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ABSTRACT. Graph-based representations of point-cloud data are widely used
in data science and machine learning, including e-graphs that contain edges
between pairs of data points that are nearer than ¢ and kNN-graphs that con-
nect each point to its k nearest neighbors. Recently, topological data analysis
has emerged as a family of mathematical and computational techniques to in-
vestigate topological features of data using simplicial complexes. These are a
higher-order generalization of graphs and many techniques such as Vietoris-
Rips (VR) filtrations are also parameterized by a distance e. Here, we develop
kNN complexes as a generalization of kNN graphs, leading to kNN-based per-
sistent homology techniques for which we develop stability and convergence
results. We apply this technique to characterize the convergence properties
PageRank, highlighting how the perspective of discrete topology complements
traditional geometrical-based analyses of convergence. Specifically, we show
that convergence of relative positions (i.e., ranks) is captured by kNN per-
sistent homology, whereas persistent homology with VR filtrations coincides
with vector-norm convergence. In general, kNN-based persistent homology is
expected to be useful to other data-science applications in which the relative
positioning of data points is more important than their precise locations.

1. Introduction. Topological data analysis (TDA) is a rapidly growing field of
applied mathematics in which techniques from computational and applied topology
are applied to extract structural information about the “shape” of data. TDA has
been applied to numerous contexts ranging from visualization and dimensionality
reduction [9, 40] and time series analyses [59] to applications in cosmology [65, 71],
physical processes over networks [43, 68, 39, 38], neuroscience [61, 26, 13, 54], and
systems biology [64, 44, 35, 37]. One of the main tools is the study of persistent ho-
mology, which can effectively reveal multiscale topological properties of data. This
approach relies on examining how the homology of a topological space evolves as
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FIGURE 1. Visualizations of simplicial complexes and graphs re-
sulting from (A) a Vietoris-Rips (VR) filtration and (B) our pro-
posed k-nearest-neighbor (kNN) filtration. As shown in the second
column, VR filtrations are parameterized by the radius € of e-balls
that are centered at the points, whereas kNN filtrations are param-
eterized by the number k of nearest neighbors. (Dotted lines depict
the nearest-neighbor orderings for node ¢ = 4.) The third column
depicts simplicial complexes that are obtained at some ¢ and k.
The fourth columns shows their 1-skeletons, which are graphs in
which k-simplices of k > 1 are discarded.

one applies a filtration, which is one of the basic notions in topology. There are
many types of filtrations [2, 63, 31, 12, 24], however we will focus on the widely
used Vietoris-Rips (VR) filtration [19]. In general, different filtrations reveal com-
plementary insights, and it is important to develop additional filtrations that cater
to different applications.

In the prototypical setting, one aims to construct and study empirical topolog-
ical features for a set of data points, or point cloud. The approach involves using
points to construct a filtered topological space, which is often represented by a sim-
plicial complex in which the data points are 0-simplices, and higher-dimensional
k-simplices are constructed via some set of rules. Often, k-simplices are added ac-
cording to the pairwise distances between 0-simplices. As an example, in Fig. 1(A),
we visualize one of the most commonly studied point-cloud filtrations, the Vietoris-
Rips (VR) filtration. As shown, VR filtrations are constructed by considering sim-
plicial complexes in which k-simplices are added between O-simplices that are less
than € > 0 distance apart.

In Fig. 1(B), we illustrate a different filtration that we propose and develop in
this paper: kNN filtrations, whereby k-simplices are created according to k-nearest-
neighbor sets. We note that while € and kNN graphs are both very prevalent in
the data-science and machine-learning literatures, TDA methods largely focus on
e-based simplicial complexes and filtrations, thereby limiting their potential utility
to new applications. We develop kNN-based simplicial complexes as a generaliza-
tion of kNN graphs, allowing us to develop kNN-based TDA methods including kNN
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FIGURE 2. (left) An example graph. (right) Convergence of ap-
proximate PageRank values x;(t) — m; with ¢ iterations.

[nodes [ R;(0) [ Ri(1) [ Ri(2) [ Ri(3) [ Ri(4) [ Ri(5) [ Ri(6) [ Ri(7) [ Ri(8) [ Ri(9) [ Ri(0) |
=0 5 T 1 1 1 1 1 1 1 1
i=1 1 1 1 3 3 2 2 3 3 2 2
=2 3 3 3 1 2 3 3 2 2 3 3
1=3 2 5 5 5 5 5 5 5 5 5 5
=4 T 2 2 2 T T T 1 T T T

TABLE 1. The relative orderings (i.e., node ranks R;(t)) converge
at t > 9. For each ¢, we indicate the top-ranked node by R;(t) = 1.

persistent homology. We formulate and study persistent homology under kNN filtra-
tions, constructing persistence diagrams and studying their robustness properties.
We also define and study several local version of kNN complexes, filtrations, and
persistent homology. By constructing filtrations using discrete sets, our approach
relies on discrete topology, thereby contrasting approaches that are tied to continu-
ous topological spaces [37]. In addition, we further analyze and explore homological
features for converging sequences of point sets, exploring how the convergence of
persistent diagrams for kNN filtrations contrasts that for VR filtrations.

We apply kNN persistent homology to study the ranking of nodes in graphs, and
in particular, we study the convergence of rankings given by approximate PageRank
values that are obtained by the power iteration method. Our work establishes a new
connection between TDA and PageRank (see also [43]), and provides a topological
approach for determining how many iterations are required for the node rankings
to convergence.

We visualize this application and motivation in Fig. 2. In this application, ap-
proximate PageRank values x;(t) — m; asymptotically converge to their final values
and the normed error ||x(t) — 7|| vanishes. However, as highlighted in Table 1,
the orderings (i.e., node ranks) according to x;(t) values converge after only ¢t = 9
iterations, even though ||x(t) — || > 0 for all ¢. We apply kNN-based persistent
homology to study of convergence for these relative orderings, which is a property
that is crucial to PageRank and which is not revealed through VR filtrations. Al-
though we focus here on PageRank, we expect kNN-based TDA to be widely useful
to other applications in which the relative positioning of points—as opposed to the
precise locations—is a property of main interest.
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This paper is organized as follows. We provide background information in Sec. 2
and our main findings in Sec. 3. In Sec. 4, we apply this approach to develop
a discrete topological perspective for the convergence of the PageRank algorithm,
examining both empirical and synthetic networks. We provide a discussion in Sec. 5.

2. Background information. We first provide background information. In Sec. 2.1, we
discuss simplicial complexes that are derived from point clouds. In Sec. 2.2, we
define homology and persistent homology for simplicial complexes. In Sec. 2.3, we
discuss the notions of stability and convergence for persistence diagrams.

2.1. Simplicial complexes derived from enumerated point sets.

2.1.1. Point clouds. We will define simplicial complexes in a geometric way by con-
sidering a finite set of enumerated points, or “point cloud.” That is, consider a
finite set ) = {yW}N¥, of cardinality N = |)| that contains p-dimensional points
y(® € RP and assume distinct points y* # y() (i.e., repeated points are disal-
lowed). We enumerate the points i € V = {1,..., N} (i.e., we assign a surjective
labeling V — Y) and equip RP with the Euclidean metric. Note that we could have
equivalently defined the point cloud using an N-tuple with elements from R?. To
facilitate later discussion, it is helpful to further define A = (R?)Y to be the space
of enumerated point sets in R? containing N elements so that ) € .Aév .

Definition 2.1 (Euclidean Metric Space). Let RP be the set of all ordered p-tuples,
or vectors, over the real numbers and d : RP x RP be the Euclidean metric

Z(«Iq - yq)27

q=1

dx,y) = |x = yll2 =

where x = (x1,..,2p),¥y = (Y1, ..,yp) € RP. Then the Euclidean metric space is
given by (RP,d).

Definition 2.2 (Euclidean Ball, or e-ball). A p-dimensional Euclidean ball B.(x)
centered at x with radius € is defined by

B.(x) ={y e RP: d(x,y) < €}.

Definition 2.3 (Pairwise Distance Map). Let Y = {y}, € A be an enumer-
ated point set. Then we define the pairwise distance map f : AII)V — ]Rf XN

to encode the distances between all pairs of points so that f;;(V) = d(y®,y)).
We similarly define a map f; : .Aé\' — RY for each row i of matrix [f;;] so that

[fiW)]; = fi; (D).

2.1.2. Simplicial complezes. Given an enumerated point set ) = {y(i)} indexed by
i€V ={1,2,...,N}, we will define simplicial complexes in which the locations
and connectivity among k-simplices are derived from ). That is, we define a vertex
v; = {i} at each location y®. A k-dimensional simplex S*, or k-simplex, is
defined by a subset of V having cardinality k& + 1. For example, each 0-simplex
is a vertex, each 1l-simplex is an edge, 2-simplices are informally “triangles” that
must be defined using k + 1 = 3 nodes. Because the nodes are spatially embedded
in RP, each k-simplex is a k-dimensional geometrical object. It is then natural to
consider their (k — 1)-dimensional faces, which can be defined as follows. A face of
a k-simplex S* is a subset of S* with cardinality &, i.e , with one of the elements of
Sk omitted. If S’;_l is a face of simplex S*, then S* is called coface of S’Jf_l. For
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example, the 0-simplices at the start and end of a 1-simplex are its faces, and the
set of 1-simplices that are adjacent to a 0-simplex are its cofaces.

A simplicial complex X is a collection of k-simplices with the property that if
Sk € X, then all the faces of S* are also members of X. Note that the k-simplices in
X can have different dimension k, and we define the dimensionality of X to be the
maximum dimension of X’s simplices. The notions of face and coface can also be
extended to abstract simplicial complexes that lack spatial coordinates, and one can
also define connections between k-simplices of the same dimension by considering if
their faces and cofaces overlap. Note that with a given abstract simplicial complex
X, we can construct a geometric realization of X. As in [17], this realization
is defined as an injective map f : V(X) — RP with V(X) denoted as the union
of members in X. Then, f is called a geometric realization of X in RP if f(X) is
a simplical complex in RP. By abuse of notation, now we also consider f(X) as
a geometric realization of X and denoted as |X|. Two k-simplices S¥ and S;? are
said to be lower adjacent if they have a common face, and they are upper adjacent
if they are both faces of a common (k 4 1)-simplex. For any S* C X we define
its degree, denoted by deg(S*), to be the number of cofaces of S*. We use X* to
denote the subset of k-simplices in X with dimension that is exactly k.

Note that a graph, while typically defined via two sets (nodes, edges), can also
be interpreted as a 1-dimensional abstract simplicial complex, since it contains k-
simplices of dimension k£ < 1. Moreover, for any simplicial complex, one can obtain
an associated graph that is its 1-skeleton, whereby one discards any k-simplices
of dimension £ > 1. More generally, a x-skeleton of a simplicial complex X can
be obtained by discarding all k-simplices of dimension k > k. Thus, a simplicial
complex can be understood as a generalization of a graph that allows for higher-
order relationships between nodes. To emphasize this connection, we will make no
distinction between 1-simplices in a simplical complex X and the edges of a graph,
and we will refer to them interchangeably.

2.1.3. Two simplicial complezes based on €. There are many ways in which one can
construct a set of simplices involving the vertices V associated with a given a set
of points Y = {y}¥, ¢ AZ],V. While we focus on enumerated point sets, these
constructions can also be applied to non-enumerated point sets. Most approaches
stem from considering e-balls centered at the points ). Here, we present two closely
related simplicial complexes that are parameterized by a distance threshold ¢ and
are often motivated by the assumption that the point cloud lies on a low-dimensional
manifold.

Definition 2.4 (Cech Complex [6]). Given a collection of points ¥ = {y®}¥ | €
.Aév , the Cech complex, C., is the abstract simplicial complex whose k-simplices

are determined by the (k 4 1)-tuples of points {y®}**! whose closed (¢/2)-ball
neighborhoods have a point of common intersection.

The Vietoris-Rips (VR) complez is closely related and is defined as follows.

Definition 2.5 (Vietoris-Rips Complex [3]). Given a collection of points )V =
{y(i)}f\il € Aé,v , the Rips complex, R, is the abstract simplicial complex whose
k-simplices correspond to (k+ 1)-tuples of points C' = {y(i)}fill, with y() € R.,i =
1,..,k + 1, whose pairwise distance satisfy ||y(i) — y(j)||2 < e for any y,yU) € C.
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Notably, Cech complexes are sometimes preferred over VR complexes because
of their relation to a continuous topological space that is associated with unions of
e-balls, as established in the following Theorem.

Theorem 2.6 (Cech theorem [37]). The Cech theorem (or, equivalently, the
“Nerve theorem”) states that a Cech complex C. has the homotopy type of the union
of closed (€/2)-balls about the point set Y = {yD}N .

This result is somewhat surprising since a Cech complex C, is an abstract sim-
plicial complex, which is a discrete topological space of potentially high dimension.
In contrast, the union of closed (€/2)-balls is a continuous topological space (i.e.,
subset of R?), and so it is interesting that these two spaces have the same homotopy
type. While an identical relation has not been identified for VR complexes, it has
been shown that they are closely related to Cech complexes through the following
interleaving result.

Lemma 2.7 (Relation Between Cech and Vietoris-Rips Complexes [37] ). For any
€ > 0, there is a chain of inclusion maps for Cech complexes and VR complexes

Re CCoys € Reys-

From a practical perspective, applications involving TDA often focus on VR
complexes because they are more computationally efficient to compute than Cech
complexes. That is, it is easier to compute whether the distance between two points
is less than e versus check whether the intersection of e-balls is nonempty. As such,
TDA methods based on VR complexes are very popular in applied settings, and we
will later conduct numerical experiments that use them as a baseline for comparison.
Given the relations between VR and Cech complexes and the unions of e-balls, these
all may approximate the structure of a manifold, assuming all data points lie on
the manifold. Such an assumption, however, is not appropriate for every data set.

Before continuing, we note that simplicial complexes can be constructed in ways
that do not require a set of points. For example, one can construct abstract simpli-
cial complexes based on a given graph.

Definition 2.8 (Clique Complex [73]). The clique complex CI(G) of an undi-
rected graph G = (V,€) is a simplicial complex where V are nodes of G and each
k-clique (i.e. a complete subgraph with & nodes) in G corresponds to a (k — 1)-
simplex in CI(G). More precisely, it is the simplicial complex

Cl(G)zVUﬁU{cﬂ(;) ce},

where o0 C V denotes a simplex and (g) € V xV denotes the set of pairs that can be
obtained by selecting two 0-simplices from o (which must be an edge in the graph).

It is worth noting that the I-skeleton (i.e., O-simplices and 1-simplices) of any
clique complex recovers its associated graph G = (V, ). That is, the construction
of a graph’s clique complex is an invertible transformation.

Similar to the construction in Def. 2.5, we can easy observe the relation between
the Rips complex and the corresponding clique complex. The Vietoris-Rips complex
R of a collection of points Y = {y(i)}fy:l € Afgv is considered as a clique complex
of the graph whose vertex set is ), and each pair y(*,y) of points is connected
when [ly® -y, <e.
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2.2. Topological data analysis (TDA) and persistent homology. TDA usu-
ally refers to the study of a point cloud by examining its multiscale features from
the perspective of persistent homology. That is, after representing a data set by
a simplicial complex, one can study its topological structure via its homology. To
obtain multiscale insights, it is also useful to study how that homology changes and
persists as one varies a parameter, such as a distance threshold e.

2.2.1. Homology of simplicial complexes. We formulate homology by considering
functions defined over k-simplices within a simplicial complex. A chain complex
over a field F is a tuple (C,0) where C is a collection {Cy}ren of vector spaces
together with a collection O of F-linear maps {0 : Cx —> Ck—_1}ren such that
Ok—1 0 O = 0 for all integers k. Here, a vector space Cj is associated with a
set of simplicial k-chains, where a simplicial k-chain is defined as a formal linear
combination over F of an abstract simplicial complex K.The maps J) are called
boundary maps. The k-cycles of the complex are the elements that are sent to zero
by the map Ok; the k-boundaries are the elements in the image of Jxy1. A map
of chain complexes f : (C,0) — (C’,9") is a collection {f; : Cx — Cis }ren of
F-linear map such that fy_1 0 Oy = 0j, o fi for all natural numbers k .

The k-cycles form a vector space, and so do the k-boundaries; we denote these
vector spaces by Zj and By, respectively. The kth homology of a chain complex
(C,0) over a field F is the quotient vector space

Hi((C,0)) = Zi/By.

The number
Br(C) = dim(H(C,0)) = dimZ, — dimBy,

is called the k-th Betti number. For a geometric intuition, the dimension of Hy(X)
can be thought of as the number of ‘k-dimensional holes’ of X:

e The Oth Betti number §y is the number of connected components.
e The 1st Betti number $; counts the number of loops, or 1-cycles.
e The 2nd Betti number S5 counts the number of voids, or 2-cycles.

The dimension of a simplicial complex is the maximum over the dimensions of its
simplices. If X is a simplicial complex of dimension d then Hy(X) = 0 for all k£ > d.
Any map of chain complexes = : (C,0) — (C’,9’) induces a linear map on
homology [55]:
H(E) : Hy((C,0)) — Hi((C",0"))

To simplify notation, we later use = in place of H(E).

2.2.2. Filtrations of simplicial complexes. To discuss how homology changes and
persists, it is necessary to define filtrations. While one can study filtrations for
general topological spaces, we will focus here on filtrations of simplicial complexes.
Given a simplicial complex X, a filtration is a totally ordered set of subcomplexes
X; of X, indexed by the real numbers. Commonly, a filtration is constructed with
an ascending filtation parameters [2]; however, they can also be useful to construct
them by allow the filtration parameter to be descending [43]. The totally ordering
itself is called a filter. We call a simplicial complex together with a filtration a
filtered simplicial complex.

There are different ways to define a filtration [2], and we will focus herein on the
popular Vietoris-Rips filtration.



8 MINH QUANG LE AND DANE TAYLOR

Definition 2.9 (Vietoris-Rips Filtration [2]). Let G = (V,£) be an undirected,
all-to-all graph in which each node i € V has a position y(¥) € R? in a metric space
with metric d. Consider a weight function W : V x V — R defined on the edges
£ so that W(i,j) = d(y®,y")) encodes the distance between y* and y). Let
Cl(G) be the associated clique complex for G(V, ). For any § € R, the 1-skeleton
Gs = (V, Es) is defined as the subgraph of G where & C & includes only the edges
such that W (i,j) < §. Then, for any 6,8’ € R, we define the Vietoris-Rips filtration
by

{CU(Gs) — CU(Gs)fo<s<sr

In this work, we will only consider when the distance function is the Euclidean
metric, although one can in principle use other metrics. That said, we note in
passing that one can also construct filtrations in a variety of ways including func-
tional metric filtrations [2], node-based clique filtrations [63], k-clique filtrations
[63], weighted simplex filtrations [31], node function based filtrations [2], Dowker
sink and source filtrations [12], and the intrinsic Cech filtrations [24].

2.2.3. Persistent homology and persistence diagrams. Persistent homology involves
studying how homology changes (or more precisely, identifies when it does not
change) during a filtration. Consider a simplicial complex, for all i < j the inclusion
maps X; — X, induce F-linear maps =Z;; : Hy(X;) — Hy(X;) on simplicial
homology. For a generator x € Hy(X;) with « # 0, we say that x dies in Hy(X;) if
J > i is the smallest index for which Z; j(z) = 0. We similarly say that x € Hy(X;)
is born in Hy(X;) if x ¢ im(E, ;) for all t < i. We can represent the lifetime of x
by the half open interval [i, ). If Z; ;(x) # 0 for all 4 < j <, then we say that x
lives forever and we represent its lifetime by the interval [i; 0o).

The k-th persistent homology vector spaces of a filtered simplicial complex X are
defined as H;” = im(Z; ;), and the total kth persistent homology of X is defined
as @', H(X;). By the Correspondence Theorem of Persistent Homology [74], for
each k we can assign to the total k-th persistent homology vector space a finite well-
defined collection of half open intervals, i.e., its so called barcode. An alternative
way to represent persistent homology graphically is given by persistence diagrams,
in which case each open interval [i, j) is represented by the point (i, ) in R2. See
Fig. 3 for an example persistence diagram, which we will more formally define in
the next section.

To proceed, we must introduce some definitions. Let X be a simplicial complex
and g : X — R be a tame function. A homological critical value for a function g
is defined as follows:

Definition 2.10 ([14]). A homological critical value of g is a real number a for
which there exists an integer k such that for all sufficiently small ¢ > 0, the map
Hi(g7 (—o00,a—¢€]) — Hi(g~*(—00,a+€]) induced by inclusion is not an isomor-
phism.

Now, we need a special class of functions that is associated with the number of
it’s homological critical values to discuss the stability theorem in 2.16.

Definition 2.11 (Tame [14]). A function g : X — R is tame if it has a finite
number of homological critical values and the homology groups Hy(g~!(—o0,a))
are finite-dimensional for all k¥ € Z and a € R.
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FiGURE 3. Example of stability for persistence diagrams result-
ing from Vietoris-Rips filtrations. (left) Two point-cloud sets
V={y@}N, and Z= {2V}, are close with respect to the L.
norm. The center and right panels depict their associated persis-
tence diagrams Dy and Dz, which are also close with respect to
the bottleneck distance.

In particular, Morse functions on compact manifolds are tame, as well as piece-
wise linear functions on finite simplicial complexes and, more generally, Morse func-
tions on compact Whitney-stratified spaces [28]. Assuming a fixed integer k, we
define G, = Hy(g~'(—o0,x]), and for any = < y, we let g¥ : G, — G,, be the map
induced by inclusion of the sub-level set of x in that of y.

Lemma 2.12 (Critical Value Lemma [14]). If some closed interval [x,y] contains
no homological critical value of g, then g¥ is an isomorphism for every integer k.

We now formally define a persistence diagram. Using the same notation as
above, we write GY = img(g¥) for the image of G, in G,. By convention, we
set G¥ = {0} whenever z or y is infinite. The group GY is called the persistent
homology group.

Let g : X — R be a tame function and denote (a;)i=1,..n as its homological
critical values, and let (b;);—o.» be an interleaved sequence in which b;_; < a; < b;
for all i. We set b_; = a9 = —oo0 and b,41 = an41 = +oo. For two integers
0 <i<j<n+1, we define the multiplicity of the pair (a;,a;) by:

j b b; by by
Wi =By, = By By =By,
where Y = dim(GY) denotes the persistent Betti numbers for all —co <z <y <

+00.

Definition 2.13 (Persistence Diagram [14]). The persistence diagram D(T) C R
of a filtered topological space T, such as X, is the set of points [a;, a;), which are
counted with multiplicity ﬂg for 0 < i < j < n+1, along with all points on the
diagonal, which are counted with infinite multiplicity.

The points [a;, a;) are often visualized as a scatter plot, but can also be visualized
as “barcodes”, in which each interval [a;, a;) is depicted by a thick horizontal line.

2.3. Stability and convergence of persistence diagrams. Persistence dia-
grams and barcodes are widely used as a concise representation for the multiscale
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homological features of a point-cloud data set. As such, it is important to under-
stand their robustness to perturbations, which can represent data error or noise
[43]. Ome can also study for a converging sequence of point clouds whether their
associated persistence diagrams also converge. In this section, we present basic
results related to stability and convergence.

2.3.1. Stability. We first discuss stability in a general setting, which requires several
definitions. Given two persistence diagrams, we can quantify their dissimilarity
using various metrics. In particular, we will consider the following metric.

Definition 2.14 (Bottleneck Distance [14]). The bottleneck distance between two
multisets of points, Y and Z, is given by

dp(Y, 2) :igfsupllyfv(Y)Hoo ; (1)
Yy

where y € Y and v ranges over all bijections from ) to Z. Here, we interpret each
point with multiplicity £ as k individual points, and the bijection is between the
resulting sets.

Next, we present triangulable spaces. As in [21], an underlying space of a simpli-
cial complex K is defined as | J K = |J, . |o|, where || is the geometric realization
of o. If there exists a simplicial complex K such that |J K is homeomorphic to X,
then X is triangulable.

Next, we highlight a filtration that is important for understanding the stability
of persistence diagrams.

Definition 2.15 (Height filtration [69]). Let X C RP be a finite simplicial com-
plex. With any unit vector v € SP~!, we define a filtration X (v) called
height filtration, that is parameterized by a height r € R where:

veER?

XWher ={z€X:z-v<71}

In Fig. 3, we show that it two point clouds are similar, then their associated
persistence diagrams are similar. That is, persistence diagrams are ‘stable’ with
respect to small changes, which can be quantified through the bottleneck distance.

Theorem 2.16 (Stability Theorem [8] ). Let X be a triangulable space with con-
tinuous tame functions g,h : X — R, and let Dy and D), denote their associated
persistence diagrams obtained using a height filtration. Then the bottleneck distance
between these persistence diagrams satisfies a global uniform bound

dp(Dy, Dn) < lg — Pl -

While Thm. 2.16 describes the stability of persistence diagrams with respect
to changes to the functions to which filtrations are applied, one can also use it
to equivalently prove the stability of persistence diagrams for when the function
changes due to perturbations of points. We present the following example.

Corollary 1 (Stability of VR Persistence Diagrams to Point Perturbations). Let
YV ={yWD}icy € AN with V = {1,...,N} denote a set of N points, and let Z =
{z"};cp € Al be a set of perturbed points such that lly® — 2@y < € for all i.
Further, let Dy and Dz be their associated persistence diagrams for VR filtrations.
It then follows that dp(Dy,Dz) < 2e.
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Proof. Our proof follows from Theorem 2.16. Let f : A]JDV — Rf *N be the pair-

wise distance function in which f;;(Y) = |ly® — y@||,. Consider two standard,
complete simplicial complexes K and M embedded in R¥*! that are correspond-
ingly constructed from two vertices sets ) and Z. Let g and h be two functions
that are defined on 1-dimensional simplices within K and M such that g;; = f;;())
and h;; = fi;(Z). Here, g;; and h;; are denoted for two entries of two matrices that
representing for two functions g and h respectively. Over higher-dimensional sim-
plices, the functions g and h are inherited from the maximum value of the adjacent
1-simplices. It follows that the persistence diagrams Dy and Dz are equivalent to
those resulting from height filtrations for tame functions g and h defined on the
clique complex of an all-to-all graph with edge weights {g;;} and {h;;}. We find

dp(Dy, Dz) < ||g = hl|c = max Fy D,y D) = f(2D,29)]
1,7 €

= aneué ||y(i) _ y(j)||2 _ Hz(i) _ Z(J‘)H2 )

However, if we define z2() = y(®) + e(®  then ||e(?||y < ¢ for any i € V and
Hz(i) _ Z(j)H2 - H(y(i) _ y(j)) + (e(i) _ e(i))H2
<Ny =y D)2 +[1(e" — e[
It follows that
ly® = yPllz = [}z ~ 29]lz] < [[(?) = D)z < 2.
O

2.3.2. Convergence. The stability of persistence diagrams also has important conse-
quences for the convergence of a sequence of persistence diagrams that is associated
with convergent sequence of point clouds. Focusing on VR filtrations, consider a
sequence of point clouds Y(t) = {y(t)} X, of fixed size N = |Y(t)| for each t € N
with y(@(t) € RP. Assume for each i that the sequence converges y(t) — y)
such that ||y®(t) —y®|s < 1/t. Note that such a convergence criterion can be
ensured by considering a subsequence in which each subsequent element is chosen so
that the bound is true for all i € {1,..., N}. Let Dy and Dy be the persistence
diagrams for VR filtrations applied to both point clouds. By using Corollary 1, we
obtain convergence of the associated persistence diagrams since

dp(Dy (), Dy) <2y () =y < 3,

which converges to 0 as t — oo.

3. Topological data analysis using k nearest neighbors. We now present our
main findings: an approach for persistent homology that is based on the relative po-
sitioning of points according to their k-nearest-neighbor (kNN) sets. Our approach
introduces kNN complexes and filtrations using a filtration parameter k& € N,
thereby contrasting VR and other filtrations that use a distance threshold ¢ as the
filtration parameter. We will show that kNN-based persistent homology has certain
advantages that can benefit applications for which the relative positioning of data
points is important, i.e., as opposed to their precise locations.

This section is organized as follows. In Sec. 3.1, we define kNN orderings of
points. In Sec. 3.2, we develop kNN filtrations, use them to study kNN persistent
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homology, and compare them to the study of VR filtrations. In Sec. 3.3, we analyze
the stability and convergence of persistence diagrams resulting from kNN filtrations.

3.1. kNN graphs and kNN complexes. We begin with a definition for kNN
orderings. One complication is that the ordering of nearest neighbors is not neces-
sarily symmetric, and so we will also describe additional transformations that we
will use to symmetrize orderings prior to constructing kNN graphs, KNN complxes,
and kNN filtrations.

3.1.1. kNN orderings. We first formalize the concept of k-nearest neighbors.

Definition 3.1 (k-Nearest-Neighbor Orderings). Let V = {1,..., N} enumerate
a set of points Y = {y(i)}iev with y(® (t) € RP in a Euclidean metric space and
{fij = Iy —y||2} be their pairwise distances resulting from Definition 2.3. For
each 1, let k;; denote the nearest-neighbor order of y(@) with respect to y* so
that y@) is the (ki;)-th nearest neighbor of y® (ki = 0). The ordering is formally
defined for each fixed i by {ki;}}=; = ¢({fi;}j21), where ¢ : RN — NV is the
“argsort function”.

In the above, we assume that the orderings are well-defined in that for a given
i € V, the entries in the set {f;; }é\le are unique. We will refer to such point clouds
as being non-degenerate. While we don’t focus on degenerate point clouds herein,
they can in principle occur. If two distances f;; and f;;» are the same, and they
both correspond to order k, then we assign an ordering at random so that either
kij = k and k;j» = k + 1, or vice versa. If even more distances are the same, then
we similarly assign them a relative ordering uniformly at random. In principle,
the argsort function ¢ can be defined in a variety ways to handle the ordering of
repeated entries.

Given the above definition of kNN orderings, we now introduce an associated
map between a set of points and an associated matrix with entries £;;.

Definition 3.2 (kNN Ordering Function). Let A] be the space of enumerated N-
point sets in R? and recall the row-defined pairwise distance function f; : .Aév —
Rf given in Definition 2.3. Letting ¢ be the argsort function, we define the map k-
nearest-neighbor (kNN) ordering function F : AY — NY*N as the matrix-
valued function F' = [FY, ..., Fy]T in which each row F; is defined by F; = ¢ o f; :
AN — NY.

3.1.2. kNN Neighborhoods. We will use kNN orderings of points to define local
neighborhoods N; for each point 4 € V, noting that any nested sequence of neigh-
borhoods defines a local filtration of the nodes V.

Definition 3.3 (kNN neighborhoods). Given a set of kNN orderings {k;;} for
i,j € V, we define the kNN neighborhoods as the sets N, = {jlk;; < k} for
eachi€Vand k€ {0} UV \ {N}.

3.1.3. kNN symmetrization. Importantly, the kNN orderings and kNN neighbor-
hoods are not symmetric—that is, j € N, does not imply i € Nj,. Because we
would like to use the kNN neighborhood sets to construct filtrations of simplicial
complexes that contain undirected simplices, we will now describe how to construct
symmetric kNN neighborhoods.
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Definition 3.4 (Symmetrized kNN Orderings and Neighborhoods). We define three
types of symmetrized kNN neighborhoods— N7, N and N9 that
use, respectively, the following three symmetrizations of kNN orderings {k;;}:

i;jij = min{kij, kﬂ}

kij = (kij + kji) /2

];Jij = max{kij, k‘ﬂ} (2)
Notably, these kNN neighborhoods satisfy the following nestedness relation.

Lemma 3.5 (Nestedness of Symmetrized kNN Neighborhoods). Consider fized k
and i. Then the neighborhood sets NIVi™ NErans NTaT sqtisfy the following nest-
edness relationships:

max trans min
N ™ C Ny ™™ C Ng™™.

Proof. For any k;j,kj; € R, one has I%ij < Eij < I%ij by definition of the min and
max functions. If j € /%", then k;; < k. This implies k;; < Eij < k;j <k, and so
j c '/\[1712”’” g A[itkrans g i7]7€law. O

3.1.4. kNN graphs and complexes. We now define graphs and clique complexes using
symmetrized kNN orderings and neighborhoods.

Definition 3.6 (Symmetrized kNN Graph). Given a set of points enumerated
by V, let & = {{i,j}i € V,j € Nix} be a set of undirected edges connecting
pairs of nearest neighbors, which are symmetrically defined by choosing N €
{Npin Nifrans Nmaz) - We denote the respective graphs Gy, (V, &), depending on
symmetrization method, by g,gmm girans and GreT.

Definition 3.7 (Symmetrized kNN Clique Complex). Given a symmetrized kNN
graph Gy, € {Gmin, girans Ggmar} with nodes V and edges &, we construct its as-
sociated clique complex X = CIl(Gy), and we similarly use a superscript to denote
the method of symmetrization, i.e., X;", Xfrans and Xmoe.

Corollary 2 (Nestedness of Symmetrized kNN Graphs and kNN Complexes). Sym-
metrized kNN graphs and kNN complezes satisfy the following nestedness relations

glrcnax SN g]tcrans N g/::nin
¢ .
X]znaz o Xkrans PN Xlzmn (3)

Proof. The results follow immediately from Lemma 3.5, which proved the nestedness
of kNN neighborhoods. O

3.2. Filtrations and persistent homology using kNN complexes. We now
formulate filtrations and persistent homology using symmetrized kNN complexes.

3.2.1. kNN filtrations. Varying k gives rise to a sequence of nested sets called a
filtration, and we will define several types based on the different symmetrization
methods. We will also define local and global versions of filtrations.

Definition 3.8 (Global kNN Filtration). Let Xy, Xj, € {X V", X}rans Xmar} he
kNN complexes with the same symmetrization method. Then we define a kINN-
filtered simplicial complex

{Xk — X Yo<k<ir<n-1-
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FIGURE 4. Visualization of kNN-filtered simplicial complexes for a
point cloud using the three types of symmetrization given by Def-
inition 3.4. Comparing across the columns, observe the nestedness
property given by Corollary 2.

In Fig. 4, we illustrate global kNN filtrations with the three different symmetriza-
tion methods given by Definition 3.4. For simplicity, we only visualize 0-simplices
and 1-simplices. By comparing the kNN complexes across a given column, one can
observe the nestedness relations defined by Corollary 2.

3.2.2. kNN persistent homology. We formulate persistent homology for kNN filtra-
tions of a simplicial complex anaologous to that defined for a VR filtrations (recall
Sec. 2.2), and in Fig. 5, we visualize persistence diagrams for both (left) a kNN, min
filtration (kNN,min denotes for using the symmetrization l;ij of kNN ordering) and
(right) a VR filtration for an example point cloud. The red and blue persistence bar-
codes indicate 0-dimensional and 1-dimensional cycles, respectively. Observe that
the kNN filtration reveals a 1-cycle, whereas the VR filtration does not. Hence, fil-
trations of simplicial complexes (specifically clique complexes) according to pairwise
distances and kNN provide complementary homological information.

In the next sections, we will further compare persistence diagrams resulting from
kNN and VR filtrations; however, it’s worth highlighting several differences here.
First, one benefit of using kNN sets versus a distance threshold ¢ is that filtrations
are standardized. That is, the filtration parameter range k € [0, N] for kNN filtra-
tions is always the same for a set of N points. In contrast, different point clouds have
different lengths scales, and so the range of a distance-based filtration parameter is in
general not standardized. One could seek to standardize the ranges of VR filtration
parameters by standardizing distances; however, there are many ways to normalize
a point cloud, such as dividing by the mean distance or by the distances’ standard
deviation. Given that one could implement a variety of normalization approaches,
comparing VR filtrations across different point clouds that have different length
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FicURE 5. Comparison of persistent homology for an example
point cloud using two different filtrations: (left) our proposed
kNN, min filtration; and (right) a VR filtration. The red and blue
persistence barcodes indicate 0-dimensional and 1-dimensional cy-
cles, respectively. Observe that the kNN filtration reveals a 1-cycle
that was born at k = 2 and die at &k = 3, whereas the VR filtration
does not.

scales or different dimensions is not straightforward. In contrast, kNN filtrations
are standardized by definition. The highlighting feature of kNN filtrations is that fo-
cusing on the structure within k*"-nearest neighborhood of each member in a given
point cloud dataset, so homological features will be changed if we add more points
into our data. However, these locally associated neighborhoods demonstrated vital
roles in many applications, such as in Topological Deep Learning [29], [47], RNA
sequence analysis [16], etc. Therefore, the explorations under homological features
via this filtration is potentially necessary. In our scenario, the functions of this
filtration are carved via considering some “neighborhood-convergence” processes,
such as Google’s PageRank convergence in 4.2, when only putting our notification
in the k*"-nearest neighborhood of each point in a row vector.

Second, the filtration parameter € € R, for VR filtrations can in principle take
on any positive number. In contrast, k € {0,...,N — 1} can only take on inte-
ger values (or in the case of the symmetrization method of trans, half integers as
well). Potentially, this reduced space of possible filtration parameters could benefit
the computationally efficiency of implementing kNN filtrations, although we don’t
explore that pursuit herein. That said, our experiments generally find kNN filtra-
tions to have higher computational complexity, since they require both computing
pairwise distances as well as their orderings.

3.3. Stability and convergence of kNN homology. Here, we will study two
key properties for the space of persistence diagrams that follow from kNN filtrations:
stability and convergence. We begin by by formalizing when point sets have identical
or similar kNN orderings.

3.3.1. kNN equivalance of enumerated point sets. We begin by defining an equiva-
lence class over the space of enumerated point sets Ai,v .

Definition 3.9 (kNN Equivalence of Point Sets). Let F' denote the neighbor-
ordering function given by Def. 3.2 and consider two enumerated point sets ), Z €
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Al such that Y = {y}iey and Z = {z(V};cy. Point sets Y and Z are said
to be kNN equivalent if F()) = F(Z). Elements y*) and z() are said to be
locally kNN equivalent if F;()) = F;(Z). Letting ~ represent kNN equivalence,

we further define [Y] = {)'|)’ ~ Y} as the kNN equivalence class of ) .

Indeed, one can show
e Reflexivity: YV ~ ).
It is trivial, since F(Y) = F(}).
e Symmetry: if ) ~ Z then Z ~ ).
It is also trivial, since F'())) = F(Z) implies F(Z) = F(Y).
e Transitivity: if )V ~ Z and Z ~ W then ) ~ W.
This follows from the observation that F(Y) = F(Z) = F(W).

Notably, kNN equivalences can be generalized in a few ways. First, the equiv-
alence relation could be defined using the symmetrized versions of kNN orderings
(i.e., k, k, and lAc) We can also define a slight variation in which the preservation
of kNN orderings is only required for the nearest neighbor orderings up to a finite
size k < K, which we will refer to as “K-bounded” kNN equivalence. In that case,
one has Y ~ Z only if [F(Y)]i; = [F(Z)];; for any [F(Y)]i;, [F(2)]i; < K.

We also highlight that in the above definitions, the two enumerated point clouds
Y and Z are matched so that for each 4, the neighbor orderings of y(* are identical
to those for z(), ie., F;(Y) = F;(Z). One can also generalize the equivalence
relation to consider all possible permutations so that Y ~ Z if F;(Y') = F},(2) for
some permutation {j1, jo,...,jn} of indices V = {1,2,..., N}. We refer to such a
kNN equivalence as “permutation-invariant,” and it could also act on the space of
non-enumerated point sets; however, we restrict our attention to enumerated point
sets in this paper. Unless stated otherwise, we will assume multiple point sets to
be optimally “matched” so that ), |[F;(Y) — F},(Z)|| is minimized when j; = i for
each i.

3.3.2. kNN-preserving transformations. We observe that if points undergo pertur-
bations that are sufficiently small, then it is possible to move points without chang-
ing any of the neighbor orderings. To make this more precise, we define a family of
point-cloud transformations that have this property.

Definition 3.10 (Local and Global kNN-Preserving Transformations). Consider
an enumerated point set J = {y®W}N, € Aév, and let F : Aé,v — NfXN and
E; - Aé,v — Nf be the full and row-wise kNN ordering functions given by Def. 3.2.

We define a function A : Aé,v — .A;,V that takes the form

hY) = {hay™), ..., an (™)}

to be global kNN preserving for Y if F(h(Y)) = F(Y). That is, the action of
F on Y is invariant to the transformation h. Similarly, we define h to be local
kNN preserving for point y(¥) € Y if F; is invariant to the transformation, i.e.,

EFi(h(Y)) = Fi(Y).

Note for a given Y, Z € Aé,v that there exists a global kNN preserving transforma-
tion h for ) such that Z = h()) if and only if Y and Z are kNN equivalent, Y ~ Z.
Like kNN equivalence, kNN-preserving transformations can also be generalized,
e.g., to preserve kNN equivalence with respect to symmetrization, K-boundedness,
or point-label permutations.
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As one example, consider a set of three points z; € {0,2,3} C R and the trans-
formation h({0,2,3}) = {0,2.1,3}. It is both local and global kNN-preserving,
since the perturbation 2 — 2.1 is sufficiently small such that none of the neighbor
orderings change. In fact, all isometric transformations including (i.e., translation,
rotation, reflection and glide reflection) are global kNN-preserving transformations
for any Y € Aév because they leave the pairwise distances unchanged and thus the
kNN orderings are also unchanged.

However, there are many transformations that are not kNN preserving. In Fig. 6,
we illustrate an example where a small perturbation to one point can change the
neighbor ordering in a discontinuous way. Consider a set of points V = {a,b,c}
with locations Y = {x,, xp, z.} where z, = —1, 2. = 1 and 2, = —e € R (for some
small value 0 < ¢ < 1). Then the neighbor ordering matrix is given in Table 2.
Now consider the transformation hq(x,) = x4, ha(zs) = xp + 2¢, and hz(z.) = .,
then the neighbor ordering matrix changes, as shown in Table 3.

FIGURE 6. Example with 3 points Y = {z,, xp, .} with z, = —1,
2. = 1 and either (A) 2, = —¢ or (B) z, = e¢. Note that the
perturbation can be made arbitrarily small for any ¢ > 0, and the
nearest-neighbor orderings are different. (See Tables 2 and 3.)

l [ point a [ point b [ point ¢ ‘

point a 0 1 2
point b 1 0 2
point ¢ 2 1 0

TABLE 2. kNN orderings before transformation h.

| [ point a [ point b [ point ¢

point a 0 1 2
point b 2 0 1
point ¢ 2 1 0

TABLE 3. kNN orderings after transformation h.

3.3.3. Stability of kNN persistence diagrams. As shown in Sec. 2.3, Theorem 2.16
can be used to describe the stability and convergence of persistence diagrams created
using VR filtrations. Here, we show that similar results do not directly result for
persistent diagrams created using kNN filtrations.

Theorem 3.11 (kNN Persistence Diagrams are not Uniformly Globally Stable
to Point Changes). Consider two enumerated point clouds Y, Z € .A;,V and the

metric |Y — Z||, = max; |[y®) —z®|| over the space of enumerated point clouds.
Letting F' be the kNN ordering function from Def. 3.2, define matrices G = F())
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and H = F(Z) with entries G;; and H;j. Further denote their associated kNN
persistence diagrams Dy and Dz. Then there exists a uniform global bound of the
form

dp(Dy, Dz) < |G — Hlloo = max|Gyj — Hyl;

however, there does not exist a bound of the form:
dp(Dy,Dz) < ||G = Hlloo £ LIV = Z]
for some constant L.

Proof. The first inequality is satisfied by applying the original statement of the
stability theorem: persistence diagrams are uniformly bound by the maximal differ-
ence between the functions that are filtered. That is, the difference in persistence
diagrams is bound by the maximum difference in neighbor orderings. However, the
stability of persistent homology with respect to neighbor-ordering changes does not
imply stability with respect to point-location changes. This occurs because kNN
orderings are not stable to point perturbations. To disprove the second inequality,
we provide a counter example. Recall the sets of N = 3 points in Fig. 6 with lo-
cations Y = {—1,—¢,1} and Z = h(Y) = {—1,¢,1}, with ¢ € R. By construction,
|G — H||oc = 1 for any small €, but || — Z||,, = 2¢. Suppose there did exist
a uniform bound with Lipschitz constant L, then the points ) and Z with any
e < 1/(2L) yields a contradiction since one would must have both ||G — H||s = 1
and ||G — H||e < 1. O

3.3.4. Topological convergence of kNN orderings. We now use the kNN ordering
function to define a discrete-topological notion of convergence for a sequence of
point sets using kNN persistent homology.

Definition 3.12. Consider a sequence of point sets Y(t) = {y¥(¢)|i € V} with
teNand V= {1,..,N} and y®(t) € RP. We say that the sequence {)J(t)} has
global convergence in kNN topology to the limit Y iff lim; ., F(Y(t)) = F(Y),
where F' is the neighbor-ordering function. More precisely, for any e, there exists a
t* such that max;; |F;;(Y) — Fi;(Y(t))| < € for all t > t*.

Definition 3.13. Consider a sequence of point sets Y(t) = {y¥(¢)|i € V} with
teNand V = {1,..,N} and y(¢) € RP. Let Nix € {NJ" Nams Nmor) he
symmetrized neighborhoods that are defined in Def. 3.3. We say that the sequence
{Y(t)} has k-bounded convergence in kNN,min topology to a limit ) iff
limy o0 Fij(Y(t)) = F;j(Y) for all i € V and j € N7, where k < k. Similarly,
we have k-bounded convergence in kINN,trans topology, x-bounded con-
vergence in kNN,max topology for N, € {N} ", N"**} respectively. More
precisely, for any €, there exists a t* such that max;ey jen,, |Fi; (YY) — Fi; (Y ()] < €
for all t > t* and j € N where Ny, € {N/pin Nfrans Nmary,

Note that x-bounded convergence is inclusive so that convergence for a given x
also implies convergence for any x' < x. In particular, global convergence in kNN
topology implies xk-bounded convergence for any k.

We now define local variants of kNN topological convergence.

Definition 3.14. Consider a sequence of point sets Y(t) = {y?(¢)|i € V} with
t € Nand V = {1,...,N} and y(J(t) € RP. We say that the sequence {J(t)}
has U-local convergence in kNN topology to a limit Y iff lim;_,o F;;(Y(t)) =
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F;;(Y) for all i,5 € U C V. More precisely, for any e, there exists a t* such that
max; jey |sz(y) — Fl(y(t)” < € for all t > t*.

Definition 3.15. Consider a sequence of point sets V() = {y®(t)|i € V} with
teNand V= {1,..,N} and y®(t) € RP. We say that the sequence {)(t)} has x-
bounded U-local convergence in kNN topology to a limit Y iff lim;—, . Fi; (Y (t)) =
Fij(Y) for all i € U C V and j € Ny, where the symmetrized neighborhoods
Ni € {Nin Nfrans Nfmazy are given in Def. 3.3 and k < k. More precisely, for
any e, there exists a ¢t* such that max;ey jev |Fij (V) — Fi; (Y(t))| < € for all £ > t*.

Note for any point set that convergences in global kNN topology (or k-bounded
convergence in kNN topology), that there exists a t* such that F;;(Y) = F;;(V(t))
forall t > t* and i,j € V (or i € V and j € Ny). Specifically, we can choose € €
(0,1). Since F;;(Y) € N for any point set ), the condition |F;;(Y) — Fi; (V(t))] < €
implies F;;(Y) — F;;(Y(t)) = 0 for all ¢ > t*. That is, kNN convergence is a discrete
property that is exactly obtained for sufficiently large ¢ > ¢*. This significantly con-
trasts the notion of convergence in norm, which is often asymptotically approached
rather than exactly obtained. The next theorem more precisely establishes a relation
between convergence in a normed metric space and convergence in kNN topology.

Theorem 3.16 (Convergence in Norm Implies Convergence in kNN Topology for
non-degenerate point clouds). Let Y(t) = {y @ (t)|i € V}, with y®(t) € RP, be
an element of a sequence of point clouds in which each point converges in norm
to some limit, limy o0 ||y (t) — y@|| = 0 for each i € V. We assume the points
{y®} to be non-degenerate as described following Definition 3.1 (i.e., we assume
ly® —y @Dz # |ly®D — y®|ly for any k # j). Define Y = {y]i € V}e AY as
that limit, and assume uniform convergence Y(t) — Y. Then Y(t) — Y in kNN
topology, and there exists a t* such that F(Y(t)) = F(Y) for any t > t*, where F
is the meighbor-ordering given by Def. 3.2.

Proof. Let di;(t) = [[y®(t) =y (t)ll2, dij(o0) = [ly® — yW||2, and dix(o0) =
[y — y®||5, and define § = min; j ; |d;;j(00) — dix(o0)|. Therefore, not only
is it the case that the points are non-degenerate, d;;j(00) # dix(00), but that the
distances to any two neighbors of a given point y(?) differ by at least 6. Since
y®(t) — y(c0) uniformly, then for any € there exists a t* such that max; ||y (t)—
y || < e for all i and ¢ > *. Tt then follows that |d;;(t) — d;;(c0)| < 2¢. Further,
choose t* such that the convergence bound holds for € = §/4, implying that |d;;(t) —
d;j(00)| < 6/2 for all 4,j and t > t*. That is, the distances to neighbors differ by
at most /2 from their limiting values, and at the same time, any two neighbor
distances differ by at least 6. It then follows that the neighbor orderings and kNN
topology are identical for points Y(t) and Y [i.e., F(Y(t)) = F(Y)] for any t > t*.
In Appendix A, we provide an extended discussion on why the limiting point cloud
Y must be non-degenerate. O

Finally, we prove that the reverse property does not necessarily hold.

Theorem 3.17 (Convergence in kNN Topology Does Not Imply Convergence in
Norm). Let Y(t) = {y®@(t)i € V}, with y(t) € RP, be an element of a sequence
of point sets that converges in kNN topology. Then each y® (t) may or may not
converge to some limit y(i) as t — o0.

Proof. The proof to Thm. 3.16 describes the case in which both converge. Here,
we complete the proof by giving a counter-example in which a sequence of point
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sets converges in kNN topology but does not converge pointwise. Let ¥V = {1,2,3

g pology ge p y 4y 9,
V() = {yW(t) = it|li € V,t € N}, and note that y(t) = it diverges with ¢ for all
1 €Y. However,

(4)

—_ O =
SN DN

0
FO@) = |1
2

for any t > 0, implying that Y (¢) converges in kNN topology to an element ) € A3—
e.g., one can choose Y = {1,2,3} so that F(Y(t)) = F(Y) for any t > 0. Thus,
convergence in kNN topology has no bearing on pointwise convergence. O

4. kNN persistent homology reveals discrete topological convergence of
PageRank algorithm. In this section, we study the convergence of an iterative
method for approximating Google’s PageRank an use kNN persistent homology to
develop a perspective from discrete topology—that is, as opposed to the typical
geometric perspective of convergence under a vector norm. In Sec. 4.1, we review
the PageRank algorithm. In Sec. 4.2, we propose a method of using kNN homology
to study PageRank convergence, applying our method to an empirical network en-
coding social interactions among dolphins. In Sec. 4.3, we extend these experiments
to study kNN homological convergence for three families of random network.

4.1. PageRank: A Review. Google developed PageRank to solve the problem
of web search and ranking for the World Wide Web [3]. Their aim was to create
an importance measure for each webpage distinguish highly recognizable, relevant
pages from those that are less known. There are many derivations of PageRank
[67, 36], all of which stem from modeling ‘websurfing’ (i.e., how people navigate the
web) as a Markov chain. In this analogy, the fraction of random websurfers at a
particular web page is given by the stationary distribution of a Markov chain.

A main challenge for this formulation is that in practice, a network connecting
webpages via their hyperlinks does not usually consist of a single connected compo-
nent. Instead, there are isolated webpages that cannot be navigated to, or navigated
from. To address this issue, the Google founders introduced ‘teleportation’ so that
with probability «, websurfers click a hyperlink to move between webpages, and
with probability 1 — «, websurfers randomly jump to webpage ¢ with probability v;.
Parameter « is called as teleportation parameter or damping factor. In the original
formulation, a walker would jump uniformly at random to another webpage so that
the transition probability to each webpage is the same: v; = v; = 1/N, where N is
the number of webpages. It is also beneficial to allow the v; values to be heteroge-
neous to bias the random websurfing to remain near a particular set of webpages.
Such dynamics is called ‘personalized’ PageRank, and v is called the personalization
vector.

Both PageRank and personalized PageRank can be formulated as a discrete-time
Markov chain in which the transition matrix is given by the Google matrix:

G=aP+ (1 -a)ev’, (5)
where e is a vector of ones and each entry P;; gives the probability of transitioning
from webpage i to webpage j following a hyperlink. The matrices P, ev’ and G are
all row-stochastic transition matrices. The stationary distribution of the Markov

chain with transition matrix G is called the PageRank vector m € R, which is the
limit of the iterative equation

x(t+1)T =x(t)TG, (6)
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for which the fixed point is the solution to the eigenvalue problem G”7 = 7.

The PageRank algorithm has contributed toward Google’s rise as a leading tech-
nology company, but it’s worth noting that it has also been applied in a wide variety
of domains beyond web search [27]. In any context, the practical usage of PageR-
ank comes with various challenges. For example, what « value should be used?
The PageRank vector can be integrated with a machine learning framework for web
search [53], used to help fit functions over directed graphs [72], and can be used
to predict missing genes and protein functions [32, 52]. In these various cases, «
must be separately chosen as appropriate. As in [57], the author suggests choosing
a = 0.15 for correlated discovery in a multimedia database. Google historically set
a = 0.85, which often remains as the default choice in the literature.

In our paper, we explore a different challenge that arises when considering how
many times to iterate Eq. (6). The iterated values x(t) — 7 converge as t — oo, but
a more practical questions involves studying how many iterations are required for
the associated ranks to converge. That is, if one ranks webpages from top to bottom
based on their m; values, then one only needs to iterate Eq. (6) until those ranks
converge. Understanding the asymptotic convergence rate and asymptotic error is
not immediately relevant when considering this practical question, and we propose
kNN persistent homology as a mathematically principled technique to study the
convergence of rankings (and relative orderings more generally).

Below, we will study the convergence of persistence diagrams associated with
converging approximate PageRank values x(t) — 7, comparing the results for kNN
filtrations to those of VR filtrations. We will show that the convergence of persis-
tence diagrams for VR filtrations closely relates to the convergence in vector norm
(i.e., due to the stability theorem). In contrast, we the convergence of persistence
diagrams for kNN filtrations more closely resembles the convergence of rank or-
derings. In other words, convergence of kNN persistent homology can be used to
predict how many iterations are required for x(¢) to be sufficiently close to 7 such
that the ranking of nodes—i.e., from 1 to N—has converged.

We formally define the converged rank order according to PageRank by

Ri(m) = [p(=)];,

where ¢ : RY — Nﬂf is the ‘argsort’ function. Recall that the function ¢ was
previously defined to sort the pairwise distances in ascending order. By multiplying
7 by negative one, we now sort the m; values in descending order so that R;(w) =
1 for the top-ranked node ¢ = argmax;m;, which is considered to be the most
important node in the graph. Similarly, R;(w) = N for the lowest-ranked node.
For each time ¢, we similarly define the approximate rank orderings

Ri(x(t)) = [p(=%(t))]:-

We note that the rank orderings satisfy R;(x(t)), Ri(w) € {1,...,N}. Because
x(t) — m, the approximate rank orderings R;(x(t)) converge to their final rank
orderings R;(m). Moreover, for each node ¢, the rank R;(x(¢)) can converge to
R;(m) at a different time step t. Therefore, we define ¢ to be the iteration of
rank convergence, which is the value of ¢ at which R;(x(t)) = R;(m) for all
t>tr

4.2. kNN homological convergence of PageRank for a dolphin social net-
work. We first study an empirical network in which undirected, unweighted edges
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Rippléfluke

FIGURE 7. (left) A social network of interactions among N =
62 dolphins in New Zealand. (right) node colors indicate the
nodes’ respective PageRank values. In both panels, nodes with
larger /smaller size have more/fewer connecting edges.

Node Rank vs Time Individual Rank Convergences

0.010 0.015 0.020 0.025 0.030
time, t pagerank, 7;

FIGURE 8. (left) Convergence of nodes’ rank orderings R;(x(t)) —
R; () versus time step t. (right) Scatter plot comparing t¥ and ;
across the nodes 1.

encode social interactions among N = 62 bottlenose dolphins living near Doubt-
ful Sound in New Zealand [48]. We apply the iterative PageRank algorithm with
teleportation parameter o = 0.85 to the network with an initial condition given by
z;(0) =14/ (Z;V:1 7). In the Figure 7, we illustrate the dolphin network and indicate
the nodes’ converged PageRank values by node color.

4.2.1. Convergence of ranks for dolphin network. In Fig. 8, we study the con-
vergence of the rank orderings R;(x(t)) — R;(m) for the dolphin network. In
Fig. 8(left), observe that the R;(x(t)) values change up until a time step ¢}, which
is potentially different for each node i. In Fig. 8(right), we depict a scatter plot
comparing ¢ and m;, noting that we do not see any strong correlation. From a
practical perspective, one is often most interested in the top-ranked nodes, and so
one is primarily interested in how many iterations are required for the top-ranks to
converge. However, there is no guarantee that the top-rank nodes converge before
the lower-ranked ones do, or vice versa.
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F1GURE 9. Homological convergence of an iterative algorithm for
PageRank for the dolphin social network. (left) Convergence of
persistent homology for VR filtrations coincides with a geometrical
notion of convergence ||x(t) — || — 0 due to the stability theorem.
Both asymptotically approach 0 with exponential decay. (right)
In contrast, convergence of persistent homology for kNN filtrations
more closely resembles the convergence of the rank ordering, which
exactly converges after ¢t = 14 time steps in this case. Observe
the kNN persistence diagrams for the max and min methods of
symmetrization for kNN sets converge at around the same number
of iterations.

4.2.2. Convergence of kNN homology for dolphin network. We now study the con-
vergence of persistence diagrams for the converging x;(t) — m; values, comparing
persistence diagrams resulting from kNN filtrations to those of VR filtrations. More
precisely, we define Dy r(x) and Dinyn(x) to be the persistence diagrams accord-
ing to VR and kNN filtrations, respectively. We will also study kNN filtrations
with two types of symmetrization for k-nearest neighbor sets: the minimum and
maximum approaches. Then, we let Dynn maz(X) and Dgnn min(x) that are the
corresponding persistence diagrams in the symmetrization l;:ij, l%ij of kNN ordering.
Given the persistence diagrams for 7 and x(t), we study homological convergence
through the bottleneck distance, e.g., d(Dy r(x(t)), Dy g()).

In Fig. 9, we illustrate the convergence of persistence diagrams for (left) VR
filtrations and (right) kNN filtrations. We compare these two converging topological
spaces, respectively, with the normed approximation error, ||x(¢t) — ||, and the total
difference in rank orderings, >, |R;(7) — R;(x(t))|. Observe in Fig. 9(left) that VR
persistent homology converges similarly to ||x(t) — ||, whereas kNN persistent
homology converges similarly to ) . |R;(7) — R;(x(t))|. That is, kNN topological
convergence can be used as a proxy to estimate the number of iterations required
for the rank orderings to converge to exactly their final values.

4.2.3. Impact of a on convergence for kNN homology and PageRank. Next, we ex-
tend the previous experiment for the dolphin network by studying the convergence
of the iterative PageRank algorithm and how it changes as one varies the telepor-
tation parameter a. Specifically, in Fig. 10 we plot results that are similar to those
shown in Fig. 9 (which used a = 0.85), except now different columns depict re-
sults for different choices of .. That is, the top row show geometrical convergence
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FiGUure 10. Impact of teleportation parameter o on the geomet-
rical and (discrete) topological convergence of PageRank for the
dolphin network. The top and bottom rows are similar to the
left and right columns of Fig. 9, respectively, except now different
columns depict different choices for a.
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FI1GURE 11. U-local topological convergence for the following sub-
set of nodes: U; = {Ripplefluke, Zig, Feather, Gallatin, SN90,
DN16, Wave, DN21, Web, Upbang} . Similar to Fig. 9, the left
and right panels depict convergence of persistence diagrams for
VR and kNN filtrations, respectively.

(i.e., convergence in norm), whereas the bottom row depicts discrete topological
convergence using kNN persistent homology.

First, observe in the top row that convergence slows as alpha increases, which is
expected since it is known that the iterative method has an asymptotic convergence
rate of a' [56]. More importantly, observe in the bottom row of Fig. 10 that for
all values of a the ranks converge at approximately the same iteration that kNN
topological convergence occurs. In contrast, as was previously noted, examining
VR homology is not immediately informative about the convergence of ranks, since
it coincides with geometrical convergence.
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FIGURE 12. Same information as in Fig. 11, except we consider
the subset U; of nodes that have the largest PageRank values.

4.2.4. U-local convergence of dolphin social network. Next, we further study the
homological convergence of PageRank for the dolphin network, except we now focus
on our notion of U-local topological convergence, which we presented in Sec. 3.3.4.
In this context, we focus on convergence for a subset &/ C V of the nodes, and we
will consider two subsets: a randomly selected set of nodes—U; = {Ripplefluke,
Zig, Feather, Gallatin, SN90, DN16, Wave, DN21, Web, Upbang} and Us is the set
of 10 nodes that have the top PageRank values. Note that we still compute the
iterative approximation to PageRank in the usual way, except that we only consider
the values m; and z;(t) for which i € U.

In Fig. 11(left) and (right), we depict convergence of VR and kNN persistence
homology, respectively for the subset of nodes ;. Observe that convergence for
VR persistent homology is similar to geometrical (i.e., vector-norm) convergence.
In contrast, observe in Fig. 11(right) that the kNN homology and rank orderings
converge after approximately ¢t = 5 iterations for this subset.

In Fig. 12, we depict the same information, except that we now consider the
subset Uy of nodes with top PageRank values. In this case, the VR convergence
more closely aligns with ||x(¢) — || than when we considered the full set V of nodes
or the subset U;. Moreover, the kNN homology and the rank orderings converge
after approximately ¢ = 9 iterations in this case.

4.3. kNN homological convergence of PageRank for random graphs. In
this section, we further use kNN persistent homology to study the PageRank algo-
rithm’s convergence from the perspective of discrete topology. Specifically, we will
extend our findings for the empirical dolphin network by considering three families
of generative models for random graphs: the Erdds-Rényi model [22]; the Watts-
Strogatz model for small-world networks [70]; and the Barabasi-Albert model for
scale-free networks [4]. All experiments support our finding that convergence in
kNN homology closely predicts the convergence in rank according to PageRank.

4.3.1. Erdés-Rényi (ER) random graphs. We first study kNN homological conver-
gence for random graphs generated by the ER G(V,p) model with N nodes and
undirected edges that are created with probability p. In Fig. 13 we compare the
measure ||[R(x(t) — R(w)|| for the difference in ranks to the bottleneck distance
d(Dpnn(x(t)), Denn(m(t))) that relates the persistance diagram Dy (x(t)) ac-
cording to kNN homology for the approximate PageRank x(¢) to that for its as-
ymptotic limit Dy n (7). We consider kNN homology with both the max and min



26 MINH QUANG LE AND DANE TAYLOR

methods for symmetrizing the nearest neighbors. Different columns and rows in
Fig. 13 depict results for different choices of N and p, respectively. Observe in all
panels that convergence in rank closely aligns with convergence in kNN homology.
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F1cUre 13. kNN homological convergence of PageRank for Erd&s-
Rényi random graphs [22].

4.3.2. Small-world random graphs. Next, we study kNN homological convergence
for small-world random graphs generated by the Watts-Strogatz model [70]. Each
graph is constructed as follows. First, N nodes are uniformly dispersed along a
ring manifold, and each node is connected by k undirected edges to its four nearest-
neighbor nodes. (All experiments assume k = 4.) Then, each edge is rewired
uniformly at random with probability p. In Fig. 14, we compare the convergence of
rankings and kNN homology similarly to Fig. 13, and as before, different columns
and rows reflect different choices for N and p, noting that p has a different meaning
for this model. Again, observe in all panels that the convergence in rank and kNN
homology occur at approximately the same iteration ¢.

4.3.3. Scale-free random graphs. Finally, we repeat this experiment for scale-free
graphs using the Barabasi-Albert model [4]. In this model, one starts with an
initial “core” graph and then nodes are iteratively connected to the core using m
undirected edges. This repeats until the graph contains NV nodes. In Fig. 15 we
compare the convergence of rankings and kNN homology similarly to Figs. 13 and
14, except now different columns and rows reflect different choices for N and m.
As before, the convergence in rank and kNN homology occur at approximately the
same iteration.
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FicURE 14. kNN homological convergence of PageRank for small-
world networks generated using the Watts-Strogatz model [70].
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F1GURrE 15. kNN homological convergence of PageRank for scale-
free networks generated using the Barabasi-Albert model [4].
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5. Discussion. In this paper, we developed an approach for topological data anal-
ysis (TDA) that utilizes k-nearest neighbor sets to define kNN complexes, kNN
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filtrations, and kNN persistent homology. Our approach was developed in the spirit
of discrete topology and by examining the relative ordering of points, as opposed
to the precise distances between points. Although kNN orderings are related to
pairwise distances, we provided theory and many experiments highlighting impor-
tant differences between persistent homology that is based on kNN filtrations versus
Vietoris-Rips (VR) filtrations.

To gain theoretical insights into kNN-based TDA, we investigated stability prop-
erties for the resulting persistence diagrams in Sec. 3.3.3 and convergence properties
in Sec. 3.3.4. While persistence diagrams resulting from kNN filtrations do not sat-
isfy a stability theorem involving a universal bound on perturbed point sets (see
Theorem 3.11), we identified and characterized different notions of stability and
convergence by identifying equivalence classes as well as bounds on the bottleneck
distance between persistence diagrams for kNN homology that are based on the
maximum difference for a kNN ordering. Our formulation of convergence also led
to several types including global convergence, k-bounded convergence and U-local
convergence. Moreover, we identified some relations among these types as in The-
orem 3.16 and Theorem 3.17. Notably, TDA methods have already been insightful
for myriad interdisciplinary applications, and we expect kNN-based TDA to simi-
larly find broad applications as this methodology is further developed and applied.
For example, our proposed kNN filtrations have already been extended to develop
a topological PCA algorithm that was applied to RNA-sequence data [16].

Herein, rather that apply the TDA toolset to data, we proposed to utilize TDA
to develop a topological perspective for converging data-science algorithms, thereby
complementing the more traditional geometrical perspective (i.e., convergence in
norm). Focusing on the PageRank algorithm, we showed that the convergence of
persistence diagrams for VR filtrations closely relates to the convergence in vector
norm (i.e., due to the stability theorem). In contrast, the convergence of persistence
diagrams for kNN filtrations more closely resembles the convergence of rank order-
ing. In other words, convergence of kNN persistent homology can be used to predict
how many iterations are required for x(¢) to be sufficiently close to 7 such that the
ranking of nodes—i.e., from 1 to N—has converged. Although we have focused on
the PageRank algorithm, iterative algorithms for solving systems (e.g., root finding)
are some of the most widely used numerical algorithms. We have shown that the
existing TDA approach of VR filtrations coincides with geometrical (i.e., normed)
convergence and thereby provides one perspective for the convergence of numerical
algorithms. In contrast, kNN filtrations provide complementary insights from the
perspective of a discrete topological space that is associated with the relative po-
sitioning of points. As such, we expect kNN complexes, filtrations, and persistent
homology to have many applications for converging numerical algorithms beyond
PageRank.

Acknowledgments. We thank the FDS editors and referees, including suggesting
the example given in Appendix A.

Appendix A. Extended discussion for Theorem 3.16. The following sequence
of point clouds illustrates the necessity of the limiting point cloud being non-
degenerate in Theorem 3.16. It is a slight adaptation of an example presented
in Fig. 6.
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For each t € N, define Y(t) = {y?),yét),yét)} with y%t) =-1, y:gt) =1 and

W ._ )i
Yo o = t_l

t

if ¢ is even

if ¢ is odd.
Note that each point converges in norm to some limit:
g 1=y g 0= g =y

and the limiting point cloud is Y := {y1, y2, y3}. However, in this example

01 2
FQi)=12 0 1
2 10
if t is even, but
01 2
FQi)=11 0 2
2 1 0
if ¢ is odd. Thus the sequence of F(Y(t)) and the associated kNN persistence
diagrams do not converge with ¢. In this example, |y1 — y2| = |y2 — ys3|, and so the

enumerated point cloud ) is degenerate. Assuming non-degeneracy for the point
cloud ensures the sequence F()(t)) to converge with ¢ (and in fact, the limit F(}))
is well defined only under this assumption).
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