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Abstract—Mathematically secure cryptographic implementa-
tions can leak critical information through physical side channels.
Machine learning (ML) has facilitated efficient side-channel anal-
ysis (SCA), especially on small IoT devices and smart cards.
We propose a lightweight, synthesizable technique to enhance
ML-based SCA resilience. Our approach introduces a physical
time variance technique that specifically targets Deep Neural
Network based MLSCA. This brief presents a physical time
variance technique that is effective against CNN contrary to the
previous state-of-the-art. By eliminating analog units and utilizing
a switched capacitor design, it outperforms existing techniques
by 5x in terms of traces to train the attacking neural network.

Index Terms—Side channel attack, countermeasures, AES256,
time-varying transfer function, generic, low-overhead, synthesiz-
able, MLSCA.

I. INTRODUCTION

OMPUTATIONALLY secure modern encryption engines

can be compromised through side-channel attacks,
such as power traces [1], EM emanations [2], and timing
information [3]. Deep learning techniques have been used to
analyze these side channels and recover secret keys with just
a few power traces in recent times [4] increasing the threat
space significantly for IoT devices which need not operate for
a longer time. This brief introduces a low-overhead counter-
measure using time-varying power-supply transfer functions
implemented with digital-friendly switch capacitor circuits,
effectively protecting against different deep neural network-
based attacks.

A. Motivation & Related Works

Fig. 1(a) shows the history of switch capacitor (SC) based
and time-domain SCA countermeasures. SC-based SCA coun-
termeasure was first proposed by Tokunaga and Blaauw [5]
with > 10M minimum traces-to-disclosure (MTD). However,
a separate bias is required to clear the residue, which made it
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analog-like and not easily scalable across technology nodes.
DNN-based SCA has two phases, namely a) the training phase,
and b) the attack phase. A DNN model is trained using
power traces in the training phase as shown in Fig. 1(b). The
trained model is used to attack directly in the attack phase. As
DNN is already trained it takes a very less number of traces
(M < 10) reducing attack time significantly, thus increasing
threats for smart cards, and IoT devices in a practical sce-
nario. Earlier, time shifting/wrapping-based countermeasures
are [6], [7] explored primarily through non-silicon imple-
mentations, moved each trace by only a few time samples
in a deterministic way (Fig. 1(a)). They have been rendered
ineffective against CNN-based SCA. Frequency scaling [7]
can also be defeated by analyzing the time-domain power-
supply waveform alignment-based attack or frequency domain
attacks. Series LDO [8], [9], IVR [10] based countermeasures,
proposed recently, show moderate defense against CPA/CEMA
(up to 10M MTD) and are not evaluated against MLSCA.
Current domain signature attenuation (CDSA) [11], [12], addi-
tive masking based solutions [13], and randomized LDO with
arithmetic countermeasure [14] have been proven to be pro-
tected against deep-learning (DL) SCA attacks. Ghosh et al.
proposed a solution of digital signature attenuation which
brings the benefit of analog signature attenuation in the digi-
tal domain [15], [16], [17]. A memristor-based DPA-resistant
AES implementation is explored in [18] using SPICE simu-
lations (not validated in silicon). Recently, ML-based solution
is used for side channel resilience [19], which is not evaluated
against ML-based SCA strategies.

In this brief, we advance the state-of-the-art of SC counter-
measures for SCA making it digital-friendly by removing the
residue-reset requirement from [5], combining time-variance
into the power supply network through SCs that dynamically
changes the transfer function between the local AES supply
and observable supply. We demonstrate a switch capacitor-
based time-varying transfer function (SC-TVTF) countermea-
sure resilient to CNN/FCN-based attacks. SC-TVTF controller
is fully synthesizable, and switches are synthesizable in auto-
matic place & route(APR) flows which include power gates.
Capacitors are placed in layout using DCAP cells by industry-
standard APR tools. Synthesizable SC shows slightly worse
results against Correlational Power Attack than analog coun-
terpart [16]. However, lower capacitance leads to low area
overhead in this technique. Moreover, minimal voltage droop
causes no performance overhead. Power comparison with
respect to analog counterpart shows our solution is mini-
mum power overhead. Also, analog switch capacitor-based
solution is not tested against modern ML-based side-channel
attacks. Less time-consuming (theoretically possible in us)
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a) State-of-the-art switched cap-based and time-domain countermeasures are shown. This brief extends and merges both concepts to achieve high

resiliency against ML-based power SCA. b) Efficacy of Deep Learning-based SCA: traces to perform a successful attack can be reduced by > 1000x by

proper profiling.

M-trace attack [4] is a significant threat against IoT devices.
Each time sample captured by the oscilloscope acts as a
feature for DNN, scrambling the power traces randomly
using the SC-TVTF network makes the feature set dif-
ferent from the training sets as different sampling points
are scrambled in time-domain. Hence, it becomes practi-
cally harder for DNN to attack in real time providing SCA
security.

B. Contributions

This brief has four-fold contributions:

e This 65nm TSMC CMOS IC for the first time demon-
strates a time-domain MLSCA resilient technique.

o This brief advances the state-of-the-art of switched
capacitor-based solutions by bringing the technique into
a completely digital domain and removing the need for
external analog bias voltage.

« This brief proposes a generic time-varying transfer func-
tion that provides resilience against CNN-based MLSCA,
thus advancing time-domain countermeasures.

o Finally, this implementation is a low-overhead, com-
pletely synthesizable solution dedicated to IoT devices
and smart cards.

Scrambling power traces in the time domain lacks math-
ematical security but lowers SNR for physical-layer secu-
rity. Traditional attacks can’t breach it, but reverse-
engineering/manipulating LFSRs allows for vulnerability.
Addressing this open research problem, we propose using ver-
ified TRNGs to generate a seed and prevent such theoretical
attacks.

II. CIRCUIT TECHNIQUES & SYSTEM ARCHITECTURE

Fig. 2 shows full SC-TVTF architecture consisting of N
(=16) unit switched capacitors (~20pF) and a lightweight
SC-TVTF controller. 1 out of N capacitors is randomly cho-
sen to supply the crypto core (parallel AES256) (‘Discharge’),
while another one is chosen to be charged from the
supply (‘Charge’), and the rest N-2 (=14) capacitors
remain disengaged (‘Store’). SC-TVTF controller ensures
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extra
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3. Random
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time variance
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Fig. 2. Working principle of SC-TVTF.

Discharge— Store— Charge— Store— Discharge sequence for
each capacitor while ensuring randomness. This architecture
allows the transfer of integrated power traces during discharg-
ing to random locations on the observable power trace creating
a TVTF and removing the need for residue-reset from [5].
The randomness is derived from nested LFSRs, increasing the
periodicity of randomization, seeded by external TRNGs. SC-
TVTF effectively creates physical time-domain information
shuffling, further aided by inherent capacitance mismatch due
to intra-chip process variations. Unlike traditional high over-
head algorithmic shuffling, SC-TVTF achieves a similar effect
by modifying the switch-capacitor power supply network,
which has not been explored in prior literature.

The full system architecture is presented in Fig. 3. Vjgs
node is directly connected to Vpp node in unprotected mode.
However, switch capacitor networks are enabled in protected
mode and the power trace is shuffled in the time-domain
using an intelligent TVTF controller. The entire capacitor
network has a total of 320pF on-chip capacitors. SC-TVTF
controller (Fig. 4(a)) consists of 4b and 16b Fibonacci LFSRs
for randomization, two 8 x 4 memories, and two decoders.
The working of the SC-TVTF controller is demonstrated
using a timing diagram in Fig. 4(b). Randomly generated
4-bit numbers are used to select an address in memory(Q and
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Fig. 4. a) SC-TVTF controller architecture. b) Example timing diagram of
SC-TVTFE.

memoryl. Each address contains a number that acts as a tag
for the switched capacitors. Based on the tag, capacitors to be
charged/discharged are selected by a decoder. Once selected
for charging or discharging, those tags are shifted to alternate
memory ensuring no performance degradation unless TVTF
operating frequency is sufficiently low. For example, the ran-
domly selected address is 4 as shown in Fig. 4(b) at the
beginning, hence 7 and 12 capacitors have been selected
for charging and discharging respectively as 7 and 12 are the
selected tag at the address 4. Those capacitor tags swapped
places between memory0) and memoryl in the next cycle.
In the next 2 cycles, address 5 and O are randomly selected
continuing a similar phenomenon in the SC network.

III. MEASUREMENT RESULTS

This 65 nm test chip, being the first of its kind (switch
capacitor-based physical time domain obfuscation), shows
promising results against MLSCA attacks. Die micrograph and
IC specifications are shown in Fig. 5. This IC is taped-out
with TSMC 65nm CMOS LP technology and packaged using

0.6 mm
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= — Package Wire-bond (Glob-
H | :| '_F 1 1 1__; Top Encapsulation)
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— Performance | 0.8V/10MHz/246uW
sC Active Area | 0.18 mm?
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AES256 Cap Cap
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=S r—— Scan Chain | AES Core: 387b
e — ~ Protected core:
v 143b
Fig. 5. IC micrograph and design specification.

simple wire-bond and globe-top encapsulation. It has a par-
allel AES256 implementation with a 128b datapath. The
active area of the AES256 is 0.15mm?. Composite field-based
sbox is used earlier as an arithmetic countermeasure against
power and EM side channel attack [14] and fault injection
attack [20], [21], [22] as well as combined attacks [23], [24].
This type of sbox often leads to low area implementation as
well [25]. However, this brief shows the efficacy of time-
variance-based physical countermeasure against ML-based
power side-channel attack. Hence, this countermeasure can be
used with any other arithmetic countermeasure. As our goal
is to see relative improvement due to time-domain obfusca-
tion at VDD with respect to unprotected, we use a LUT-based
implementation of sbox. Note that, the combined attack is
dependent on power traces for correct and faulty ciphertexts
of the same plaintext [26]. Due to time domain obfuscation,
traces are misaligned hence, any correlational attack is harder
to accomplish. However, a thorough analysis will be con-
ducted as part of future work. AES256 is operated at I0MHz
for all the SCA experiments and it consumes 189uW power
while being operated at 0.8V Vpp. The active area of the
countermeasure is 0.03mm?. Scan chain interface is used for
configuring both AES and the countermeasure. Protected mode
consumes 248uW power at 10MHz operational frequency and
0.8V Vpp. It should be noted that [15] uses similar technique
in addition to digital signature attenuation to achieve >1.25B
minimum traces to disclosure (MTD). However, TVTF as a
standalone countermeasure is first time tested against machine
learning based side channel attack here. We conclude that with
just time-domain obfuscation, our countermeasure has very
high resistance against FCN based or CNN based ML assisted
side channel attack. Digital signature attenuation is the main
technique explored in [15], [17] where [17] is taped-out in dif-
ferent die. Moreover [17] does not include any time domain
obfuscation techniques.

The 1st key byte is targeted for the DNN-based attack.
During the training/profiling phase, a fixed plaintext is fed
to the AES256 and power traces for all the possible 256
combinations for the 1st key byte is captured using a 5Gsps
oscilloscope and fed to the DNN for training. During the test-
ing/attack phase, the trained DNN is then used to recover the
Ist correct key byte from the target device (AES256) under
attack. The final architectures of the FCN and CNN are shown
in Fig. 6.

It should be noted that increasing the number of layers in
deep neural network does not necessarily increase or keep the
performance constant at the highest level due to overfitting
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which is clearly visible in Fig. 7(a,d). Adding more FCN lay-
ers can increase the capacity of the network, allowing it to
learn more complex representations. However, too large or too
deep model leads to overfitting, where the model memorizes
the training data excessively and fails to generalize well to
unseen data. Power traces are one-dimensional and simpler
datasets with respect to other ML problems such as object
detection. Hence, in general, even more than 3 hidden lay-
ers lead to overfitting. A lower learning rate leads to a very
high training time and epoch. This implies if a low learn-
ing rate is used that can lead to improper training and hence
attack model does not work the best. To solve this in our final
attack model, we start with a high learning rate, then in case
of validation accuracy is stuck in a plateau, we reduce the
learning rate to reach the optimum. This adaptive approach
is well-granted in the machine learning community [27] and
provides the optimum results. We use google colab as the
ML platform for attacking. A100 gpu (free for use) is used.
Data can be processed in Smin 48 seconds with 3 hidden lay-
ers. 2 hidden layers only improve 1 minute in terms of time
consumed. As the dataset is smaller and 1 dimensional, we
do not see much improvement in terms of time/energy con-
sumed. This is the reason behind choosing 3 hidden layers

of traces to train the attacking neural network. Both FCN and CNN-based
attacking neural network can retrieve the correct key after being trained with
just 5K traces. Both neural networks could not be trained with S00M traces
to detect the correct key when the countermeasure is on.
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Fig. 10. Comparison table with respect to state-of-the-art.

which provide us slightly better performance with respect to
2 hidden layers. Many machine learning problems (e.g., object
detection) require to process multidimensional data with a
large dataset. Reduction of layer is intuitive in those cases
trading off slight inaccuracy due to extremely high training
time. Initially, we tried fixing all layers to same parameter
and search for the best hyperparameter to achieve the high-
est accuracy. We observe that 560 neurons provide the highest
accuracy as shown in Fig. 7. Now, we run a sweep of different
numbers of neurons in different layers and it is observed that
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accuracy does not improve much. It is difficult to optimize
a perfect set of neurons/layer as we have 3 hidden layers. It
is a multi-dimensional optimization problem. We tried to fix
the number of neurons of Ist 2 layers and number of neu-
ron is varied in 3rd hidden layer. It is observed that 512,
300, and 860 neurons in consecutive layers lead to similar
accuracy. Fig. 8 presents a sample time-domain measure-
ment of unprotected and TVTF design respectively across 12
series resistance in the power supply. It is observed that with
200K unprotected traces, both the networks can be trained
to achieve 87% accuracy as shown in Fig. 9(a,c). Training
with 5K traces is sufficient to recover the correct key during
the test/attack phase with high confidence from the AES256,
with as low as 5 traces utilizing an M-trace attack using
the concept of majority voting [4]. In the protected imple-
mentation, the FCN and CNN models could not be trained
even after 0.5B traces with similar architecture(Fig. 9(b,d)).
Each of 1M traces have been averaged 100 times to get rid
of unnecessary measurement noise while training. A similar
averaging technique is introduced while attacking as well how-
ever, there is no success in such an attack that ensures the
efficacy of low-overhead SC-TVTF countermeasure against
DNN-based MLSCA. A comparison with previous relevant
works has been presented in the table of Fig. 10. This design
incurs 20% area overhead and 25% power overhead (con-
sidering all the extra components), which is the lowest to
date.

IV. CONCLUSION

Finally, SC-TVTF is an efficient low-overhead technique
that provides high MLSCA resilience (> 100, 000x improve-
ment in the number of traces to train compared to unprotected
AES and > 5x compared to state-of-the-art [14]) against
advanced DNN-based SCA attacks. NIST has selected Kyber
and Dilithium as the new standard for Post Quantum pub-
lic key cryptography and signature scheme respectively. NIST
has also selected ASCON as the new standard for lightweight
cryptography (LWC). It is important to note that the proposed
countermeasure is a generic one and can be used with any
of the crypto cores. For example, Kyber 90’s uses AES
as pseudo-random number generator. This countermeasure
being a generic countermeasure can not only be used in
AES of Kyber but also can be used for Kyber in gen-
eral. This will be done as part of future tape-out and can
be evaluated against standard and ML-based attacks as this
technique makes the countermeasure completely generic and
scalable.
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