The matrix L is important to many diverse applications including graph partitioning
[39], analysis of spanning trees [78], synchronization of nonlinear dynamical systems
[89, 102, 115], electricity flow [31], manifold learning [6, 21], harmonic analysis [22],
graph sparsification [106], and neural networks [15, 128]. Of particular relevance is
that one can define the di↵usion equation over a graph by

d

dt
x(t) =��̂Lx(t),(2.2)

where x(t) = [x1(t), . . . , xN (t)], xi(t) is the density at node i at time t, and �̂ > 0 is a
di↵usion rate.

Theory development for many Laplacian-matrix-related applications often stems
from studying the spectral properties (i.e., eigenvalues and eigenvectors) of L. As a
real symmetric matrix, L is diagonalizable, L=U⇤UT , where ⇤=diag[�1, . . . ,�N ] is
a diagonal matrix whose diagonal entries encode the eigenvalues 0 = �1 < �2  · · ·

�N , and their corresponding eigenvectors, u(k), make up the orthonormal columns of
U = [ u(1)

, . . . ,u(N)]. We assume that the network is connected (i.e., L is irreducible)
so that �2 > 0. By construction, L 1 = 0, where 1 = [1, . . . ,1]T , which implies
�1 = 0 is an eigenvalue and u(1) = N

�1/21 is its associated normalized eigenvector.
To facilitate later analyses, we also define the vector of eigenvalues: ~�= [�1, . . . ,�N ].
Using a spectral decomposition, (2.2) has the general solution

x(t) = e
��̂tLx(0) =Ue

��̂t⇤
U

Tx(0) =
NX

k=1

↵ke
��̂t�ku(k)

,(2.3)

where ↵k = hu(k)
,x(0)i is the projection of the initial condition onto the kth eigenvec-

tor (each of which is an invariant subspace of the di↵usion dynamics). Herein, we will
often combine the di↵usion rate and time parameter into a single timescale parameter

� = �̂t.
Before continuing, we highlight that there exist normalized versions of Laplacians

that are also widely studied. For example, L̃ = D
�1

L is an asymmetric normalized
Laplacian, and under the substitution L̃ 7! L, (2.3) would describe a continuous-
time Markov chain [40]. Similarly, L̂=D

�1/2
LD

�1/2 defines a symmetric normalized
Laplacian that shares the same eigenvalues as L̃ and is broadly important for machine
learning applications. In this work, we will focus on L, noting that our methodology
and findings can be easily extended to applications involving these other matrices.

2.2. Information di↵usion and von Neumann entropy (VNE). While
the di↵usion equation given by (2.2) is often associated with heat flow, it can also be
used as a model for other types of di↵usion including the propagation of quanta of
information over complex networks [7, 43, 46]. We begin by using � = �̂t to define
Z�(L) ⌘ Trace(e��L) =

PN
k=1 e

���k , which normalizes a propagator matrix e
��L to

yield an associated density matrix

⇢�(L) =
e
��L

Z�(L)
=

NX

k=1

sk(u
(k))T (u(k)),(2.4)

where sk = e
���k/Z�(L). These expressions use the eigenvalues �k and eigenvectors

u(k) of L, which were defined in the previous section.
We note that in the classical interpretation of di↵usion, if a particle is first ob-

served at node i and later observed at node j, then it is believed to have taken some
well-defined (although possibly unknown) path from i to j. In contrast, the quantum

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 929

transport of a quantum particle that is emitted at node i is considered to be delocal-
ized (i.e., exists across all paths) until it is later detected at node j. In either case, one
can interpret a vector x(t) to be an information field at timescale t� 0 for information
dynamics that are initialized with an initial field x(0) =

PN
i=1 piei, where pi is the

probability that information is “seeded” at node i and ei is a unit vector in which
all entries are zeros except for the ith entry, which is a one. We assume

P
i pi = 1.

Each entry [⇢�(L)]ij gives the probability of transport of information quanta from
node i to j at timescale �. Moreover, each eigenspace-restricted transport operator
sk( u(k))T (u(k)) defines a kth information stream over which information quanta can
be transported. By construction, Trace(⇢�(L)) =

P
k sk = 1 so that each sk defines

the probability of transport along the kth information stream at timescale �. For
both classical and quantum di↵usion it is natural to examine whether transport is lo-
calized onto a small set of information streams (i.e., a few eigenmodes) or whether it is
dispersed across many information streams (i.e., many eigenmodes). Such an inquiry
is said to examine the spectral complexity of information di↵usion. Here, we focus on
classical di↵usion according to (2.2) but seek to utilize the toolset of quantum infor-
mation theory to measure the spectral complexity of information di↵usion, and we
will later use it to measure the importance (i.e., centrality) of edges. To this end, we
quantify the spectral complexity of information di↵usion using von Neumann entropy
(VNE). VNE was introduced by John von Neumann as a measure for quantum infor-
mation [123] and can quantify, for example, the departure of a quantum-mechanical
system from its pure state. Applications include using VNE to identify entangled
spin-orbital bound states [127], examining nonequilibrium thermodynamics of bosons
[79], and developing complementary analyses for quantum phenomena [57]. Due to
its widespread applicability and inherent ability to capture uncertainty for entangled
quantum states, VNE has become a cornerstone for modern quantum information
theory [126].

Recently, this formalism was extended to studying structural information for
graphs [13, 25, 76], although its more reliable generalization that preserves the sub-
additivity property of VNE was proposed later in [24] and further developed in [45].
(See [44] for a review). Applications have included the study of global trade net-
works [25] and the functional connectivity of brain networks [7, 84]. We will utilize
the subadditive-preserving definition of VNE to develop an entropy-based centrality
measure for edges in graphs.

We begin by defining a generalized notion of VNE for networks that incorporates
and extends earlier versions.

Definition 2.1 (von Neumann entropy for graphs). Let G(V,E) be a graph and

L be an associated Laplacian matrix. Assume L has the diagonalization L=U⇤U�1
,

where ⇤ = diag(~�), ~� = [�1, . . . ,�N ]T with �i 2 R, and U contains the associated

(right) eigenvectors as columns. Further, let ⇢(L) be a matrix-valued analytic function

that admits the diagonalization ⇢(L) = Udiag[f1(~�), . . . , fN (~�)]U�1
and satisfies 1 =

Tr(⇢(L)) =
P

i fi(
~�). We then define a general form for VNE of graph G(V,E) by

h(L) =�Tr[⇢(L) log2 ⇢(L)]

=�

NX

k=1

fk(~�) log2 fk(~�).(2.5)

By convention, we define 0 log2(0) = 0.

Remark 2.1. Because 1 =
P

k fk(
~�), one can interpret each fk(~�) as a probability,

and then VNE coincides with Shannon entropy for the set {fk(~�)} of probabilities.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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930 J. KAZIMER ET AL.

Remark 2.2. We define a matrix-valued function ⇢(L) that satisfies Trace(⇢(L)) =
1 to be a “trace-normalized matrix transformation.” In principle, matrix L need not
be restricted to Laplacian matrices, and it could represent any graph-encoding matrix
that is diagonalizable and has real-valued eigenvalues.

The earliest application of VNE to graphs that we know of can be attributed to
Braunstein, Ghosh, and Severini [13], wherein the authors restricted their attention
to the choice of function fk(~�) = �k/

P
j �j for possibly weighted graphs, and we will

refer to the associated VNE as uniform VNE. For unweighted graphs,
P

j �j = 2M
gives twice the number of edges. However, it has been shown that this definition does
not preserve the desired property of subadditivity for entropies [25]. More recently,
De Domenico and Biamonte [24] proposed using ⇢(L) = ⇢�(L), as defined in (2.4), in
which case fk(~�) = sk, as defined for (2.4). Importantly, this definition does satisfy
the subadditivity property, which states that h(L(1) + L

(2))  h(L(1)) + h(L(2)) for
two graphs with equally sized Laplacian matrices L(1)

,L
(2)

2RN⇥N .
Our definition of VNE above allows L to represent either a normalized or unnor-

malized Laplacian matrix. Here, we focus on the choice of the combinatorial Laplacian
matrix L given by (2.1), and we refer to the corresponding VNE measure as di↵usion-
kernel VNE. We note in passing, however, that VNE has also been studied using a
left normalized (also called random-walk) Laplacian matrix L = D

�1
L [43], and we

will refer to that form as continuous-time random-walk VNE. Regardless of the choice
of matrix L, large VNE values indicate that di↵usion transport is dispersed across
many information streams (i.e., many eigensubspaces), whereas small VNE values
indicate that it is localized to one, or a few, information streams (i.e., concentrated
onto a smaller eigensubspace). See [7, 44, 45] for the exploration of other relationships
between VNE and information di↵usion dynamics, including discussions on trapped
fields and information field diversity.

2.3. Spectral perturbation theory for centrality analysis. Given that
di↵usion-kernel VNE measures the spectral complexity of information di↵usion, the
remainder of this paper will focus on VNE-based analyses of networks. Specifically, we
propose to rank edges (although our methods easily extend to nodes and subgraphs)
according to how each edge’s removal would change the graph’s VNE.

Our work is largely motivated by prior centrality measures that quantify im-
portance by considering how structural modifications lead to perturbations for the
spectral properties of graph-encoding matrices. Of particular relevance is recent work
[46] that proposed a node ranking by examining how VNE changes occur after node
removals, and node entanglement was defined as a centrality measure inspired by the
concept of quantum entanglement for quantum-mechanical systems. Herein, we will
develop a complementary edge centrality measure that ranks edges based on how each
edge’s removal would change the graph’s VNE. Importantly, centrality measures re-
lating to spectral changes can be computationally expensive if many eigenvalues and
eigenvectors are involved in the measures’ definitions. In particular, VNE requires
knowledge of all the eigenvalues, and so the direct recomputation of VNE for the
Laplacian matrices of graphs after the removal of nodes or edges would be impracti-
cal for large graphs.

Given this limitation, herein we propose to build on existing techniques that lever-
age spectral perturbation theory to approximate centrality measures and rankings in
a way that is more computationally e�cient. For example, the dynamical importance

[95] of a node or edge is defined as the decrease that would occur for the adjacency ma-
trix’s spectral radius if that node or edge is removed (see also [116]). In addition, one
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 931

can define the importance of a node by computing how much the PageRank or other
centrality measures change upon the removal of that node [32]. Other related work
includes considering the impact of structural modifications on the spectra of Lapla-
cian matrices [76, 80, 105] as well as functions of such eigenvalues and eigenvectors
[115]. Such centrality measures can be e�ciently approximated by developing linear
approximations for how structural perturbations of graphs give rise to spectral pertur-
bations. We also refer the reader to [112, 113] for the use of more advanced matrix-
perturbation techniques (namely singular perturbation theory) that have arisen in
the context of centrality measures for multiplex and temporal networks. We note in
passing that these perturbative analyses of networked-coupled dynamical systems are
closely related to the notions of eigenvalue and eigenvector elasticities [62, 63].

Spectral perturbation theory for network modifications often stems from the fol-
lowing first-order approximation.

Theorem 2.2 (perturbation of simple eigenvalues [5]). Let X be a symmetric

N ⇥N matrix with eigenvalues {�j} and normalized eigenvectors {u(j)
}. Consider

an eigenvalue �i that is simple in that it has algebraic multiplicity one: �i 6= �j

for any other j and �i has a one-dimensional eigenspace spanned by the eigenvector

u(i)
2 RN

. Further, consider a fixed symmetric perturbation matrix �X, and let

X(✏) =X + ✏�X. We denote the eigenvalues and eigenvectors of X(✏) by �j(✏) and

u(j)(✏), respectively. It then follows that

�i(✏) = �i + ✏�
0
i(0) +O(✏2),(2.6)

where �
0
i(0) is the derivative of �i(✏) with respect to ✏ at ✏= 0 and is given by

�
0
i(0) = (u(i))T�Xu(i)

.(2.7)

Here, O(✏2) indicates that the di↵erence between the right- and left-hand sides has an

asymptotic ✏! 0 scaling behavior that is upper bound by a constant multiple of ✏
2
.

Proof. For the proof, see [5].

Remark 2.3. The first-order approximation given by (2.6) is accurate when the
perturbation is su�ciently small, |✏�0

i(0)|⌧ |�i|.

To study how edge perturbations change the spectral properties of a Laplacian
matrix L given by (2.1), we can set X = L and study a perturbation �L encoding
the changed edge(s).

Proposition 2.3 (weighted edge perturbations for Laplacian matrices). When

the weighted and undirected network is modified by adding an edge (p, q) of weight

Apq, the Laplacian perturbation matrix takes the form

�L
(pq)
ij =

8
<

:

Apq, (i, j)2 {(p, p), (q, q)},
�Apq, (i, j)2 {(p, q), (q, p)},

0 otherwise.

(2.8)

Similarly, when the network is modified by removing an edge (p, q), the corresponding

Laplacian perturbation matrix is ��L
(pq)
ij . (We emphasize that in this notation we

use Apq to be the (nonzero) weight of the edge when present—that is, the weight of

the newly added edge or the weight of the edge prior to its removal.)

Versions of Proposition 2.3 have appeared in various works, usually under the
assumption of unweighted networks (see, e.g., [76, 115], in which case Aij 2 {0,1}).
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932 J. KAZIMER ET AL.

This form for �L can be combined with Theorem 2.2 to provide first-order ap-
proximations for the impact of network modifications on the eigenvalues of a Laplacian
matrix.

Lemma 2.4 (first-order spectral impact of edge additions and removals [80]).
Let �L

(pq)
and ��L

(pq)
, respectively, denote the perturbation matrix for a graph

Laplacian under the addition and removal of a weighted edge (p, q) with weight Apq as

defined in Proposition 2.3. Then the simple eigenvalues �i(✏) of the perturbed matrix

L± ✏�L
(pq)

are given by (2.6) with

�
0
i(0) =±(u(i))T�L

(pq)u(i) =±Apq(u
(i)
p � u

(i)
q )2.(2.9)

In the next section, we extend this spectral approximation theory to di↵usion-
kernel VNE to develop VNE-based edge-ranking algorithms that are computationally
e�cient and can scale to large networks. It is also worth noting that the above-
mentioned spectral perturbation theory has been previously used to study graph VNE
[76], although that work did not investigate centrality and focused on a formulation in
which sk = �k/2M . Finally, we note that the above results easily extend to describing
the first-order e↵ects due to the modification of sets of edges [115], thereby allowing
predictions for node and subgraph modifications (although that is not our focus here).

3. VNE perturbations measure the importance of edges. We now pres-
ent our main theoretical and algorithmic results. Specifically, we introduce algorithms
that rank edges according to their contribution to the spectral complexity of infor-
mation di↵usion over networks, as measured by di↵usion-kernel VNE. In section 3.1,
we develop these rankings and discuss their limitation to small graph sizes. In sec-
tion 3.2, we develop an approximate-ranking algorithm that e�ciently scales to large
graphs and is based on spectral perturbation theory. In section 3.3, we present exper-
iments to compare these two rankings, which are based on the true and approximate
values for how VNE would be perturbed by edge removals. (Further experiments are
deferred to section 4.)

3.1. Edge rankings by VNE increases upon edge removals. Given a graph
G(V,E) with N nodes and |E| undirected edges with weights {Aij}, we seek to rank
the edges so that the most important edge (p, q) 2 E is the one that would maximize
the VNE of a residual graph that results from removing edge (p, q). More precisely, let
L be the unnormalized graph Laplacian of G(V,E) given by (2.1), and let ��L

(pq) be
the change to L given by (2.8) that would occur upon the removal of edge (p, q) 2 E .
Further, let h(L) be the graph’s VNE, as given by (2.5). Then the change to VNE
that would occur upon the removal of edge (p, q) is given by

Qpq = h(L��L
(pq))� h(L).(3.1)

In principle, Qpq is not necessarily positive, although our experiments suggest that
Qpq > 0 for most edges. Considering the set {Qpq} of VNE perturbations for (p.q)2 E ,
the top-ranked edge is a solution to the following optimization problem:

(p, q) = argmax
(p,q)2E

Qpq.(3.2)

Definition 3.1 (edge rankings by VNE increases). Given a graph G = (V,E)
with unnormalized Laplacian L, consider the changes Qpq to VNE given by (3.1),
which would occur upon the removals of edges (p, q)2 E. Then, we define the rankings

Rpq = 1+ |Ê |, where Ê = {(n,m)2 E :Qnm >Qpq},(3.3)

so that Rpq 2 {1, . . . , |E|} gives the rank of each edge (p, q)2 E.
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 933

Algorithm 3.1 Edge Rankings by VNE Increases.

Require: Graph G(V,E) with nodes V, weighted edges E , and unnormalized
Laplacian L.

Ensure: Cardinality |E|> 0
1: Compute set {�i} of eigenvalues for L.
2: Compute VNE h(L) according to (2.5).
3: for (p, q)2 E do
4: Compute the perturbation matrix �L

(pq) according to (2.8).
5: Compute the change Qpq according to (3.1) using L and �L

(pq).
6: end for
7: Use (3.3) on the set {Qpq} to obtain the set {Rpq} of rankings.

In practice, we implement these rankings e�ciently using the NumPy function
“argsort” in Python.

Remark 3.1. One can rank edges according to perturbations to VNE given by
(2.5) for any choice of the function ⇢(�). We will focus herein on the di↵usion-kernel
VNE in which ⇢(�) is given by (2.4).

Remark 3.2. Note that the Qpq values for di↵erent edges (p, q) can be the same,
in which case the rankings are not unique. Such scenarios can be handled in a variety
of ways. We resolve edges with tied rankings arbitrarily. That is, if k edges are tied
for rank R, then we arbitrarily assign them ranks R, R+ 1, . . . , R+ k.

Before continuing, we highlight that the direct computation of rankings Rpq will
be infeasible for large graphs due to the large computational cost. For example, in
section 3.3 we estimate that the runtime to compute the set {Qpq} for a graph with
N = 8000 nodes would take approximately 1300 hours (about 54 days) to complete
on a standard desktop. More specifically, computing all eigenvalues {�i} of a size-N
matrix L is an expensive task having computational complexity that typically scales
proportionally to N

3 (e.g., if using the QR method [49]). In order to compute the
VNE change Qpq given by (3.1) for an edge (p, q), one needs to first compute the
perturbed eigenvalues {�

0
i} for a perturbed Laplacian L

0 = L ��L
(p,q). Since this

must be done for each edge, constructing the set {Qpq} for (p, q)2 E has computational
complexity that is expected to scale proportionally to |E|N

3. That said, developing
numerical methods to compute the eigenvalues for large sparse matrices remains an
active research field, and in section 5 we survey some leading approaches that may be
useful to speed up Algorithm 3.1.

Nevertheless, it is impractical for large networks to numerically compute the ei-
genvalues for |E| distinct matrices of size N . Thus motivated, in the next section we
develop an approximate ranking algorithm that is much more e�cient and can be
readily applied to larger graphs.

3.2. Perturbation theory for VNE and e�cient edge ranking. Imple-
menting Algorithm 3.1 can be computationally infeasible for large graphs, and here
we develop approximate rankings based on the spectral perturbation theory that we
presented in section 2.3. Recall that we define VNE (see Definition 2.1) using a
spectral map f :RN

7!RN that is defined entrywise by

f(~�) = [f1(~�), . . . , fN (~�)]T ,(3.4)
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934 J. KAZIMER ET AL.

where ~�= [�1, . . . ,�N ]T is a vector of eigenvalues. For uniform VNE, one has fk(~�) =
�k/(2M), which depends only on the kth eigenvalue since

P
k �k = 2M is a conserved

quantity equal to total edge weight. In contrast, for di↵usion-kernel VNE one has
that fk(~�) = sk = e

���k/Z(�), as defined for (2.4). In this latter case, each fk(~�)
depends on all the eigenvalues due to the denominator term Z(�) =

P
k e

���k .
We now approximate how structural modifications change VNE to first order.

Lemma 3.2 (first-order perturbation of VNE). Let L be a diagonalizable Lapla-

cian matrix given by (2.1) for an undirected graph, and let L
0 = L+ ✏�L denote its

perturbation for a small scalar ✏. Further, let h(L) be the graph’s VNE given by Def-

inition 2.1. Letting H(✏) ⌘ h(L + ✏�L) be the ✏-perturbed VNE, then H(✏) has the

first-order approximation

H(✏) =H(0) + ✏H
0(0) +O(✏2),(3.5)

where H(0) = h(L) is the VNE of the original graph. Moreover, when the eigenvalues

�i of L are simple, then the derivative

H
0(0) =

X

i,j

@h

@fi

@fi

@�j

@�j

@✏

������
✏=0

can be constructed using partial derivatives with @�j/@✏|✏=0 = �
0
j(0) = (u(j))T�Lu(j)

given by (2.7) in Theorem 2.2. Here, u(j)
is the eigenvector associated with �j.

Lemma 3.2 can be generally applied to di↵erent choices for the density function
⇢(L) described in Definition 2.1. For example, it can recover a previously shown result
for uniform VNE.

Theorem 3.3 (first-order perturbation of uniform VNE [76]). Consider a uni-

form density function fi(~�) = ⇢(�i) = �i/
P

j �j and the full set of assumptions in

Lemma 3.2. Then the perturbed VNE is given by (3.5) with

H
0(0) =�

1

2M

X

i

(u(i))T�Lu(i)

"
log2

 
�iP
j �j

!
+

1

ln(2)

#
.(3.6)

In [76], Theorem 3.3 was developed to study the e↵ects of graph rewiring on
uniform VNE, and in particular, how the distribution of VNE across a random-graph
ensemble that is obtained via edge rewiring can converge to that for well-known
random-graph ensembles, including ensembles associated with the Erdős–Rényi GNM

and configuration models. Turning our attention back to di↵usion-kernel VNE, we
obtain the following.

Theorem 3.4 (first-order perturbation of di↵usion-kernel VNE). Consider the

di↵usion-kernel density function fi(~�) = si, as defined according to (2.4), and the full

set of assumptions in Lemma 3.2. Then the perturbed VNE is given by (3.5) with

H
0(0) =��

NX

i=1

fi(~�)


log2(fi(~�)) +

1

ln (2)

�2

4��
0
i(0) +

NX

j

fj(~�)�
0
j(0)

3

5 ,(3.7)

where �
0
i(0) = (u(i))T�Lu(i)

.

Proof. For the proof, see Appendix A.
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 935

In principle, a Laplacian perturbation matrix �L can encode a broad family of
structural modifications to a graph. For example, Lemma 2.4 in section 2.3 showed
that �0

i(0) =±(u(i))T�L
(p,q) u(i) =±Apq(u

(i)
p �u

(i)
q )2 for the addition (+) or removal

(-) of an edge (p, q) having weight Apq. As shown in [115], a similar result can
encode the simultaneous addition/removal for sets of edges. Thus, in principle one
can compute (3.6) and (3.7) very e�ciently for a given edge modification or a set
of edge modifications. See Appendix B for an experiment that provides numerical
validation for Theorem 3.4 by estimating the change to VNE induced by removing k

edges for 0 k 20.
With this approximation theory in hand, we now return our attention to the

ranking of edges based on the change Qpq = h(L��L
(pq))�h(L) to VNE that would

occur after the individual removal of each edge (p, q) 2 E . Combining Theorem 3.4
with Lemma 2.4, we approximate

Qpq ⇡ Q̃pq ⌘H
0(0),(3.8)

where H
0(0) is appropriately defined for the particular type of VNE (i.e., as rep-

resented by the spectral mapping fi(~�)) and �
0
j(0) = �Apq(u

(j)
p � u

(j)
q )2. Herein,

we will focus on di↵usion-kernel VNE in which H
0(0) is given by (3.7), which uses

fi(~�) = e
���i/

P
j e

���j . In principle, one can use a similar approach to approximate

edge rankings based on VNE perturbations for other choices of fi(~�). Finally, we also
highlight that due to the linearity of first-order approximations, one can also estimate
the change to VNE that would occur due to the removal of a subset E1

⇢ E of edges
by H

0(0) =
P

(p,q)2E1 Qpq.

Given the approximate perturbations {Q̃pq}, we now define an approximate rank-
ing of edges.

Definition 3.5 (edge rankings by first-order approximate VNE increases). Given

a graph G= (V,E) with unnormalized Laplacian L, consider the approximate changes

Q̃pq to VNE given by (3.8).
Then, we define the rankings

R̃pq = 1+ |Ê |, where Ê = {(n,m)2 E : Q̃nm > Q̃pq},(3.9)

so that R̃pq 2 {1, . . . , |E|} gives the approximate rank of each edge (p, q)2 E.

We summarize the computation of this ranking in Algorithm 3.2.

Algorithm 3.2 Edge Rankings by First-Order-Approximate VNE
Increases.

Require: Graph G(V,E) with nodes V, weighted edges E , and unnormalized
Laplacian L.

Ensure: Cardinality |E|> 0
1: Compute set {�i} of eigenvalues for L.
2: Compute VNE h(L) according to (2.5).
3: for (p, q)2 E do
4: Compute the perturbation matrix �L

(pq) according to (2.8).
5: Compute the approximate change Q̃pq according to (3.8) using L and �L

(pq).
6: end for
7: Use (3.9) on the set {Q̃pq} to obtain the set {R̃pq} of approximate rankings.
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936 J. KAZIMER ET AL.

Before continuing, we highlight that one possible limitation of this approach is
that Lemma 3.2, Theorem 3.3, and Theorem 3.4 define H 0(0) in a way that assumes
that the eigenvalues �j of L are simple by virtue of Theorem 2.2. We propose to
neglect the contributions of repeated eigenvalues as a simple heuristic. Moreover,
we predict that if eigenvalue repetition occurs, it is more likely to arise for large ei-
genvalues (i.e., for which e

���j is small), as opposed to the smaller, more important
eigenvalues for which the e���j terms are larger. Therefore, we expect that the neglect
of the �

0
i(0) terms for repeated eigenvalues will have a particularly small e↵ect on an

estimate H
0(0) for di↵usion-kernel VNE and the subsequent rankings of edges. How-

ever, while Algorithm 3.1 does not make any assumption about repeated eigenvalues,
Algorithm 3.2 does make such an assumption which limits its usability. That said,
we have yet to encounter repeated eigenvalues in our experiments presented here, but
such situations are known to occur for some networks.

3.3. Comparison of Algorithms 3.1 and 3.2. Recall that our main moti-
vation for developing approximate rankings was that it is can be computationally
expensive (or infeasible) to directly compute the set {Qpq}, which requires one to
compute the exact change to VNE that occurs after removing each edge (p, q). More
specifically, upon each edge removal, we must recompute all eigenvalues of a size-N
matrix. Computing all the eigenvalues of a matrix is known to be computationally ex-
pensive, and such an algorithm must be implemented M separate times for M distinct
matrices if one considers the removal of M edges. The QR algorithm, for example,
requires _N

3 flops [49], implying that the computation time grows proportionally to
N

3 for a network with N nodes.1 (Of course, speeding the computation of spectra for
large sparse matrices remains an active research field, and we highlight several lead-
ing approaches in section 5.) In contrast, the approximate rankings utilize spectral
perturbation theory and the eigenvalues of a size-N matrix only must be computed
once. Then for each edge, one computes Q̃pq = H

0(0) using (3.7), which has O(N)
complexity and is a much more e�cient approach. We also note for both algorithms
that there is an additional start-up cost from having to compute the spectra of the
original graph Laplacian.

In Figure 1, we compare Algorithms 3.1 and 3.2 in two ways. First, we show in
Figure 1(A) that the approximate rankings {R̃pq} are much more e�cient to compute
than the true rankings {Rpq} for an example graph. Second, we show in Figure 1(B)
that these two sets of rankings can be very similar R̃pq ⇡ Rpq. Their similarity is
somewhat expected, since Q̃pq ⇡Qpq by construction.

In Figure 1(A), we support our predictions for the computational complexity for
both algorithms by studying the scaling behavior for the algorithms’ runtimes for
graphs of increasing size N . We considered Erdős–Rényi GNM graphs with N nodes
and M =Nhdi/2 edges, where hdi= 10 is the mean degree. We then generated a se-
quence of graphs with increasing size N , and for each graph we empirically estimated
the runtime required to compute the rankings Rpq and R̃pq. For the approximate
rankings {R̃pq}, we computed them directly using Algorithm 3.2. However, we found
that it was computationally infeasible to directly run Algorithm 3.1 for these graphs
with sizes N > 2000, and so we instead estimated the algorithms’ runtime by mea-
suring the time required to compute Qpq for a single edge. Then we approximated

1Notably, we implemented our algorithms using the NumPy Python package, and the eigenpair
computations are based on LAPACK [55], for which the asymptotic runtime complexity has a lower
bound ⌦(N2) and upper bound O(N3) [28]. Computations were conducted on a Dell Precision 3650
computer that has a 2.80 GHz Intel Xeon W-1390 processor with 64 GB RAM.
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 937

(A) (B)

Fig. 1. Comparison of Algorithms 3.1 and 3.2. (A) We estimate the runtimes for � = 1 that are
required to execute these algorithms for Erdős–Rényi GNM graphs with increasing size with N nodes
and M = 5N edges, so that mean degree remains fixed as N increases. The inset is a logarithmic
scale to reveal their runtimes’ scaling behaviors (see text). Note that Algorithm 3.1 would potentially
take hundreds of hours for each N , so we extrapolated these times from that required to compute for
a single edge, instead of running the algorithm to completion. In contrast, Algorithm 3.2 completed
in under a minute for all values of N plotted. (B) We compare the fractional overlap |E

(`)
\ Ẽ

(`)
|/`

for the ` top-ranked edges for the two rankings Rpq and R̃pq in a GNM graph with N = 100 nodes
and M = 1000 edges at � = 1. The inset shows that they are strongly correlated: Rpq ⇡ R̃pq for all
edges (p, q)2 E. We computed a Pearson correlation coe�cient of 0.996.

the total runtime by multiplying this duration by M , since the algorithm requires
us to compute Qpq for all edges. We considered N 2 [2000,20,000] and found that
in all cases Algorithm 3.2 completes in less than a minute, whereas Algorithm 3.1
would take hundreds of hours to perform all of these computations (i.e., were we to
attempt running it in its entirety). The subpanel in Figure 1(A) shows the runtimes
in a log-log scale, and we applied least-squares linear fits to empirically estimate the
scaling to be / MN

2.813 for Algorithm 3.1 and / MN
0.519 for Algorithm 3.2. We

note that these observing scaling behaviors are slightly less than our predicted scal-
ing behaviors: _ MN

3 for Algorithm 3.1 and _ MN for Algorithm 3.2. Notably,
our experiments were limited to graphs with N = 20,000 nodes, and we expect that
the consideration of larger graphs would yield observed scaling rates closer to these
asymptotic predictions.

In Figure 1(B), we provide evidence to support our claim that the approximate
and true rankings are similar: R̃pq ⇡ Rpq. Here, we computed the rankings Rpq

and R̃pq for an Erdős–Rényi GNM graph [33] with N = 100 nodes and M = 1000
edges. For each set of rankings, we considered ` top-ranked edges and measured the
fractional overlap, also known as the precision at ` metric [20], between these two
sets, or more precisely, the size of their overlap. That is, letting E

(`) and Ẽ
(`) be the

sets of top-ranked edges according to Rpq and R̃pq, respectively, we plot |E(`)
\ Ẽ

(`)
|/`

versus the set size `. Note that this is a fraction that lies between 0 and 1, since the
sets of top-ranked edges have the same cardinality: ` = |E

(`)
| = |Ẽ

(`)
|. Observe in

Figure 1(B) that this fraction is very large for many values of `, implying that the
rankings {Rpq} and {R̃pq} are very similar for this graph. This is further shown in
the subplot, where we provide a scatter plot that compares R̃pq versus Rpq for each
edge (p, q)2 E .

In Appendix C, we extend and recapitulate the experimental findings shown in
Figure 1(B) by obtaining similar results for two empirical networks that will be later
described in section 4. Given the strong similarity between rankings {Rpq} and {R̃pq},
and the observation that computing {Rpq} directly using Algorithm 3.1 is ine�cient

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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938 J. KAZIMER ET AL.

(or infeasible) for large graphs, for the remainder of the paper, we will focus our
attention on studying the approximate rankings {R̃pq} given by Algorithm 3.2.

4. Three empirical case studies reveal structural/dynamical mecha-
nisms that influence the importance of edges. Here, we apply our VNE-based
measures for edge importance to three empirical network data sets: (section 4.1) a
voting-similarity network for the U.S. Senate, (section 4.2) a multimodal transporta-
tion system, and (section 4.3) a multiplex brain network. In each empirical network,
we will show that the edges that are deemed most important can drastically change
by considering di↵erent timescale parameters �. In so doing, we will examine the
crucial role that is played by the interplay between � and some network property:
(section 4.1) community structure due to political polarization, (section 4.2) edge
weights that encode di↵erent speeds along roads and metro lines, and (section 4.3)
the strength of coupling between layers of a multiplex network. In section 4.4, we
compare our proposed centrality measure to other edge centralities for these three
empirical case studies.

4.1. U.S. Senate voting-similarity network with community structure.
In our first experiment, we study the importance of edges according to Algorithm 3.2
for a network that encodes voting similarity among U.S. Senators, and we will com-
pare the rankings of interparty edges that connect Senators in di↵erent parties to the
rankings of intraparty edges between Senators in the same party. More generally, we
ask the following: which edges are most important in a graph that contains commu-
nity structure, the edges between communities or the ones inside of communities? As
we shall show, the answer will depend sensitively on the timescale of the dynamics
considered.

For brevity, we defer a detailed description of the voting-similarity network that
we study to Appendix D. Here, we provide a summary. We created a Python Module
called VoteView-python [65] that extracts data from the VoteView repository [73] that
summarizes the voting records of members of the U.S. Congress. Following techniques
similar to those in [81, 82, 124], we constructed a graph with an associated adjacency
matrix such that each entry Aij encodes the fraction of bills in which Senators i and j

vote identically. We restrict our attention to the 117th U.S. Senate considering bills
from January 3, 2021 until June 30, 2022 (noting that the 117th Congress had not
yet concluded when we conducted this experiment.) We also thresholded the matrix,
setting Aij to zero for any fraction less than 0.4. The resulting procedure yielded
a graph with N = 100 nodes and |E| = 2,656 undirected, weighted edges. Due
to strong party polarization, the graph contains two large-scale communities that
indicate, respectively, the Republican and Democratic parties. (Independents are
incorporated into the community associated with the Democrats, in agreement with
how those two Senators currently caucus.)

In Figure 2, we study the e↵ect of � on the rankings R̃pq given by Algorithm 3.2 for
intralayer and interlayer edges for the voting-similarity network. In Figure 2(A), we
visualize the voting-similarity network and use edge color (in grayscale) to depict the
R̃pq values for three choices for � 2 {10�2

,10�1
,100}. Senators’ party a�liations (i.e.,

Republican versus Democrats and independents) are indicated by the node colors
(red versus blue). Observe that the resulting network contains two well-separated
communities due to party polarization. That said, there is an arrow pointing to a set
of Senators {Susan Collins (R), Lisa Murkowski (R), Rob Portman (R), Mitt Romney
(R), Shelley Capito (R), Lindsey Graham (R)} whose voting patterns are not as
strongly polarized along party lines. These Senators are found to have many edges to
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 939

(A)

(B)

(C)

Fig. 2. Rankings of inter- and intraparty edges for a polarized political network. (A) We
visualize the rankings R̃pq of edges given by Algorithm 3.2 using grayscale for a graph that encodes
voting similarity among the 117th U.S. Senate. The three columns depict three choices of timescale
parameter �. Nodes represent Senators, and the node colors red and blue indicate, respectively, the
two major political parties: Republicans and Democrats (including independents). (B) For the same
three values of �, we plot empirically measured distributions p(H0(0)) of the approximate change
H

0(0) to di↵usion-kernel VNE given by (3.7). In each panel, we show two distributions: one in
which p(H0(0)) is measured across intraparty edges, and one in which p(H0(0)) is measured across
interparty edges. (C) The solid black curve depicts the mean rank hR̃pqiinter across interlayer edges
versus �. The colored curves indicate the values of hR̃pqiinter for a comparable random-graph model
with two communities and di↵erent amounts of connectivity between communities (see text). Our
main finding is that the interparty edges have the top rankings for larger �, the lowest rankings for
intermediate �, and intermediate rankings for smaller �.

both Republicans and Democrats, and as such, their node degrees are approximately
12x higher than those for other Senators.

Observe in the rightmost column of Figure 2(A) for � = 1 that the top-ranked
edges are the interparty edges that connect Senators in di↵erent political parties.
Interestingly, for � = 10�1 (center column) the interparty edges are the ones with
the lowest rankings, and for � = 10�2 (left column) the rankings of interparty and
intraparty edges are similar. This nonlinear e↵ect of � on R̃pq is further supported in
panels (B) and (C). In Figure 2(B), we display a probability distribution P (H 0(0)) of
our approximate perturbations H

0(0) given by (3.7) for the same three values of �.
Particularly, we separate the distributions according to interparty edges (gold) and
intraparty edges (gray). For small �, these two distributions have a similar support.
For medium �, we observe that the perturbations to VNE due to removing intraparty
edges are larger than those for interparty edges. Similar to panel (A), we observe
for large � that the ordering flips—that is, the largest perturbations are now due
to the removal of interparty edges as opposed to intraparty edges. These findings
corroborate our network visualization in panel (A). Finally, in Figure 2(C) we use
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940 J. KAZIMER ET AL.

a solid black curve to plot the average ranking hR̃pqiinter of interparty edges as a
function of �. As expected based on our findings in panels (A) and (B), hR̃pqiinter

takes on an intermediate value for small �, is very large for a medium value of �, and
then is very small for large �.

To gain deeper insight, in Figure 2(C) we also plot hR̃pqiinter values for a compara-
ble random-graph model that yield graphs with two communities, each containing 50
nodes (see the colored dotted, dot-dashed, and dashed curves). Specifically, we study
a stochastic block model with N = 100 nodes and with two communities of equal size.
Nodes {1, . . . ,50} are assigned to community 1, and nodes {51, . . . ,100} are assigned
to community 2. Then, we create intracommunity edges between pairs of nodes in
the same community uniformly at random with probability pin, and intercommunity

edges are created between pairs of nodes in di↵erent communities uniformly at random
with probability pout. We fix the mean (pin + pout)/2 so that the expected number of
edges, N(N � 1) (pin + pout)/2, matches that for the voting-similarity network. We
then consider three choices for the di↵erence (pin � pout)2 {0.25,0.575,0.911}, which
is a measure for structural polarization. We note that the last value, 0.911, closely
matches the empirically measured di↵erence in edge probability for intraparty and
interparty edges for the voting-similarity network. And in fact, stochastic block mod-
els are a popular graphical model for political polarization [101] and other sources for
community structure [1, 91]. In Figure 2(C), we plot hR̃pqiinter (now corresponding
to intercommunity edges) for three choices of (pin� pout). Observe for the larger two
values of (pin � pout) that as � increases, the average hR̃pqiinter exhibits a peak and
then becomes very small. This phenomenon is very similar to what we observe for
the voting-similarity network (black solid curve). Thus, this behavior for rankings
R̃pq appears to occur due to the presence of community structure (that is, not due to
some other possible structural property of the empirical voting-similarity network).

4.2. Multimodal transportation system with roads and metro lines that
have di↵erent speeds. In our next case study, we study the importance of edges for
a multimodal transportation network that encodes roads and metro lines in London
[111]. In this data (which is available at [109]), 2217 vertices represent intersections
and there are two types of edges (15 metropolitan lines and 2854 roads) to encode
these two modes of transportation. Notably, the metro lines connect 11 major stations
in London, and their locations are mapped to the nearest road intersection.

Given these two types of edges, in this section we study which has higher rankings,
roads or metro lines, and we investigate how these rankings R̃pq change as one varies
the relative speed between roads and metro lines. That is, in addition to studying
how the rankings R̃pq change for di↵erent values of the timescale parameter �, we
will also introduce balancing parameter � 2 [0,1] that controls the extent to which
metro lines are faster or slower than roads. More specifically, we define an undirected,
weighted transportation network with an adjacency matrix

A= �Ametro + (1� �)Aroad,(4.1)

where Ametro and Aroad are adjacency matrices in which edges only encode metro
lines and roads, respectively. Note that there is no di↵usion across metro lines (or
roads) in the limit �! 0 (or �! 1). Finally, we note that it is important to study
di↵erent relative speeds of roads and metro lines, since they have been shown, for
example, to significantly influence the locations where congestions can occur [107].

In Figure 3(A), we provide a visualization of the multimodal transportation net-
work with node locations reflecting their geospatial coordinates (i.e., latitudes and
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 941

longitudes). Thick and thin lines represent metro lines and roads, respectively, and
the edge colors reflect their rankings R̃pq for the choices � = 0.6 and � = 10�1. In
Figure 3(B), we present a similar network visualization, except that we now consider
a larger timescale parameter: � = 100. By comparing panels (A) and (B), observe for
� = 10�1 that the top-ranked edges are metro lines. In contrast, metro lines have the
lowest rankings for � = 100.

In Figure 3(C), we plot the average ranking hR̃pqimetro across metro lines versus
the timescale parameter �. The three thick colored curves reflect three choices for �.
The thin curves depict the R̃pq values for each individual metro line. In Figure 3(D),
we show similar information by plotting hR̃pqimetro versus � for a few choices of
� 2 [0.01,3]. Together, panels (C) and (D) highlight that the metro lines have the
top rankings when � is su�ciently small and � is su�ciently large. That is, transport
across metro lines must be su�ciently faster than that across roads, and one only
considers di↵usion at a short timescale.

From a topological perspective, metro lines introduce long-range, “short-cut” con-
nections across a road network that is largely a two-dimensional geometric substrate
[111]. We find it interesting that the importance of such long-range edges is so sen-
sitive to timescale. We hypothesize that this phenomenon may be related to the

(C)

(A)

(D)

(B)

Fig. 3. Transportation network with metro lines and roads having di↵erent speeds. (A) Visual-
ization of a London transportation system in which metro lines and roads are depicted by thick and
thin lines, respectively. Edge colors depict their rankings R̃pq for a small timescale � = 10�1. (B)
Same information as panel (A), except for a larger timescale � = 100. Observe that the metro lines
have the highest rankings in (A), but the lowest rankings in (B). (C) Thick curves depict the aver-
age edge ranking hR̃pqimetro across metro lines versus � for three choices of the tuning parameter �

(which controls whether di↵usion is faster over metro lines or roads). Each thin curve indicates how
the ranking R̃pq for each metro line varies with �. (C) Similar information as in panel (C), except
we now plot hR̃pqimetro versus �, and di↵erent curves indicate several choices of �. In general,
we find that metro lines (which introduce long-range “short-cuts” across the road network) are the
top-ranked edges provided that � is su�ciently large and � is su�ciently small.
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942 J. KAZIMER ET AL.

following observation: if someone moves between two spatially distant nodes across
a small timescale �, then they must have traversed a metro line. This is no longer
true at a large timescale �, since there are many paths that one could take. Thus,
one might expect short-cut edges to have a greater impact on di↵usion dynamics (and
rankings derived therefrom) at shorter timescales versus longer timescales.

4.3. Multiplex brain network with interlayer coupling. In our final case
study, we study the importance of edges for a multiplex brain network in which nodes
represent brain regions and di↵erent network layers encode coordinated brain activity
patterns at di↵erent frequency bands. Our focus in this section is to investigate how
the edge rankings R̃pq change as one varies the strength ! � 0 of coupling between
layers (as well as the timescale parameter �).

We study an empirical network obtained from [52] that was constructed from
functional magnetic resonance imaging (fMRI) data in which nodes encode regions of
interest (ROI) in human brains and edges encode a measure for spectral coherence
between fMRI signals that are aggregated across each ROI [53]. In particular, the
frequency content of an fMRI signal for each ROI was decomposed into di↵erent
frequency bands, and then coherence relationships were identified for each frequency
band. The result was a set of network layers in which each layer encodes spectral-
coherence relationships at a particular frequency band.

Focusing on the frequency bands of � waves (2–4 Hz) and ✓ waves (4.5–7.5 Hz),
we considered two adjacency matrices A(�) and A(✓), respectively. Both matrices are
size N = 148 and encode two types of relationships among a common set of nodes
V = {1, . . . ,N}. That is, a nonzero matrix entry A

(�)
ij encodes a relation between

brain regions i and j at the � frequency band, whereas A(✓)
ij encodes a similar spectral-

coherence relationship, but at the ✓ frequency band. To focus our study on sparse
networks, we also applied a threshold to these matrices as described in Appendix E.
This resulted in each layer containing M = 1652 undirected, weighted edges.

Given these two network layers encoded by A(�) and A(✓), which we refer to as
intralayer adjacency matrices, we then constructed a two-layer multiplex network by
coupling them together. Specifically, we consider a supra-adjacency matrix

A=


A(�) 0
0 A(✓)

�
+ !

⇥
0 I I 0

⇤
,(4.2)

where I is the identity matrix and !� 0 is an interlayer coupling strength that tunes
how strongly the layers are coupled together. Coupling matrices in this way is called
uniform, diagonal coupling.

As visualized in Figure 4(A), coupling network layers following (4.2) introduces
interlayer edges (red dotted lines) that connect each node i in the first layer to itself
in the second layer. (The two network layers are indicated by the gray shaded regions,
and the set of nodes is the same for both layers.) That is, there is one interlayer edge
connecting each node in one layer to itself in the other layer. In contrast, we will
refer to the edges encoded by A(�) and A(✓) as intralayer edges. Notably, interlayer
edges have a weight given by !, whereas the possible weights for intralayer edges are
encoded by the matrix entries in A(�) and A(✓).

Similar to our study in section 4.1 (where we examined the rankings of inter-
party edges), we will now pay particular attention to the rankings R̃pq of interlayer
edges. We ask the following: When do the interlayer edges have the top rankings?
In Figure 4(B), we plot the average ranking hR̃pqiinter across interlayer edges versus
the timescale parameter �. Di↵erent curves indicate di↵erent choices of the interlayer
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 943

(A) (B)

(C)

Fig. 4. Multiplex network representing coherent fMRI signals among brain regions. (A) Toy
illustration of a multiplex network with two layers representing two frequency bands: � and ✓ waves.
The solid black and red dotted lines represent, respectively, intralayer and interlayer edges. Interlayer
edges are weighted by a coupling strength ! � 0. (B) Average ranking hR̃pqiinter across interlayer
edges versus � for several choices of ! 2 [0.05,5]. (C) Similar information as in panel (B), except we
now consider a synthetic model in which each layer is an Erdős–Rényi GNM random graph in which
N and M match the values for the empirical network layers. Observe a similar trend in panels (A)
and (B): interlayer edges have the top rankings when � is very large, and these rankings take on
their lowest values when � has some intermediate value.

coupling strength ! 2 [0.05,5]. Observe that the interlayer edges have the top rankings
only when � is very large. Moreover, for intermediate values of �, there exists a peak
that corresponds to when the interlayer edges obtain their lowest rankings. Interest-
ingly, these two phenomena are reminiscent of our findings for interparty edges that
we presented in section 4.1. By comparing the di↵erent curves for di↵erent !, we can
observe that the peak is sharper for larger ! values, whereas it is more of a plateau for
smaller ! (and can even have two optima). In Appendix E, we show that qualitatively
similar results occur for 24 other multiplex brain networks taken from [53].

In Figure 4(C), we support these findings by studying hR̃pqiinter for a random-
graph model in which the two layers are given by Erdős–Rényi GNM networks for
N = 148 and M = 7052 in which the number of edges M is chosen so that the
numbers of intralayer edges in each layer matches those for A(�) and A(✓). We plot
hR̃pqiinter versus � for this generative model in Figure 4(C) for di↵erent choices of
!, where one can observe that the behavior is qualitatively similar to that which
was shown in Figure 4(B). Despite this similarity, there are some di↵erences between
the curves in panels (B) and (C), which could result because the empirical network
contains rich structural features (e.g., heterogeneous weights for intralayer edges and
nonrandom edges) that are lacking from the simple model that we study in panel (C).

4.4. Comparison to other edge centralities for the case studies. Here,
we provide additional insight about our VNE-based edge centrality by comparing
Algorithm 3.2 to three other edge centralities: current flow [12], betweenness [83],
and an extension of node degree centrality whereby a centrality score is computed for
each edge (i, j) by adding the degrees of nodes i and j. We make this comparison for
three networks from the three case studies studied above.

In Figure 5(A), we plot Pearson correlation coe�cients relating rankings according
to Algorithm 3.2 to rankings according to each of the three other centralities. Results
are shown for a U.S. Senate voting-similarity network (section 4.1). Observe for the
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944 J. KAZIMER ET AL.

(A) (B) (C)

Fig. 5. Comparison of Algorithm 3.2 to other edge centralities. (A) For the U.S. Senate voting-
similarity network from section 4.1, we plot the Pearson correlation coe�cient between rankings
according to Algorithm 3.2 with varying � and three other centralities: edge current flow (red dashed),
betweenness (blue dotted), and a degree-based centrality (solid green). (B) Similar results but for the
multimodal transportation network from section 4.2 under the choice of �= 0.6. (C) Similar results
but for the multiplex brain network from section 4.3 under the choice of != 1.

smaller values of � that rankings according to Algorithm 3.2 are strongly positively
correlated with rankings under edge degree centrality but are uncorrelated (or weakly
correlated) with rankings according to either edge current flow or betweenness. In
contrast, for the larger values of �, rankings according to Algorithm 3.2 become
uncorrelated with rankings according to edge degree centrality, but they are strongly
correlated with rankings according to edge betweenness and current flow.

In Figure 5(B), we plot the same information as in panel (A), but we now con-
sider a multimodal transport network (section 4.2). Observe that rankings according
to Algorithm 3.2 are weakly correlated for most choices of �, and these can be either
positively or negatively correlated depending on �. Interestingly, the correlations be-
tween Algorithm 3.2 and the other edge centralities are very similar at each value of �.

In Figure 5(C), we again plot the same information, but we now consider a mul-
tiplex brain network (section 4.3). Observe for the smaller values of � that rankings
according to Algorithm 3.2 are strongly correlated with edge degree, but they are
strongly negatively correlated with rankings according to both edge current flow and
betweenness. Further, for the larger values of �, rankings according to Algorithm 3.2
are weakly negatively correlated with rankings according to edge degree, but they
are strongly positively correlated with rankings according to edge current flow and
betweenness.

From these observations, we conclude that common notions of centrality can be
similar to our proposed centrality measure that quantifies the spectral complexity of
di↵usion, but only for some networks and only when the di↵usion timescale lies within
some range of values. Importantly, our proposed VNE-based edge rankings of edges
are notably di↵erent from these known rankings for other values of �, particularly,
mid-range values of �. We find that the intricacies of such rankings and their correla-
tions are generally di�cult to relate to network properties, and we leave this pursuit
open to future work.

5. Discussion. In this paper, we have proposed a centrality measure derived
from von Neumann entropy (VNE) to identify and rank network edges according to
their impact on the spectral complexity of information di↵usion over a graph. A
codebase that reproduces our findings can be found at [66]. Our work complements
prior work [46] that uses VNE to obtain a node centrality measure and which does not
use first-order approximation theory to be scalable for large graphs. In section 3.1,
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RANKING EDGES BY IMPACT ON INFORMATION DIFFUSION 945

we developed a measure for the importance of each edge (p, q)2 E by considering how
VNE would change upon its removal. We rank the edges according to these VNE
perturbations, and the resulting top-ranked edge is the one such that its removal
would most increase VNE (and subsequently, most increase the spectral complexity of
information di↵usion at timescale �). Our approach complements existing centrality
measures that are related to information spreading [35, 36, 41, 64, 67, 68, 72] but which
do not consider the spectral complexity of information di↵usion, as measured by VNE.
Because the direct computation of VNE perturbations are computationally expensive
(or infeasible) for large-scale graphs, in section 3.2 we developed an approximate
ranking of edges based on first-order approximation theory that can e�ciently predict
these VNE perturbations. That said, we note that the computational challenges are
not fully resolved for VNE-based analyses of graphs. First, VNE requires one to
compute a full set of matrix eigenvalues, which has a general scaling of O(N3) for
graphs with N nodes. In principle, this poor computational scaling could be mitigated
by incorporating spectral approximation techniques such as those that rely on message
passing [17], subgraph motifs [92, 93], kernel polynomial methods [30, 125], random
matrix theory [90], and randomized numerical linear algebra [77].

Also, for our goal of approximating how VNE is perturbed due to structural
modifications to a network, it may be practical to approximate VNE perturbations
using only a subset of eigenvalue perturbations, alleviating the need to compute all
eigenvalues. That said, the number of eigenvalues required to maintain some level of
approximation accuracy would vary greatly depending on the di↵usion timescale �

that is considered. For example, when � is very large, one would expect that H
0(0)

given by (3.7) could be accurately approximated using only a few of the smallest ei-
genvalues �i (i.e., since e

���i would be negligible for larger eigenvalues). Here, we
intentionally explored a wide range of timescales �, which can also be computation-
ally expensive. Thus, it may also be beneficial to develop methods that explore the
�-parameter space more systematically by incorporating, e.g., one’s external knowl-
edge about some dynamical, structural, or preferential criteria. One possible direction
would be to leverage spectral theory for block-structure matrices including those aris-
ing for multiplex networks [50, 103, 110, 112, 113].

Despite these challenges, we utilized our approximation theory for perturbed
di↵usion-kernel VNE to study the entropic importance of edges via three case stud-
ies with empirical networks to investigate structural/dynamical mechanisms that can
systematically influence the entropic importance of edges. In section 4.1, we stud-
ied a network encoding voting similarity in the 117th U.S. Senate and studied the
importance of interparty edges (i.e., those that connect across the two large-scale
communities that result from party polarization). In section 4.2, we studied a multi-
modal transportation network and studied the importance of edges representing metro
lines as opposed to those representing roads. In section 4.3, we studied a multiplex
brain network and studied the importance of interlayer edges that couple network
layers versus intralayer edges that connect nodes within a particular layer. In each of
these case studies, we found that the edges that are deemed to be the most important
drastically change by considering di↵erent di↵usion timescales (i.e., di↵erent values of
the parameter �).

Notably, our proposed techniques for measuring the importance of edges with re-
spect to VNE are expected to have many applications beyond our three case studies.
As an entropy-based measure, we expect our techniques to help reveal new ways to
leverage information theory to study diverse types of biological, social, and physi-
cal systems. Because di↵usion-kernel VNE has a well-defined interpretation for the
di↵usion equation [see eq. (2.2)], it can also contribute to the related literature on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

2/
24

 to
 1

29
.7

2.
21

0.
17

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



946 J. KAZIMER ET AL.

Laplacian-based algorithms for data analysis and machine learning [6, 15, 21, 60, 70].
As one example, our ranking of edges could contribute to the development of
Laplacian-based algorithms for graph sparsification [106] as well as link prediction
[71, 117]. However, there are limiting cases for our proposed technique such as signed
networks and directed networks, where the spectra can take on complex values for
which VNE is not yet defined. In addition, since our choice of VNE is defined by
the di↵usion process, it may be inappropriate to apply to networks with disconnected
components, since di↵usion can be trapped onto a component depending on the initial
condition.

That said, our investigation of the multiscale aspects of entropic importance in
this paper (i.e., whereby the most important edges depend sensitively on the di↵u-
sion timescale � that is considered) also opens up new lines of scientific inquiry. For
instance, we observed “ranking regimes” in which the entropic importance of edges
remains relatively insensitive to � as well as “regime transitions” in which rankings
drastically change as � varies. (See [112, 113] for further discussion on multiscale cen-
trality regimes and transitions.) Our case studies explored three structural scenarios
in which such behavior can arise, and it would be beneficial to develop a deeper un-
derstanding in future research. Moreover, while we focused herein on a formulation of
VNE that is related to information di↵usion, our methods could be extended to other
applications by considering other dynamical systems and their related matrices. For
example, by considering a normalized Laplacian matrix L̃=D�1L, VNE-based meth-
ods would more appropriately describe information theory related to continuous-time
random walks [24] as opposed to di↵usion. One could also consider spectral entropies
relating to adjacency matrices and nonbacktracking matrices [3]. However, one bene-
fit from defining VNE according to the di↵usion equation is that it has a closed-form,
analytical solution using spectral theory, and so spectral perturbation theory can be
used as it is in this paper. Extending to di↵erent dynamical processes may pose a chal-
lenge if no closed-form analytical solution exists. In such situations, methods such
as trace estimators [122] might help. Another direction could involve using Hodge
Laplacian matrices [98, 129] to extend VNE and VNE-related centrality measures to
simplicial complexes (which are a higher-order generalization of graphs). Common to
all of these scenarios, it would be beneficial to consider how structural modifications
impact VNE, how these VNE perturbations can be used for centrality analysis, and
how spectral perturbation theory can support the development of computationally
e�cient methodologies.

Appendix A. Proof of Theorem 3.4. Equation (3.6) establishes that the
first-order derivative of VNE can be expanded in terms of partial derivatives

H
0(0) =

X

i,j

@h

@fi

@fi

@�j

@�j

@✏

������
✏=0

,

where we define VNE as h(f) = �
P

i fi(
~�) log2(fi(~�)). Our proof only requires that

we solve for these terms. It was shown in [76] that the first terms are given by

@h

@fi
=� log2

⇣
fi(~�)

⌘
�

1

ln (2)
.(A.1)

Considering the di↵usion-kernel VNE given by

fi(~�) =
e
���i

P
k e

���k
,
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we obtain the derivatives @fi/@�j separately for j = i and j 6= i. For j 6= i, we find

@fi

@�j
=

�P
k e

���k
�
(0)� (e���i)

�
��e

���j
�

[
P

k e
���k ]2

= 0+ �
e
���i

P
k e

���k

e
���j

P
k e

���k

= �fi(~�)fj(~�).(A.2)

For j = i, we find

@fi

@�i
=

�P
k e

���k
�
(��e

���i)� (e���i)
�
��e

���i
�

[
P

k e
���k ]2

=��

"�P
k e

���k
�
(e���i)

[
P

k e
���k ]2

�
(e���i)

�
e
���i

�

[
P

k e
���k ]2

#

=��fi(~�)
⇣
1� fi(~�)

⌘
.(A.3)

Combining these results, we obtain

X

j

@fi

@�j

@�j

@✏
=��fi(~�)

2

4
⇣
1� fi(~�)

⌘
@�i

@✏
�

NX

j 6=i

fj(~�)
@�j

@✏

3

5

=��fi(~�)

2

4@�i

@✏
�

NX

j=1

fj(~�)
@�j

@✏

3

5 .(A.4)

Finally, we use that

@�i

@✏

����
✏=0

= �
0
i(0) = (u(i))T�Lu(i)(A.5)

as given by (2.7). We combine these terms to recover (3.7).

Appendix B. Numerical validation of Theorem 3.4. In Figure 6, we provide
numerical validation for Theorem 3.4. First, we computed the VNE h(L) of a random
graph that was sampled from the Erdős–Rényi GNM model with N = 100 nodes and
M = 2000 edges. In Figure 6(A), we plot the perturbed VNE h(L + �L) (blue
dotted curve) after removal of k edges with k 2 {0, . . . ,20}. Edges were selected
for removal uniformly at random. For comparison, the red dashed curve depicts
our first-order approximation h(L +�L) ⇡ h(L) +H

0(0) with H
0(0) given by (3.7)

with �L defined according to Proposition 2.3. Note for the deletion of several edges
that �L = �

P
(p,q)�L

(pq), where the sum is taken over the set of removed edges
[115]. Observe in Figure 6(A) that, as expected, the first-order approximation is
more accurate when the perturbation is smaller (i.e., smaller k).

In Figure 6(B), we support our claim that the approximation h(L+✏�L)⇡ h(L)+
✏H

0(0) is first-order accurate by showing that the approximation error has a second-
order scaling behavior. Specifically, we plot the approximation error E(✏) ⌘ |h(L+
✏�L)� [h(L) + ✏H

0(0)]| versus ✏ and find that the error decays as O(✏2). Note that
in a log-log scale, this scaling corresponds to a linear relationship log(E(✏))_ 2 log(✏).
In Figure 6(B), we plot log(E(✏)) versus log(✏) for three choices of k 2 {1,10,20}, and
we computed a least-squares linear fit to each curve. We empirically observed the
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(A) (B)

Fig. 6. Numerical validation of first-order perturbation theory for di↵usion-kernel VNE. (A)
Comparison of h(L+�L) and our first-order prediction, h(L) +H

0(0), with H
0(0) given by The-

orem 3.4, for a perturbed graph. We consider an Erdős–Rényi GNM random graph with N = 100
nodes and M = 1500 unweighted edges, and each perturbation matrix �L encodes the removal of
k edges as described in [115] (which generalized Lemma 2.4 to edge sets). Observe that the first-
order approximation becomes less accurate for larger perturbations (i.e., larger k). (B) Numerical
validation that the approximation error E(✏)⌘ |h(L+ ✏�L)� [h(L) + ✏H

0(0)]| vanishes in the limit
of small ✏ as O(✏2), that is, log(E(✏)) _ 2 log(✏). We plot E(✏) for the same network as in panel
(A) in a log-log scale and compute a least-squares linear fit to obtain empirically measured slopes
{2.042,2.022,2.036}, respectively, for three choices of k 2 {1,10,20}. These are all nearly equal to
the predicted slope of 2, supporting our claim that Theorem 3.4 has second-order error.

slopes to be approximately 2.014, 2.022, and 2.026 for these three lines, respectively.
Because these are all very close to our analytically predicted slope of 2, we can be
confident that our first-order approximation does in fact have second-order error.

Appendix C. Further comparison of Algorithms 3.1 and 3.2. Here, we
extend the results shown in Figure 1(B) by repeating the experiment for two empirical
networks: a network encoding voting-pattern similarity among the U.S. Senate and
a multiplex network derived from fMRI data. See sections 4.1 and 4.3, respectively,
for their descriptions. We also highlight that we were unable to conduct this experi-
ment for the transit network described in section 4.2, since we found it infeasible to
compute Algorithm 3.1 for that network. Specifically, the transit network contains
approximately 22 times more nodes than the other two empirical networks. Since the
runtime of Algorithm 3.1 scales like MN

3 for M edges and N nodes, we estimate that
Algorithm 3.1 for the transit network could take up to 10,000 times longer than for
the other two empirical networks. (Recall that the poor scaling of Algorithm 3.1 was
our main motivation for developing Algorithm 3.2.)

In Figures 7(A) and (B), we present results that are similar to those shown in
Figure 1(B) but which are now obtained for two empirical networks: (A) a U.S. Senate
voting network and (B) a multiplex brain network. For both networks, we plot the
fractional overlap among the top-` ranked edges for the two algorithms with � = 1 and
varying `. Observe for both networks that both algorithms identify a similar set of
top-ranked edges. The insets show scatter plots that directly compare the algorithms
rankings. Observe that the approximate edge rankings {R̃pq} and true edge rankings
{Rpq} are very similar for all edges in both networks. These results recapitulate our
findings that were previously discussed for Figure 1(B).

Appendix D. Further description of the voting-similarity network in
section 4.1. Here, we describe our construction of an empirical network that encodes
voting similarity among persons in the 117th U.S. Senate. We first downloaded voting-
pattern data from VoteView [73] to create a tensor with entries �ijk = 1 when Senators
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(A) (B)

Fig. 7. Comparison of Algorithms 3.1 and 3.2 for U.S. Senate and multiplex brain networks.
Extending the results in Figure 1(B), we now compare the two algorithms for two empirical networks:
(A) a U.S. Senate voting network and (B) a multiplex brain network with interlayer coupling != 1.
See sections 4.1 and 4.3, respectively, for their descriptions. In both panels, we plot the fractional
overlap among the top-` ranked edges for the two algorithms with � = 1 and varying `. The insets
show scatter plots that directly compare the rankings from the algorithms.

i and j vote identically on bill k and �ijk = 0 otherwise. Letting bij denote the number
of bills in which both i and j vote, we define a weighted adjacency matrix with entries
Ãij =

1
bij

P
k �ijk 2 [0,1] indicating for each pair of Senators the fraction of bills on

which they vote identically. Equivalently, we only sum over bills k in which both i

and j cast a vote. Finally, we obtain a sparse network with an adjacency matrix A
by applying a threshold ⌧ to Ã. That is, we define

Aij =

(
Ãij , Ãij > ⌧,

0 otherwise.
(D.1)

After exploring a wide range of ⌧ values, we selected ⌧ = 0.40, which is a minimum
voting-together fraction of 0.40. The resulting graph is a weighted voting-similarity
network [81, 82, 124] that is undirected, and each edge (i, j) has a weight Aij > 0.4.

We note that there are other ways to construct voting-similarity networks, in-
cluding, e.g., by restricting attention to nonunanimous roll calls [124] as opposed to
considering all bills (as we have done). Note that for convenience, we removed Kamala
Harris and Kelly Loe✏er from the data set because they participated in the 117th
Senate for less than a month before resigning or being replaced. We also relabeled
the independents to be Democrats since the current independents caucus with the
Democrats and because, for simplicity, we would like to focus this experiment on a
network having two communities of approximately equal size.

Recall from section 4.1 that we would like to compare the rankings R̃pq of edges
within and between communities, i.e., intraparty and interparty edges. As such, we
selected ⌧ = 0.4 so that the resulting network has few edges between the two com-
munities. In this case, we found 474 interparty edges and 2182 intraparty edges.
This occurs due to party polarization; that is, the vast majority of edges are intra-
party edges that connect Senators having the same party a�liation, whereas relatively
few edges are interparty edges. Since most Senators are Republicans or Democrats
(and the current independents largely act as Democrats in their roll call voting), the
resulting network has two large communities. As shown in Figure 8(A), these commu-
nities manifest as “blocks” in the adjacency matrix A. In Figure 8(B), we depict the
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(A) (B)

Fig. 8. Network encoding voting similarity among the 117th U.S. Senate. (A) Visualization of
the adjacency matrix A, where Aij encodes the fraction of bills in which Senators i and j vote iden-
tically (ignoring fractions less than 0.4). By sorting node IDs by the Senator’s political a�liations
so that nodes {1, . . . ,50} are Republicans and nodes {51, . . . ,100} are either Democrats or indepen-
dents, the resulting two-community structure manifests as two large “blocks” in the matrix. (B)
Histogram depicts the probability distributions for edge weights {Aij}, which we measure separately
across intraparty and interparty edges.

(A) (B)

Fig. 9. Multiplex network encoding spectral coherence among brain regions. (A) Histograms

depicting the probability distributions of edge weights {A
(�)
ij } and {A

(✓)
ij } for two network layers

encoding spectral-coherence relations among the fMRI activity brain regions at two frequency bands.
(B) We plot the mean ranking hR̃pqiinter of interlayer edges versus timescale parameter � for the
coupling strength ! = 1. Di↵erent curves represent the 25 healthy human brains in the data set
[52, 53]. The black dashed line depicts the mean curve.

distributions of edge weights {Aij}, which we measure separately across intraparty
and interparty edges.

Appendix E. Further description of the multiplex brain network in
section 4.3. Here, we provide additional discussion for our experiments with mul-
tiplex brain networks. We first downloaded adjacency matrices that encode network
layers from [52]. See [53] for a paper discussing this data and related experiments.
Each adjacency matrix encodes spectral coherence for a distinct particular frequency
band. Diagonal entries in the matrices are set to zero to ensure that there are no
self-edges. For each network layer, nodes represent brain regions and weighted edges
represent coherence values. The full data includes six network layers for each person,
and there are data for 25 healthy persons and 25 persons with Alzheimer’s disease. We
focused on two network layers that represent the frequency bands of � and ✓ waves by
examining two adjacency matrices A(�) and A(✓) for the first person in the data set.

In Figure 9(A), we plot histograms of the coherence values A(�)
ij and A

(✓)
ij encoded

in these two matrices. Because we would like to study sparse networks, we choose a
threshold of ⌧ = 1.52 and remove edges having a weight less than ⌧ . Observe that the
two distributions p(A(�)

ij ) and p(A(✓)
ij ) are similar, and so the two “sparsified” network

layers have similar weight distributions and a similar number of edges.
In Figure 9(B), we present a plot that is similar to Figure 4(B). Here, we plot

the mean ranking hR̃pqiinter of interlayer edges versus timescale parameter � for the
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coupling strength != 1. The di↵erent curves represent the 25 di↵erent healthy human
brains in the study, and the dashed black curve gives the mean curve. Observe that
all curves are qualitatively similar, suggesting that the e↵ect of � on edges’ entropic
importance is robust across the brain data.
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