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ABSTRACT
In cosmological analyses it is common to combine different types of measurement from the same survey. In
this paper we use simulated Dark Energy Survey Year 3 (DES Y3) and Rubin Observatory Legacy Survey of
Space and Time Year 1 (LSST Y1) data to explore the differences in sensitivity to intrinsic alignments (IA)
between cosmic shear and galaxy-galaxy lensing data. We generate mock shear, galaxy-galaxy lensing and
galaxy clustering data, contaminated with a range of IA scenarios. Using a simple 2-parameter IA model
(NLA) in a DES Y3 like analysis, we show that the galaxy-galaxy lensing + galaxy clustering combination
(2 ⇥ 2pt) is significantly more robust to IA mismodelling than cosmic shear (1 ⇥ 2pt). IA scenarios that
produce up to 5f biases in the 1 ⇥ 2pt case are seen to be unbiased at the level of ⇠ 1f for 2 ⇥ 2pt. We
demonstrate that this robustness can be largely attributed to the redshift separation in galaxy-galaxy lensing,
which provides a cleaner separation of lensing and IA contributions. We identify a number of secondary
factors which may also contribute, including the possibility of cancellation of higher-order IA terms in
2 ⇥ 2pt and differences in sensitivity to physical scales. Unfortunately this does not typically correspond to
equally effective self-calibration in the 3 ⇥ 2pt analysis of the same data, which can show significant biases
driven by the cosmic shear part of the data vector. If we increase the precision of our mock analyses to a
level roughly equivalent to LSST Y1, we find a similar pattern with considerably more bias in a cosmic shear
analysis than a 2 ⇥ 2pt one, and significant bias in the joint analysis of the two. Our findings suggest that
IA model error can manifest itself as internal tension between b± and WC + F data vectors. We thus propose
that such tension (or the lack thereof) can be employed as a test of model sufficiency or insufficiency when
choosing a fiducial IA model, alongside other data-driven methods.

Keywords: cosmological parameters – gravitational lensing: weak – methods: statistical

1. INTRODUCTION

The study of weak lensing as a cosmological probe has
evolved considerably in the last few years and decades. Al-
though we talk about “weak lensing" fairly loosely, the term
actually encompasses several distinct measurements. Cos-
mic shear is the correlation of galaxy shapes with each other.
That is, light from galaxies on adjacent lines of sight must
pass through a similar cross-section of the Universe, and so
the lensing distortions are correlated. It has been known for
some time that shear-shear two-point correlations are a use-
ful way to learn about cosmology (Bartelmann & Schneider
2001; Huterer 2002; Hu & Jain 2004; Frieman et al. 2008).
Indeed, to date, cosmic shear analyses (referred to as 1⇥2pt
analyses) have been key results of almost all galaxy imaging
cosmology surveys (Benjamin et al. 2007; Kilbinger et al.
2013; Heymans et al. 2013; Jee et al. 2016; Hildebrandt et al.
2017; Troxel et al. 2018; Chang et al. 2019; Hikage et al.
2019; Hamana et al. 2020; Asgari et al. 2021; Loureiro et al.
2022; Secco, Samuroff et al. 2022; Amon et al. 2022; Doux
et al. 2022; Longley et al. 2023; Li et al. 2023; Dalal et al.
2023; DES & KiDS Collaboration 2023).

Alternatively, instead of trying to detect lensing caused
by background large scale structure, we can measure weak
lensing around specific foreground lenses. One can do this
with massive clusters, and so study their density profiles and
total mass (Schneider et al. 2000; King & Schneider 2001).
Alternatively, one can use foreground galaxies as lenses, a
measurement known as galaxy-galaxy lensing. Since the
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clustering pattern of galaxies traces out the large scale struc-
ture of the Universe, these shear-position correlations mea-
sure a similar physical effect to shear-shear ones. If we
have a good estimate for the galaxy-to-dark matter mapping
(i.e. galaxy bias) and the distribution of redshifts (or better
yet, precise redshifts for individual galaxies), we can use
galaxy-galaxy lensing to probe the properties of the Uni-
verse. There is a relatively long history of this, using both
spectroscopic and photometric surveys (Sheldon et al. 2004;
Baldauf et al. 2010; Mandelbaum et al. 2013; Kwan et al.
2017; Prat, Sánchez et al. 2018; Alam et al. 2017; Leauthaud
et al. 2017; Yoon et al. 2019; Blake et al. 2020; Singh et al.
2020; Miyatake et al. 2022; Lee et al. 2022; Prat et al. 2022;
Porredon et al. 2022; Pandey et al. 2022). Often studies
of this sort (including many of those cited above) will also
incorporate galaxy clustering auto-correlations (Cole et al.
2005; Blake et al. 2012; Aubourg et al. 2015; Elvin-Poole
et al. 2018; Alam et al. 2021; Zhou et al. 2021; Rodríguez-
Monroy et al. 2022; Sánchez, Alarcon et al. 2023), in order
to break the degeneracy between galaxy bias and the clus-
tering amplitude f8. This combination is often referred to
as 2 ⇥ 2pt.

It is also worth noting briefly that there is a subfield of
weak lensing studies looking at the cross-correlation be-
tween galaxy surveys (lensing and positions) and Cosmic
Microwave Background (CMB) lensing. These are com-
plementary to other types of weak lensing (Namikawa et al.
2019; Marques et al. 2020; Robertson et al. 2021; Krolewski
et al. 2021; Omori et al. 2023; Chang et al. 2023; DES Col-
laboration 2023). The nomenclature of the combinations
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beyond 3 ⇥ 2pt is slightly less well-defined, but CMB lens-
ing is not the focus of this work, so we will not go into the
details here.

Although cosmic shear and galaxy-galaxy lensing are
powerful probes in their own right, combining the two with
galaxy clustering in a joint analysis (3⇥ 2pt) has become an
increasingly mainstream part of modern cosmology. This is
for a number of reasons, not least that the two have different
sensitivities to cosmological parameters, and so together can
break internal degeneracies (Hu & Jain 2004; Frieman et al.
2008; Cacciato et al. 2009; Yoo & Seljak 2012). Another
factor is the ability of joint data vectors to self-calibrate
photometric redshift error and other systematic uncertain-
ties (Huterer et al. 2006; Bridle & King 2007; Bernstein
2009; Joachimi & Bridle 2010; Samuroff et al. 2017). In
the past five or so years, joint-probe analyses using cosmic
shear, galaxy-galaxy lensing and galaxy clustering together
have provided some of the most powerful late-universe cos-
mology constraints to date (DES Collaboration 2018; van
Uitert et al. 2018; Joudaki et al. 2018; Heymans et al. 2021;
DES Collaboration 2022; Miyatake et al. 2023; Sugiyama
et al. 2023).

Before combining any given set of measurements, how-
ever, it is usual to demonstrate their consistency. If two data
sets are found to be discrepant, it points either to systemat-
ics in one or the other, or the need for a new model. This
can be an interesting new result or a nuisance, but either
way, one should not combine the discrepant data sets. Judg-
ing consistency using projected confidence contours can be
misleading, but fortunately a range of metrics using the full
parameter space have been proposed. For uncorrelated data
(e.g. from non-overlapping surveys or very different observ-
ables), various statistics have been developed, both Bayesian
evidence- and likelihood-based (Lemos, Raveri, Campos
et al. 2021; Raveri & Hu 2019). For probes that are corre-
lated, such as cosmic shear and galaxy-galaxy lensing mea-
surements from the same survey, alternatives are commonly
used. For example, the DES Y3 analysis used a method
based on the Posterior Predictive Distribution (PPD), as de-
scribed in Doux, Baxter et al. (2021).

It has long been known that an effect known as intrinsic
alignment (IA) has the potential to bias weak lensing based
measurements. IA is the name given to correlations arising
from the fact that the intrinsic (i.e. pre gravitational shear)
shapes of galaxies are not entirely random. This induces
correlations both between physically close pairs (known as
intrinsic-intrinsic or II correlations) and between the shear
of one galaxy and the intrinsic shape of another (known as
shear-intrinsic or GI correlations). A related but slightly dif-
ferent correlation also arises between the clustering density
and intrinsic shapes of close-by objects (6I).

The reason IAs can cause bias is simple: they intro-
duce new features into two-point lensing data, which appear
similar to lensing (although not identical, allowing self-
calibration of the sort discussed below). If the IA model
used to analyse that data cannot match them perfectly, then
other parameters may need to adjust in order to maintain a
good overall fit. Sometimes this can happen inside the IA
model space, in which case the mapping between IA pa-
rameters and underlying physical processes becomes more
complicated. However, unmodelled IAs can quite can easily
(if imperfectly; see Campos et al. 2023) be absorbed by cos-
mological parameters too (Krause et al. 2016; Blazek et al.
2019; Fortuna et al. 2021a; Secco, Samuroff et al. 2022;
Campos et al. 2023). This subject, and the question of IA
model sufficiency, has been discussed relatively widely in
the context of cosmic shear. One aspect that has received
somewhat less attention is how parameter biases play out in
the context of a multi-probe analysis. That is, how different

the sensitivities of galaxy-galaxy lensing and cosmic shear
are to IA model error, and how effectively the combination
can mitigate such error. In this work we consider exactly
this question, using simulated Dark Energy Survey Year 3
(DES Y3) and Legacy Survey of Space and Time Year 1
(LSST Y1) like data.

This paper is structured as follows. In Section 2 we discuss
how our joint data vector is modelled. We pay specific
attention to the modelling of the various IA terms, since
these are important for our conclusions. Section 3 then
considers a number of simulated setups with different lens
and source sample configurations. We also set out the details
of the mock analyses, including the nuisance parameters
associated with each sample. In Section 4 we discuss our
main results and test their robustness to variations in the
analysis and mock data. We conclude in Section 5.

2. MODELLING

This section describes the modelling framework used in
this paper. In short, we use a DES Y3 like 3 ⇥ 2pt analysis,
combining cosmic shear, galaxy-galaxy lensing and galaxy
clustering. Although we highlight the key features relevant
for this work, much of the infrastructure was developed for
the DES Y3 analyses and is documented more extensively
in Krause et al. (2021) and the accompanying DES papers.
For part of our results, we also consider an LSST Y1 like
analysis. We use many of the same tools for this, but with
key modifications that we will highlight. We consider below
the details of how b± and WC are calculated, since these are
both sensitive to IAs, but in slightly different ways – a point
that will be important later. For details about how F(\) is
computed, see the papers cited above.

2.1. Cosmic shear
Cosmic shear is the name given to small distortions in the

observed shapes of galaxies due to weak gravitational lens-
ing by foreground large scale structure. At a particular point
on the sky, the shear WG can be written as a projection of
the matter overdensity field X (or, rather, the spatial deriva-
tives of X) along the line-of-sight. Since light from galaxies
that appear close together on the sky trace similar paths
through the Universe, WG is spatially correlated. Indeed,
two-point functions, which measure the shear-shear corre-
lation

⌦
WGWG↵

as a function of angular separation \, are the
most common way to observe cosmic shear. Since shear is a
spin-2 quantity, there are two different cosmic shear correla-
tions that can be constructed, b+ and b� . These are sensitive
to different physical scales, and so are complimentary to
each other (see e.g. Secco, Samuroff et al. 2022 Figure 2).
Most commonly, these correlations are constructed between
galaxies in redshift bins 8, 9 , which is useful in order to break
degeneracies and constrain the evolution of X with redshift.

Starting with the 3D nonlinear matter power spectrum
%X (: , I), and assuming the Limber approximation (Limber
1953; LoVerde & Afshordi 2008), we can write down an ex-
pression for the 2D angular power spectrum of convergence
^ as:

⇠8 9
^ (✓) =

π jhor

0
dj

, 8
s (j),

9
s (j)

j2

⇥ %X

✓
: =

✓ + 0.5
j

, I(j)
◆
. (1)

We have defined a few things here. First j is a comoving
distance from the observer and I(j) is the corresponding
redshift (assuming some cosmology). The integral limit
jhor is the comoving horizon distance. The lensing kernel
, 8

s is given by:
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, 8
s (j) =

3
222 �

2
0⌦m

j

0(j)

π jhor

j
dj0=8s (I(j))

j0 � j

j0
dI
dj0 .

(2)
The source redshift distribution =s (I) is normalised to inte-
grate to 1. For an illustration of what =s and ,s look like as
a function of redshift for the fiducial analyses presented in
this paper, see the upper two panels of Figure 1.

The conversion from angular multipoles ✓ to separation \
can be written as:

b8 9+ (\) =
’
✓

2✓ + 1
2c✓2 (✓ + 1)2

⇣
⌧+

✓ ,2 (cos\) + ⌧�
✓ ,2 (cos\)

⌘

⇥
⇣
⇠8 9
W,EE (✓) + ⇠8 9

W,BB (✓)
⌘
,

(3)

b8 9� (\) =
’
✓

2✓ + 1
2c✓2 (✓ + 1)2

⇣
⌧+

✓ ,2 (cos\) � ⌧�
✓ ,2 (cos\)

⌘

⇥
⇣
⇠8 9
W,EE (✓) � ⇠8 9

W,BB (✓)
⌘
(4)

(see Stebbins 1996). In the above ⌧+
✓ ,2 and ⌧�

✓ ,2 are bin-
averaged functions defined in Krause et al. (2021). In the
simplest case, the convergence and E-mode shear spectra are
equivalent here, ⇠W,EE ! ⇠^ and ⇠W,BB = 0. In practice,
however, intrinsic alignments can contribute to both the E-
and B-mode ⇠W spectra (see Section 2.3).

For a given set of cosmological parameters, we evaluate
%X (: , I) using the Boltzmann code CAMB (for the linear
part; Lewis et al. 2000) and H���F�� (for the nonlinear cor-
rections; Takahashi et al. 2012). Note that unlike Secco,
Samuroff et al. (2022) and Amon et al. (2022), our fiducial
results do not make use of shear ratios (ratios of galaxy-
galaxy lensing measurements on small scales, which were
included as an additional likelihood in the fiducial Y3 anal-
yses; see Sánchez, Prat et al. 2022).

2.2. Galaxy-galaxy lensing
Galaxy-galaxy lensing is a similar measurement to cosmic

shear, described above. Instead of the auto-correlation of
shear, however, we are now measuring the cross-correlation
with galaxy density

⌦
X6WG↵

. One can write down the equiv-
alent transformation to Eq. (1), again assuming the Limber
approximation, as:

⇠8 9
X6^

(✓) =
π jhor

0
dj

=8l (j),
9
s (j)

j2

⇥ %X6 X

✓
: =

✓ + 0.5
j

, I(j)
◆
. (5)

As before, =l (I) is a redshift distribution that integrates to
1, but this time of the lens galaxies. We model the galaxy-
matter 3D power spectrum %X6 X by assuming linear bias,
such that:

%X6 X (: , I) = 11%X (: , I). (6)

The linear bias coefficient 11 is expected to depend on the de-
tails of the sample and to have some evolution with redshift.
In our fiducial setup, we thus allow one independent param-
eter 181 for each lens redshift bin 8, which are marginalised
with uncorrelated uninformative priors (see Section 3.3 for
discussion).

To test our results in Section 4, a subset of our analyses
use a nonlinear bias model, which is based on a perturbative
expansion to third order (see Pandey et al. 2020). In short,
this includes three extra parameters: 12, 1B2 and 13nl. For
the sake of simplicity (in order to allow the nonlinear bias
model to reproduce mock data containing linear bias), we fix
the latter two parameters to zero, rather than their non-zero
coevolution values (see Pandey et al. 2020 Sec. 2D). We
also follow Porredon et al. (2022) and Pandey et al. (2022)
in choosing to vary the product f811 and f2

8 12 rather than
11 and 12 directly. This is a practical decision to limit
projection effects1, but is not expected to otherwise affect
the results. This amounts to one extra free parameter per
lens bin. We vary the bias parameters with wide flat priors
f8181 = [0.67, 3.0] and f2

8 1
8
2 = [�4.2, 4.2]. Note that use

of this model is limited to the tests in Section 4.2.3 – for all
other chains we use the linear bias model.

It is also worth mentioning that, in principle, cross-terms
arise between nonlinear galaxy bias and higher-order IA
contributions. These are expected to be small, and so they
were neglected in the modelling pipeline for DES Y3. Also
note that no part of our analysis includes both TATT and
nonlinear galaxy bias; chains (and data vectors) run with
the former assume linear bias and those run with the latter
assume NLA.

With the angular power spectrum in hand, we can evaluate
the real space galaxy-galaxy lensing correlation as:

W8 9C (\) =
’
✓

2✓ + 1
4c✓(✓ + 1) %̄

2
✓ (cos\)⇠8 9

6W (✓), (7)

where %̄2
✓ are associated Legendre polynomials, averaged

within each \ bin (see e.g. Prat et al. 2022 Eq. 25). Similarly
to cosmic shear above, in the absence of intrinsic alignments
and magnification, ⇠6W ! ⇠X6^ in Eq. (7).

2.3. Intrinsic Alignments & Magnification
In practice, both cosmic shear and galaxy-galaxy lensing

have contributions from effects other than pure lensing and
galaxy clustering. First, IAs add a spatially correlated shape
component, such that the observed shear is W = WG +WI, giv-
ing rise to

⌦
WGWI↵ and

⌦
WIWI↵ correlations at the two-point

level (often referred to simply as GI and II). Analogously,
the observed density of galaxy counts on a patch of sky is
altered by magnification, X6,obs = X6+X`. When writing out
the angular correlation functions, we have several additional
correlations.

⇠8 9
W,EE = ⇠8 9

^ + ⇠8 9
GI + ⇠8 9

IG + ⇠8 9
II,EE (8)

⇠8 9
W,BB = ⇠8 9

II,BB (9)

⇠8 9
6W = ⇠8 9

X6^
+ ⇠8 9

X6I + ⇠8 9
`^ + ⇠8 9

`I (10)

Since, to first order, there is no B-mode contribution from
lensing,⇠8 9

W,BB is non-zero only due to intrinsic alignments2.
The Limber integrals for each of the terms above can be
expressed in a similar way to those in Sections 2.1 and 2.2:

1 Projection effects are shifts in marginalised posteriors that can arise
from the projection of a multidimensional volume down to one or two axes.
These are not biases in the usual sense, since they do not indicate any sort
of model/data mismatch, and there are statistics (e.g. the global Maximum
a Posteriori) that are unaffected. See e.g. Krause et al. 2021 Sec IV-A for
discussion.

2 We are ignoring other theoretical sources of B-modes such as source
clustering (Schneider et al. 2002; Schmidt et al. 2009), which are commonly
assumed to be small (at least for two-point statistics – see Krause et al. 2021
and Gatti et al. 2024 for discussion).
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⇠8 9
GI (✓) =

π jhor

0
dj

, 8
s (j)=

9
s (j)

j2

⇥ %GI

✓
: =

✓ + 0.5
j

, I(j)
◆
, (11)

⇠8 9
II,EE/BB (✓) =

π jhor

0
dj

=8s (j)=
9
s (j)

j2

⇥ %II,EE/BB

✓
: =

✓ + 0.5
j

, I(j)
◆
, (12)

⇠8 9
X6I (✓) =

π jhor

0
dj

=8l (j)=
9
s (j)

j2

⇥ %X6I

✓
: =

✓ + 0.5
j

, I(j)
◆
, (13)

⇠8 9
`I (✓) =

π jhor

0
dj

, 8
l (j)=

9
s (j)

j2

⇥ %`I

✓
: =

✓ + 0.5
j

, I(j)
◆
, (14)

⇠8 9
`^ (✓ ) =

π jhor

0
dj

, 8
l (j),

9
s (j)

j2

⇥ %`X

✓
: =

✓ + 0.5
j

, I(j)
◆
. (15)

The power spectra in the latter three can be related to the
GI IA spectrum and the nonlinear matter power spectrum by
assuming linear bias:

%X6I (: , I) = 11%GI (: , I), (16)

%`I (: , I) = ⇠%GI (: , I), (17)

%`X (: , I) = ⇠%X (: , I), (18)

with the factor ⇠ being the magnification coefficient (see
Elvin-Poole, MacCrann et al. 2023 for a definition and fur-
ther discussion), which describes the overall impact of mag-
nification3. Note that⇠ is not included as a free parameter in
our analyses, but rather fixed to the fiducial values measured
by Elvin-Poole, MacCrann et al. 2023 in each bin (see also
Table 1). As mentioned in the previous section, a subset of
our chains include nonlinear galaxy bias. Note that the Y3
nonlinear bias model does not include an expansion of Eq.
16 to include all relevant terms – the model always assumes
a linear relation between %X6I and %GI (as in Krause et al.
2021).

Although we include it in all our modelling, the
magnification-intrinsic term `I is expected to be much
smaller in magnitude than X6I, and the impact is thus ex-
pected to be minimal (see the turquoise dashed line in Prat
et al. 2022’s Figure 7). By considering the equations above,

3 We follow Elvin-Poole, MacCrann et al. 2023 here in parameterising
the overall impact of magnification with a single amplitude per redshift
bin. In terms of physics, one has two competing effects due to the fact that
magnification both boosts the observed fluxes of galaxies and also expands
the apparent area of a given patch on the sky. In the notation of Joachimi
& Bridle (2010), ⇠mag = 2(U � 1) , where U is the logarithmic slope of
the faint end of the luminosity function.

we can see that (with certain assumptions), all of the 2D an-
gular spectra entering our cosmic shear and galaxy-galaxy
lensing measurements are derived from four 3D power spec-
tra: the matter power spectrum %X , and three intrinsic align-
ment spectra %GI, %II,EE and %II,BB.

We have discussed how we estimate %X in Section 2.1.
Using the formalism of Blazek et al. (2019), one can write
the three IA power spectra as:

%GI = ⇠1%X + 1TA⇠1%0 |0⇢ + ⇠2%0 |⇢2, (19)

%II,EE = ⇠2
1%X + 21TA⇠

2
1%0 |0⇢ + 12

TA⇠
2
1%0⇢ |0⇢

+ ⇠2
2%⇢2 |⇢2 + 2⇠1⇠2%0 |⇢2 + 21TA⇠1⇠2%0⇢ |⇢2, (20)

%II,BB = 12
TA⇠

2
1%0⌫ |0⌫ + ⇠2

2%⌫2 |⌫2
+ 21TA⇠1⇠2%0⌫ |⌫2. (21)

We should note here that ⇠1,2 in Eq. 19-21 are IA ampli-
tudes, and are not related to the magnification coefficients
discussed earlier (despite the similar notation). The various
scale dependent terms, %-, can all be calculated to one-loop
order as integrals of the linear matter power spectrum over
: (Blazek et al. 2019). We perform these integrals within
C����SIS using F���PT4 (McEwen et al. 2016; Fang et al.
2017). The amplitudes ⇠1 and ⇠2 are given by:

⇠1 (I) = ��1
⇠̄1dc⌦m
⇡ (I)

✓
1 + I

1 + I0

◆ [1

, (22)

⇠2 (I) = 5�2
⇠̄1dc⌦m

⇡2 (I)

✓
1 + I

1 + I0

◆ [2

. (23)

The pivot redshift I0 is set to I0 = 0.62 and the constant ⇠̄1
is fixed at a value of ⇠̄1 = 5 ⇥ 10�14"�⌘�2Mpc2 (Brown
et al. 2002; Hirata & Seljak 2004). The implementation of
all of the above has been validated in Krause et al. (2021)
for DES Y3. Note that the sign convention in Eq. 22 and
23 ensures consistency at the level of the power spectrum
contributions. That is, if �1 and �2 have the same sign, then
the power spectrum contributions in Eq. 19-21 will do too
(see Blazek et al. 2019 for discussion).

We consider a few different IA setups in this work. The
most complex is the TATT model with five free parameters
(�1, �2, [1, [2, 1TA), which are varied with the priors shown
in Table 1. Alternatively the NLA model is a subspace of
TATT with �2, [2, 1TA = 0 (i.e. 2 free parameters). In
this case, both GI and II spectra have the same shape as the
matter power spectrum %X , modulated by the amplitude in
Eq. (22). Note that this is a specific variant of the NLA
model introduced by Joachimi et al. (2011); the version first
proposed in Hirata & Seljak (2004); Bridle & King (2007);
Hirata et al. (2007) did not have the extra freedom in redshift,
and had only one free parameter, �1 (equivalent to fixing
[1 = 0 in Eq. (22) above). Where relevant, we will refer
to the simpler version with only �1 free, as “1-parameter
NLA" or NLA-1.

2.4. Free parameters, sampling and priors
All likelihood analyses used in this work are carried out

within the framework of C����SIS5 (Zuntz et al. 2015).
Our main results make use of the P���C���� (Handley
et al. 2015) nested sampling algorithm6 (see Campos et al.

4 https://cosmosis.readthedocs.io/en/latest/reference/standard_library/
fast_pt.html

5 https://cosmosis.readthedocs.io/en/latest/
6 500 live points, num_repeats = 30, tolerance = 0.01

https://cosmosis.readthedocs.io/en/latest/reference/standard_library/fast_pt.html
https://cosmosis.readthedocs.io/en/latest/reference/standard_library/fast_pt.html
https://cosmosis.readthedocs.io/en/latest/


5

2023 Appendix D for a comparison with the M����N���
sampling algorithm for our Y3 setup). When discussing
best fit values in the following sections we use 10⇥ over-
sampled chains generated by P���C����, in the same way
as Secco, Samuroff et al. (2022) and DES & KiDS Col-
laboration (2023). The core idea here is to save extra
samples in parameter space, between the ones included in
the final P���C���� chain. This increases the density of
samples and so reduces sampling noise, effectively being
equivalent to running a likelihood maximiser. When cal-
culating degrees of freedom (e.g. for ?�values), we use
an estimate for the effective number of parameters #par,eff
rather than the naive value. This is given by the expression
#par,eff = #par,nai � Tr[⇠�1

⇧ ⇠p], where ⇠⇧ and ⇠p are the
covariance matrices of the prior and posterior distributions
respectively (see footnote 14 of Secco, Samuroff et al. 2022
and Raveri & Hu 2019).

For a subset of chains (the LSST Y1-like ones), instead
of P���C���� we opt to use a sampler called N�������7
(Lange 2023). This choice was primarily driven by speed –
N������� uses neural networks to find an efficient way of
choosing the boundary around each set of live points, and
as such is relatively fast. It is seen to produce comparably
accurate posteriors to P���C����. See Appendix C for
further discussion.

In addition to either six or seven free cosmological param-
eters (�s, =s,⌦m,⌦b, ⌘,⌦a⌘2, plus F in a subset of chains
run in FCDM) and up to five free parameters for IAs (see
Section 2.3 above), we have a selection of nuisance parame-
ters. These are designed to account for uncertainties related
to the data and measurements, and so differ between 2⇥ 2pt
and 1 ⇥ 2pt analyses. For the cosmic shear part of the data
vector, we allow one free multiplicative shear calibration
factor < per redshift bin. These parameters enter simply
as b8 9± ! (1 + <8) (1 + < 9 )b8 9± . Since galaxy-galaxy lens-
ing measurements rely on the same (potentially imperfectly
calibrated) shape catalogue, the same parameters also enter
the 2 ⇥ 2pt data as W8 9C ! (1 + < 9 )W8 9C . The shear cata-
logues also have associated redshift uncertainties. We thus
allow one free shift parameter �Is per bin, which trans-
lates the redshift distribution entering the equations above
as =8s (I) ! =8s (I��I8s). This parameterisation, though sim-
ple, is thought to be sufficient for cosmic shear in the current
generation of surveys (DES Collaboration 2022).

For the lens sample, we similarly have various nuisance
parameters. First of all, each lens bin has an independent
bias factor 181, which is marginalised with wide flat priors
11 2 [0.8, 3]. Note that for most of this work we will only
consider linear bias both for generating and analysing data
vectors. The exception is Section 4.2.3, where we consider
the impact of using a more complex model on our findings.
For this alternative setup we have two parameters per bin,
which are varied with flat priors 181f8 2 [0.67, 3.0] and
182f

2
8 2 [�4.2, 4.2] respectively. Each lens bin also has a

shift �Il, applied in the same way as with the source =(I),
and a stretch factor fIl, which enters as:

=8l (I) !
1
fI8l

=8l

 
I � hIi8
fI8l

+ hIi8

!
(24)

(see e.g. Porredon et al. 2022 Eq. 19). These two parame-
ters, �I and fI allow changes in the mean and width of each
lens =(I) (though they cannot affect the higher order details
of the shape).

It is also worth noting that all 2⇥ 2pt and 3⇥ 2pt analyses
discussed in this paper include point mass marginalisation
(see MacCrann et al. 2020, Prat, Zacharegkas et al. 2023b

7 https://nautilus-sampler.readthedocs.io/en/stable/
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Figure 1. The fiducial redshift distributions used in this work. From top,
we have (a) the DES Y3 source sample in 4 bins; (b) the associated lensing
kernels, (c) the Y3 ���M�G�C lens =(I) in five bins and (d) the equivalent
distributions, but for the M��L�� lens sample. Note that the fiducial DES
Y3 setup (DES Collaboration 2022) made use of the lower four M��L��
bins only; in this work we consider both 4- and 6-bin setups. Each of
these distributions, and the overlap between them, enters the mock data as
described in Section 2. For reference, the mock LSST Y1 like =(I) , used
in Section 4.5, are shown in Appendix C.

and Krause et al. 2021 for details and discussion). In brief,
the procedure analytically marginalises the impact of non-
local lensing contributions to WC . This does not require ex-
tra parameters, but effectively removes information coming
from very small scales.

We consider a few different analysis setups, which we
will describe in the next section. The choice of lens and
source sample determines the priors on these extra nuisance
parameters. We refer the reader to Section 3.2 and Table 1
for a summary.

3. SYNTHETIC DATA & IA MODEL ERROR

We make use of much the same infrastructure as in Cam-
pos et al. (2023). Our mock data are created with the same
flat ⇤CDM cosmology, ⌦m = 0.29, �B = 2.38 ⇥ 10�9,
⌦b = 0.052, ⌘ = 0.75, =B = 0.99, ⌦a⌘2 = 0.00083,
F = �1. This corresponds to f8 = 0.79, (8 = 0.77 andÕ
<a22 = 0.077 eV. When considering DES Y3 like data,

we also use the same analytic non-Gaussian estimate for the
joint b± +WC +F covariance matrix, as described in Friedrich
et al. (2021) and used in DES Collaboration (2022). This
was estimated using C����C��8 (Fang et al. 2020), which
uses a halo model to estimate covariances, including con-
nected non-Gaussian and super-sample variance terms, and
also includes the impact of the Y3 survey mask.

8 https://github.com/CosmoLike/CosmoCov

https://nautilus-sampler.readthedocs.io/en/stable/
https://github.com/CosmoLike/CosmoCov
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3.1. Mock cosmic shear data
We create noiseless mock data simply by running the the-

ory pipeline with a particular set of input parameter values.
As in Campos et al. (2023), for our fiducial setup we use the
DES Y3 source redshift distributions, shown in the upper
panel of Figure 1. We create an ensemble of 21 data vectors,
each one with the same input cosmology, but different IA
scenarios. A given IA scenario is defined by a set of TATT
parameters (5 values per scenario), chosen using the process
set out in Campos et al. (2023) Section 3.2, which uses a
Latin hypercube to generate an initial set of samples, before
rotating them to capture correlations seen in real DES Y1
data (see also their Figure 1). Note that this process is not
restricted by any priors, and so we include a small number
of cases outside the limits shown in Table 1.
3.2. Mock galaxy-galaxy lensing & galaxy clustering data

We also generate mock WC and F(\) data in the same
way as described above. One complication here is the
choice of lens sample; whereas in DES Y3 we had only
one source catalogue, we had two separate lens catalogues.
The fiducial setup made use of a magnitude limited sample
(M��L��), as set out in Porredon et al. (2021). The idea here
was to optimise the constraining power of the joint lensing
and clustering data by trading redshift quality for density.
Analyses using M��L�� lenses have slightly more nuisance
parameters related to redshift error, but smaller statistical
uncertainties. Due to residual systematics, the fiducial Y3
cosmology analyses made use of the first four M��L�� bins
only (Porredon et al. 2022). As discussed below, however,
we will consider both 4- and 6-bin M��L�� configurations
in this work. In addition to M��L��, we consider a DES
Y3 like ���M�G�C sample, as described in Pandey et al.
(2022). Our ���M�G�C sample has five bins up to I ⇠ 0.9,
with some slight overlap between neighbouring bins.

The redshift distributions =l (I) for both our M��L�� and
���M�G�C lens samples are shown in the lower panels of
Figure 1. Although it would be simpler to consider one lens
sample only, the reason we include two is because sensitivity
to IAs is a function both of the shape of the lens distributions
and the associated redshift uncertainties. It is, then, useful
to consider a range of plausible lens samples. Note that, as
in DES Collaboration (2022) but unlike some analyses in
the literature, we include all possible lens-source pairs in WC .
That is, we do not exclude bin pairs for which the mean lens
redshift is higher than that of the sources. This can help to
constrain IAs as well as photometric redshift error, since the
lensing signal in these bin pairs is expected to be small.

3.3. Combining the data: analysis setups
All analyses in this work assume a flat cosmology with

massive neutrinos. In total, our fiducial ⇤CDM cosmologi-
cal model has six free parameters: ⌦m, �s, =s, ⌘, ⌦b, ⌦a⌘2.
In Section 4 we also run FCDM analyses, which have an
extra free parameter, F, corresponding to the dark energy
equation of state. One can find a summary of our priors
in Table 1. We constrain these parameters alongside other
probe-specific ones using combinations of data, as described
below.

• Cosmic shear (1⇥2pt): Our fiducial shear setup does
not make use of any information from galaxy-galaxy
lensing. We apply the fiducial scale cuts of Secco,
Samuroff et al. (2022) and Amon et al. (2022) to the
b+ + b� data vector, which are driven by uncertainty
due to the effect of baryonic feedback on small scales.
In total we have up to 19 free parameters in our fidu-
cial setup: 6 for cosmology in ⇤CDM, 4 for shear
calibration <8 , 4 for redshift error �I8 , and either 2
(NLA) or 5 (TATT) for intrinsic alignments.

• WC+F (2⇥2pt), M��L�� lenses, 4 bins : In this setup,
we combine galaxy-galaxy lensing and galaxy cluster-
ing using the lowest four M��L�� bins as lenses. This
was the fiducial choice of DES Collaboration (2022),
with cuts removing the upper two bins, a choice moti-
vated by unacceptably poor fits in ⇤CDM when those
bins were included (see Porredon et al. 2022 Section
VII A and Appendix B for discussion). Again, the
scale cuts are not changed from those used in the
fiducial Y3 analysis. The cuts on the 2 ⇥ 2pt data
correspond to lower limits on comoving separation at
6 Mpc/⌘ and 8 Mpc/⌘ for WC and F respectively (see
Porredon et al. 2022 Section VI-A). In this setup, we
have the same parameters for shear-related systemat-
ics and cosmology as above, plus another 4 galaxy
bias parameters (one per lens bin), and 8 lens redshift
parameters (1 stretch and 1 shift per bin). This gives a
total of 31 free parameters for an analysis using TATT,
and 28 for NLA.

• WC +F (2⇥ 2pt), M��L�� lenses, 6 bins : This setup
is the same as the one described above, but we now
include the upper two lens bins. This is our most
constraining and our most optimistic setup, since it
uses the M��L�� lens sample in a regime where it
was not possible in the fiducial Y3 3 ⇥ 2pt analysis
of DES Collaboration 2022 (although the upper bins
have been successfully included in some variants of
analyses based on CMB cross-correlations; see e.g.
Chang et al. 2023 Figure 8). Incorporating the ex-
tra lens bins adds another 6 parameters (2 bias + 4
redshift), making a total of 37/34 (TATT/NLA).

• WC + F (2 ⇥ 2pt), ���M�G�C lenses: This analysis
setup uses a mock lens sample generated with the
properties of the DES Y3 ���M�G�C catalogue in
five bins. The key difference compared with M��L��
is that ���M�G�C is designed to optimise redshift
quality alone, and so the priors are slightly different
(see Table 1 and Pandey et al. 2022). In particular, the
first four width parameters are fixed. In total, then, we
have 11 lens-related parameters, and so 30/27 param-
eters overall. Note that this setup matches the main
Y3 ���M�G�C selection discussed in Pandey et al.
(2022). This is slightly different from the “broad-j2"
���M�G�C sample, which is also discussed in that
paper. We discuss the distinction briefly in Section
4.2.1.

• b±+WC+F (3⇥2pt): In addition to the analyses detailed
above, we also consider 3 ⇥ 2pt analyses using each
lens sample. This does not increase the number of
parameters relative to the corresponding 2⇥ 2pt anal-
ysis, or change any of the other analysis choices, but
it does significantly increase the constraining power,
as we will see in Section 4.

Finally, in Section 4.2.3 and Appendix D only we consider
1 ⇥ 2pt and 2 ⇥ 2pt analysis setups that include shear ratios.
The mock shear ratio data are constructed using our sim-
ulated WC measurements on small scales. Essentially shear
ratios add nine data points to the data vector (the lower 3 lens
bins, each with 3 different combinations of source bin pairs;
see Sánchez, Prat et al. 2022 for details). When modelling
these data, the nuisance parameters affecting the relevant
lens and source bins are propagated through consistently.

3.4. Rubin LSST Year 1 Setup
Although our primary results are based on mock DES Y3

like data, we also run a subset of our analyses using a Ru-
bin Legacy Survey of Space and Time Year 1 (LSST Y1;
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Parameter Fiducial Prior

Cosmology
⌦m 0.3 [0.1, 0.9]

�s ⇥ 109 2.19 [0.5, 5.0]
=s 0.97 [0.87, 1.07]
⌦b 0.048 [0.03, 0.07]
⌘ 0.69 [0.55, 0.91]

⌦a⌘2 ⇥ 103 0.83 [0.6, 6.44]
F -1.0 Fixed or [�2, �0.333]

Intrinsic alignment⇤
�1, [1 0.85, 0.0 [�5, 5 ]
�2, [2 -3.08, 2.79 [�5, 5 ] or X (0)
1TA 0.12 [0, 2] or X (0)

Source photo�I uncertainty
�I1

s 0.0 N(0.0, 0.018)
�I2

s 0.0 N(0.0, 0.013)
�I3

s 0.0 N(0.0, 0.006)
�I4

s 0.0 N(0.0, 0.013)
Shear calibration uncertainty

<1 0.0 N(0.0, 0.008)
<2 0.0 N(0.0, 0.013)
<3 0.0 N(0.0, 0.009)
<4 0.0 N(0.0, 0.012)

Galaxy bias
18MagLim 1.5, 1.8, 1.8, 1.9, 2.3, 2.3 [0.8,3.0]
18redMaGiC 1.7, 1.7, 1.7, 2.0, 2.0 [0.8,3.0]

Lens magnification
⇠8

MagLim 0.43, 0.30, 1.75, 1.94, 1.56, 2.96 Fixed
⇠8

redMaGiC 1.31, �0.52, 0.34, 2.25, 1.97 Fixed
Lens photo�I uncertainty (MagLim)

�I1
l 0.0 N(0.0, 0.007)

�I2
l 0.0 N(0.0, 0.011)

�I3
l 0.0 N(0.0, 0.006)

�I4
l 0.0 N(0.0, 0.006)

�I5
l 0.0 N(0.0, 0.007)

�I6
l 0.0 N(0.0, 0.008)

fI1
l 1.0 N(1.0, 0.062)

fI2
l 1.0 N(1.0, 0.093)

fI3
l 1.0 N(1.0, 0.054)

fI4
l 1.0 N(1.0, 0.051)

fI5
l 1.0 N(1.0, 0.067)

fI6
l 1.0 N(1.0, 0.073)

Lens photo�I uncertainty (redMaGiC)
�I1

l 0.0 N(0.0, 0.004)
�I2

l 0.0 N(0.0, 0.003)
�I3

l 0.0 N(0.0, 0.003)
�I4

l 0.0 N(0.0, 0.005)
�I5

l 0.0 N(0.0, 0.010)
fI1

l 1.0 Fixed
fI2

l 1.0 Fixed
fI3

l 1.0 Fixed
fI4

l 1.0 Fixed
fI5

l 1.0 N(1.0, 0.054)

Table 1. A summary of the parameters used in the various analyses con-
sidered in this work. Here we show both fiducial (input) values used to
generated data vectors and also the priors used when analysing the mock
data. Square brackets [0, 1] indicate a flat prior within the bounds 0 and 1,
while N(`, f) is a Gaussian prior with mean ` and width f. The upper
four sections (cosmology, IAs, source redshift error and shear calibration,
relate to the lensing source sample, and so enter both 1⇥ 2pt and all 2⇥ 2pt
in exactly the same way. The intrinsic alignments section is marked with a
star because various different input values are used in this work. We show
two sets of priors in this section, for NLA and TATT setups. For the other
sections, we show both M��L�� and ���M�G�C values.

Ivezić et al. 2019) like setup. A major difference here is the
covariance matrix, which we recompute using C����C��
(including non-Gaussian contributions). We assume a to-
tal area of 12,300 square degrees (compared with ⇠ 4143
for DES Y3) and source and lens samples with effective
number densities of =eff = 11.2 and =eff = 18 galaxies per
square arcmin respectively. These are each divided between
five redshift bins (all of these numbers are taken from the
projections in DESC Collaboration 2018 and Fang et al.
2020). We adopt the analytic =(I) suggested by the DESC
Science Requirements Document (SRD; DESC Collabora-

tion 2018), but note that there is a fair degree of uncertainty
in the future sample selection and redshift methods. The
binning and redshift distributions are described in more de-
tail in Appendix C. We base the input galaxy bias and lens
magnification values on the M��L�� values shown in Table
1.

When analysing the mock Rubin data, we maintain much
of our previous DES Y3 pipeline including priors and
other modelling choices. We update the scale cuts us-
ing the Krause et al. (2021) method of comparing baryon-
contaminated and uncontaminated data vectors (although we
rely on a j2 threshold alone – since we are only attempting
a simple forecast, we do not go as far as running chains on
the baryonic mock data; see Appendix C for discussion and
further details). This setup is clearly an approximation. In
reality, the priors in any future Rubin analysis will (hope-
fully) be more informative and the approach to scale cuts
will likely differ from DES Y3. For the sake of simplicity,
however, we do not seek to anticipate these changes. There
is a strong element of unpredictability here; we cannot, for
example, say how advances in either modelling of, or obser-
vational constraints on, baryonic feedback might change the
eventual LSST Y1 scale cuts. Even at the precision of cur-
rent data sets there are different approaches to this question.
Likewise, improved understanding and control of system-
atics will hopefully allow tighter priors on the redshift and
shear calibration (as well as potentially IA) parameters. Ex-
actly how much tighter, however, is not something we can
predict with any degree of confidence, and so we will not
attempt to. We reiterate, however, that we do not need to
predict all the elements perfectly in order to test the effects
we are interested in here.

4. RESULTS

In this section we set out our results from analysing the
21 IA scenarios discussed in Section 3. We begin in Section
4.1 using a single IA scenario as an example, to illustrate a
core finding of this paper. In Section 4.2 we consider the
robustness of our results to plausible changes in the analysis
setup and data. We explore the generality of our results using
the collection of 21 IA samples in Section 4.3. Section 4.4
then draws together some of the evidence to try to build a
coherent understanding of why the data behave as they do.
Finally we demonstrate the robustness of our findings in an
LSST-like analysis setup in Section 4.5.

4.1. Internal tension as an indicator of bias – a high bias
example

For illustrative purposes, we choose a particular IA sce-
nario to consider in more detail. This scenario has TATT
parameters �1 = 0.848, �2 = �3.08, [1 = 0.0, [2 =
2.79, 1TA = 0.123 (also listed in Table 1). We chose this
data vector from the various ones considered in Campos
et al. (2023) because it was found to be relatively extreme,
as assessed in the context of cosmic shear, resulting in a bias
when using the 2-parameter NLA model of > 3f. Note
that this particular parameter combination is disfavoured at
⇠ 3f but has not been completely ruled out by the DES Y3
analyses DES Collaboration (2022). Although it was not
selected for this reason, this scenario ended up being a fairly
pronounced example of the differences between contamina-
tion in 1 ⇥ 2pt and 2 ⇥ 2pt cosmological constraints. As
we will see in the following sections, however, the general
trends hold over the range of IA scenarios.

We will start with the simplest case, where the data and
the model match exactly, shown in Figure 2. For all three
of the posteriors shown here, the IA model is TATT (with 5
free parameters). As we can see, both cosmic shear (dotted)
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Figure 2. An example of a joint probes analysis in which the IA model
(TATT) is sufficient to describe the data. Inner and outer contours represent
68% and 95% confidence levels. We show cosmic shear only (1⇥2pt; dotted
line), galaxy-galaxy lensing + galaxy clustering (2 ⇥ 2pt; dashed line) and
the combination (3 ⇥ 2pt; shaded) separately. All three analyses are run on
noiseless simulated data. Although there are projection effects, all recover
the input (black star) to within 1f, with the differing orientations of the
contours producing a relatively tight correctly-centred 3 ⇥ 2pt constraint.
The lens sample used in this example is ���M�G�C, but a similar picture
can be seen when using either M��L�� setup.

and galaxy-galaxy lensing plus clustering (dashed) recover
the input cosmology to << 1f. For this example we’ve
chosen to show the ���M�G�C rather than M��L�� 2- and
3⇥2pt results, but this choice makes no qualitative difference
(we will discuss this more in Section 4.2). As discussed in
Krause et al. (2021) and Pandey et al. (2022), the 2⇥2pt case
is subject to slightly stronger projection effects, offsetting
the dashed contour downwards by a fraction of a f. The
constraints are entirely consistent, however, and the joint
3 ⇥ 2pt analysis recovers the input almost perfectly. The
difference in contour shape nicely illustrates the point of the
joint analysis – the intersection of the two allows a relatively
tight constraint on both (8 and ⌦m. This also demonstrates
that while (8 is, by design, the combination best constrained
by cosmic shear, it is not quite optimal for 2 ⇥ 2pt – there is
some slope in the dashed contours in Figure 2.

We next consider the same IA scenario, but analysed with
an overly simple model (2-parameter NLA). There is now a
relatively strong bias in the cosmic shear fit, shown by the
dotted contour in Figure 3. The bias here is similar in nature
to that seen in the simulated tests of Secco, Samuroff et al.
(2022) (see their Figure 6), with the best fitting constraints
being shifted to high (8 and low ⌦m by several f. This
shift is accompanied by a worsening goodness-of-fit, with
�j2 ⇠ 18 for 222 degrees of freedom (227 data points;
see Section 4.2.1 of Campos et al. 2023). Note that, as
described in Section 2.4, the degrees of freedom quoted here
are calculated using an effective number of free parameters
#par,eff , which accounts for the fact that some parameters are
prior dominated, rather than the naive value from counting
variables. The dashed lines in Figure 3 show what happens
when we analyse the same TATT scenario using the same
over-simplified IA model, but now with a 2⇥2pt data vector.
Interestingly, we can see that the bias is significantly reduced
compared with the cosmic shear only case. The 2 ⇥ 2pt
contour is centred on the input to well within 1f. The
goodness-of-fit is slightly worse, with �j2 ⇠ 50 for ⇠ 297
degrees of freedom9 (302 data points: 248 in WC and 54 in

9 We have assumed the effective number of parameters in the Y3 2 ⇥ 2pt
analysis to be roughly 5, in line with cosmic shear. This is partially guided
by Dacunha et al. (2022), who estimated #p,eff = 2.51 for a Y1 like DES
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Figure 3. The same as Figure 2, but now using the 2-parameter NLA
model instead of TATT. All other aspects of the analysis are the same. The
top panel shows the projected (8 �⌦m plane. While the cosmic shear only
(1 ⇥ 2pt; dotted) results are offset from the input by several f, 2 ⇥ 2pt
(dashed) is relatively unbiased. The two probes are discordant and the
joint 3 ⇥ 2pt contours (shaded black) sit in between the two. The lower
panel shows the NLA amplitude �1 and (8. Whereas shear predominantly
absorbs the unmodelled IA signal into (8, in the 2 ⇥ 2pt case it is �1 that
shifts.

F). In both cases, however, we can see that the change in
the goodness-of-fit due to the IA contamination is relatively
small compared with the width of the j2 distribution, given
the degrees of freedom. That is, under the null hypothesis
that the model fits the data perfectly, we expect a reduced
j2 of ⇠ 1, on average. If we treat the �j2 values above as
coherent shifts in the goodness-of-fit, we obtain j2/#dof ⇠
(222+18)/222 = 1.08 and (297+50)/297 ⇠ 1.17. In other
words, despite the biases seen in Figure 3, it is unlikely that
the goodness-of-fit would flag either the cosmic shear or
galaxy-galaxy lensing + clustering analyses as problematic.

We illustrate this by rerunning both with a noisy data
vector (we use the fiducial noise realisation from Campos
et al. 2023 here). We obtain best fits of j2

2⇥2pt = 313.3
(j2/#dof ⇠ 1.05, again with 222 dof) and j2

1⇥2pt = 238.2
(j2/#dof ⇠ 1.07, 297 dof), respectively. This gives a
?�value ?(> j2) = 0.22 for cosmic shear and ?(> j2) =
0.24 for 2⇥ 2pt10. To summarise, there are data vector level
3⇥2pt analysis. Our guess accounts for the fact that Y3 is more constraining
than Y1, and also has extra nuisance parameters. Although not precise, it
is expected to be correct to a factor of 2 or so, and so gives us a rough idea
of the quality of the fit.

10 Even using the naive calculation for the degrees of freedom, ignoring
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residuals, which are apparent in the non-zero j2 values from
noiseless data vectors. Once we are in a scenario with (DES
Y3 like) noise, however, it is difficult to tell anything is
wrong from a theoretical interpretation of the goodness-of-
fit statistics. Both ?�values are well above commonly used
thresholds such as ? = 0.01 or ? = 0.05, despite the fact that
there are considerable parameter biases. This is consistent
with the findings of Campos et al. (2023), who reported that
for cosmic shear alone, theoretically motivated thresholds
based on ?�values or information criteria are not a reliable
way of identifying parameter bias (see the discussion in their
Section 5.3).

It is also interesting to note that while (8 (and other cos-
mological parameters) are largely unbiased in the 2 ⇥ 2pt
analysis, there is a significant shift in �1 (lower panel of
Figure 3). While clearly it cannot do so perfectly (hence
the non-zero �j2), the IA model is absorbing some of the
error, resulting in a slightly negative best fit �1. We will
explore this trend further, and what it tells us, in Section
4.2. Interestingly, we do not see significant shifts in other
parameters (illustrated in Appendix A). Although there are
minor offsets in the lowest source bin, �I1

s , these are well
within 1f; all of the other shift and stretch redshift parame-
ters are remarkably stable in all cases. Although it is often
stated that redshift errors can easily be absorbed by IA pa-
rameters (and the other way round), and this is certainly true
in the case where we have little/no prior knowledge, it is
worth remembering that the redshift parameters in our case
are relatively tightly controlled (see the priors in Table 1).
This restricts the amount of possible interaction between the
two, and likely explains the relative stability that we see. A
similar picture is seen with shear biases. Although galaxy
bias is varied with wide priors, it is tightly constrained by
F(\), and we see no signs of significant offsets in 18 . Nor
is there any evidence that the parameter bias in the 2 ⇥ 2pt
case is simply being absorbed into other parts of cosmology
parameter space; ⌘, =s, �s, ⌦b are all well centred compared
with their input values.

The joint 3 ⇥ 2pt analysis (shaded black contour in Fig-
ure 3) is clearly biased, but this is driven by the cosmic
shear data favouring high (8. That is, what we are see-
ing is a differential sensitivity to IA mis-modeling between
galaxy-galaxy lensing and cosmic shear, but that does not
translate into self-calibration in the joint analysis. Accurate
modelling is still clearly needed to produce unbiased joint
probe results. These results do, however, suggest that IA
model error can manifest itself as a form of internal tension
between different parts of the 3 ⇥ 2pt data vector. This has
a number of practical implications, which we will return to
later on. Note that this observation – that cosmic shear is
considerably more susceptible to parameter bias than 2⇥2pt
when the IA model is wrong – is a core finding of this paper.
In the following sections we will explore what is going on
in more detail.

When considering our results, it is also worth keeping in
mind that, in practice, these sorts of analyses are typically
significantly correlated. That is, WC and b± are measured
using a common shear catalogue with the same realisation
of both shape noise and cosmic variance. While one might
expect to see random shifts of 1 � 2f between independent
data sets relatively often, the chance of this happening in a
case like ours is considerably lower (see e.g. Doux, Baxter
et al. 2021 for discussion). In other words, the “tension" as
assessed using metrics such as PPD may be more significant
than implied by a naive interpretation of the offset between
the contours in terms of f.
the impact of priors, we have 302 � 27 = 275 degrees of freedom in the
���M�G�C 2 ⇥ 2pt NLA analysis and 227 � 16 = 211 for 1 ⇥ 2pt. This
still gives a ? > 0.05 in both cases.
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Figure 4. Simulated parameter constraints from galaxy-galaxy lensing plus
galaxy clustering. Three different lens configurations are shown here (see
Section 3.2 for details). In each case the input IA scenario is the same, as
specified in Section 4. All three lens setups recover the input cosmology
(black star) to within 1f. For reference, a cosmic shear analysis with the
same input IA signal is biased by ⇠ 4f.

4.2. Dependence on analysis choices
Given the observations above it is reasonable to ask how

far our results extend to other analysis configurations. In
this section we consider a range of variations on the fiducial
setup. These tests help to confirm the generality of our main
result, and feed into the discussion of the mechanism(s)
producing it in Section 4.4.

4.2.1. Dependence on the choice of lens sample
One plausible variation is the choice of lens sample. In

particular, throughout the previous section we used the Y3
���M�G�C lens sample, which has high quality redshift es-
timates. In a sample like M��L��, the redshift uncertainties
are slightly larger, requiring extra free parameters for the
shapes and positions of the lens bins.

In Figure 4, we show the same IA scenario as discussed in
Section 4.1, but with a few different lens samples. The black
contours are the same as in Figure 3, but overlain in purple
and pink are the equivalent 2 ⇥ 2pt M��L�� results (see
Section 3 for an explanation of the difference between the 4-
and 6-bin M��L�� setups). As expected, these contours are
tighter, for the reasons discussed in Porredon et al. (2021).
Although the centring here is less accurate, we can see a
similar qualitative picture as before. The 2 ⇥ 2pt results are
less biased than 1 ⇥ 2pt, and there is a considerable offset
between 1⇥ 2pt and 2⇥ 2pt analyses on the same joint data.
We consider the difference in more detail in Appendix B, but
note that the basic results are robust to reasonable changes
in the lens sample.

The offsets we do see in Figure 4 are thought to arise
from the additional redshift uncertainty in the cases with
M��L�� lenses. The stretch and shift parameters have some
freedom to increase the lens-source bin overlap in certain
parts of the data vector (and, so, change the way in which
IAs enter the data). We will return to this in Section 4.4,
but it effectively creates regions of parameter space where
(8 is more degenerate with the unmodelled IA signal, and
so reduces the ability of the data to distinguish the two.

In addition to the main Y3 ���M�G�C lens sample,
Pandey et al. (2022) also considered what became known
as “broad-j2 ���M�G�C ". It was shown in that paper that
relaxing the ���M�G�C goodness-of-fit criterion reduces
colour-dependent photometric selection biases. Since not
all of the calibration steps were run on the new broad-j2
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Figure 5. The impact of the choice of IA model. The shaded contours here
are the same as those shown in the upper panel of Figure 3 (NLA with 2
free parameters). Overlain (open contours) are analyses of the same three
contaminated data vectors, but using an even simpler IA model (NLA with
only one free parameter in the upper panel, no IA model at all in the lower).
Though there are shifts, the qualitative picture is the same: galaxy-galaxy
lensing plus clustering is significantly less biased than either shear alone or
the full 3 ⇥ 2pt combination.

���M�G�C sample, nor has it been validated to the same
extent as the main ���M�G�C and M��L�� lens samples,
we do not run mock analyses in this setup. We note, how-
ever, that any broad-j2 ���M�G�C 2 ⇥ 2pt analysis would
most likely sit between the black and pink contours in Fig-
ure 4, both in size and position. In terms of number density,
the broad-j2 sample is between M��L�� and fiducial ���-
M�G�C, and so the 2⇥2pt constraining power is expected to
also be somewhere between the two (Porredon et al. 2021).
The predicted broad-j2 ���M�G�C redshift priors are also
wider than for fiducial ���M�G�C, but still somewhat tighter
than those for M��L�� (see Pandey et al. 2022 Table II and
Appendix C). For this reason, we would not expect to see
shifts more extreme than those in Figure 4.

4.2.2. Dependence on IA model
Another question one could ask is: how specific are these

observations to our choice of IA model. After all, the un-
modelled TATT signal in WC appears to be preferentially ab-
sorbed by the NLA parameters rather than cosmology (see
Figure 3 and the discussion in Section 4.1). It is reasonable
to ask how far this is a function of the flexibility of the IA
model. For our main results, we chose to analyse TATT-
generated data with a 2-parameter (�1, [1) variant of the
NLA model (which was the fiducial choice of DES & KiDS

Collaboration 2023 and was also run as an analysis variant
in Secco, Samuroff et al. 2022 and Asgari et al. 2021). Now
we try running a simpler sub-model, with the redshift index
fixed [1 = 0. This is closer to the original NLA model of
Hirata & Seljak (2004), and was used by KiDS-1000 (Asgari
et al. 2021; Heymans et al. 2021; Tröster et al. 2022). For
comparison we also run a version assuming no IAs at all
(i.e. �1, �2 = 0). This is not a realistic modelling choice,
but we include it here for illustrative purposes.

The results are summarised in Figure 5. Switching to
NLA-1 (upper panel) causes small shifts in both the shear
and 2 ⇥ 2pt contours. In the former case, the contours are
already at the edge of the prior space in almost all of the
cosmology parameters – although not quite hitting the edge
in the projected ⌦m direction, it is in the 2D f8 �⌦m plane,
as well as in ⌘, =s and ⌦b (this can be seen in Appendix A,
which shows the wider cosmological parameter space with
the prior bounds). The purple contour is thus restricted in
how much further it can go in the high-(8/low-⌦m direction.
The impact of switching models on 2 ⇥ 2pt is also small,
but for different reasons. Here we see a very small upwards
shift, with the 1f bound still comfortably enclosing the
input. If we consider the extreme model setup in the bottom
panel, we see interestingly little difference. Here we are not
modelling IAs at all. The 1 ⇥ 2pt contour is seen to shrink
and shift downwards slightly. This, again, is likely due
to the restriction of the prior preventing it moving further
upwards11.

The 2 ⇥ 2pt case is interesting here – unlike with cosmic
shear, the constraints are well contained by the prior, and so
edge effects are not a factor. In both (1- and 2 ⇥ 2pt) cases,
the best j2 gets steadily worse as one simplifies the model
from 2-parameter NLA to 1-parameter NLA to zero IA. The
change is still relatively modest, however, with �j2

2⇥2pt ⇠
50 ! 56 ! 58. We can conclude a few things here. First,
given the small change in j2, it may be that we are seeing
some level of cancellation between IA contributions, such
that the preferred �1 happens to be close to zero. This
can happen in galaxy-galaxy lensing in a way that is not, in
general, possible with cosmic shear (although, as we will
come to in Section 4.4, there are reasons to think this is not
the full story). Another conclusion we can draw is that while
there is residual model error, which gets worse as the model
is simplified, it simply is not strongly degenerate with (8 in
the way it is for cosmic shear.

The net result is that, regardless of the details of the wrong
IA model, internal tension can arise due to differences in how
IAs enter the different probes. This is interesting as it points
to the effect being relatively general, rather than specific to
our Y3 setup.

It is also notable that contrary to the basic expectation,
the 2 ⇥ 2pt contour in the upper panel widens slightly as
the IA model is simplified. There are a few possible factors
behind this. We should note first that for this particular in-
put IA scenario, [1 prefers large values, to the point where
the posterior is hitting the upper edge of the [�5, 5] prior.
Although it does not visibly distort the shape of the posteri-
ors, this potentially reduces the size of the NLA-2 contour
marginally. We should also keep in mind that the best-fit
is worsened as model parameters are removed, which can
change and potentially flatten the shape of the likelihood
distribution, resulting in small differences in the size of the
contours. One other possible factor is related to the size of
the IA signal. In the NLA-1 case, the marginalised con-

11 Note that the fan-shaped prior in the (8 �⌦m plane (see Figure 14) is a
result of our decision to sample �s rather than (8. One could conceivably
widen it by expanding the �s prior, but we note that the bounds are already
considerably wider than the range allowed by Planck 2018 (at the level of
10s of f).
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straint on �1 is relatively close to zero. For 2-parameter
NLA, the posterior favours slightly larger negative �1 val-
ues. Since NLA predicts a contribution proportional to the
matter power spectrum %(:), the signal carries information
about cosmological parameters as well as IAs. As a re-
sult, scenarios in which the IA contribution is strong and
well-constrained allow marginally tighter constraint on cos-
mology than ones without IA (see also Bridle & King 2007
Fig. 8). We should note however that this is expected to be
a small effect, and the shift in �1 is also small, so we do not
think this is the main factor at work here.

4.2.3. Dependence on scale cuts and galaxy bias model
As discussed in Section 2 the main DES Y3 analyses

opted to model galaxy bias using a linear approximation,
with scale cuts to facilitate this. An alternative approach
would be to extend to smaller scales, at the cost of needing
to marginalise over a more complex bias model. To test the
impact, we re-run a subset of our 2 ⇥ 2pt chains in such a
small scales + nonlinear bias setup. More specifically, we
use the parameterisation of Pandey et al. (2020), which has
been shown to be accurate at the level of a few percent down
to scales of 4 Mpc/⌘ (see also Section 2.2). This setup
was used on the real data, and so has been fairly extensively
validated for both the ���M�G�C and M��L�� lens samples
at Y3 precision (Porredon et al. 2022; Pandey et al. 2022).
As explained in Section 2, our modelling follows DES Y3,
and so both our fiducial and our small scale/nonlinear bias
2 ⇥ 2pt setups include point mass marginalisation (see DES
Collaboration 2022 and Krause et al. 2021).

Our findings are summarised in Figure 6. To begin we
repeat our baseline 2⇥ 2pt analysis on the TATT data vector
introduced in Section 4.1, but using the third-order bias
model mentioned above. As before, these data contain an
unmodelled higher order IA signal, but the input galaxy bias
is linear, and there are no other sources of error. The impact
can be seen by comparing the upper two panels in Figure 6.
For reference, we also show the same model run on an NLA
version of the data vector. Although there is an overall shift
due to projection effects, in both cases the bias due to the IA
contamination is negligible (i.e. chains run on TATT and
NLA data vectors agree very well).

Next we repeat the same NLA + nonlinear bias analysis,
but incorporating scales down to 4 Mpc/⌘ in both parts of
the 2 ⇥ 2pt data vector. In total this increases the number
of data points from 302 (248 in WC + 54 in F) to 350 (280
+ 70). This results in the black posterior in the lower panel
of Figure 6. Although still considerably less biased than the
cosmic shear analysis of the same IA scenario (see Section
4.1), there is an upwards shift of around 0.7f. Unlike in the
upper panels, we cannot ascribe this to projection effects,
since the chains run on NLA and TATT data vectors are also
offset from each other.

It is worth briefly considering what this tells us about the
mechanisms behind the robustness of the 2 ⇥ 2pt data. The
shift between the purple and black contours in the lower
panel of Figure 6 could be caused by two things. One
explanation is that shifting to 4 Mpc/⌘ simply includes more
data points that are strongly affected by the higher order
TATT contamination; this can worsen the overall j2, but
also change the balance of bin pairs affected/unaffected by
IAs. This can potentially affect the ability of the data to self-
calibrate, as we will come to in Section 4.4. An alternative
explanation is that the extra model freedom allowed by the
(now relatively well constrained) 12 parameters is allowing
IA error to cross over into cosmological error. The idea of
degeneracy-breaking, discussed further in Section 4.4, relies
on the lensing dominated parts of WC being able to exclude
shifts in cosmology that could otherwise absorb error in the

IA dominated parts. Certain kinds of extra model freedom
can break (or weaken) this self-calibration by allowing the
lensing dominated parts of the data to adjust. We can test
the second hypothesis by rerunning the 4 Mpc/⌘ analysis
with linear bias. This is not a realistic setup, but is designed
to shed light on the effects at work here. As we can see
from these results (the dashed contours in the lower panel of
Figure 6), the bias model freedom alone accounts for roughly
half of the bias. The rest, we conclude, is coming from the
stringer unmodelled TATT contamination on smaller scales.

In addition to the above tests, we also consider the impact
of including information from small scale shear ratios, in the
way described in Sánchez, Prat et al. (2022). More details
can be found in Appendix D, but in brief there is very little
change in how 2 ⇥ 2pt responds to IA error even including
shear ratio measurements down to 2 Mpc/⌘.

When thinking about the impact of scale cuts, we should
note some basic differences between our cosmic shear and
2 ⇥ 2pt data, which affect the physical scales they respond
to. Our cuts for 2 ⇥ 2pt, are defined in terms of a fixed
physical separation (see Section 3.2), and translated into
an angular cut in each lens bin. This puts a fairly simple
lower limit on the scales on which we are sensitive to IAs.
The same approach is not possible for cosmic shear, both
because of the much broader redshift distributions, but also
because the lensing kernel tends to mix physical scales. Our
1 ⇥ 2pt cuts are, then, defined in angular space. The result
is that the physical cutoff varies between bin pairs, and a
range of scales are included in the final analysis (see Secco,
Samuroff et al. 2022 Section IV-B and Figure 4). Shear
analyses tend to be sensitive to physics on smaller scales,
and also to have slightly less control over exactly which
are used, compared with 2 ⇥ 2pt. Additionally, point mass
marginalisation further removes information coming from
small scales. Given all this, it makes some intuitive sense
that scale cuts may be more effective in mitigating higher-
order IA terms in WC than b±. For reasons we will come to
in Section 4.4, we do not think this alone can explain the
robustness of 2 ⇥ 2pt analyses, but it is a factor that likely
plays a role.

In summary, we do see some sensitivity to the choice of
2 ⇥ 2pt cuts, with our small-scale galaxy-galaxy lensing +
clustering analysis being more susceptible to IA-related bi-
ases than our fiducial large scale one. As we have seen,
however, for realistic setups the impact is still relatively
small. Our result from the previous sections does not change
qualitatively, with the bias in a 2 ⇥ 2pt analysis being con-
siderably smaller than in a cosmic shear one based on the
same data. We have presented tests using models that are
currently thought to be robust. In coming years it is likely
that there will be advances in modelling of WC on small scales
(see e.g. Zacharegkas et al. 2022 and the discussion in that
paper). In such cases we should give careful consideration
to sensitivity to IA error, and how the mechanisms we have
described in this paper may change.

4.3. Alternative input IA scenarios
We next move from our single example to look at whether

our conclusions bear out when considering a range of IA
scenarios. Although we do not think cancellation is the
driving factor in the differential 1 ⇥ 2/2 ⇥ 2pt sensitivity,
it is still worth testing that our fiducial IA scenario is not
unrepresentative in some way. As discussed in Section 3,
we have a collection of 21 data vectors with different input
IA scenarios, sampled from the DES Year 1 TATT poste-
riors. These scenarios were chosen to cover a wide range
of plausible IA parameter space, including cases that are
unlikely but not completely ruled out by existing data. The
selection process is set out in more detail in Campos et al.
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Figure 6. The impact of the galaxy bias model and scale cuts on our fiducial 2 ⇥ 2pt analysis. We show three different combinations of bias model and
scale cuts: linear bias only with large scale cuts (> 8 Mpc/⌘ for F, > 6 Mpc/⌘ for WC ; upper left, black); nonlinear bias + large scale cuts (upper right,
pink); nonlinear bias + small scale cuts (> 4 Mpc/⌘ for both F and WC ; bottom centre, purple). In all cases shown, the IA model is 2-parameter NLA and
the simulated data contain linear bias. In each case we show chains run on an “uncontaminated" NLA data vector, as well as our fiducial TATT scenario.
The difference between the two represents the bias due to IA mismodelling, excluding projection effects. As discussed in Section 4.2.3, the lower panel also
shows a case using linear bias combined with (4, 4)Mpc/⌘ cuts to illustrate the effects of bias model flexibility.

(2023) Section 3 (see also their Figure 1).
In Figure 7 we show the relation between cosmological

bias in 1 ⇥ 2pt and 2 ⇥ 2pt NLA analyses of each of these
samples. Our metric for cosmological bias here is defined
as an offset in the 2D (8�⌦m plane relative to the input, and
is estimated as described in Campos et al. (2023) Section
4.1. We show 21 different input IA scenarios, with each
point representing a particular scenario. For reference we
indicate our fiducial case as a star. As we can see, the fiducial
case is not particularly unusual. In general, 2 ⇥ 2pt is less
biased than 1⇥2pt for a particular input (the points tend to lie
below the diagonal dotted line). Although it is not always
the case that the residual bias is completely insignificant
(particularly in the M��L�� setup; purple diamonds), we
see that 3 � 5f in cosmic shear tend to translate into 1f or
less in 2⇥2pt. We should note that there is a relative rotation
of the posteriors between 1 ⇥ 2pt and 2 ⇥ 2pt (i.e. (8 is not
the optimal combination of f8 and ⌦m for 2⇥2pt). This can
reduce the size of a shift in the (8 direction, as measured in
terms of f. Note however, that the IA induced shifts do not
act purely in the (8 direction – considering the 21 scenarios,
we find a fairly isotropic distribution of biases relative to the
input, and there is no reason to think the contour shape will
make the biases as measured in the 2D (8 �⌦m plane larger
or smaller. Even measured solely in the (8 direction, the
difference tends to be significant in absolute terms. That is

to say, the trend seen in Figure 7 is not thought to arise from
the geometry of the contours

We should note that in the most extreme cases the cosmic
shear posteriors are hitting the prior bounds in at least some
parts of the parameter volume. This limits the size of the bias
in absolute terms, but it also distorts the posterior, leading
to an artificial reduction in the 1f confidence region. We
do not consider this an issue, since the bias in these cases
is already large (i.e. we are not concerned particularly in
distinguishing between 5f and 10f biases – both are in the
regime of unacceptably large).

Of the two lens configurations, M��L�� 2⇥2pt is consis-
tently more sensitive to IA mismodelling than ���M�G�C
2⇥2pt (the pink points tend to be lower than the purple for a
given TATT input). This, again, is consistent with what we
saw previously (Section 4.2.1 and Figure 4), and is likely due
to the better redshift quality in ���M�G�C, as we discuss in
Appendix B. In both cases, however, the general conclusion
that 2⇥2pt tends to be more robust than cosmic shear holds.

In Figure 8, we show the data vector level contamination
for the same collection of IA samples. That is, for each
sample we evaluate the j2 between the contaminated TATT
data vector, and an equivalent NLA data vector (identical
input parameters, but with �2, [2, 1TA = 0). This serves as
a summary statistic for the level of higher-order IA contam-
ination in each simulated data vector. Note that this is not
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analyses. Each point represents a particular input IA scenario, and the bias
arises from an insufficient IA model (in this case 2-parameter NLA). The
fiducial IA scenario, discussed in Section 4.1 is represented by the open
stars. The diagonal line marks bias equality (i.e. the bias in the 2 ⇥ 2pt and
1 ⇥ 2pt analyses are exactly equal). The dashed lines represent 1f bias,
and the shaded bands show the < 0.3f region for each probe. We show
results using two alternative lens samples here, ���M�G�C and M��L��
(pink and purple, as labelled; see Section 3.2 for details).
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Figure 8. Data vector contamination and the resulting cosmological bias
for cosmic shear (purple circles) and galaxy-galaxy lensing plus clustering
(black diamonds). “Contamination" (the x-axis quantity) is defined as a
j2, evaluated between noiseless TATT and NLA data vectors at the same
fiducial input cosmology. This is effectively a summary statistic for the
impact of higher-order IA contributions. In general, we can see that for a
given level of contamination, the bias in the cosmic shear analyses tends to
be larger than for 2 ⇥ 2pt. For clarity, we only show the ���M�G�C lens
sample here. As in Figure 7, the grey band and dashed line show 0.3f and
1f thresholds in bias. We again highlight our fiducial IA scenario as open
stars.

quite the same as the size of the overall IAs signal, but is the
impact of the specific terms that are not captured by NLA.
As we can see in Figure 8, in the case of cosmic shear, there
is a clear positive correlation between the amplitude of the
TATT contamination and the cosmological bias. This makes
intuitive sense – as the signal NLA cannot reproduce gets
larger, the bias due to mismodelling gets larger. The trend
in the black (2 ⇥ 2pt) points is interesting in comparison.
Here we see much lower levels of bias for a given j2; the

black points tend to lie below the purple, on average. We
should also note that there is much less (if any) correlation
between bias and contamination for 2 ⇥ 2pt. Indeed, the
cases with the largest bias are not the ones with the largest
contamination level. This is, we should note, consistent
with the hypothesis we will come to in Section 4.4 that the
reason for the robustness of 2 ⇥ 2pt analyses is due to a lack
of degeneracy with cosmology rather than inherently low
levels of IA contamination in WC . While the distribution of
black points in Figure 8 is noticeably lower for a given j2,
it is also true that the data-level contamination in the 2⇥ 2pt
cases does not reach the very extreme values as 1 ⇥ 2pt (i.e.
there are no black points on the far right hand side of Figure
8). This is a sign that the higher order terms are having
less impact, either because of internal cancellation of TATT
contributions or because WC (after scale cuts) is less sensitive
to small scale information. Even if these are not the primary
factors behind the lack of bias in 2⇥ 2pt, they may be acting
to limit the maximum contamination.

Considering the set of IA samples shown in Figures 7
and 8 together, we can identify some basic trends with input
parameters. First of all, the bulk of the scenarios have �1
and �2 with opposite signs due to the way in which they
were generated. It does not appear, however, that the bias in
either probe is notably smaller (or larger) in the few samples
where this is not true. This implies, again, that although
internal cancellation in the 2 ⇥ 2pt case may occur, it is
not the primary mechanism at work. Overall we find a
fairly strong correlation between the cosmic shear bias and
the low-redshift �2 amplitude in the data (that is, �2 (I) =
�2⇥ [(1+ I)/(1+ I0)][2 , evaluated at I = 0.3). If we choose
to evaluate �2 (I) above the pivot redshift (i.e. I > 0.62),
the correlation weakens considerably. This suggests that, at
least with current data sets, we are primarily sensitive to the
behaviour of IAs at low redshift. Put another way, the IA
scenarios with large positive [2 (implying an �2 signal that
goes to 0 at I ⇠ 0 and increases at high I) are often cases
in which NLA is close to unbiased. There is no obvious
correlation between the same low-I �2 amplitude and the
2 ⇥ 2pt bias.

If we similarly consider the density weighting term
�1X (I) = 1TA�1 ⇥ [(1 + I)/(1 + I0)][1 , evaluated at low
I, we see no clear correlation with the cosmic shear bias.
For the bulk of samples we also see no clear trend with
2 ⇥ 2pt bias either. It is noticeable, however, the two cases
with the largest 2 ⇥ 2pt bias are the two with the largest
|�1X |. In particular the one case with bias > 1f (the pair of
points at the top of Figure 7) has fairly small input ampli-
tudes (�1 = 0.48, �2 = �0.13), combined with very strong
redshift dependence ([1 = �6.6, [2 = �6.8) and 1TA = 1.0.
This combination gives the largest value of �1X (I = 0) of all
of the samples by at least a factor of 2. It is possible that this
is a particular mode of IA error that is able to break the self-
calibration mechanism in our 2 ⇥ 2pt analysis. We should
also note, however, that this is an unusually extreme set of
input values, with [1 outside of our prior [1 2 [�5, 5]. This
means that even ignoring the higher order TATT terms, the
NLA model as we have defined it cannot reproduce the data
perfectly. It is somewhat difficult to draw general conclu-
sions from this without further experimentation with more
IA samples. We should note, however, that is an unusual
case and it is not critical for the conclusions of this paper.

It is worth finally noting that these results rely on the as-
sumption that any significant unmodelled IA contributions
that are missed by NLA are encompassed by the 5 param-
eter TATT model. This is reasonable given that TATT is
physically motivated, and is expected to capture the relevant
processes on scales >⇠ 2 Mpc/⌘ (see Blazek et al. 2019
for discussion). We have also been careful to select a wide
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range of parameter values in order to explore the scope of
possible impacts (see Figure 1 from Campos et al. 2023).
Finally, we should note that, as we will come to in Section
4.4, there is some evidence to suggest that our findings are
the result of degeneracy breaking by the combination of con-
taminated and uncontaminated bin pairs in the WC data. This
is a generic effect, determined by the differential sensitivity
of the data rather than the details of the unmodelled IA power
spectra. Given this, it should be relatively independent of
the “complete" IA model we use for contamination.

4.4. Possible mechanisms for the difference in sensitivity to
IA error

In the above subsections we have discussed the robustness
of our central result. During the course of the discussion,
we touched on some of the possible mechanisms that may
contribute to this finding. Now we will draw these strands
together to address the question more directly.

There are a few possible explanations for the observation
that a cosmological analysis based on cosmic shear is sub-
stantially more sensitive to IA mismodelling than an equiva-
lent 2⇥ 2pt one. First, it could be that the IA contribution to
WC , as a fraction of the total signal, is just generically smaller
than in b±. On the face of it, this is plausible, since the power
spectra entering WC and b± are filtered through different ker-
nels in I and : . Scale cuts and point mass marginalisation
also act to remove sensitivity to smaller scales in WC , reducing
the significance of higher order IA terms. We can rule this
out fairly quickly, however using some basic observations.
Comparing Figures 9 and 10, which show the fractional
contribution of IAs to our fiducial shear and WC data vectors,
we can see that there is a substantial contamination in both
data vectors; the maximal fractional contamination (relative
to the lensing signal) is in fact larger in WC than in cosmic
shear. This can also be seen in Figure 8, which shows signif-
icant levels of non-NLA contamination in our 2 ⇥ 2pt data
vectors. Note also that, as seen in the literature, 2� and
3 ⇥ 2pt data typically constrain IA parameters more tightly
than 1 ⇥ 2pt (this holds for TATT model constraints as well
as NLA; see e.g. our Figure 3; Figure 8 of Samuroff et al.
2019; Figure 8 of DES Collaboration 2022). This is true in
general, unless the lens and source samples are specifically
constructed to avoid IA contamination (see e.g. Miyatake
et al. 2023). Given this, the generic insensitivity theory
seems unlikely.

A related idea is that there is internal cancellation of the
terms contributing to the GI power spectrum, leading to the
TATT contributions being smaller in galaxy-galaxy lensing
than shear. In principle, if the signal is entirely controlled
by %GI, cancellation can occur in a way that is not possible
when %II (which is sensitive to the squares of IA amplitudes)
is relevant12. Referring back to Eq. (19), we can see that
if �1 and �2 have opposite signs (as is the case in our
fiducial example), the first two and final terms act against
each other. Such cancellation can only ever be partial, and
will affect some scales/redshifts more than others, since
%X , %0 |0⇢ and %0 |⇢2 have different shapes (e.g. Figure
1 Blazek et al. 2019). It can, however, potentially work
to reduce the amplitude of the IA signal. This is slightly
different from the previous explanation – cancellation would
imply the actual TATT signal in the data is more often than
not small, but does not imply a lack of constraining power
(i.e. higher-order IAs can have an impact, in theory, but

12 Note that cancellation can in principle occur between II and GI power
spectra. This is, however, more difficult to achieve in practice since the
two IA components tend to affect different parts of the data vector (i.e. it
is relatively rare to have bin pairs that are equally affected by GI and II
contributions on a given scale).

in practice they tend not to). There are some reasons to
think such cancellation is a plausible factor. Considering
the constraints in the literature, the degeneracies between
�1 and �2 are such that it is much more common to find
a combination of amplitudes with opposite signs than the
same (see e.g. Figure 8 from Secco, Samuroff et al. 2022 and
Figure 7 from Sánchez, Prat et al. 2022). Note also that in
Figure 3, the posterior on �1 from 2⇥2pt is closer to zero than
the input value. That said, it does not appear that this is the
whole picture. As mentioned above, there is relatively large
data vector level contamination seen in Figure 10, which is
inconsistent with the idea that cancellation is the main driver
of the relative robustness of the 2 ⇥ 2pt data. There is also
a significant impact coming from the non-NLA terms, as
illustrated in Figure 8. Considering Figure 10 we should
note that although the NLA fit has a low amplitude, this
is likely at least partly because of limited flexibility of the
model. That is, because NLA is approximating an input
TATT signal that oscillates between positive and negative
on different scales, rather than because the TATT signal is
necessarily small. We also note that although the bulk of the
IA scenarios considered in Section 4.3 do have opposite-sign
�1 and �2, we see no systematic difference between same-
sign and opposite-sign cases. The 2 ⇥ 2pt bias is typically
smaller than the 1 ⇥ 2pt bias in both.

One alternative hypothesis is that although IAs contribute
to WC measurements at a significant level, the scale and red-
shift dependence of that signal (after scale cuts) is simpler
than in cosmic shear. If we refer back to the equations in
Section 2.3, we see that b± is sensitive to two IA components,
GI and II (or three if we count the II B-mode spectrum sep-
arately), each of which can deviate significantly from NLA.
On the other hand, WC responds only to the GI term – Eq.
(13) and (14) depend on %GI only. Ultimately we only need
to solve for one IA power spectrum, to good approximation.
It is possible that the unmodelled TATT signal in galaxy-
galaxy lensing is just closer to NLA, and so more easily
absorbed. Not only this, but scale cuts in 2 ⇥ 2pt analysis
tend to more cleanly remove small physical scales than those
in cosmic shear (see the discussion in Section 4.2.3). Ac-
cording to this argument, the worst of the higher order TATT
contribution is removed by the cuts on WC , and the surviving
signal is relatively simple, allowing NLA to adjust in 2⇥2pt
more easily than 1 ⇥ 2pt. In practice, however, there is at
least some evidence against this, at least as a full explanation.
We see in Figure 3 that �1 shifts significantly in response
to the unmodelled TATT terms (implying the presence of
at least some higher order signal to be absorbed after the
scale cuts), but the details of the IA model used do not seem
to be important. As we saw in Section 4.2.2, reducing the
IA model complexity worsens the j2 but does not greatly
increase the bias in cosmology. In Figure 5 we found that
even removing the IA model completely does not shift our
fiducial case by more than a fraction of a f. We should
note that it is still possible to achieve this if both the higher-
order TATT terms are well approximated by NLA and some
form of cancellation leaves the overall IA amplitude close to
zero (i.e. by chance there is near-perfect cancellation). This
seems somewhat unlikely, however, given our other obser-
vations. We can see that there are some non-trivial \ and
redshift scalings in the TATT contributions in Figure 10. In
the bins where there is contamination, it is not clear that
NLA is approximating the TATT signal any better here than
it is in the cosmic shear case in Figure 9. This is reflected
in the roughly comparable j2 per degree-of-freedom for the
two probes, as quoted in Section 4.1. We should also note
that we see a similar pattern across our 21 IA scenarios. We
find the j2 per degree of freedom from our 2 ⇥ 2pt chains
is frequently at least as large as that from a cosmic shear
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Figure 9. The fractional contributions of the GI and II IA terms to our mock cosmic shear data. Each IA component is shown as a fraction of the pure
lensing signal GG, as evaluated at the input cosmology. Solid lines show the input TATT signal used to create the mock data vector discussed in Section 4.1.
The dashed lines is the IA signal as predicted at the best fit from an NLA cosmic shear analysis of the same mock data vector. Shaded grey regions indicate
scales removed from our analysis (the fiducial Y3 scale cuts). We see a relatively strong IA signal, at 10 � 20% or more on intermediate scales in most bins.
Note that although we show our fiducial IA scenario here for illustrative purposes, a similar pattern can be seen when plotting the other cases discussed in
Section 4.3.

analysis of the same IA scenario. This, again, suggests that
higher-order TATT terms are not simply well approximated
by NLA.

Our final explanation, which we believe is the most sig-
nificant factor, is that internal degeneracy breaking means
that IA error in 2 ⇥ 2pt simply does not translate into a bias
in cosmological parameters in the way it does for shear. To
see this, compare Figures 9 and 10. Whereas b± is affected
by IAs throughout the whole data vector, in WC the signal is
relatively cleanly contained to certain redshift bin pairs. As
illustrated in Figure 9, the TATT model can quite easily pro-
duce a significant II signal, especially in the auto-bin pairs,
accompanied by a GI signal with quite different redshift and
scale dependence. IAs appear in almost all parts of the b±
data vector at a level between ⇠ 10% and 40% of the cosmo-
logical signal. If we now consider Figure 10, we see that the
IA signal is similarly non-negligible in WC . In fact, in several
bins it accounts for at least as large a fraction as, or even
larger than, in b± (up to around 90% on intermediate scales
in certain bins – this in consistent with the strong, if biased,
constraint on �1 shown in Figure 3). Crucially, however,
the IA signal does not appear uniformly across the WC data
vector. Unlike in the case of cosmic shear, there are pairs
of redshift bins where the lens-source overlap is very small,
and hence in these bins there is almost no sensitivity to IAs
(e.g. the lower left corner of Figure 10). It is likely that this
allows a degree of internal degeneracy breaking – whereas
a change in (8 or ⌦m enters all WC bins in roughly the same
way, an unmodelled IA signal, clearly, can only appear in the
bin pairs that have some sensitivity to IAs. This explanation

is backed up by the observations in Figure 5 (i.e. we are
not reliant on any degree of flexibility in the IA model to
absorb error). It is also supported by the fact that switching
from ���M�G�C to M��L�� lenses (i.e. allowing the lens
redshift distributions to shift/widen, and thus complicating
the clean distinction between bins affected by IAs or not) is
one of the few changes seen to increase the IA-induced bias
in 2 ⇥ 2pt. Finally, when considering the ensemble of IA
scenarios in Section 4.3, we see no significant correlation
between the level of contamination and cosmological bias
for 2 ⇥ 2pt (compare the black and purple points in Figure
8; see also Figure 4 of Campos et al. 2023, which similarly
shows a strong correlation for 1 ⇥ 2pt). The cases with the
worst j2 are not the ones with highest parameter bias, and
the scenario that gives largest bias does not have a noticeably
larger contamination than most of the other samples. This,
again, points to a lack of degeneracy between the model
error and cosmology as the driving factor, rather than e.g.
cancellation or error being absorbed by the IA model.

In summary, then, we have identified four potential factors
that could all lead to 2 ⇥ 2pt analyses being less sensitive
to IA modelling error than cosmic shear: (a) galaxy-galaxy
lensing simply being less sensitive to IAs than cosmic shear;
(b) cancellation of different TATT contributions, leading to
a smaller higher-order IA signal; (c) a less complex TATT
signal, that can be more easily approximated by a relatively
simple model; (d) degeneracy breaking between IAs and (8
in WC , enabled by the fact that IAs are confined to certain bin
pairs. Considering the evidence for each explanation in turn,
we conclude that (d) is likely the most significant effect. It
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Figure 10. The fractional contributions of the X6I and `I (galaxy-intrinsic and magnification-intrinsic) IA terms to our galaxy-galaxy lensing data. Both
are shown relative to the cosmological signal (the sum of galaxy-shear and magnification-shear contributions X6G and `G). As in Figure 9, shaded grey
bands represent scale cuts. The numbers shown in each panel specify a particular bin pair (;, B) . The solid lines show the input IA signal for our mock WC
data, and dashed lines show the best fit prediction from an NLA 2 ⇥ 2pt analysis of that data. Note we are showing the ���M�G�C lens configuration here.
See Figure 16 for the equivalent of this plot using the M��L�� lens sample. As with cosmic shear, the overall patterns of where in the data vector IAs are
significant hold when plotting the other IA scenarios discussed in Section 4.3.

is worth noting, however, that they are (mostly) not mutually
exclusive. For example, is possible that some level of overall
cancellation occurs in TATT scenarios with opposite sign �1
and �2. Likewise the differences in sensitivity to physical
scales will likely have some impact on the magnitude of
higher order terms and how a particular TATT IA power
spectrum translates into bias. These effects exist and tend to
act towards the same end, even if they are not the primary
factor.

4.5. Extension to future surveys
The next question we consider in this section is how spe-

cific these findings are to our DES Y3 like setup – i.e. can
we extrapolate our conclusions to future data sets. To ex-
plore this, we use a set of Rubin LSST Y1 like simulations
(see Section 3.4 and Appendix C). Compared with DES Y3,
the constraining power is expected to increase significantly,
reflecting an increase in the depth (i.e. number density) and
area of both the source and lens samples (see e.g. DESC
Collaboration 2018). We follow the DESC SRD by setting
up our mock data with 5 source and 5 lens bins (shown in
Appendix C), all of which have associated redshift uncer-
tainties. We should note here that although these capture the
rough gain in depth in LSST Y1, they are opimistic in the
sense that they assume Gaussian uncertainties. In reality,
redshift distributions estimated from real data tend to have

non-trivial structure and tails, particularly at low redshift
(Figure 1; see also Myles, Alarcon et al. 2021; Giannini
et al. 2023; Campos et al. 2024). These features increase
bin overlap, and so tend to increase the sensitivity to IAs.
Given this, we expect our LSST simulated tests to represent
a lower bound on the impact of IAs on any future 2 ⇥ 2pt
and cosmic shear analyses.

We choose two IA scenarios to focus on. The first is the
same as in Section 4.1 above. This has not been ruled out by
cosmic shear data to date, but is on the extreme end of what
is consistent with previous results. In addition, we consider
a less extreme case. For this, we keep �1, [1 and 1TA fixed,
but scale down the tidal torque parameters to �2 = �0.55,
[2 = 1.5. This represents a reduction by roughly a factor of 5
in the amplitude of the quadratic IA term at the pivot redshift
I0 = 0.62; it also reduces the relative signal at high redshift,
with an increase in �2 (I) over the range I = 0.62 � 2.0
of ⇠ 2.5 compared with ⇠ 5.6 in the more severe case.
Note there is still a significant amount of uncertainty in the
behaviour of IAs at higher redshifts, and these two values
of [2 are both entirely consistent with existing data. In
the LSST setup, we run both ⇤CDM and FCDM analyses.
These are identical, except for the addition of a dark energy
equation of state parameter F, varied with a flat prior over
the range F = [�2,�0.333]. Our findings are summarised
in Figure 11.

Unsurprisingly, we see a significant gain in the constrain-
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Figure 11. Predicted cosmological constraints from a mock Rubin Observatory LSST Year 1 like analysis. The left hand panels show the results from a
data vector with a relatively extreme input IA scenario (the same as in Section 4.1). The right shows a less extreme case with the input TATT parameters
(�2, [2 ) reduced. Both sets of input parameters are consistent at the < 2f level with the DES Y3 results of Secco, Samuroff et al. (2022); Amon et al.
(2022). The upper and lower panels show ⇤CDM and FCDM analyses respectively. In each case, purple contours represent cosmic shear only and black
are galaxy-galaxy lensing + galaxy clustering. See Section 3.4 for details about the mock LSST data and analysis choices. As in previous figures, the black
star marks the input cosmology.

ing power of each of the analyses compared with our DES
Y3 like simulations (compare the contours in Figures 3 and
11). In ⇤CDM, like before, there is a significant bias in the
NLA cosmic shear results (purple, labelled “1 ⇥ 2pt NLA")
in the presence of IA modelling error. In the more extreme
case (upper left panel), there is a shift of several f relative
to the input in the high (8 direction, very similar to the bias
seen for our DES like setup in Figure 3. Note that the over-
all reduction in the size of the contours means there is less
distortion due to prior edge effects – we are no longer hit-
ting the edge of the allowed parameter space in the (8 �⌦m
plane. In the less extreme scenario (upper right), the bias is
small, at the level of ⇠ 0.5f in the high (8 low⌦m direction.
As before, we see that the galaxy clustering + galaxy-galaxy
lensing results exhibit less bias than cosmic shear. Even
in the case with larger unmodelled TATT parameters, the
offset in the 2D (8 � ⌦m plane is below 1f for 2 ⇥ 2pt. In
the low TATT case, (8 is almost unbiased, though there a
small shift in ⌦m. We note that for both IA scenarios shown
here, rerunning these chains with TATT results in unbiased
constraints (with projection effects at the level of ⇠ 0.17f
in the 2D (8 �⌦m plane in ⇤CDM).

In the FCDM fits (the lower two panels of Figure 11) we
see a similar pattern. Interestingly, the trends here are even
stronger than in the ⇤CDM. In the more extreme case (left),
the 1 ⇥ 2pt posterior is shifted towards high (8 and F < �1

by many f. Here we are beginning to hit the F < �1/3
prior bound (this is the reason for the difference in the size of
the purple contour in the lower left and lower right panels).
In contrast the 2⇥ 2pt constraint recovers the input to < 1f.
Again in the weaker TATT scenario, there is a slight bias in
the high (8 - low F direction, but it is sufficiently weak that
the probes appear consistent.

Unlike in our DES Y3 like runs, we note that there is a very
notable difference in the goodness-of-fit in these analyses.
For the (we stress, noiseless) analyses of the extreme TATT
scenario, we find j2

⇤CDM = 334.8 and j2
FCDM = 312.2 for

cosmic shear. For 2 ⇥ 2pt, the equivalent best-fit values are
much better at 10.6 and 6.8. We compute the number of ef-
fective degrees of freedom in the same way as in Section 4.1,
and find 277.6 and 277.5 for our ⇤CDM and FCDM cosmic
shear analyses respectively (286 data points). For 2 ⇥ 2pt,
the equivalent values are 359.1 and 358.6 (378 data points).
This gives typical ?�values of ?(> j2) ⇠ 10�27 for 1 ⇥ 2pt
and ?(> j2) ⇠ 0.3 for 2 ⇥ 2pt. That is, given the precision
of the Stage IV data, it seems clear that the goodness-of-fit
would flag a problem in the 1⇥ 2pt chains. As we discussed
in Section 4.1, this was not the case for the same IA sce-
nario at DES Y3 precision. In the less extreme case we
find j2

⇤CDM = 3.8 and j2
FCDM = 3.8 for cosmic shear and
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j2
⇤CDM = 7.9 and j2

FCDM = 6.9 for 2 ⇥ 2pt.
Interestingly, we note that our LSST 2 ⇥ 2pt setup expe-

riences a weaker overall IA signal at the data vector level
than the DES Y3 version of the same IA scenario (i.e. the
equivalent to Figure 10 shows a smaller impact). This is re-
flected in the relatively good j2 values listed above (despite
the improved precision of the data). We put this down to a
reduction in the fraction of the WC data strongly affected by
IAs, due to the highly idealised analytic redshift distribu-
tions in Appendix C. There are fewer bins with a strong IA
signal compared with our real Y3 =(I), and so the fit (and
the resulting j2) is dominated by lensing.

Our overall conclusion from this exercise is that our quali-
tative findings from the previous sections hold, even with the
enhanced statistical precision allowed by Rubin. That is, for
a cosmic shear analysis in the presence of an unmodelled IA
signal, model error tends to translate into potentially large
bias in cosmological parameters. For a 2 ⇥ 2pt data vector
affected by the same IA signal, in contrast, the posteriors are
relatively well centred and the best fits are reasonably good.

4.6. Exploiting internal tension as a sign of IA model error
Finally, we will briefly consider how IA driven differences

between cosmic shear and galaxy-galaxy lensing might be
used in practice. As we have seen in Section 4.1, it is
typically easier for model-data residuals from an insufficient
IA model to translate into cosmological bias in a shear only
analysis compared with 2 ⇥ 2pt. In Figure 7 we see that IA
scenarios that cause of the order of several f bias in cosmic
shear can leave 2 ⇥ 2pt virtually unbiased. We should note
that in practice, since the source sample used in shear and WC
measurements are generally the same, discrepancies of this
magnitude are unlikely due to random fluctuations.

One consequence of this observation is that cosmological
bias from IA model insufficiency can manifest itself as an
apparent tension between probes. This could potentially
provide a way of flagging an effect which can otherwise
be difficult to detect using conventional goodness-of-fit and
model comparison statistics (at least without calibration; see
Campos et al. 2023). To illustrate this, Figure 12 shows the

bias (i.e. the offset from the input truth in the (8 � ⌦m
plane) plotted against the naive tension between shear and
2 ⇥ 2pt analyses (i.e. the distance between the peaks of the
two posteriors). We show all 21 IA scenarios considered
in Section 4.3. As we saw before, the 2 ⇥ 2pt bias falls
consistently below the 1 ⇥ 2pt equivalent. Particularly in
the high bias regime (> 1f) the “tension" tracks the cosmic
shear bias fairly well.

As referred to above, an offset in terms of number of f
cannot be easily interpreted in terms of a probability when
the data are correlated. There is typically some significant
correlation between b± and WC , as measured from the same
survey. In order to make a rigorous prediction one would
need to use a metric designed to gauge these sorts of internal
tensions Doux, Baxter et al. (2021). That said, we might
expect a more rigorous treatment of tension to shift the x-
axis in Figure 12 to smaller values, but not necessarily to
change the relation with bias. It is thus useful to consider
this as a demonstration of the concept.

5. CONCLUSIONS

In this paper we have presented a series of simulated cos-
mological analyses, designed to shed light on the behaviour
of joint weak lensing and clustering analyses in the presence
of intrinsic alignment modelling error. Such joint analyses
have become common in the field, and offer significant gains
in terms of constraining power and self-calibration of uncer-
tainties. In addition to those benefits, our results suggest
that differences between probes in a shear + galaxy-galaxy
lensing + galaxy clustering analysis may also provide a use-
ful diagnostic. That is, we find that galaxy-galaxy lensing
and cosmic shear have notably different sensitivities to IA
modelling error. In the presence of a significant and insuffi-
ciently modelled IA signal, this can lead to apparent internal
tension within the joint 3 ⇥ 2pt data vector. In more detail,
our results are as follows:

• At the precision of DES Y3, we find clustering +
galaxy-galaxy lensing (2 ⇥ 2pt) analyses to be rela-
tively unbiased in the presence of a range of input IA
scenarios (< 1f in the (8 � ⌦m plane in almost all
scenarios considered). This is true even when using a
simple 1-parameter IA model. The same IA scenarios
produce considerably larger biases in the equivalent
cosmic shear analyses. Both the more-or-less unbi-
ased 2⇥2pt fit and the considerably more biased 1⇥2pt
one return acceptable j2 values (?�values > 0.05).

• This robustness is not the result of insensitivity to IAs
in galaxy-galaxy lensing: we find a significant contri-
bution at the level of simulated data vectors. Rather,
it points to a level of degeneracy breaking within the
2 ⇥ 2pt data vector, allowing even an overly-simple
IA model to absorb the error rather than cosmological
parameters.

• We find some dependence on the choice of lens sam-
ple. The differential sensitivity is most striking with
a ���M�G�C like sample with well controlled pho-
tometric redshifts. Our conclusions also hold with
a M��L�� like sample (greater number density, but
wider priors on redshift nuisance parameters). We see
slightly larger shifts in response to IA error, but still
reliably under 1f and much smaller than the equiva-
lent shifts in cosmic shear. Similarly, including more
small scale information in a 2 ⇥ 2pt analysis tends to
increase the sensitivity to IA modelling error. Again,
however, for all plausible setups tested, the bias was
< 1f.
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• Considering the range of IA scenarios tested in Cam-
pos et al. (2023), we find > 90% are biased by less
than 1f in a DES Y3 like 2⇥ 2pt analysis (see Figure
7). The corresponding biases in cosmic shear span a
range from ⌧ 0.1f to > 5f. This suggests that the
differences are general, and down to a generic differ-
ence in sensitivity, rather than anything specific about
our choice of fiducial input parameters.

• Extending our analysis to a mock LSST Y1 like setup,
we find the same IA model error can, again, lead to
differences of several f between cosmic shear and
galaxy-galaxy lensing + clustering analyses. These
differences are more pronounced in FCDM than
⇤CDM. We see a similar pattern as before, with much
smaller biases in 2 ⇥ 2pt, and significant internal ten-
sion between 1 ⇥ 2pt and 2 ⇥ 2pt analyses based on
the same survey.

Considering a range of simulated tests and other evidence,
we conclude that the most likely explanation for most of
the differential sensitivity is internal degeneracy breaking,
or self-calibration. Unlike shear, WC measurements cleanly
separate into bin pairs that are either strongly affected or
more or less unaffected by IAs. This separation effectively
breaks the degeneracy between (8/⌦m and IA parameters.
Other factors (e.g. signal cancellation and the greater control
over the physical scales used in WC ) likely contribute but are
not thought to be the primary mechanism at work here.

In the wider context of the field, our results have a number
of implications. Tests for internal tension have become a
standard part of the unblinding process for many contem-
porary cosmology experiments (Doux, Baxter et al. 2021).
Although conventionally thought of as a test for calibration
errors and observational systematics, our results suggest they
may carry information about modelling error as well. That
is, the absence of internal tensions may be a sign that our
choice of IA model is sufficient (at least at the level of
<⇠ 1f).

Additionally, our results may help simplify the practical
work of implementing data-driven model selection of the
type proposed in Campos et al. (2023) (at least for IAs). If
in general, cosmic shear is significantly more sensitive to
IA error than 2 ⇥ 2pt, it may be sufficient to perform model
selection tests with the former. A calibrated goodness-of-fit
that guarantees that our 1⇥2pt analysis is robust to modelling
error at < -f (where we can choose our tolerance -), by
extension will mean the same for 2 ⇥ 2pt.

Another implication is for the interpretation of IA con-
straints themselves. While the high S/N of a WC measurement
provides a potentially powerful constraint on IA parameters,
that IA constraint is only as good as the model behind it.
As we have seen, IA parameters can quite easily absorb
modelling errors – which, while useful for recovering cos-
mological parameters does tend to break the link with the
physics of intrinsic alignments. Although this is true to an
extent for cosmic shear as well, the tendency for IA errors
to be absorbed by whichever IA parameters are available
in 2 ⇥ 2pt analyses may make this more of an issue. As
discussed in Appendix D, a similar thing can happen when
shear ratios are included in a cosmic shear analysis, with
model error being absorbed by the available parameters.

In terms of the lens sample selection itself, our results offer
a new angle. Although robustness to IA is unlikely to ever
be the main driving factor, it is perhaps one consideration
when constructing a lens catalogue – that greater redshift
precision translates into a 2 ⇥ 2pt analysis that is more ro-
bust to uncertainties in the IA model. Further along the
pipeline, our results are also a motivation for including both
very well-separated and overlapping source-lens bin pairs

in the eventual cosmology analysis. As we have seen, the
combination can provide enough information to disentangle
IAs from cosmology relatively effectively.

We should also state that we are not presenting these re-
sults as a solution to the DES Y3 -lens question (Pandey et al.
2022; DES Collaboration 2022). Tests have suggested -lens
was likely the result of selection-related systematics in the
Y3 ���M�G�C lens sample, which can be avoided by chang-
ing the selection threshold. Although superficially similar
to the sort of model-driven differences described here, the
tension there was between bias values derived from WC and
F(\). There are also features of -lens (e.g. redshift depen-
dence, the greater impact on ���M�G�C than M��L��) that
do not match well with the effects we describe in this paper.

Finally, we highlight the importance of IA measurements
of all sorts. There are several complementary ways to learn
about IAs. Cosmological surveys contain more information
about IAs than might be assumed. Most obviously, compar-
ing the marginalised constraints from cosmological analyses
provides a direct way to study the behaviour of IAs in real
lensing data. Although this comparison can be done by re-
viewing the published literature, a deeper understanding can
be obtained from analysing different lensing data sets in a
homogenised model framework (Chang et al. 2019; Joudaki
et al. 2020; DES & KiDS Collaboration 2023). Further in-
formation can be gleaned about the sufficiency and relative
favourability of different models from goodness-of-fit statis-
tics (Campos et al. 2023; Secco, Samuroff et al. 2022). In
addition to simultaneous constraints, direct measurements
(e.g. Singh et al. 2015; Johnston et al. 2019; Fortuna et al.
2021b; Samuroff et al. 2023) and tomographic IA-lensing
separation (e.g. Blazek et al. 2012) are also key to fully
understanding IAs in future lensing data sets. At present
the conclusions we can draw from such measurements are
limited by the data available. Future experiments such as
the Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration 2016), the Physics of the Accelerating Uni-
verse Survey (PAU; Serrano et al. 2023) and the Wide-Area
VISTA Extragalactic Survey (WAVES; Driver et al. 2019),
as well as subsets of data from LSST, Euclid and Roman,
will offer us a way to test our models and begin to derive
informative priors for IAs in lensing surveys.

This paper provides one additional piece in the puzzle.
We have shown that, since constraints from different probes
respond differently to modelling error, a comparison of indi-
vidual probe constraints can provide information that would
not otherwise be obvious from the joint analysis of those
same probes. In other words, there is value in analysing and
presenting different probes separately. It is finally worth not-
ing that, although we have attempted to test the robustness
of our findings as much as possible, there are many factors
at work. Dramatic changes in the source/lens samples or
redshift binning, say, could affect our results. Likewise,
an analysis with very different (or even no) scale cuts in
either cosmic shear or galaxy-galaxy lensing (e.g. Aricò
et al. 2023) may respond differently. Taken at face value,
the addition of very small scales in b± is likely to make one
more sensitive to unmodelled higher order IA terms (and so
increase the differences between shear and 2 ⇥ 2pt). Such
analyses, however, tend to also include extra parameters to
account for baryonic feedback, and it is difficult to predict
how these will interact with higher order IA terms.

As data sets get deeper, we are also entering a regime
where IAs are not well understood. As we have discussed
in this paper, current data sets are primarily sensitive to IAs
at low redshift. Upcoming surveys will reach much higher
redshifts than any of the present generation, potentially sig-
nificantly changing the sensitivity of the data to IA. Under-
standing the dynamics of IA constraints (i.e. the degree of
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potential self-calibration from different measurements, but
also the possibility for greater sensitivity to error and for the
failure of common parameterisations) is an important topic,
and will be the focus of future work.
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APPENDIX

APPENDIX A. POSTERIORS ON REDSHIFT, GALAXY BIAS AND
COSMOLOGY PARAMETERS

This appendix presents the posteriors in the parameter
space of cosmology, IAs and redshift error parameters. Fig-
ure 13 shows cosmic shear only (purple) and galaxy-galaxy
lensing + galaxy clustering (black) analyses of our example
data vector from Section 4.1. The input parameters are in-
dicated by the dashed lines. Although the IA parameters do
shift, particularly in the 2⇥2pt case, the redshift parameters
are noticeably stable. In neither analysis are either the lens
or the source redshift nuisance parameters shifting to absorb
the IA error present in the data. This is most likely at least
in part due to the priors – these are Gaussian and relatively
informative, which restricts the ability of these parameters
to vary too widely (see Table 1). Note that we are using
���M�G�C here, but a similar plot using M��L�� lenses
paints the same overall picture. Even with the extra width
parameters associated with M��L��, we do not see a sig-
nificant amount of IA bias being absorbed into the redshift
distributions.

Figure 14 shows the wider cosmology space. Overlain in
blue is the prior. In the main body of the paper we focus on
(8 and ⌦m, since these are the most constrained parameters.
It can also, however, be interesting to look at the behaviour of
the other, less constrained, parameters. Again, we do not see
an obvious explanation for the relative lack of (8 bias in the
2 ⇥ 2pt case. The neutrino mass parameter ⌦a⌘2 is almost
completely unaffected, being strongly prior dominated. In
general, 2 ⇥ 2pt (black filled and dashed) is in fact slightly
more stable throughout the parameter space than cosmic
shear (purple), which is shifted towards the prior edge in
⌦b, =s and ⌘.

The overall picture here is fairly simple – 2⇥2pt appears to
be less biased in general than 1 ⇥ 2pt, throughout the whole
cosmological parameter space, and not just the projected
(8 �⌦m plane. Interestingly the IA modelling error appears
to be absorbed primarily by the IA parameters, without major
leakage into other parts of parameter space.

APPENDIX B. COMPARING LENS SAMPLES

In this appendix we consider in more detail the differences
between our ���M�G�C and M��L�� lens samples, and the
impact those differences have on our results.

Since the choice of lens sample has some effect on the level
of cosmological bias in a NLA-based 2 ⇥ 2pt analysis (see
Figure 4), it is worth trying to unwrap the differences. That
is, going from ���M�G�C to M��L�� groups together a few
different changes, and it is useful to consider them separately.
The major differences are (a) the number of lens bins (5 for
���M�G�C and either 4 or 6 for M��L��); (b) the shape of
the estimated =(I) themselves (c) the total effective number
density =eff of our M��L�� lens sample is greater than in
���M�G�C (=eff = 0.72 galaxies/square arcmin and 0.17);
(d) the uncertainties on the redshift estimates are larger for
M��L�� (due to the inclusion of fainter galaxies), and so

the width of the priors on redshift nuisance parameters is
slightly larger. We consider each of these in turn below.

Beginning with (a), the number of lens bins clearly has an
impact on constraining power. This can be seen in Figure
4 – the pink contour is noticeably smaller than the purple.
Including the upper two M��L�� bins clearly helps to con-
strain cosmology. It does not, however, shift the contour
back to sit on top of the black (���M�G�C) one. Although
the test is not perfect (since different bins have different red-
shift priors), it does imply that the choice of binning alone is
not the main factor in the ���M�G�C-M��L�� differences.

Likewise we do not expect (b) to be the primary cause of
differences in IA sensitivity. Although in principle differ-
ences in the shape and mean redshift of the lens distributions
does alter the lens-source overlap, and thus the sensitivity to
IAs, in practice the DES Y3 M��L�� and ���M�G�C =(I)
are not hugely different. This can be seen qualitatively by
comparing the lower two panels of Figure 1. A more pre-
cise comparison is given in Figure 15, where we show the
integrated source-lens overlap, - =

Ø
=source (I)=lens (I)dI,

which is the effective redshift kernel entering the galaxy-
intrinsic (6I) contribution to WC . Again the differences are
relatively small (compare the upper and lower panel; note
that the y-axes are the same). On the other hand, the combi-
nation of (c) and (d) is thought to play a more significant part
in the observed differences. These factors taken together are
already known to have a significant impact on the 2 ⇥ 2pt
cosmological constraining power (see Porredon et al. 2021
Figure 10). That is, the increased density outweighs the
slightly broader redshift priors, resulting in a tighter con-
straint in the (8 � ⌦m plane. This added density reduces
the statistical uncertainty, and thus reduces the tolerance of
small biases. Considering Figure 4, however, the difference
between the black and purple contour is not simply a con-
traction about a shifted mean; a reduction in the uncertainty
on (8 by 10% would not ultimately make much difference
given the relatively accurate centring. The differences seen
in Figure 4 are thought to primarily arise from the broader
�I and fI priors. In several bins we go from the =(I) width
being fixed entirely to being varied with a Gaussian prior
(see the lower part of Table 1). These width parameters
are known to be degenerate with galaxy bias, and so with
the overall amplitude of the 2 ⇥ 2pt data. By modifying the
lens-source overlap, these parameters can effectively control
how a given IA signal enters the data. This creates regions
of parameter space where (8 and IA error are degenerate,
and so reduces the ability of different parts of the WC data to
self-calibrate such modelling error.

APPENDIX C. BUILDING AN LSST Y1 LIKE SIMULATED
ANALYSIS

In this appendix we describe in more detail the details of
our LSST Y1 like mock analyses. These are used in Section
4 to test the robustness of our results in an at least semi-
realistic Stage IV like setup. The idea is not to predict every
aspect of the future Rubin analysis correctly, but more to test
if our findings are still applicable after a significant gain in
constraining power.

For our LSST Y1 source sample, we follow Prat, Zuntz
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Figure 13. Posteriors on cosmology, redshift and galaxy bias parameters for the example IA scenario discussed in Section 4.1. As in that section, we choose
to focus on ���M�G�C lenses here, but a similar picture is seen with M��L��. The purple and black contours show cosmic shear and galaxy-galaxy lensing
+ clustering analyses respectively. Although there are slight (< 1f) shifts in the lowest source redshift bin (labelled �I1

s here), in general the source and
lens redshift parameters and galaxy bias are stable and close to their input values (indicated by the dotted lines). The intrinsic alignment amplitude �1, on
the other hand, is seen to shift significantly in the 2 ⇥ 2pt case.

Bin =eff Bias 11 ⇠

1 3.60 1.42 0.43
2 3.60 1.66 0.30
3 3.60 1.70 1.75
4 3.60 1.62 1.94
5 3.60 1.78 1.56

Table 2. Lens sample parameters for our LSST Y1 like mock data. Shown
(left to right) for each redshift bin are the effective number density, linear
galaxy bias and magnification coefficient.

et al. (2023a) and define 5 equal number redshift bins.
We assume the true underlying distribution has the form
?(I) / I2 ⇥ exp[�(I/I0)U], where U = 0.78 and I0 = 0.13
(these numbers are taken from the DESC SRD - i.e. DESC
Collaboration 2018’s Sec D2.1 and Appendix F2). A lower
limit of I > 0.2 is imposed, sharp bin edges are defined,
and the resulting distributions are convolved with a Gaus-
sian redshift error fI = 0.05. This results in the source
=(I) shown in the upper panel of Figure 17 (which approx-

imately match Figure 3 of Prat, Zuntz et al. 2023a). We
follow DESC Collaboration 2018 and Fang et al. (2020) in
assuming a total number density of 11.2 galaxies per square
arcminute, which divided across 5 bins, gives 2.24 per bin.
We also assume an ellipticity dispersion of f4 = 0.26 in all
bins.

For our lens sample, we assume five bins and again use
an analytic form for the redshift true distribution (U = 0.94,
I0 = 0.26; see DESC Collaboration 2018). Following the
predictions in the SRD, we truncate this distribution at 0.2 <
I < 1.2 and apply a Gaussian error offI = 0.03⇥(1+I). The
resulting lens =(I) in five bins are shown in the lower panel of
Figure 17. We keep the Y3 M��L�� bias and magnification
values as our inputs, as shown in Table 2. For the lens sample
number density, we adopt the DESC Collaboration (2018)
prediction for a Y1 photometric sample of 18 galaxies per
square arcminute. Divided equally between our 5 bins, this
gives us 3.60 per square arcmin.
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up against the prior edges, this is much less true for either 2 ⇥ 2pt posteriors (black shaded and dotted), which are largely unbiased.

Note that in both cases, but particularly the source sample,
these estimates will likely be quite different from the distri-
butions eventually estimated from real LSST Y1 data. For
one thing, the idealised selection function of DESC Collab-
oration (2018) will likely become more complicated, which
could affect the depth as well as the shape of the distribu-
tions. Secondly, modern photometric redshift algorithms,
designed to robustly characterise the ensemble =(I) for a
particular population (see e.g. Myles, Alarcon et al. 2021,
Campos et al. 2024) typically result in non-Gaussian distri-
butions with asymmetric tails to high/low redshift. Under-
estimating the tails is not necessarily an issue for predicting
the shear signal alone, but it does matter for the IA contribu-
tion (sensitive to the shape of the lens and source =(I)). We
should, then, consider our forecasts as a rough exercise to
see how things change with greater depth and density rather
than a robust prediction for LSST Y1.

Finally, we assume a joint lens-source mask with an area of
12,300 square degrees. The joint covariance matrix of our

LSST Y1 like shear, galaxy-galaxy lensing and clustering
data is calculated using C����C��. This computes both
Gaussian shape noise and cosmic variance terms, as well
as super sample and connected non-Gaussian contributions.
Note this is the same methodology as was used for DES
Collaboration (2022), albeit with updated parameters.

For the analysis itself, we use the DES Y3 pipeline de-
scribed in Section 2, with some differences. While source
sample and cosmology priors are kept the same as in Table
1, we update the lens sample priors to create a mock sample
with ���M�G�C-comparable photometry. That is, we keep
the width parameters fixed and adopt Gaussian priors on the
�I parameters of widths 0.004, 0.003, 0.003, 0.005 and 0.01
respectively in our five lens bins.

For scale cuts, we apply the DES Y3 method of Krause
et al. (2021). That is, we generate mock LSST Y1 like data
with and without baryonic contamination from the OWLS-
AGN simulations (van Daalen et al. 2011). Scales are itera-
tively removed from the joint b± data vector until the total j2
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Figure 15. A quantification of the lens-source overlap for each possible
bin pair. The quantity on the vertical axis is the total area enclosed by
the product of the lens and source redshift distributions; this overlap term
effectively modulates the size of the IA signal entering our WC predictions
(see the equations in Section 2). Each coloured band shows a particular lens
bin. The upper and lower panels show the same calculation for ���M�G�C
and M��L�� lens samples respectively. The overall pattern is seen to be
roughly the same between the two lens samples. Pairs involving the upper
two M��L�� lens bins are represented by open circles, as these are not
included in the fiducial DES Y3 analysis.

between the two data vectors (DOWLS � Dfid)C�1 (DOWLS �
Dfid) is below some threshold value. For the purposes of
this work, we choose j2 = 2.5 – this is slightly less strict
than the value eventually adopted by the DES collabora-
tion (DES Collaboration 2022), where the fiducial cuts were
defined by j2 = 0.4. There are two competing factors to
account for here. The first, and perhaps more easy to pre-
dict, is that LSST Y1 will simply have more constraining
power than previous surveys. This tightening of statistical
uncertainties will allow less tolerance for a given degree of
systematic error, and so will ultimately require more strin-
gent scale cuts for any given model. The second is that there
will inevitably be advances in the field of baryon modelling
in the coming years. Even if it is not trusted on all scales, it
seems likely that Rubin will incorporate some sort of bary-
onic %(:) model, and so access slightly smaller scales than
they would if they were relying on a dark matter only model.
It was this logic that led to our choice of 2.5. We should bear
in mind that this is not designed as a robust prediction, but
at least roughly accounts for these competing factors. For
the galaxy-galaxy lensing and clustering parts of the data
vector, we again follow Krause et al. (2021). That is, we
convert limits in comoving space at 6 Mpc/⌘ (for WC ) and 8
Mpc/⌘ (for F) into angular scales using the mean redshift
of each lens bin. We run two types of cosmological analyses
in this LSST Y1 setup. The first is ⇤CDM, which uses the
same priors and parameter choices as shown in Table 1. The
second is a FCDM analysis, which is the same, but with an
extra equation of state parameter F, which is varied with a

flat prior over the range U[�3,�0.33].
One consequence of the extra constraining power is that

P���C���� takes considerably longer to converge. We can
understand this by considering how P���C����’s nested
sampling works – the prior distribution %⇧ sets a scale from
which an initial set of live points are drawn. When the pos-
terior is well-constrained compared with the prior volume,
the algorithm can spend a significant time sampling from the
tails of the distribution, meaning it is relatively slow to con-
verge. This is necessary to accurately estimate the evidence.
For this reason, for the LSST like chains we swap to N��-
�����. The basic idea of this new sampler is to use neural
networks to help choose boundaries in parameter space most
efficiently, and so minimise the total number of likelihood
calls needed to estimate the posterior. The algorithm comes
packaged with C����SIS v3, and can be called in the same
way as other samplers. We validate the convergence and
accuracy of our LSST Y1 N������� chains by re-running
one of them using a more conventional MCMC approach –
����� (Foreman-Mackey et al. 2013). Specifically we re-
run our less extreme IA scenario 1⇥2pt analysis (the purple
contour in the upper right panel of Figure 11). After allow-
ing our ����� chain to run for just over 1M samples, we cut
the first quarter for burn-in. Plotting the surviving 750,000,
we find good agreement with the shorter N������� chain
(the marginalised mean and standard deviation of (8 are
consistent to < 1%). Note that we do not use the Bayesian
evidence values from N������� in this work, so we do not
compare or try to validate those here.

APPENDIX D. THE IMPACT OF SHEAR RATIOS

In this appendix we briefly consider the impact of shear
ratios (SR) on our results. SR are the ratios of galaxy-galaxy
lensing measurements using the same lens bin. In theory
the power spectra should (at least partially) cancel away,
leaving ratios of angular diameter distances (see Jain &
Taylor 2003, Sánchez, Prat et al. 2022). For this reason they
were proposed as a way to calibrate redshift error (Prat et al.
2018). In practice, they can also contain a significant amount
of information about intrinsic alignments (e.g. Blazek et al.
2012). The fiducial DES Y3 cosmic shear, 2 ⇥ 2pt and
3 ⇥ 2pt analyses (Secco, Samuroff et al. 2022; Amon et al.
2022; Porredon et al. 2022; DES Collaboration 2022) all
included SR. We chose not to for the main sections of this
paper because doing so mixes information coming from WC
and b±, and so complicates our interpretation of differences
between the probes. Since SR potentially carry information
about IAs, however, it is interesting to briefly consider how
our main results change as they are added.

To avoid significant correlation with the large scale WC and
b± data, the DES Y3 setup includes SR measurements on
scales of 2 � 6 Mpc/⌘, where the uncertainties are shape
noise dominated. Note that this is outside the one-halo
regime, but roughly where higher-order TATT terms are
expected to become significant (see Blazek et al. 2019).
The covariance of the SR is propagated from the analytic
covariance matrix used for the large scale inference. The SR
data are averaged across angular scales, giving one data point
per lens-source-source triplet. In total we have 9 data points
from SR, constituting the first three lens bins, each paired
with source bins (1,4), (2,4) and (3,4) (Sánchez, Prat et al.
2022). The Y3 pipeline incorporates them as an additional
likelihood, such that lnL = lnL2pt + lnLSR (see e.g. Secco,
Samuroff et al. 2022 Section IV-A).

To test how this extra information would interact with IA
error, we set up a simulated test along the lines of those
presented in Section 4. Now, however, we also include
a simulated SR data vector containing our fiducial TATT
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Figure 16. The fractional contributions of the X6I and `I (galaxy-intrinsic and magnification-intrinsic) IA terms to our galaxy-galaxy lensing data. Both
are shown relative to the cosmological signal (the sum of galaxy-shear and magnification-shear contributions X6G and `G). As in Figure 9, shaded grey
bands represent scale cuts. The numbers shown in each panel specify a particular bin pair (;, B) . The solid lines show the input IA signal for our mock WC
data, and dashed lines show the best fit prediction from an NLA 2 ⇥ 2pt analysis of that data. Note we are showing the M��L�� lens configuration here. See
Figure 10 for the equivalent of this plot using the ���M�G�C lens sample.
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scenario (see Section 4.1). We rerun our chains in this
setup, modelling both the large scale two-point functions
and the SR using NLA. We should note that this is a slightly
contrived setup to help us understand how SR affect the
dynamics of self calibration. The fiducial DES Y3 chains
used TATT, which is valid on scales well below NLA.
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Our results are shown in Figure 18. As we can see, the cos-
mic shear posteriors (the purple contours) are pulled to lower
(8. As we have discussed already, the direction is likely at
least in part a function of the prior in the (8 � ⌦m plane,
which restricts further movement in the low ⌦m direction.
Interestingly the IA parameters are not only tightened con-
siderably but drawn towards the region favoured by 2 ⇥ 2pt
(the estimates of �1, from cosmic shear + SR and 2 ⇥ 2pt
with and without SR all agree very well, despite the infor-
mation coming from very different scales). The end result
is something not dissimilar to the joint 3⇥2pt results shown
in Section 4.1 - the contours are tighter in the (8 direction
and shifted, but are still not correctly centred.

The 2 ⇥ 2pt contours on the other hand are stable, both in
size and position. Interestingly, the impact is even smaller
than in Figure 6, where we saw a ⇠ 0.35f shift when in-
cluding scales in WC down to 4 Mpc/⌘. We can draw a
few things from this. First, as seen in previous works (e.g.
Sánchez, Prat et al. 2022; Amon et al. 2022) SR add most
when IAs (or redshift parameters) are not well constrained.
In the 2⇥ 2pt case, the large scale data provide a reasonable
constraint, and so there is less impact in the (8 �⌦m plane.
Second, we see that �1 changes very little when the SR
likelihood is included. This is despite the fact that we are
including scales where we expect the higher-order TATT
contributions to worsen. One possibility here is that the IA
constraints are simply dominated by the larger scales - this
seems doubtful due to the relatively high precision of the SR
data, and the fact that adding SR pulls the 1⇥2pt constraints
on �1 towards the same value. Another is that the TATT

model on these scales can be consistently absorbed into the
NLA model, implying a relatively weak scale dependence
across the range 2 � 6 Mpc/⌘. Finally, even with the ad-
dition of SR we see only small < 1f bias in 2 ⇥ 2pt. We
can take away from this that although we are including more
contaminated data vector, on scales where the S/N is rela-
tively high, the dynamic seen in a large scales only analysis
is unchanged. That is, the data can still distinguish fairly
well between shifts in (8 and ⌦m and unmodelled IA con-
tributions. The inclusion of SR in cosmic shear lessens the
discrepancy slightly by shifting the cosmic shear posterior,
but we still see IA modelling error manifested as a tension
between probes.

We should finally note that this setup mirrors the choices
made in DES Y3. One could use SR purely as a redshift
calibration tool by selecting bin pairs where the ratios are
geometric (see Sánchez, Prat et al. 2022 Figure 2 and Section
III). In this case, they will act only to tighten the posteriors
on the (already largely unbiased) redshift parameters. Given
this, we would expect even less impact compared with the
solid contours in Figure 18 in such an analysis. In short,
our conclusions appear to be robust to the addition of small
scale shear ratios.

This paper was built using the Open Journal of Astro-
physics LATEX template. The OJA is a journal which pro-
vides peer review for new papers in the astro-ph section
of the arXiv. Learn more at http://astro.theoj.org.
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