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Abstract: Upcoming imaging surveys will allow for high signal-to-noise measurements of
galaxy clustering at small scales. In this work, we present the results of the Rubin Observatory
Legacy Survey of Space and Time (LSST) bias challenge, the goal of which is to compare
the performance of di�erent nonlinear galaxy bias models in the context of LSST Year 10
(Y10) data. Specifically, we compare two perturbative approaches, Lagrangian perturbation
theory (LPT) and Eulerian perturbation theory (EPT) to two variants of Hybrid E�ective
Field Theory (HEFT), with our fiducial implementation of these models including terms up
to second order in the bias expansion as well as nonlocal bias and deviations from Poissonian
stochasticity. We consider a variety of di�erent simulated galaxy samples and test the
performance of the bias models in a tomographic joint analysis of LSST-Y10-like galaxy
clustering, galaxy-galaxy-lensing and cosmic shear. We find both HEFT methods as well as
LPT and EPT combined with non-perturbative predictions for the matter power spectrum
to yield unbiased constraints on cosmological parameters up to at least a maximal scale of
kmax = 0.4 Mpc≠1 for all samples considered, even in the presence of assembly bias. While
we find that we can reduce the complexity of the bias model for HEFT without compromising
fit accuracy, this is not generally the case for the perturbative models. We find significant
detections of non-Poissonian stochasticity in all cases considered, and our analysis shows
evidence that small-scale galaxy clustering predominantly improves constraints on galaxy
bias rather than cosmological parameters. These results therefore suggest that the systematic
uncertainties associated with current nonlinear bias models are likely to be subdominant
compared to other sources of error for tomographic analyses of upcoming photometric surveys,
which bodes well for future galaxy clustering analyses using these high signal-to-noise data.

Keywords: cosmological parameters from LSS, galaxy clustering, galaxy surveys, power
spectrum
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1 Introduction

The last three decades have seen the emergence of the �CDM cosmological model as the
concordance model preferred by a number of di�erent cosmological probes. Current and
future surveys across all wavelengths will allow us to put this model to its most stringent
test to date. In the optical wavelength range, these include the Dark Energy Survey (DES),1
the Hyper-Suprime Cam Survey (HSC),2 the Kilo Degree Survey (KiDS),3 the Dark Energy
Camera Legacy Survey (DECaLS),4 the Baryon Oscillation Spectroscopic Survey (BOSS),5
the Dark Energy Spectroscopic Instrument (DESI),6 the Rubin Observatory Legacy Survey
of Space and Time (LSST),7 Euclid,8 and the Roman Space Telescope.9

Alongside weak gravitational lensing, galaxy clustering is one of the main probes ob-
servable with these surveys. This powerful cosmological probe o�ers the promise to deliver
tight constraints on modifications of �CDM, such as neutrino masses [1] and primordial
non-Gaussianity [2], as well as the physics of galaxy formation. Theoretical modeling of
galaxy clustering on small scales is hampered for two main reasons: first, on small scales the
clustering of Dark Matter (DM) becomes non-linear. Second, on these scales, the relation
between galaxy tracers and the DM field also becomes non-linear and mildly non-local. In
the absence of baryons, the clustering of dark matter in the mildly nonlinear regime can
be modeled either using analytic perturbative approaches or using N-body simulations (see
e.g. refs. [3–5]). The relation between galaxies and dark matter on small scales depends on
the physics of galaxy formation, which involves a variety of di�erent processes and spans
several orders of magnitude in scale. These processes are impossible to model ab-initio on a
cosmological scale, even using the highest-accuracy hydrodynamic simulations (see e.g. ref. [6]).
The relation between galaxies, or any biased tracer, and the underlying DM distribution
therefore presents the largest theoretical systematic uncertainty in galaxy clustering analyses.
Several approaches have been developed to model these e�ects, and they can be subdivided
in two di�erent categories: (i) perturbative models, and (ii) phenomenological models. The
former models use a perturbative expansion to jointly model the non-linear evolution of
the DM distribution and its relation to the distribution of biased tracers. This expansion
can be either performed in the initial conditions or at late times, leading to two distinct

1https://www.darkenergysurvey.org/.
2https://hsc.mtk.nao.ac.jp/ssp/0.
3https://kids.strw.leidenuniv.nl/.
4https://www.legacysurvey.org/decamls/.
5https://www.sdss4.org/surveys/boss/.
6https://www.desi.lbl.gov/.
7https://www.lsst.org/.
8https://www.euclid-ec.org/.
9https://roman.gsfc.nasa.gov/.
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frameworks within which to model tracer bias, Lagrangian or Eulerian perturbation theory
(PT) (see e.g. refs. [7–12]). The e�ective field theory of Large-Scale Structure (EFToLSS,
hereafter we use EFT for short) presents a closely related approach that treats cosmological
fields at mildly non-linear scales as e�ective fields emerging from a more complete theory
describing small-scale structure formation [13, 14]. A number of studies have analyzed the
reach of these methods and have found them to be accurate up to maximal wave numbers of
kmax ≥ 0.1 ≠ 0.3 h Mpc≠1 at redshift z = 0 (see e.g. refs. [15–20]). Recently, ref. [16] proposed
a new method aimed to improve upon this reach by developing a hybrid bias model that
combines the accuracy of N-body simulations with the theoretical underpinning of Lagrangian
perturbation theory, called Hybrid E�ective Field Theory (HEFT) hereafter. In ref. [16] it was
shown that this model allows for an accurate fit to N-body data up to kmax ≥ 0.6 h Mpc≠1 at
redshift z = 0. In contrast to these methods, phenomenological models of galaxy bias typically
rely on the Halo Model [21–23] coupled with a Halo Occupation Distribution (HOD). These
models are built on the assumption that all matter in the Universe exists in the form of halos
and that galaxies populate these halos with statistics solely determined by halo mass. The
advantage of these models is that they are, despite their conceptual simplicity, surprisingly
successful at explaining clustering with decent accuracy well into the non-linear regime, where
perturbative approaches falter. Their main disadvantage is that they rely on a number of
heuristic assumptions on a qualitative level, and thus cannot strictly be shown to provide
a complete description of clustering. Additionally, predictions based on the Halo Model
typically show inaccuracies in the transition region between the 1- and 2-halo terms and do
not account for smearing of the Baryonic Acoustic Oscillation feature (see e.g. refs. [24, 25]).

All of the methods outlined above have successfully been applied to data (see e.g.
refs. [19, 26–30]), but they tend to be computationally intensive, thus making parameter
inference an expensive part of cosmological analyses. Therefore, several recent works have
developed hybrid methods that couple these bias models with machine learning methods
to build emulators that can generate fast predictions for statistics involving biased tracers
(see e.g. refs. [31–37]).

Combined in a so-called “3◊2pt” analysis, galaxy clustering and weak lensing form
a key component of the cosmological analysis planned by upcoming photometric galaxy
redshift surveys such as Euclid and LSST. A large amount of cosmological and astrophysical
information will be contained in galaxy clustering at small spatial scales. In order to ensure
robust and unbiased constraints from these data, it is crucial to assess the performance of
di�erent bias models in this high signal-to-noise regime.

In this work, we aim to perform a consistent comparison of non-linear galaxy bias models
and assess their performance in 3◊2pt analyses including high-precision galaxy clustering
data from Stage IV surveys, using as an example the LSST survey. To this end, we use
the AbacusSummit simulations and generate simulated data vectors and corresponding
covariances, loosely matching LSST Year 10 (Y10) data [38]. We then analyze these data
using a number of current non-linear galaxy bias models. Specifically, we employ Eulerian (or
Standard) Perturbation Theory, Lagrangian Perturbation Theory, and two implementations
of HEFT, anzu and BACCO. We fit all of these models to the simulated data, and assess the
performance of each model based on the accuracy of the returned cosmological parameter
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constraints and the goodness-of-fit. Our results have implications for photometric surveys
beyond LSST, but do not directly apply to spectroscopic surveys such as DESI, as we do not
model a number of e�ects important in this regime, such as redshift space distortions (RSDs).

There are three over-arching questions that we would like to answer in this work.
Which model and approach o�ers the most robust and accurate constraints on fundamental
cosmological parameters given the high-precision of forthcoming photometric Stage IV surveys?
How deep into the non-linear regime can we go using the best-performing method? How much
do constraints on cosmological parameters improve as we push to increasingly smaller scales?

The last question is particularly interesting, because it will guide us in further theoretical
developments. While linear scales retain the most amount of memory regarding the primordial
fields and their subsequent evolution, we expect a relative loss of cosmological sensitivity on
non-linear scales.10 Despite this fact, the number of observable modes increases significantly
at smaller scales, and it is thus interesting to investigate the impact of these competing e�ects.
Previous galaxy clustering analyses using HODs have found significant improvements in
cosmological constraining power when increasing the minimal scale included in the analysis (see
e.g. refs. [40–42]), while analyses based on PT have found smaller e�ects, tied to degeneracies
between cosmological and bias parameters (see e.g. ref. [43]). Here, we aim to investigate
these questions also in the light of upcoming Stage IV photometric surveys.

This manuscript is structured as follows. In section 2, we introduce perturbative bias
models, and in section 3 we describe the observables considered. Section 4 gives an overview
of the simulations employed, while section 5 describes the methodology used in our analysis.
We present our results in section 6 and conclude in section 7. Implementation details are
deferred to the appendices.

2 Perturbative bias models

The basic premise behind perturbative approaches to describe galaxy biasing is acknowledging
the presence of complex physical, non-gravitational processes behind the formation of galaxies.
These processes are non-local, and in general involve all the matter in a region around each
galaxy of size Rg (e.g. the Lagrangian size of the parent halo11). On scales larger than Rg

however, galaxy formation can be described as an e�ectively local process, thus removing the
need to describe these physical processes in detail. In this limit, one can invoke the Equivalence
Principle which, in its non-relativistic limit, implies that the only measurable gravitational
local quantities in a freely-falling frame are the second derivatives of the gravitational potential
ˆiˆj� (see e.g. ref. [8]). In other words, on these scales the overdensity of galaxies ”g(x) can
be described by a general function F of these second derivatives:

1 + ”g = F [ˆiˆj�]. (2.1)

Perturbative bias models then proceed by expanding F in powers of ˆiˆj�. Since 1 + ”g is a
scalar quantity, each order in this expansion can only involve scalar combinations of ˆiˆj�,

10Ref. [39] for example, show that the halo- and matter fields start to decorrelate once one-loop corrections
to the power spectrum become significant.

11The Lagrangian radius depends on halo mass; as an example for Mh = 1013M§, it is roughly given by
Rg ƒ 4 Mpc.
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which further limits the number of possible unique terms at each order in the expansion. Up
to second order in powers of ˆ

2�, only three terms are allowed: the matter overdensity ”m

(proportional to the trace Ò2�), the squared overdensity ”
2
m, and the trace squared of the

tidal tensor s
2 © sijs

ij , where sij © ˆiˆj� ≠ ”ijÒ2�/3.
The approximation of local bias is expected to break down on scales close to or smaller

than Rg [9], and the leading correction to eq. (2.1) due to non-local processes is given by
the Laplacian of the matter density field, i.e. R

2
gÒ2

”m [8, 9]. In Fourier space, we have
Ò2

”m(k) = ≠k
2
”m(k), which is what we include in our model given recent detections of

non-local bias for halos (see e.g. [44]). We note that a similar expansion of eq. (2.1) at higher
orders in ˆ

2� and higher-order derivative operators can be derived when including non-local
terms, but we will limit our discussion to the lowest-order contribution described here.

Finally, the details of galaxy formation are sensitive to fluctuations in the initial conditions
on scales smaller than Rg. This leads to stochasticity in the galaxy bias relation which, at
lowest order, can be captured by an additional stochastic field Á that is uncorrelated on large
scales (i.e. it is assumed to have a white power spectrum on k π R

≠1
g ) [45–47], and does

not correlate with any of the perturbative terms described above.
Under the above assumptions, in this work, we describe the galaxy overdensity ”g

perturbatively up to second order as

1 + ”g = 1 + b1”m + b2

2! (”2

m ≠ È”2

mÍ) + bs2

2! (s2 ≠ Ès2Í) + bÒ2

2! Ò2
”m + Á, (2.2)

where we have employed the Eulerian bias picture (though one could analogously expand the
galaxy field in the Lagrangian picture). In eq. (2.2), we have removed the variance of the
quadratic fields to ensure a mean zero galaxy overdensity. Furthermore, the quantity b1 denotes
the linear bias, b2 is the quadratic bias, bs2 is the tidal bias, bÒ2 denotes the non-local bias,
and finally Á is the stochastic contribution. Di�erent perturbative bias models perform this
expansion at di�erent points in time, and can thus be subdivided into Eulerian and Lagrangian
approaches. In Eulerian Perturbation Theory (EPT), the perturbative expansion is performed
locally at the time corresponding to the galaxy redshift. In Lagrangian Perturbation Theory
(LPT) the bias parameters are defined with respect to the initial density field, and galaxy
positions are then traced forward in time following their expected trajectories under gravity. If
complete to a given order, Eulerian and Lagrangian bias expansions are equivalent [48–52]. In
the following, we briefly discuss the traditional implementations of Eulerian and Lagrangian
perturbation theory as well as an extension of LPT, named Hybrid E�ective Field Theory,
which aims to track the galaxy Lagrangian trajectories non-perturbatively. For a more
detailed description of galaxy bias, the reader is referred to ref. [9].

2.1 Eulerian perturbation theory

In Eulerian perturbation theory, the equations of structure formation are solved by focusing
on a particular point in space and following the fluid’s movement through this point in time [7].
Keeping all terms up to second order, and allowing for non-local Eulerian bias (in both space
and time), the galaxy field at any given redshift z can thus be expressed by eq. (2.2), with
all quantities (”g, ”m, s

2) evaluated at the current galaxy position and time [8, 53].

– 4 –
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The galaxy-galaxy and galaxy-matter power spectra in the Eulerian bias framework
are thus given by

Pgg(k, z) =
ÿ

i,j

bibjPij(k, z) + PSN, Pgm(k, z) =
ÿ

i

biPi”m(k, z), (2.3)

where i, j œ {”m, ”
2
m, s

2
, Ò2

”m}, and the set b = {b1, b2, bs2 , bÒ2} denotes the corresponding
bias parameters. As a technical subtlety, we note that in purely perturbative approaches, those
bias parameters are the renormalized version of the “bare” bias parameters in Equation (2.2).
In full generality, the power spectrum of first and third order bias terms (proportional to
b1b3NL) gives rise to terms of the same order as those generated by the auto-correlation of
second order fields [52]. These power spectra however, are strongly degenerate with other
terms and can thus be absorbed into lower-order bias coe�cients. In this work, we therefore
do not consider bias terms beyond second order but note that these are crucial for fitting
e.g. higher-order statistics. PSN is the power spectrum of the stochastic term Á in eq. (2.2),
which is assumed to be scale-independent on the scales considered in this analysis. At the
lowest order, this term can be thought of as the Poisson noise associated with the discrete
nature of galaxy tracers, but it also incorporates a variety of other e�ects. Physically, these
phenomena are described as halo exclusion, but in perturbation theory, they naturally arise
as a renormalization of the terms that result in white power spectra on large scales [54, 55].
As pure Poisson noise gives rise to a stochastic power spectrum PSN = n̄

≠1
g , we expect this

term to be of the same order, but not exactly equal.
The power spectra between the di�erent terms in the bias expansion (Pij in eq. (2.3))

can be computed using Eulerian perturbation theory (although see section 2.5), and to do
so, we use the FAST PT

12 package [56, 57].
As described in more detail below, in this work we fit the set of bias parameters

b = {b1, b2, bs2 , bÒ2} and the shot noise parameter PSN to simulated data from Abacus-
Summit.

2.2 Lagrangian perturbation theory

In the Lagrangian bias picture [10, 12, 58, 59], the perturbative expansion of eq. (2.2) is
applied to the proto-galaxy field from which galaxies form in the initial conditions (i.e. at
high redshifts during matter domination). In this case, ˆiˆj� is the Hessian of the linear
gravitational potential, ”m is the linear Lagrangian density etc., and all fields are evaluated
at the initial Lagrangian coordinates q, and denoted by the subscript L (see e.g. ref. [12]).

Once the initial proto-galaxy overdensity field is established, its evolution is determined
by the Lagrangian trajectories of the galaxies under gravity. Thus at late times, when galaxies
are actually observed, the galaxy overdensity ”g at Eulerian coordinates x is

1 + ”g(x, z) =
⁄

d3q ”
3(x ≠ q ≠ �(q, z)) (1 + ”

L
g (q)), (2.4)

where ”
3 is the 3-dimensional Dirac delta function, ”

g
L is the Lagrangian-space galaxy

overdensity, given by eq. (2.2) in terms of the di�erent bias expansion operators in the initial
12The code can be found at https://github.com/JoeMcEwen/FAST-PT.
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conditions, and � is the Lagrangian displacement field. In the usual parlance of Lagrangian
perturbation theory, the final galaxy overdensity is found by “advecting” the Lagrangian
bias overdensity to the final Eulerian coordinates x.

As in the Eulerian bias expansion, the galaxy-galaxy and galaxy-matter power spectra are
given by eq. (2.3), with the exception that in this case the indices i, j run over an extended set
of operators {1, ”L, ”

2

L, s
2

L, Ò2
”L}, with corresponding bias parameters b = {b0, b

L
1 , b

L
2 , b

L
s2 , b

L
Ò2}.

Here, b0 © 1 is not a free parameter, and P11 denotes the non-linear matter power spectrum.
Finally, PSN denotes a stochastic term as discussed in the previous section. The reason for
the additional term is the fact that, in the Lagrangian picture, the advection of completely
homogeneous density field simply yields the inhomogeneous matter density in Eulerian space.
This does not change the number of free parameters of the model (since b0 is fixed), but it
implies that the Lagrangian and Eulerian bias parameters are not identical to one another
(hence the L superscripts above).

To calculate the displacement field � and thus the power spectra of the advected operators
(i.e. the Pij(k) in eq. (2.3)) we can use Lagrangian perturbation theory. The details of this
calculation can be found in e.g. ref. [60]. In this work, we compute these LPT power spectra
using velocileptors,13 which is described in ref. [61].

2.3 HEFT

The physical processes underlying galaxy formation are complex, and thus formulating a
non-perturbative bias model based on first principles is commensurately di�cult. However,
non-linear evolution under gravity is a simpler problem that can be solved to high accuracy
numerically via N -body simulations. This fact may be used to formulate a hybrid bias
expansion, where the relation between galaxy overdensity and ˆiˆj� is given perturbatively
at early times, and the subsequent evolution under gravity (i.e. solving for the Lagrangian
displacement �) is carried out numerically via simulations. First proposed in ref. [16]
and subsequently explored by refs. [31, 62, 63], this approach allows for higher accuracy
predictions while keeping the physical intuition of LPT.

Building on ref. [16], two separate works [31, 32] employed suites of N -body simulations to
build emulators for the di�erent power spectra in eq. (2.3), corresponding to the advected fields
{1, ”L, ”

2

L, s
2

L, Ò2
”L}. These emulators thus allow for the computation of HEFT predictions

for a wide range of cosmological models. We describe these briefly below, but refer the
reader to refs. [31, 32] for further details.

• anzu: in ref. [31], the authors use the Aemulus suite of N -body simulations to
compute predictions for the LPT basis spectra. This simulation suite has been de-
signed for emulating cosmological quantities, and covers the parameter space Ë =
{�bh

2
, �ch

2
, ‡8, H0, ns, Ne� , w} within priors set by a combination of current observa-

tional constraints. Using the base power spectra, Pij(k, z), computed from Aemulus for
a broad range of cosmological models, anzu employs polynomial chaos expansions [64]
to emulate these quantities, and is publicly available on github

14 (see ref. [35] for an
updated version of this emulator).

13The code can be found at https://github.com/sfschen/velocileptors.
14The code can be found at https://github.com/kokron/anzu.
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• BACCO: the analysis presented in ref. [32] uses a similar approach: the authors
use the BACCO suite of numerical simulations coupled with cosmology rescaling [65]
to create a library of LPT base power spectra that cover the parameter space Ë =
{�m, �b, ‡8, ns, h, M‹ , w0, wa}. Using these power spectra, the authors construct an
emulator using a simple Neural Network.15

Various works [16, 31, 32, 63] have found that this hybrid approach is able to reproduce
the galaxy-galaxy and galaxy-matter power spectra in real space down to significantly smaller
scales than the purely perturbative approaches. In general, precision of a few per cent can
be achieved up to kmax ≥ 0.6 hMpc≠1 for redshifts 0 . z . 1.

2.4 Relations between bias models

As galaxies found in the evolved, Eulerian field can be traced back to proto-galaxies in
Lagrangian space at early times, we can relate Lagrangian bias parameters to their Eulerian
counterparts [9]. Assuming coevolution of the galaxy and the matter distribution, which is
equivalent to galaxy number conservation and vanishing velocity bias, allows us to derive
simple relations between bias parameters defined at early times to those defined at all later
times. Physically, this is due to the fact that the density ratio of conserved, comoving fluids is
unchanged under gravity owing to the equivalence principle. Expanding the galaxy overdensity
in Lagrangian space up to second order neglecting non-local terms, and using the continuity
equation, leads to a relation between Lagrangian and Eulerian bias parameters given by [9]

b1 = 1 + b
L
1 ,

b2 = 8
21b

L
1 + b

L
2 , (2.5)

bs2 = ≠4
7b

L
1 + b

L
s2 .

Note that we have adjusted the prefactors to match the bias definition in eq. (2.2). A popular
toy model for galaxy bias is the so-called local-in-matter-density (LIMD) Lagrangian bias. In
this model, we assume the galaxy overdensity at early times to be solely a function of the
local matter density, which amounts to setting b

L
s2 = b

L
Ò2 = 0 in eq. (2.2). In this special case

eq. (2.5) implies a relation between Eulerian bias parameters given by bs2 = ≠4

7
(b1 ≠ 1) [52].

This shows that gravitational evolution leads to a bias with respect to the squared tidal
field at late times, even in absence of such a bias at early times, i.e. LIMD at early times
is inconsistent with LIMD at late times. In general, we do not expect these relations to
hold exactly, as galaxy evolution is a complex process determined by forces other than
gravity such as momentum transfer due to baryonic feedback and radiation pressure [9]. In
addition, several works have investigated empirical relations between bias parameters, beyond
coevolution. Refs. [66, 67] for example have found strong correlations between bias parameters
for halos, and refs. [68, 69] have found similar results for galaxies, albeit with a larger intrinsic
scatter and slightly di�erent relations between bias parameters. In section 6.3 we will test
the validity of a subset of these relations for the galaxy samples considered in this work.

15The code can be found at https://bacco.dipc.org/emulator.html.
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Finally, we note that gravitational co-evolution will generate third-order bias terms
in Eulerian space from a second-order bias expansion in Lagrangian space. The models
described in sections 2.1 and 2.2 are therefore not fully equivalent. However, in this work
we have chosen to sacrifice full theoretical consistency for consistency in the number of
bias parameters used for each model. We will further discuss this choice and how it might
a�ect our results in section 6.3.

2.5 Implementation choices

When quantifying the validity of the di�erent bias expansions introduced above, we will
make use of a few implementation-specific choices.

Bias evolution. The perturbative bias expansions explored here, in their di�erent in-
carnations, determine the scale dependence of the di�erent terms contributing to the final
galaxy power spectra, but do not impose any restrictions on the redshift dependence of the
bias parameters. As described in more detail below, our analysis is based on angular cross-
correlations between galaxies in di�erent tomographic redshift bins. Since each tomographic
bin in principle corresponds to a distinct galaxy sample, we assume di�erent and independent
bias parameters in each bin. We consider relatively broad redshift bins, and since we expect
galaxy properties and thus galaxy bias to evolve with redshift, our model must account for
this. In our fiducial implementation of all perturbation theory models, we therefore allow for
a redshift evolution in the lowest-order (linear) bias parameters, b1 and b

L
1 . We assume a

linear bias evolution with redshift of the form (e.g. for Eulerian bias):

b1(z) = b1 + b1,p(z ≠ z̄), (2.6)

where z̄ denotes the mean redshift of each bin, and we use a similar expression for b
L
1 .16 By

default all other bias parameters are assumed constant within each redshift bin, although we
will also investigate the impact of allowing for a redshift-evolution of b2 and b

L
2 in section 6.

Decorated PT. As stated in sections 2.1 and 2.2, in the EPT and LPT frameworks, the
power spectra of the bias expansion terms (Pij in eq. (2.3)), may be computed to a given
order in Eulerian or Lagrangian perturbation theory. This perturbative approach can be
potentially improved by replacing the P”m”m(k, z) terms by its non-perturbative prediction
calculated e.g. via the halofit fitting function [4, 70], e�ectively re-summing all PT terms
contributing to it. This selective resummation approach has been found to improve the
quality of the fit while remaining largely unbiased [19, 71, 72]. When studying the EPT and
LPT frameworks, we therefore consider two di�erent approaches:

PTPk approach: We use Eulerian or Lagrangian perturbation theory at next-to-leading order
to compute all terms in eq. (2.3). The power spectrum of the non-local term and the
matter density is approximated as

P”m,Ò2”m
(k, z) æ ≠k

2
P1≠loop(k, z), (2.7)

16We consider a linear relation between bias and redshift as this corresponds to the lowest-order Taylor
expansion of a possibly more complex relation, but can be generalized to higher orders.
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where P1≠loop is the 1-loop matter power spectrum and we have used that in Fourier
space Ò2

”m(k) = ≠k
2
”m(k).17 All other terms in the expansion of Pgm and Pgg will be

calculated using EPT or LPT at next-to-leading order.18

NLPk approach: In a second approach, we use the full non-linear matter power spectrum
PNL(k, z) from halofit to compute the term multiplying b1 in Pgm and b

2
1 in Pgg in

the EPT case. For LPT, we make the following substitutions in the case of Pgm and
Pgg respectively:

P11(k, z) + b
L
1 P1”m(k, z) æ (1 + b

L
1 )PNL(k, z) (2.8)

P11(k, z) + 2b
L
1 P1”m(k, z) + (bL

1 )2
P”m”m(k, z) æ (1 + b

L
1 )2

PNL(k, z). (2.9)

We calculate all other terms in the expansion using EPT or LPT at next-to-leading
order. As above, the cross-power spectrum of the non-local term and the matter density
is approximated as

P”m,Ò2”m
(k, z) æ ≠k

2
PNL(k, z). (2.10)

As opposed to the other bias models considered, where we keep all auto- and cross-
correlations involving Ò2

”m, in this case we only keep the power spectra multiplying the
matter density in order to not mix halofit and PT predictions for the nonlocal bias
terms. In the EPT case, we thus only keep the term involving b1 and Ò2

”m, while for
LPT we make the substitution P1,Ò2”m

(k, z)+b
L
1 P”m,Ò2”m

(k, z) æ ≠(1+b
L
1 )k2

PNL(k, z).

3 Observables

Joint analyses of galaxy clustering, galaxy-galaxy lensing and cosmic shear in a so-called 3◊2pt
analysis will provide key cosmological constraints for LSST and other future photometric
surveys. In this work, we assess the performance of di�erent galaxy bias models in a
Fourier-space-based 3◊2pt analysis, closely matching the specifications for LSST Y10. In
full generality, the spherical harmonic power spectrum between probes a and b, and redshift
bins i, j can be computed using the Limber approximation19 [74–76] as:

C
aibj

¸ =
⁄

dz
c

H(z)
q

ai(‰(z)) q
bj (‰(z))

‰2(z) Pab

3
z, k = ¸ + 1/2

‰(z)

4
, (3.1)

where c is the speed of light, H(z) denotes the Hubble parameter, and ‰(z) is the comoving
distance. In addition, q

ai(‰(z)) denotes the window function for probe a and bin i, and
Pab(z, k) is the three-dimensional power spectrum between probes a and b. For galaxy tracers,
the window function is given by

q
”g,i(‰(z)) = H(z)

c
p

i(z), (3.2)

17We note that the functional form of this expression is equivalent to the counterterms present in EFT
approaches (see e.g. refs. [13, 14]). We will further discuss this similarity and its impact on our results in
appendix C.

18In particular, the matter power spectrum is modeled as Pmm = P1≠loop.
19We note that the Limber approximation has been shown to lead to biased results at low multipoles (see

e.g. ref. [73]), but we do not expect this to a�ect our conclusions as these scales are still well within the linear
regime and we choose a conservative minimal multipole of ¸min = 32.
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where p
i(z) denotes the normalized redshift distribution of the considered sample. The

window function for lensing tracers is

q
“i(‰(z)) = 3

2
�mH

2
0

c2

‰(z)
a

⁄ ‰h

‰(z)

dz
Õ
p

i(zÕ)‰(zÕ) ≠ ‰(z)
‰(zÕ) , (3.3)

where �m denotes the fractional matter density today, H0 is the current expansion rate,
a denotes the scale factor, and ‰h is the comoving distance to the horizon. Furthermore,
we have P““(z, k) = P”m”m(z, k).

Additionally, we also consider a combination of the 3◊2pt data vector with CMB lensing,
and the window function in this case is given by:

q
ŸCMB(‰(z)) = 3

2
�mH

2
0

c2

‰(z)
a

‰(zú) ≠ ‰(z)
‰(zú) , (3.4)

where zú denotes the redshift to the surface of last scattering.
In this work, we model the uncertainties associated to this data vector analytically. The

3◊2pt covariance matrix generally consists of three di�erent parts: a Gaussian contribution,
a non-Gaussian contribution and a contribution due to super-sample covariance (SSC) (see
e.g. ref. [40]). Here we make the simplifying assumption that the data covariance is Gaussian,
and thus neglect non-Gaussian and SSC contributions. Including those contributions will
have two main e�ects on the covariance: (i) increasing the size of the error bars, and (ii)
correlating di�erent ¸-modes. While we expect the first e�ect to lead to our analysis being
conservative since our smaller error bars lead to tighter requirements, the second might a�ect
goodness-of-fit tests in a nonlinear way. We defer an investigation including non-Gaussian
covariances to future work. Under the assumption of Gaussianity, we compute the covariance
between the spherical harmonic power spectra C

ij
¸ and C

iÕjÕ

¸Õ using

CovG(Cij
¸ , C

iÕjÕ

¸Õ ) = È�C
ij
¸ �C

iÕjÕ

¸Õ Í = ”¸¸Õ

(2¸ + 1)�¸fsky

Ë
(CiiÕ

¸ + N
iiÕ
¸ )(CjjÕ

¸ + N
jjÕ

¸ )

+(CijÕ

¸ + N
ijÕ

¸ )(CiÕj
¸ + N

iÕj
¸ )

È
, (3.5)

where C
ij
¸ denotes the signal part of the spherical harmonic power spectrum, N

ij
¸ is the

corresponding noise, fsky denotes the fraction of sky covered by the experiment, and �¸ is
the width of the ¸-bin used for power spectrum estimation. Usually, we set N

ij
¸ = ”ijN

ii,
but here we keep a more generic expression in order to cater for potentially scale-dependent
noise correlated across di�erent probes.

In addition, in refs. [31, 32], it was shown that the three-dimensional power spectra
obtained from the HEFT emulators exhibit relative errors of around 1% when compared to
the power spectra measured directly from the N -body simulations. Both works account for
this systematic uncertainty through an additional term in their covariance matrix. We follow
these analyses assuming full correlation of theoretical errors of any two power spectra, and
add a systematic error floor to our covariance matrix given by

Covsys(Cij
¸ , C

iÕjÕ

¸Õ ) = f
2

sysC
ij
¸ C

iÕjÕ

¸Õ ”¸¸Õ , (3.6)
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where fsys is the fractional error of the theoretical model, which we set to fsys = 0.01 as per
ref. [31]. The total covariance matrix is thus given by

Cov(Cij
¸ , C

iÕjÕ

¸Õ ) = CovG(Cij
¸ , C

iÕjÕ

¸Õ ) + Covsys(Cij
¸ , C

iÕjÕ

¸Õ ). (3.7)

The systematic error floor becomes significant at the smallest scales considered in our analysis
where the combined error can amount to almost five times the contribution from statistical
uncertainties alone. However, for the majority of scales considered, the ratio between
statistical and full errors is above 0.65.

4 Simulations

We use the AbacusSummit suite of high-performance cosmological N -body simulations [77]
to create the simulated galaxy samples used in this analysis. The AbacusSummit suite was
designed to meet the simulation requirements of the Dark Energy Spectroscopic Instrument
(DESI) survey and was run with the high-accuracy cosmological code Abacus [78, 79]. We
utilize one of the “base”-resolution AbacusSummit boxes, AbacusSummit_base_c000_ph006,
at the fiducial cosmology: �bh

2 = 0.02237, �ch
2 = 0.12, h = 0.6736, 109

As = 2.0830,
ns = 0.9649. Its box size is 2000 Mpc/h, and it contains 69123 particles with mass Mpart =
2.1 ◊ 109

M§/h.
To construct the mock galaxy samples from the N -body outputs, we utilize the 10%

particle subsample (i.e., including both the particle A and B subsamples, which constitute
3% and 7% of the particles, respectively), which is selected randomly and is consistent
across redshift, and the on-the-fly halo catalogues, which are generated using the halo-finding
algorithm CompaSO [80]. Specifically, we apply the AbacusHOD model [81] to the halo
catalogue outputs at z = 0.1, 0.3, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.5, 3.0. The AbacusHOD model
builds upon the baseline halo occupation distribution (HOD) model by incorporating various
generalizations pertaining to halo-scale physics and assembly bias.

For the fiducial galaxy samples considered in this analysis, we assume that they are
well-approximated by the “baseline HOD” model with no decorations. The model is akin
to the 5-parameter model of [82], which gives the mean expected number of central and
satellite galaxies per halo given halo mass M :

N̄cent(M) = 1
2erfc

5 log10(Mmin/M)Ô
2‡M

6
, (4.1)

N̄sat(M) =
5

M ≠ ŸMmin

M1

6–

N̄cent(M). (4.2)

Here, Mmin characterizes the minimum halo mass to host a central galaxy, M1 is the typical
halo mass that hosts one satellite galaxy, ‡M describes the steepness of the transition from 0
to 1 in the number of central galaxies, – is the power law index on the number of satellite
galaxies, and ŸMmin gives the minimum halo mass to host a satellite galaxy. Central galaxies
are placed at the halo centre, whereas satellite galaxies are “painted” on random particles.

In this work, we consider two main galaxy samples, which are designed to mimic two
distinct galaxy sample choices for clustering analyses: (i) a homogeneous sample of Luminous
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Parameter red maglim

µmin 12.95 11.88
µmin,p ≠2.0 ≠0.5

µ0 12.3 11.88
µ0,p 0.0 ≠0.5
µ1 14.0 13.08

µ1,p ≠1.5 0.9
– 1.32 1.0

‡log M 0.25 0.4

Table 1. Summary of HOD parameters for the two galaxy samples considered in this work. The
parametrization of the redshift-dependent HOD follows ref. [84].

Red Galaxies (LRGs) with a moderate number density (called ‘red’ hereafter), which will
constitute our fiducial sample throughout this work, and (ii) a magnitude-limited, high-
number density sample (called ‘maglim’ hereafter).20 We model the HODs of these samples
based on observational constraints using Equations (4.1) and (4.2). In order to account
for evolution of both samples, we assume a redshift dependence of the three HOD masses
(Mmin, M1, and M0 © ŸM) of the form [84]

log10 Mx/M§ = µx + µx,p

C
1

1 + z
≠ 1

1 + zp

D

, (4.3)

with zp = 0.65. Using this parameterization, we model the HOD of the maglim sample using
the results derived for the HSC sample studied in ref. [84].21 For the red sample on the other
hand, we assume redshift-dependent HOD masses consistent with the DESI LRG selection
described in ref. [30].22 The adopted HOD parameters for both samples are given in table 1.

We complement these samples with an additional data set for which we also model
assembly bias e�ects. A number of studies have investigated the dependence of clustering
statistics on quantities other than halo mass, such as halo concentration, environment or
spin (see e.g. refs. [87–90]), and some of these works have resulted in significant detections
of this so-called assembly bias e�ect. The nonlinear galaxy bias models considered in this
work in principle o�er the flexibility to also describe tracers a�ected by these processes. In
order to test this, we generate an additional galaxy sample from AbacusSummit via the fast
and e�cient decorated HOD model, AbacusHOD [91], incorporating assembly bias e�ects
due to halo concentration and environment as described and defined in refs. [81, 92]. In

20Similar samples have been considered in the DES Y3 analyses (see e.g. ref. [83]), and we expect such
samples to also be used for clustering analyses of LSST data.

21Specifically, for Mmin and M1 we use the posterior means derived for the fiducial case in ref. [84] as given
in their table 4. As M0 is unconstrained in this analysis, we follow refs. [85, 86], and set M0 = Mmin. Finally,
we set the remaining parameters to the fiducial values assumed in ref. [84].

22In practice, we fit the results given in their table 4 as a function of redshift to derive values for the HOD
parameters.
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particular, we adopt non-zero values for the concentration and environment assembly bias
parameters, A_c,s and B_c,s, for both the central and satellite populations (subscript c

referring to centrals and s to satellites), given by A_c = ≠0.73, A_s = ≠0.24, B_c = ≠0.0093,
and B_s = 0.0037. These parameters modify the central and satellite halo occupations by
reranking the haloes at fixed mass based on their intrinsic concentration and environment,
and their values are to be close to the best-fit for CMASS data [93] and modify the central and
satellite halo occupations (hence, the subscripts) by re-ranking the haloes at fixed mass by
their concentration (A_c and A_s) and their environment (A_c and A_s). For full definitions
of the parameters and how they are used, see ref. [91].

We would like to stress that all galaxy samples considered in this work are generated
using a simplified HOD model, which includes some extensions beyond the “vanilla” model
described in ref. [94]. However, for maximal realism, one could imagine incorporating other
e�ects such as redshift dependence of the selection functions, deviations of the satellite
occupations from a Poisson distribution, and a further dependence of the central occupations
on assembly bias. These additional e�ects might significantly a�ect the clustering and
stochasticity of the samples, and thus potentially also our results. We leave an investigation
of more complex HOD models to future work.

In addition in this work, we do not consider the additional uncertainties in realistic
samples due to galaxy selection e�ects and photo-z estimation. These uncertainties are specific
to photometric surveys; recent analyses from Stage III surveys, e.g. ref. [71], have found that
imperfect correction of “survey properties” appear to dominate statistical uncertainties for
red samples in DES. Given LSST’s statistical precision, these issues may require significant
e�ort. In addition, the sample selection and redshift binning interplays with bias evolution,
magnification and other e�ects not considered here. Finally, we note that the Euclid survey
has planned an ambitious tomographic analysis comprising about a dozen redshift bins. The
opportunities and challenges posed by such an analysis require separate investigation.

5 Methods

5.1 Generating smooth spectra

We use the simulated galaxy samples from AbacusSummit to compute three-dimensional
galaxy-galaxy auto- and galaxy-matter cross-power spectra for all the redshifts covered by
the simulations. Sample variance in the power spectra extracted from AbacusSummit is
significant on large scales compared to the expected error bars, which could lead to biases
in our analysis. As described in detail in appendix A, we suppress this noise by combining
the spectra measured from the simulations with theoretical predictions for the linear power
spectrum on large scales. This procedure allows us to model the measured power spectra to
an accuracy below the sample variance uncertainties of the AbacusSummit simulation box.
The reader is referred to appendix A for a more detailed description of the methodology.

5.2 Computing simulated data vectors

In order to compute spherical harmonic power spectra using eq. (3.1), we need to specify
redshift distributions for the source galaxies as well as the two clustering samples considered in
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Figure 1. Assumed redshift distributions for the samples considered in this work. Left panel:
tomographic redshift bins for both the source sample and the maglim clustering sample. Right panel:
tomographic redshift bins for the red clustering sample. The dashed lines denote the mean redshift of
each bin. We note that all redshift bins are normalized to unity.

this work. For the source sample, we assume a number density and overall redshift distribution
based on the LSST Y10 sample as specified in the LSST DESC Science Requirements
document [38]. The sample is divided into 5 redshift bins, enforcing an equal number of
galaxies in each bin, and assuming Gaussian photometric redshift uncertainties with standard
deviation ‡z = 0.05(1 + z). The resulting redshift distributions are shown in the left panel
of figure 1, with the inter-bin tails caused by the photo-z uncertainties. For the clustering
on the other hand, we assume di�erent distributions for the maglim and the red sample:
for the maglim sample we make the assumption that we use the same set of galaxies for
lensing and clustering measurements, and thus set the clustering redshift distributions to
those assumed for the source sample. For the red sample on the other hand, we assume
smaller photometric redshift uncertainties and a lower maximal redshift. The number density
and overall redshift distribution is calculated from the luminosity function of red galaxies,
following the procedure detailed in ref. [95]. The sample is then divided into 6 redshift bins,
evenly spaced in photometric redshift, and assuming a photo-z scatter ‡z = 0.02(1 + z). The
resulting tomographic redshift bins are shown in the right panel of figure 1.

Using these redshift distributions, we obtain spherical harmonic power spectra for an
LSST-like 3◊2pt analysis. We use the computed three-dimensional power spectra from
AbacusSummit and interpolate those in redshift to evaluate eq. (3.1). We verified that the
number of samples in redshift used in this interpolation was large enough to produce accurate
angular power spectra. In a next step, we compute all possible auto- and cross-correlations
between probes and tomographic bins, except that we do not include cross-correlations between
clustering bins in our analysis. The latter choice is driven by the method employed to compute
three-dimensional power spectra from AbacusSummit in the presence of stochasticity (see
description below). In general however, we expect the considered bias models to also be
applicable for galaxy clustering cross-correlations, and it would be interesting to extend our
analysis to these observables given their additional information content. In practice, we
perform all projections into angular power spectra using the DESC Core Cosmology Library
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(CCL
23) [96]. This leaves us with a set of 51 or 45 spherical harmonic power spectra for the

red or maglim clustering samples respectively, which we evaluate for 22 bandpowers with
edges ¸ = {32, 42, 52, 66, 83, 105, 132, 167, 210, 265, 333, 420, 528, 665, 838, 1054, 1328, 1672,

2104, 2650, 3336, 4200, 5287}. When applying a scale cut based on a maximal wavenumber
kmax for power spectra involving clustering, we only keep bandpowers for which the mean
of the ¸-bin satisfies ¸ < kmax‰(z̄), where ‰(z̄) denotes the comoving distance to the mean
redshift of the respective bin. For the cosmic shear power spectra on the other hand, we
fix ¸max = 2000 for all cases.

As the aim of this work is to assess the performance of di�erent galaxy bias models, we
need to prevent biasing our results due to inaccuracies in modeling the matter power spectrum
used for cosmic shear predictions. We therefore rescale the AbacusSummit matter power
spectrum to match the halofit [4, 70] prediction (see e.g. ref. [20] for a similar approach).24

In section 6.4.4, we explore the e�ect of not rescaling cosmic shear power spectra. We
note that all other power spectra are left unchanged and taken from the AbacusSummit
simulations, which means that matter power spectrum mis-modeling might a�ect our results
for P”g”g and P”g”m . As described in section 2.5, we test the sensitivity of LPT and EPT to
implementation choices for modeling the matter power spectrum, but leave a more extensive
analysis to future work.

We generate covariances for these data as outlined in section 3, modeling LSST Y10 data
based loosely on the LSST DESC Science Requirements Document (SRD) [38]. We set the
fraction of sky covered to fsky = 0.4. We model the noise for cosmic shear following ref. [99],
setting the e�ective number density of galaxies to ne� = 27 arcmin≠2, and the intrinsic
ellipticity to ‡e = 0.28. For galaxy clustering on the other hand, we follow an alternative
approach: we find the considered samples to exhibit a significant level of non-Poissonian
stochasticity. Subtracting an estimate for the Poissonian shot noise of the sample from
the simulated three-dimensional power spectra would therefore lead to biased results. We
circumvent this issue by considering clustering noise levels consistent with the stochasticity
determined by the HODs of the simulated galaxy samples. In practice this means that we do
not subtract any Poisson shot noise estimate from the simulated power spectra, but account
for it in the theoretical modeling as described in sections 2.1 and 2.2.25

Finally we consider an extension of our LSST-like 3◊2pt analysis: we additionally model
a joint analysis of our fiducial red galaxy sample from LSST with CMB lensing from CMB S4.
Practically, we thus extend our fiducial 3◊2pt data vector with all possible cross-correlations
with the CMB lensing convergence leading to a set of 62 spherical harmonic power spectra.
To model CMB S4 lensing and its associated covariance through Equations (3.1) and (3.7),

23https://github.com/LSSTDESC/CCL.
24As shown in ref. [97], the matter power spectrum from AbacusSummit agrees with that from halofit to

a level of 2% for k < 0.5h Mpc≠1 for the fiducial AbacusSummit cosmology. For other cosmological models
however, the discrepancies increase; an example is shown in ref. [35], who find di�erences of up to 4% between
the Aemulus ‹ simulations and HMCode2020 [98] at k = 0.2h Mpc≠1. We expect these to be comparable to the
di�erences between Abacus and halofit for a range of cosmological models.

25We note that this approach amounts to assuming that the noise levels determined by the assumed HODs
are consistent with the clustering noise levels expected for LSST Y10 data. Given that we have modeled our
samples according to observational results, we believe this to be an acceptable approximation.
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we follow the specifications given in the CMB S4 wiki26 (private communication Toshiya
Namikawa and Colin Hill), and use the CMB lensing reconstruction noise computed using
the cmblensplus

27 code. We assume a common sky coverage of LSST and CMB S4 given
by fsky = 0.4.

To fully simulate the expected data vectors, one should draw a noise realization from the
covariance matrix and add it to the noiseless prediction for the observables. We choose not to
do this: for an ideal model, our result should thus center on the true values of cosmological
parameters and the corresponding ‰

2 should satisfy ‰
2 = 0. Therefore, any deviation in ‰

2

and parameter values indicates systematic errors in the theory modeling (see also section 5.4).

5.3 Deriving best-fit parameters and associated uncertainties

For all bias models and galaxy samples analyzed in this work, we assume a Gaussian likelihood
with simulated data and covariance matrix as described above. In order to compare the
performance of di�erent bias models and test if the fits to the simulated data return unbiased
constraints on cosmological parameters, we would ideally sample the likelihood in an Monte
Carlo Markov Chain (MCMC) and thus derive the full posterior of our model parameters. As
we are considering a large number of bias models and di�erent implementations, this is compu-
tationally expensive (although see ref. [100] for potential ways to accelerate this process). We
therefore resort to a simplified approach: for all models considered, we run an optimization
algorithm to maximize the likelihood and determine the corresponding values of cosmolog-
ical and bias parameters. Specifically, we use the BOBYQA

28 algorithm [101–103] through the
cobaya

29 package as well as Powell’s optimization method as implemented in scipy [104]. We
choose the latter method as the parameter space considered in this analysis exhibits significant
degeneracies, and we find that directional optimization as implemented in Powell’s method
outperforms BOBYQA in most cases. We therefore use Powell’s method for most of our fiducial
results but always compare to the results obtained using BOBYQA to test the robustness of our
conclusions. In addition, we perform a number of further tests to ensure the stability of our re-
sults: we rerun each case multiple times to test stability against changing the initial conditions,
we also vary the convergence criterion for both methods as well as the number of starting
points for BOBYQA, finding consistent results for reasonable settings of these parameters.

In order to characterize biases on cosmological parameters, we additionally need to
estimate parameter uncertainties. In this work, we use a Fisher matrix (FM) formalism to
forecast uncertainties on cosmological and nonlinear bias parameters. The Fisher matrix
allows for propagation of uncertainties on observables (in our case, the spherical harmonic
power spectra) to corresponding uncertainties on model parameters. Under the assumption
that the dependence of the data covariance matrix C on the parameters of interest ◊– can
be neglected (which is a very good approximation [105]), the Fisher matrix F is given by

26The description can be found at https://cmb-s4.uchicago.edu/wiki/index.php/Survey_Performance_
Expectations.

27The package can be found at https://github.com/toshiyan/cmblensplus.
28The code can be found at https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html.
29The code can be found at https://cobaya.readthedocs.io/en/latest/.
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(see e.g. refs. [106–108])

F–— = ˆD
ˆ◊–

C≠1
ˆD
ˆ◊—

, (5.1)

where D denotes the data vector of a given experiment (in our case, a list containing all the
power spectra used in the analysis). The Cramér-Rao bound then states that the uncertainty
on ◊–, marginalized over all other ◊— satisfies

�◊– Ø
Ò

(F ≠1)––. (5.2)

In this analysis, we consider a fiducial model characterized by two cosmological
and a set of six nonlinear bias parameters per clustering redshift bin, i.e. ◊ =
{‡8, �c, b

p,i
1

, b
p,i
1p , b

p,i
2

, b
p,i
s2 , b

p,i
Ò2 , P

p,i
SN

}, where i denotes the redshift bin (i.e. i = 1 . . . 5/6 in
our analysis), and p = L in the case of LPT and HEFT. Computing the Fisher matrix
requires the assumption of fiducial values for the model parameters, which we set to the
best-fit values derived from the minimizer. We compute derivatives of the observables with
respect to the model parameters numerically using a five-point stencil with step size ‘ = 0.01◊,
where ◊ denotes any parameter considered in our analysis.30 We test the stability of our
results by varying the parameter ‘ and find our results to be largely insensitive to this choice.

Fisher matrix analyses are prone to numerical instabilities (see e.g. refs. [109–111]). An
additional complication in our case is that the posterior is likely to exhibit non-Gaussian
features due to degeneracies between model parameters. We therefore test the robustness of
our results by comparing our FM constraints to those derived using an MCMC for selected
cases, finding reasonable agreement as described in detail in appendix D.

5.4 Assessing model performance

For all the bias models considered in this analysis, we assess model performance as a
function of the smallest scale (largest wavenumber) kmax considered for galaxy clustering
and galaxy-galaxy lensing data. As we are working with angular power spectra, we convert
this quantity to a maximal angular multipole for each redshift bin using the approximate
relation ¸max = kmax‰(z̄), where z̄ denotes the mean redshift of each bin.

In this work, we assess model performance in several di�erent ways. First, we test if
the values of the cosmological parameters recovered from our fits are consistent with their
fiducial values within statistical uncertainties as derived from the Fisher matrix analysis.
This test does not guarantee good model performance, as even models that do not fit the
data can potentially yield unbiased parameter constraints. We therefore additionally assess
goodness-of-fit (GOF) of all models considered. As described in section 5.2, we work with
noiseless data vectors. We therefore do not expect the ‰

2 of the fit to follow a ‰
2-distribution

with mean given by the number of degrees of freedom in the data, but rather be significantly
smaller and dominated by the model performance and numerical errors. Based on this, we
devise a set of two ‰

2-tests which we use to validate our results:

30For parameters with fiducial value of zero, we set ‘ = 0.01.
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Noiseless GOF: First, we determine the minimal ‰
2-value of the fit to the noiseless data

vector, which we will call ‰
2

theory
. We need to make sure that this quantity is significantly

smaller than the �‰
2 allowed by statistical uncertainties and the number of degrees-of-

freedom of our model. In the presence of noise, we expect the minimal ‰
2 of the fit to

roughly follow a ‰
2-distribution with number of degrees-of-freedom dof = ndata≠nparam,

where ndata denotes the number of data points, and nparam is the number of parameters
in the model.31 We call this latter quantity ‰

2
noise, which in our case is given by

‰
2
noise = nC¸ ≠nparam ≠nC““

¸
, where nC¸ denotes the total number of spherical harmonics

C¸, and nC““
¸

denotes the number of shear-only data points. As described above, we
set the matter power spectrum of the simulations to its halofit prediction, and we
therefore do not count the shear power spectra as degrees-of-freedom of the model.

In our first test we thus assess that the sum of the expected ‰
2
noise and ‰

2

theory
is

reasonably likely given a ‰
2 distribution with mean ‰

2
noise. This test ensures that the

di�erences due to systematic uncertainties in the theory are subdominant to statistical
uncertainties. For the noiseless data vector, we also examine the size of the fit residuals.

Noisy GOF: Secondly, we use our synthetic data vector alongside the covariance matrix to
create a noisy realization of the data. We then fit this data using all the bias models
discussed and test that the best-fit yields a ‰

2 consistent with ‰
2
noise + ‰

2

theory
. In

contrast to earlier, we set ‰
2
noise = nC¸ ≠ nparam, as we do sample the cosmic shear data

as well. We additionally assert that the histogram of the fit residuals is consistent with
a Gaussian.

In principle, we require the bias models to pass both these tests in order to be deemed
acceptable. Given the large number of cases considered in our analysis, and the computational
cost of performing the ‘Noisy GOF’ test for each case, in practice we only perform the second
test for our fiducial case. As we find largely consistent results between the two tests in this
case, we resort to only the ‘Noiseless GOF’ test for the remainder of this work. As is customary,
we set a threshold of a p-value larger than p = 0.05 for a model to pass a specific test.32

31Strictly, this is only valid for linear models with independent basis functions (see e.g. ref. [112]). We will
nevertheless use this criterion throughout this analysis, as we are mainly interested in deriving a threshold
and not accurate probabilities-to-exceed.

32We note that this criterion might appear overly generous as it could e.g. complicate a direct assessment
of the GOF when analyzing observational data. Nevertheless we believe it to be adequate for this analysis
given our simplistic treatment of systematic uncertainties: as described in section 3, we follow ref. [31] and
add a 1% relative error floor to the covariance matrix, which amounts to half of the level assumed in ref. [32].
When applying these methods to data, we envision performing a more in-depth investigation of systematic
uncertainties. Specifically, we could e.g. compare the two HEFT implementations and derive systematic error
bounds from their residuals, specifically for spherical harmonic power spectra. We could include additional
degrees-of-freedom in our fit using PCA components derived from these residuals or employ them to derive
a more accurate estimate of the error floor. We expect these types of approaches to reduce the values for
‰2

theory to levels that would lead to interpretable ‰2 values when applying the methods to data, but leave a
detailed investigation to future work. In addition, all comparisons between the results for the noiseless GOF
are consistent with the noisy GOF criterion, which provides further validation of our choice of fiducial GOF.
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Figure 2. Results of fitting the red galaxy sample with the HEFT implementations considered in
this work, anzu and BACCO. Top panels: recovered values of ‡8 and �c as a function of maximal
wavenumber, kmax. Bottom panels: minimum ‰

2-value obtained from the fit, and relative uncertainties
on ‡8 and �c, as a function of kmax. The uncertainties are normalized with respect to those obtained
for anzu at kmax = 0.4 Mpc≠1.

6 Results

In the following sections, we present the results of our analysis. Unless stated otherwise, all
results will be presented for our fiducial, red sample. At the end of the section, we also give a
summary of the results obtained for the alternative samples considered.

6.1 HEFT

We first investigate the performance of the two HEFT implementations, anzu and BACCO.
As discussed in section 5.3, we minimize the likelihood with respect to two cosmological
parameters {�c, ‡8}, a well as six bias parameters per redshift bin, {b1, b1p, b2, bs2 , bÒ2 , PSN}.
We keep the remaining cosmological parameters fixed at their fiducial values adopted in
AbacusSummit.

The upper panels of figure 2 show the values of the cosmological parameters ‡8 and �c

recovered from fitting our fiducial red galaxy sample with anzu and BACCO. As can be seen,
both HEFT methods are able to recover the true parameter value within 1‡ uncertainty for
all values of kmax considered.33 3◊2pt analyses are generally most sensitive to a combination
of ‡8 and �c (or �m), as these two parameters have degenerate e�ects on the power spectra

33For BACCO as well as the PT-based methods discussed in section 6.2, we see a sign that the recovered values
of ‡8 and �c are systematically under- or over-estimated. These e�ects are not significant at the precision we
are working in, but might be a sign for biases that could become important at higher signal-to-noise. However,
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(cf. S8 in weak lensing). It is therefore interesting to additionally investigate the resulting bias
on the best-constrained combination of these two parameters. Without explicitly showing
the results, we find that the di�erences between recovered and fiducial values of ‡8 and �c

result in shifts along the degeneracy direction depicted in the left-hand panel of figure 17 and
thus do not result in a bias on the best-constrained parameter combination. The bottom
left panel of figure 2 shows the minimal ‰

2 obtained for both models, and we can use these
values to assess the goodness-of-fit in all cases. The most stringent test for each model is
obtained at the maximal kmax considered in our analysis, kmax = 0.4 Mpc≠1 (corresponding to
0.6 hMpc≠1), and in the following we only discuss this case. The results of our goodness-of-fit
tests are described in detail in appendix B.1, and here we only give a summary of our main
findings. For the noiseless data vector (noiseless GOF), we find that both models, anzu

and BACCO, pass our ‰
2 tests.34 In addition, most obtained fit residuals lie within 1‡ of

the synthetic data and the relative di�erences are generally of order 1%. We additionally
consider two noisy realizations of the data vector (noisy GOF), finding all tests to pass with
the exception of the analysis of one of the noisy realizations with BACCO, which we consider
to be a statistical fluctuation. In all cases considered, we further find the distribution of
fit residuals to be consistent with a Gaussian.

In order to test for possible systematic modeling uncertainties, we compare the consistency
of the bias parameter values obtained for the two HEFT implementations. While a detailed
description is deferred to appendix C, we generally find consistency between bias parameters
derived using anzu or BACCO. The only exception being bÒ2 for which we find consistently
higher values for BACCO than we do for anzu. We attribute these di�erences to slightly
di�erent implementations of the nonlocal power spectra in the two HEFT models, as well as
known sensitivities of bÒ2 to small-scale implementation details such as di�erent smoothing
scales used when deriving template spectra (see e.g. ref. [9]).

Finally, we expect that systematics in the modeling might manifest themselves as
dependencies of the derived bias parameter values on the maximal wavenumber kmax used in
the analysis. In order to test for this, we thus compare the bias parameter values obtained
for anzu when varying kmax from kmax = 0.1 Mpc≠1 to kmax = 0.4 Mpc≠1, finding largely
consistent results.

Based on these results, the two HEFT implementations considered in this work thus
appear promising for analyzing high-precision data as expected from LSST.

6.2 LPT/EPT

In addition to the HEFT implementations discussed above, we also assess the performance
of two PT-based models, Lagrangian and Eulerian perturbation theory. As described in
section 2.5, we consider two di�erent ways to model the matter power spectrum P”m”m(z, k)
as well as nonlocal contributions in P”g”g and P”g”m . These are denoted NLPk for the halofit-
based model, and PTPk for the fully perturbative case. We remind the reader that this is

this could also be a feature of the particular simulation realization as the bias parameters derived as a function
of kmax are highly correlated.

34We note that for both HEFT methods as well as for our fiducial implementations of LPT and EPT, we
find consistent results when we restrict our data vector to only include galaxy clustering and galaxy-galaxy
lensing in a so-called 2x2pt analysis.

– 20 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.800

0.805

0.810

0.815

�
8

LPT, NLPk

EPT, NLPk

LPT, PTPk

EPT, PTPk

fid.

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.2600

0.2625

0.2650

0.2675

0.2700

�
c

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0

20

40

60

�
2

�2
theory

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.95

1.00

1.05

1.10

1.15

�
/�

(k
m

ax
=

0.
4

M
p
c�

1
)

�8

�c

LPT, NLPk

EPT, NLPk

LPT, PTPk

EPT, PTPk

Figure 3. Results of fitting the red sample with the NLPk and PTPk implementations of LPT and
EPT. Top panels: recovered values of ‡8 and �c as a function of maximal wavenumber, kmax. The
data points for the PTPk case have been displaced by �kmax = 0.01 Mpc≠1 for clarity. Bottom panels:
minimum ‰

2-value obtained from the fit, and relative uncertainties on ‡8 and �c, as a function of
kmax. The uncertainties are normalized with respect to those obtained for anzu at kmax = 0.4 Mpc≠1.

separate from our rescaling of the matter power spectrum for modeling cosmic shear (as
described in section 5.2), which is performed for both NLPk and PTPk.

The results obtained from fitting the red galaxy sample with the LPT and EPT models
are shown in figure 3. Similarly to the results for the two HEFT implementations, we find that
for the NLPk models, the recovered values for ‡8 and �c agree with their fiducial values within
1‡ in all cases. For the PTPk models on the other hand, we find the recovered values for the
cosmological parameters to start showing biases of around 1‡ for kmax & 0.3 Mpc≠1, increasing
to 1.5 to 2‡ for kmax = 0.4 Mpc≠1. This is borne out by our goodness-of-fit tests, as described
in appendix B.2. We find that both NLPk methods pass our tests on the noiseless data. Despite
both PTPk models returning biased constraints on cosmological parameters, we find that the
fully perturbative implementation of LPT still passes our goodness-of-fit test, while EPT
yields a ‰

2 larger than ‰
2

theory
. These results suggest that predicting the galaxy power spectra

considered in this analysis up to a maximal wavenumber of kmax = 0.4 Mpc≠1 requires more
accurate modeling of the matter power spectrum and nonlocal terms, which we achieve here
through our use of the halofit fitting function. These findings are consistent with previous
studies, such as e.g. refs. [19, 20, 71], which also found significantly improved performance
of EPT bias models when using non-perturbative predictions for the matter power spectrum.

Nevertheless, comparing to previous analyses that roughly find LPT and EPT bias
models to only reach up to kmax ≥ 0.3 h Mpc≠1 (see e.g. ref. [18]), these results are somewhat
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surprising. We believe this to be due both to di�erences in the considered data vector as
well as the criterion chosen to assess goodness-of-fit: first, in this work we focus on spherical
harmonic power spectra, which constitute a line-of-sight projection of the underlying three-
dimensional power spectrum usually studied in the literature. The line-of-sight projection
results in the smoothing of power spectrum features and might thus increase the reach of
perturbative nonlinear bias models. In contrast to other works, we additionally do not include
redshift space distortions (RSDs) in our analysis, as their impact on projected statistics is
expected to be small (although potentially not negligible [95]), which might also lead to
better performance of PT-based models. Finally, our results could also be a�ected by our
pragmatic approach to assess the goodness-of-fit of a given model: we only require the fit to
return unbiased constraints on �c and ‡8, as well as returning a ‰

2-value passing the criteria
discussed in section 5.4. In particular, we do not make any requirements on model residuals
as was done in previous analyses, and we include a theoretical relative error floor of 1% in
all our covariances. We believe it is for these reasons that our results find perturbative bias
models to be applicable up to slightly smaller scales than previous analyses. In appendix E
we further investigate this by performing an analogous analysis of three-dimensional power
spectrum data in real space from the UNIT simulation [113].

As above, in a final test we compare the bias parameter values obtained using our fiducial
NLPk implementation of LPT and EPT. As discussed in appendix C, we generally find good
agreement between both methods, although the EPT approach seems to prefer significantly
larger values for bÒ2 and PSN compared to LPT. In addition, the recovered bias parameters
for the two NLPk models are generally consistent with those obtained from the HEFT methods.
The only exception being bÒ2 , for which we obtain significantly lower values for the HEFT
implementations than we do for the perturbation-theory-based models, particularly at high
redshift. As further discussed in appendix C, this could be a possible sign for larger model
inaccuracies in the PT-based methods as compared to HEFT.

6.3 Bias consistency relations

As discussed in section 2.4, we expect Eulerian and Lagrangian bias parameters to exhibit
consistency relations under purely gravitational evolution. While we do not anticipate these
relations to hold exactly due to non-gravitational processes involved in galaxy formation, they
present a complementary means for validating our results, and our bias parameter fitting
procedure in particular. We therefore investigate the validity of the coevolution relations
given in eq. (2.5). The results using the NLPk models with kmax = 0.4 Mpc≠1 are illustrated
in figure 4 both for our fiducial, red sample as well as the maglim sample, which we discuss
in more detail below: in the upper panels we show the value of b2 and bs2 as a function of
b

L
1 , b

L
2 and b

L
1 , b

L
s2 , respectively, for all tomographic redshift bins. The lower panel illustrates

the relation between bs2 and b1. In these figures, we also show the uncertainties associated
with the various bias parameters. However, as discussed in more detail in sections C and D,
we find the Fisher matrix-derived uncertainties on bias parameters to be rather unstable
for the full model, while they match their MCMC counterparts if we fix either bs2 or bÒ2 .
Where possible we thus always show error bars obtained setting bs2 = 0 (even though this
has no e�ect on cosmological parameter uncertainties). As this is not possible in this case, we
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Figure 4. Comparison of the theoretical bias consistency relations given in eq. (2.5) to the relations
obtained from fitting the AbacusSummit data with the NLPk implementations of EPT and LPT.
Each data point denotes a di�erent tomographic redshift bin for either the maglim or the red sample.
All cases show results for kmax = 0.4 Mpc≠1. Top panels: consistency relations between LPT and
EPT biases. Bottom panel: consistency relation for EPT biases in case of local-in-matter-density
(LIMD) Lagrangian bias.

caution the reader to keep these instabilities in mind when interpreting the uncertainties. As
can be seen from the figure, the obtained bias values largely follow the theoretically expected
trends. However, we do see signs of significant deviations, particularly in the consistency
between b2 and b

L
1 , b

L
2 . Further investigating this, we also compare our results to the empirical

relations between Lagrangian bias parameters found in ref. [69] and repeat the analysis for
the UNIT simulations, finding similar results in both cases. This suggests that these findings
are not driven by our use of AbacusSummit, and that empirical bias relations do not provide
a better fit to our data than those derived from coevolution. Another possible reason for
these results might be our choice to not consider third-order bias parameters in EPT, which
breaks the full correspondence between EPT and LPT (as discussed in section 2.4), and
might lead to some of these di�erences being absorbed by lower-order bias parameters. We
leave a further investigation to future work.

6.4 Alternative samples

We investigate the generality of the results presented so far by applying the nonlinear bias
models considered in this work to the analysis of three alternative samples, as described in
sections 4 and 5: a magnitude-limited galaxy sample, a galaxy sample featuring assembly
bias, and a joint analysis of our fiducial data vector with CMB lensing data from a CMB
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Figure 5. Results of fitting the maglim sample using the nonlinear bias models considered in this
work, LPT, EPT, anzu and BACCO. Top panels: recovered values of ‡8 and minimal ‰

2 obtained from
the fit as a function of maximal wavenumber, kmax for HEFT and the NLPk implementation of EPT
and LPT. Bottom panels: same as above but using the PTPk implementation of LPT and EPT.

S4-like experiment. For all the following cases, we only show the results for ‡8 as the results
for �c are qualitatively similar.

6.4.1 Magnitude-limited sample

We repeat our analysis using the maglim sample discussed in section 4, using the same redshift
bins for galaxy clustering and weak gravitational lensing. In its fiducial implementation
BACCO only covers redshifts z Æ 1.5, and we thus need to extend the emulator using LPT at
high redshift in order to model the maglim sample. The results obtained for all bias models
after implementing this extension are shown in figure 5. As can be seen from the upper
panels we generally recover unbiased results for all our four fiducial bias models.35 For the
maglim sample we only consider five clustering bins, thus leading to an e�ective number of
degrees-of-freedom of dof = 436. Following section 5.4, we thus require ‰

2

theory,max
Æ 49 to

pass our goodness-of-fit test. From figure 5 we can see that all minimal ‰
2-values derived

using our fiducial bias models satisfy this criterion. In the lower panels of figure 5, we
additionally show the recovered parameter values for the PTPk variants of LPT and EPT.
As opposed to the results obtained for the red sample, we recover unbiased constraints on

35The only exception is the fit using LPT at kmax = 0.25 Mpc≠1, which is an outlier as compared to the
other cases. We suspect this to be due to a parameter degeneracy specific to this case preventing the minimizer
to converge to the global minimum. This hypothesis is strengthened by the fact that evaluating the likelihood
at kmax = 0.25 Mpc≠1 with the best-fit parameter values derived using data up to kmax = 0.4 Mpc≠1 leads to
a significantly lower ‰2-value.
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Figure 6. Results of fitting the galaxy sample with assembly bias using the main nonlinear bias
models considered in this work, LPT, EPT, anzu and BACCO. Recovered values of ‡8 and minimal ‰

2

obtained from the fit as a function of maximal wavenumber, kmax.

‡8 and �c also for those models. This suggests a higher reach of fully-perturbative bias
models for the maglim sample, likely related to the fact that its associated linear bias is
significantly smaller than that of the red sample.

6.4.2 Assembly bias

Given the current uncertainties on the dependence of galaxy clustering on quantities beyond
halo mass, it is important to assess the performance of nonlinear bias models in the presence
of these e�ects. To this end we apply our four fiducial models to the galaxy sample with
assembly bias described in section 4, jointly fitting the combination of galaxy clustering,
galaxy-galaxy lensing and cosmic shear. The results for both HEFT methods as well as the
NLPk implementation of EPT and LPT are shown in figure 6.36 As can be seen, all four
models yield unbiased constraints on cosmological parameters, thus confirming theoretical
expectations that these models o�er the flexibility to capture the e�ects of assembly bias as
implemented in our simulated data for LSST Y10-like precision (see ref. [31] for similar results).

6.4.3 Including CMB lensing convergence

The combination of LSS surveys with CMB measurements has been shown to be a powerful
way to constrain deviations from �CDM (see e.g. refs. [114–118]), and thus constitutes a key
priority for current and future surveys. We therefore additionally test the applicability of
current nonlinear bias modeling techniques to the combination of galaxy clustering, galaxy-
galaxy lensing, cosmic shear and their cross-correlations with the CMB lensing potential.
Specifically, we use the anzu implementation of HEFT to analyze the simulated joint LSST
and CMB S4 data vector described in section 5.2. The inclusion of CMB lensing leads to
reduced uncertainties on cosmological parameters by roughly 10% to 30% as can be seen from
figure 7. Nevertheless, we find unbiased recovery of ‡8 and �c for all maximal wavenumbers
considered even for this extended data vector, which suggests that these methods meet the
accuracy-requirements for future joint analyses of LSST with CMB S4 or SO.

36Given the results found for the red sample in section 6.1, we do not consider the PTPk implementation of
EPT and LPT here.

– 25 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.804

0.806

0.808

0.810

0.812

0.814

�
8

anzu, fid.

anzu, �CMB

fid.

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.0

2.5

5.0

7.5

10.0

12.5

�
2
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Figure 8. Ratio of recovered value of stochasticity power spectrum and its Poissonian expectation
as obtained from fitting three-dimensional power spectrum data with the anzu model at discrete
redshifts. All results are shown for kmax = 0.4 Mpc≠1.

6.4.4 No halofit rescaling

In a final test, we investigate the impact of not rescaling the matter power spectrum to match
the halofit prediction. While we do not explicitly show the results, in this case we recover
significantly biased constraints on cosmological parameters for all bias models considered.
These results suggest that at the precision of LSST Y10, we are sensitive to systematic
di�erences between the halofit fitting function and matter power spectra measured from
simulations. This is not related to the problem of characterizing galaxy bias, which is the
focus of this paper, and instead is limited to the shear-shear component of the 3◊2pt data
vector. A thorough study of the precision with which the matter power spectrum needs to be
modeled for LSST (including the impact of baryons) will be the focus of future work.

6.5 Stochasticity

A number of studies have found evidence for non-Poissonian stochasticity in simulated
galaxy samples (see e.g. refs. [54, 55]). It is therefore interesting to compare the levels
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of stochasticity obtained in this work with their Poissonian expectations. The results
presented so far have been derived using spherical harmonic power spectra, which constitute
line-of-sight projections of the associated three-dimensional power spectra. It is therefore
di�cult to relate the redshift-averaged stochasticities obtained in our analysis to their Poisson
counterparts, and we thus use measurements of three-dimensional power spectra to investigate
stochasticity. As described in detail in appendix F, we consider a data vector consisting
of d = {Pgg(z, k), Pgm(z, k), Pmm(z, k)} at discrete redshifts, and determine the best-fitting
bias parameters.

The ratio of the derived values of PSN to their Poissonian expectations for kmax =
0.4 Mpc≠1 are shown in figure 8 as a function of redshift. As can be seen, for the red sample
we detect significantly sub-Poissonian stochasticity, with the largest discrepancies at low
redshift. As shown in ref. [55], non-Poissonian stochasticity is due to two di�erent e�ects:
halo exclusion and HOD stochasticity. Halo exclusion denotes the e�ect that large halos are
not a Poisson realization of an underlying density field as the halos cannot overlap [54]. This
e�ectively decreases the volume available to the halos and thus reduces stochasticity. HOD
stochasticity on the other hand denotes the additional stochasticity in galaxy samples caused
by the variance in the galaxy-halo-distribution. This e�ect is always positive and thus acts to
increase PSN. The stochasticity of a given galaxy sample is thus determined by the combined
e�ects of halo exclusion and HOD stochasticity. Our results therefore suggest that the host
halos of the red galaxy sample exhibit significant halo exclusion, which is qualitatively and
quantitatively comparable to the findings presented in ref. [55] for DESI LRGs. However,
our results suggest lower values for PSN, especially at low and high redshift. We believe
these changes to be due to either a di�erence in methodology to constrain stochasticity, or
di�erences in the adopted HODs for the DESI LRG sample, or a combination of both.37

Performing an analogous analysis for the maglim sample, we find a significantly lower
level of sub-Poissonian noise than what is detected for the red sample. Specifically we find a
7% reduction as compared to the Poissonian expectation at most. Comparing the mean halo
masses of both samples at redshift z = 0.65, we find M̄h = 4.1 ◊ 1013

M§ for the red sample,
while we find 1.3 ◊ 1013

M§ for the maglim sample. In addition, we find significantly higher
satellite fractions for the maglim sample. These higher satellite fractions for the maglim
sample can be interpreted using the results of e.g. ref. [62] that finds the satellite fraction to
increase steeply with decreasing luminosity but also with increasing redness of the sample.
The higher satellite fraction of the maglim sample thus suggests that its lower luminosity
dominates over its reduced fraction of red galaxies. Combined, these two properties of the
maglim sample indicate that it exhibits stochasticity closer to its Poissonian expectation
because its host halos show lower halo exclusion and the larger satellite fractions give rise
to higher HOD stochasticity.

As shown in appendix G, the analysis in terms of spherical harmonic power spectra
leads to similar conclusions, as we find good agreement between bias parameter constraints
derived using two- and three-dimensional power spectra.

37The di�erences in HODs might be caused by our assumption of a redshift-evolving HOD model, and
comparing secondary halo properties of our sample to those reported in ref. [30], we find the largest di�erences
at low and high redshift, which is also where we see the largest discrepancies with ref. [55].

– 27 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.795

0.800

0.805

0.810

0.815

�
8

BACCO

anzu

LPT, NLPk

EPT, NLPk

fid.

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0

20

40

60

80

100

�
2

�2
theory

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0.800

0.805

0.810

0.815

0.820

�
8

BACCO

anzu

LPT, NLPk

EPT, NLPk

fid.

0.1 0.2 0.3 0.4
kmax [Mpc�1]

0

200

400

600

�
2

�2
theory

Figure 9. Results of fitting the red galaxy sample with reduced bias models. Top panels: recovered
values of ‡8 and minimal ‰

2 obtained from the fit as a function of maximal wavenumber, kmax when
fixing bs2 = 0. Bottom panels: the same as in the upper panels but fixing bÒ2 = 0.

Finally, it is interesting to investigate if the stochasticity shows evidence of scale de-
pendence. To this end, we focus on the analysis of the red sample with anzu and compare
the stochasticity derived as a function of kmax for all tomographic redshift bins used in the
spherical harmonic analysis (cf. section 6.1). While not showing the results explicitly, we
find consistent results for the stochastic bias parameters derived as a function of kmax, and
thus do not find any evidence for scale-dependence from this simple test.

6.6 Minimal bias model

The results presented so far have been derived considering galaxy bias terms up to quadratic
order, resulting in a model with six bias parameters per redshift bin. As shown in sec-
tions 6.1, 6.2 and 6.4, this model allows us to fit the AbacusSummit data reasonably well,
but it is interesting to ask if we can reduce the complexity of the model while maintaining its
performance. To this end, we first focus on the red sample and repeat our analysis, setting
a number of bias parameters to zero. Specifically, we consider the cases bs2 = 0, bÒ2 = 0
and b1,p = 0. This choice corresponds to the most drastic approach to model reduction,
and we note that one could also explore alternative methods such as placing tight priors
on bias parameters. The values recovered for ‡8 and their corresponding minimal ‰

2-values
when setting bs2 = 0 and bÒ2 = 0 respectively are shown in figure 9 for the HEFT methods
as well as the NLPk implementation of EPT and LPT. As can be seen, we find that the
HEFT methods return unbiased constraints on ‡8 even for these reduced models, while
the perturbation-theory-based methods show significant biases, most pronounced at high
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Figure 10. Results of fitting the maglim sample using the nonlinear bias models considered in this
work, LPT, EPT, anzu, BACCO, and setting bs2 = 0 in all cases. The plots show the recovered values
of ‡8 and minimal ‰

2 obtained from the fit as a function of maximal wavenumber, kmax.

kmax. This is borne out by looking at the ‰
2
min-values: for bs2 = 0 both HEFT methods

pass our goodness-of-fit test at kmax = 0.4 Mpc≠1, while the PT methods do not. For
bÒ2 = 0 on the other hand, only anzu recovers a ‰

2 low enough to pass our test at the largest
wavenumber considered. It is interesting to note that while the biases in the PT methods
are more pronounced when setting bs2 = 0, the ‰

2
min-values are significantly worse for the

model with bÒ2 = 0. Additionally, while we do not show the results, we find that all models
yield biased constraints on cosmological parameters when we set b1,p = 0, highlighting the
need to account for the evolution of at least the linear bias across each redshift bin at the
level of precision achieved by LSST Y10.

We test the stability of these results by comparing the values of the common bias
parameters recovered for the three levels of model complexity considered ({b1, b1,p, b2, bs2 , bÒ2},
{b1, b1,p, b2, bÒ2}, and {b1, b1,p, b2, bs2}) using the anzu implementation of HEFT. Without
explicitly showing the results, we find all recovered values to be consistent within uncertainties.
This suggests that the values recovered for the linear and quadratic bias, and, perhaps more
importantly, for the stochasticity PSN, are not driven by inaccuracies in the bias model, but
rather represent a genuine physical feature of the sample under consideration.

In order to investigate the sample-dependence of these findings, we repeat our analysis
for the maglim and assembly bias samples. The results obtained when setting the tidal bias
to zero for the magnitude-limited sample, i.e. bs2 = 0, are shown in figure 10 for the HEFT
methods as well as the NLPk implementation of EPT and LPT. As can be seen, all bias models
recover unbiased constraints on cosmological parameters, but the BACCO fits lead to ‰

2-values
significantly higher than our threshold.38 We find similar results when setting the non-local
bias to zero, i.e. bÒ2 = 0, and thus do not show the results explicitly. The only exception is
that in this case all models, including BACCO, pass our goodness-of-fit tests. Investigating this
further, we repeat our analysis for bs2 = 0 excluding the highest redshift bin for the clustering
statistics. In this case, we find unbiased constraints on cosmological parameters as well as
minimal ‰

2-values passing our test criteria for all bias models. The model residuals for BACCO

thus appear predominantly driven by the highest redshift bin, and we suspect that the low
38We note that in contrast to the results presented in section 6.4.1, the PTPk models without tidal bias,

bs2 = 0, give biased constraints on cosmological parameters.
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model performance observed might be caused by inaccuracies in our extension of BACCO to high
redshift, but we leave a more detailed analysis to future work. For the assembly bias sample,
we find results very similar to those obtained for the red sample, i.e. EPT and LPT yield
biased constraints in all cases, while both HEFT implementations show good performance.

These results confirm the expectation that the minimal bias model depends on the data
set as well as the actual model. For the red and the assembly bias samples, we find that all
PT-based methods (NLPk and PTPk) lead to biases when setting bs2 = 0 or bÒ2 = 0, while the
HEFT methods perform generally well. We attribute this to the fact that a less accurate
model will need more parameters to fit a given data set in order to compensate for inaccuracies
in the template power spectra. It is interesting that a vanishing tidal bias appears to be
more consistent with the data, while we start seeing biases even for the HEFT methods
when setting bÒ2 = 0. In addition, it is worth noting that the scale-dependent modification
induced by bÒ2 ”= 0 is qualitatively di�erent in real and harmonic space. Thus, these results
may be sensitive to our analysis choices, in which scale cuts are imposed in harmonic space.
Finally, we find both the HEFT and NLPk methods to yield unbiased results for the maglim
sample, thus suggesting that the inaccuracies of PT-based models are most pronounced for
more highly biased galaxy samples as compared to their less biased counterparts, and thus
their modeling requires a smaller number of bias parameters.

It is worth noting that an alternative approach to finding a minimal bias model would be
to make use of the rather tight relations between bias parameters found in the literature (see
section 2.4 or e.g. ref. [69]) and use them to fix the value of certain bias parameters rather
than set them to zero. We leave an investigation thereof to future work.

6.7 Error as a function of maximal wavenumber

In order to determine optimal scale cuts for a given analysis involving galaxy clustering
data, it is essential to investigate to what extent parameter constraints are tightened by the
inclusion of additional small-scale information. In particular it is interesting to investigate
if in the setup considered in this analysis, additional small-scale information results in
tighter constraints on cosmological parameters, or rather serves to constrain bias parameters
more tightly. To this end we compare the uncertainties on cosmological parameters as well
as the four bias parameters b1, b2, bÒ2 and PSN obtained as a function of kmax.39 The
relative uncertainties for ‡8 and �c are shown in the lower right panel of figure 2 while
figure 11 illustrates the corresponding relations for the bias parameters. All uncertainties
are normalized with respect to those obtained for anzu at kmax = 0.4 Mpc≠1, and as can
be seen from figure 2, the marginalized 1‡ errors on cosmological parameters decrease only
by roughly 15% as we increase kmax from 0.05 Mpc≠1 to 0.4 Mpc≠1. These gains are small
given the significant increase in the amount of small-scale information included in the fits.
Looking at figure 11 on the other hand, we see that the bias parameter constraints tighten
significantly, by up to 2 orders of magnitude, for the same increase in kmax, in particular for
bÒ2 and PSN. These results suggest that in a joint analysis of galaxy clustering, galaxy-galaxy
lensing and weak lensing with LSST Y10-like specifications, the information contained in

39We focus on these, as we find b1p to be only weakly constrained in our analysis. We further note that we
compute uncertainties setting bs2 = 0, as discussed in section 6.1.
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Figure 11. Relative uncertainties on the bias parameters b1, b2 and bsn for the fourth redshift bin
as a function of maximal wavenumber, kmax. All uncertainties are normalized with respect to those
obtained for anzu at kmax = 0.4 Mpc≠1.
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Figure 12. Relative uncertainties on ‡8 and �c as a function of maximal wavenumber, kmax, obtained
when jointly fitting galaxy clustering and galaxy-galaxy lensing from our fiducial sample with anzu.

small-scale galaxy clustering mainly serves to constrain galaxy bias parameters as compared
to cosmological parameters.

The lack of improvement in cosmological constraining power with increasing kmax appears
to be driven by the cosmic shear data, as we find that the errors on ‡8 and �c decrease by
roughly a factor of 1.5 ≠ 2 when we increase kmax from 0.1 Mpc≠1 to 0.4 Mpc≠1 and only
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consider galaxy-galaxy and galaxy-shear correlations, as can be seen from figure 12.40 To
further test this hypothesis, we rerun our fiducial analysis, freeing up the Hubble parameter
h and the scalar spectral index ns in addition to ‡8 and �c. While the improvements in
uncertainties for ‡8 and �c are similar, we find larger gains for h and ns of up to 30%. In
particular, the gains do not seem to saturate at high kmax as they do in our fiducial analysis.

While the relatively modest gains in cosmological constraining power seem to be partly
driven by our inclusion of weak lensing data, which yields tight constraints on ‡8 and �c, and
thus limits the gains from small-scale clustering, we do see a general trend that small-scale
clustering improves bias parameter constraints more significantly than constraints on their
cosmological counterparts. However, we caution the reader that these conclusions might
change when constraining a larger number of cosmological parameters, including systematic
uncertainties, or considering data vectors di�erent from the ones we are investigating in this
work (e.g. including higher-order correlators, or redshift-space distortions in spectroscopic
survey analyses). As an example, galaxy-galaxy lensing at small scales has been shown to
help constrain intrinsic galaxy alignments and photometric redshift systematics, which would
otherwise significantly degrade the constraining power of cosmic shear (see e.g. ref. [119]).

7 Conclusions

In this work, we compare the performance of a number of nonlinear galaxy bias models
when applied to an LSST Y10-like tomographic joint analysis of galaxy clustering, galaxy-
galaxy lensing and cosmic shear (3◊2pt analysis). Specifically, we compare two perturbative
approaches, Lagrangian perturbation theory (LPT) [10] and Eulerian perturbation theory
(EPT) to two implementations of Hybrid E�ective Field Theory (HEFT), anzu and BACCO,
which combines a perturbative bias expansion in Lagrangian space with an exact treatment of
the gravitational evolution via cosmological simulations [16, 31, 32]. We test all the methods
using simulated data vectors computed from the AbacusSummit [78, 79] cosmological
simulation, considering several di�erent galaxy samples: a DESI-like red sample, a magnitude-
limited sample based loosely on HSC DR1, and a galaxy sample with assembly bias. We
fit these simulated data using all bias models considered, keeping terms up to second order,
and account for nonlocal bias as well as deviations from Poissonian stochasticity. In a final
step, we compare their performance based on the accuracy and precision of the constraints
obtained for the cosmological parameters ‡8 and �c as well as the goodness-of-fit.

For our fiducial, red galaxy sample we find that the two HEFT implementations allow
us to jointly model galaxy clustering, galaxy-galaxy lensing and cosmic shear with LSST
Y10-like precision up to at least a maximal wavenumber of kmax = 0.4 Mpc≠1. This is also
true for LPT and EPT when we combine these methods with non-perturbative predictions
for the matter power spectrum entering some of the terms in the expansion (NLPk). In
contrast, when we use the predictions from perturbation theory for these terms (PTPk), the
LPT and EPT implementations lead to biased constraints on cosmological parameters for
k & 0.2 Mpc≠1. We find comparable results when analyzing the galaxy sample with assembly
bias. For the magnitude-limited sample on the other hand, we find good performance for all

40While the figure only shows anzu, we find similar results for the other bias models.

– 32 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

bias models, including EPT and LPT with a perturbative prediction for the matter power
spectrum. We further consider an extension of our fiducial galaxy sample with CMB lensing
cross-correlations loosely matching the specifications for CMB S4, finding unbiased constraints
on cosmological parameters as well as good minimal ‰

2-values. In all these analyses, we find
significant detections of non-Poissonian stochasticity in the galaxy clustering auto-correlations.

We further investigate the e�ect of reducing bias model complexity by setting the tidal
and nonlocal bias to zero respectively, finding sample- and model-dependent results. We
find that the HEFT approaches are able to obtain unbiased constraints and provide a good
fit to the data with this reduced models in most cases, the only exception being BACCO

for vanishing nonlocal bias and kmax = 0.4 Mpc≠1. In turn, while LPT and EPT perform
well on the magnitude-limited sample, they lead to biases on cosmological parameters when
applied to the more highly-biased red sample (with or without assembly bias) within these
reduced parameterizations. This is the case regardless of the prescription used to model
the matter power spectrum (NLPk or PTPk).

Investigating the constraints on cosmological and bias parameters obtained as a function of
maximal wavenumber kmax, we find the uncertainties on cosmological parameters to decrease
only by around 15% as we increase kmax from 0.05 Mpc≠1 to 0.4 Mpc≠1. The bias parameter
uncertainties on the other hand decrease significantly, in some cases by more than an order of
magnitude. Removing the weak lensing auto-correlations from our data vector yields larger
relative improvements on cosmological parameter uncertainties, of up to a factor of 2. This is
a useful case to consider as the weak lensing auto-correlations can have separate systematic
uncertainties (e.g. PSF induced additive shear contributions) while not being sensitive to
galaxy bias, so separating out the cosmology inferred from those is a powerful consistency check.
Nevertheless, the qualitative result is that pushing towards smaller scales seems to lead to
significantly larger improvements in bias parameters than in cosmological parameters. These
results are subject to a number of caveats: most importantly, we only consider constraints
on galaxy bias as well as two cosmological parameters, ‡8 and �c, and we do not account for
systematics such as photometric redshift uncertainties or calibration biases in cosmic shear.
This might artificially increase the constraining power of weak lensing, thus reducing the
gain obtained from small-scale clustering. We have also not considered uncertainties due to
magnification, intrinsic alignments and their interplay with photo-z uncertainties — these
e�ects can modify our findings on the improvements from small scale information (likely in
the direction of greater gain). We leave an investigation of these e�ects to future work.

In summary, our results confirm the performance of HEFT approaches found in previous
work, while suggesting a potentially higher reach for EPT and LPT than previously found.
This is likely in part due to our focus on projected clustering statistics (as opposed to
three-dimensional clustering in redshift space), and to the specific metrics used to quantify
goodness of fit (based on the expected performance of an LSST-like experiment, rather than
on ad-hoc precision requirements).

With regards to LSST, the results of our analysis suggest that current nonlinear bias
models appear promising for the analysis of tomographic galaxy clustering, galaxy-galaxy
lensing and weak lensing from LSST Y10 data. Amongst the methods investigated, we find
the recently developed HEFT methods to show particular promise. This bodes well for future

– 33 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

tomographic galaxy clustering and 3◊2pt analyses using small-scale information for both
current and future photometric surveys such as LSST and Euclid. Nevertheless, more work is
necessary in order to be able to fully exploit these methods in a robust and reliable manner.
First, application of these methods to future data will require investigating the impact of
observational e�ects such as photometric redshift uncertainties or large-scale galaxy clustering
systematics and associated scale cuts. In addition, as we have shown, a good characterization
of the theoretical uncertainties associated with the non-linear scheme used is vital to obtain
unbiased constraints with adequate errors. A more precise treatment and modeling of these
uncertainties than that used in our analysis will therefore be needed before the bias models
studied here can be applied to future data sets. Furthermore our results have highlighted the
susceptibility of perturbative bias prescriptions to modeling of the matter power spectrum,
thus requiring higher-accuracy models. Although our analysis has covered the most likely
target samples for galaxy clustering (LRG-like and magnitude-limited samples), including
some amount of assembly bias, the results found here should be validated against a wider
variety of galaxy samples, incorporating di�erent physical e�ects such as satellite segregation
and baryonic e�ects in the dark matter distribution [120]. Furthermore, as the internal
consistency relations between di�erent bias coe�cients provide an avenue to reduce the
freedom allowed to the bias model, studying the applicability of these relations to these
samples in the context of LSST would be a useful exercise. Finally, higher-order statistics
have the potential to unlock a significant amount of untapped non-Gaussian information
in the galaxy distribution, and thus studying the ability of the bias models explored here
to describe these observables is of high priority.

Acknowledgments

This paper has undergone internal review by the LSST Dark Energy Science Collaboration.
We kindly thank the internal reviewers Simone Ferraro, Andrew Hearin and Shivam Pandey
for providing helpful comments, which helped us improve the quality and clarity of the paper.

We are very happy to thank Toshiya Namikawa and Colin Hill for sharing the CMB
S4 lensing noise curves and for help with their usage. With pleasure we would also like to
thank Martin White for many very helpful comments and suggestions.

We would further like to thank the anonymous referee for carefully reading our manuscript
and many helpful suggestions and comments.

The contributions from the primary authors are as follows: DA: Co-designed the project,
constructed simulated data vectors, contributed to likelihood software. NF: Performed initial
fits with LPT and EPT models to determine the minimum scales to which unbiased results
could be recovered. CGG: Implemented CMB lensing in likelihood, data and covariances.
ZG: Implemented and tested Fisher matrix for uncertainty estimation. BH: Generated mocks
from AbacusSummit and contributed to some iteration of the likelihood. NK: Implemented
the hybrid EFT code anzu into the CCL-based likelihood used to compare models and
data in the challenge. AN: Co-designed the project, lead the analysis and writing of the
paper. AS: Contributed to the design of the experiment, help with interpretation of results,
contributed to the paper text.

– 34 –



J
C
A
P
0
2
(
2
0
2
4
)
0
1
5

CGG acknowledges support from the European Research Council Grant No: 693024
and the Beecroft Trust. DA acknowledges support from the Beecroft Trust, and from the
John O’Connor Research Fund, at St. Peter’s College, Oxford. ZG and CW were supported
by the O�ce of Science of the U.S. Department of Energy, grant DE-SC0010007. JB is
partially supported by NSF grant AST-2206563.

The DESC acknowledges ongoing support from the Institut National de Physique Nu-
cléaire et de Physique des Particules in France; the Science & Technology Facilities Council
in the United Kingdom; and the Department of Energy, the National Science Foundation,
and the LSST Corporation in the United States. DESC uses resources of the IN2P3 Comput-
ing Center (CC-IN2P3-Lyon/Villeurbanne — France) funded by the Centre National de la
Recherche Scientifique; the National Energy Research Scientific Computing Center, a DOE
O�ce of Science User Facility supported by the O�ce of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231; STFC DiRAC HPC Facilities, funded
by U.K. BEIS National E-infrastructure capital grants; and the U.K. particle physics grid,
supported by the GridPP Collaboration. This work was performed in part under DOE
Contract DE-AC02-76SF00515.

The author(s) are pleased to acknowledge that the work reported on in this paper was
substantially performed using the Princeton Research Computing resources at Princeton Uni-
versity which is consortium of groups led by the Princeton Institute for Computational Science
and Engineering (PICSciE) and O�ce of Information Technology’s Research Computing.

This work made use of the following software packages: astropy,41
matplotlib,42

numpy
43 and scipy.44

A Description of methodology to create smoothed power spectra

To eliminate the noise in the measured power spectra due to the finite size of the Abacus-
Summit simulation boxes, we start by modeling the overdensity of a given tracer x as

”x(k) = bx(k) ”IC(k) + nx(k), (A.1)

where ”IC denotes the linear matter overdensity in the initial conditions, bx(k) is a deterministic
function of k and, by definition, n(k) is the small-scale component of the overdensity field,
”x, that does not correlate with ”IC.

Then at each snapshot, we compute the following power spectra from the simulation:
Pgg(k), Pgm(k), Pmm(k), Pg,IC(k), Pm,IC(k), and PIC,IC(k), where m and g represent the
overdensities of matter and of the target sample of galaxies. We also have a theoretical
prediction for the linear power spectrum of the initial conditions, P̄IC,IC(k). From the model
in eq. (A.1), we compute a first estimate of the bias functions bg(k) and bm(k) as

b̂x(k) © Px,IC(k)
PIC,IC(k) . (A.2)

41https://www.astropy.org/.
42https://matplotlib.org/.
43https://numpy.org/.
44https://scipy.org/.
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Figure 13. Steps involved in producing smooth power spectra from the measurements made on the
AbacusSummit simulation. Results shown for the red galaxy sample in the z = 0.1 snapshot. The
top left panel shows the measurement of the large-scale bias function bx(k), together with its fit to
eq. (A.2). The top right panel shows the measured power spectrum of the small-scale component,
together with the di�erent contributions to the final smooth fit (described in the text). The bottom
panel shows the global fit to the galaxy power spectrum constructed by combining the results in the
two top panels. The bottom sub-panels in each plot show the relative deviation between data and
model fits as a fraction of the statistical uncertainties. The error bars were computed from the scatter
between each group of 8 adjacent data points.

Since both Px,IC and PIC,IC come from the same realization, the resulting bias function is
reasonably smooth on large scales. To obtain a fully smooth function that is defined on the
full continuum of k, we fit the resulting measured b̂x to a smooth function of the form:

bx(k) = b0 e
≠(k/k0)

–
5
1 + c e

≠
!

k≠k1
0.1

"26
, (A.3)

with b0, k0, –, c and k1 as free parameters. We found this functional form to provide a good
fit in all cases explored (see top left panel of figure 13).

After determining the bx, we estimate the power spectrum between the small-scale
components nx and ny as

P
n
xy(k) = Pxy(k) ≠ Px,IC(k)Py,IC(k)

PIC,IC(k) . (A.4)
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The resulting curve is fairly smooth on large k, but exhibits residual noise for small and
intermediate wavenumbers (k . 0.2 h Mpc≠1), which we correct for as follows (for illustration,
see the top right panel of figure 13):

1. P
n
xy(k) reaches a maximum at a transition scale ktrans around ≥ 0.1 h Mpc≠1, which

provides a subdivision between the large-scale and small-scale components of P
n
xy(k).

In a first step, we determine this transition scale as the value at which the P
n
xy(k)

estimated from the simulation reaches its maximum value.

2. We fit the data on scales below ktrans using a 4th-order polynomial. Since this polynomial
can take negative values, which are purely driven by large-scale noise, we apply a
positivity prior on the resulting function. We note that on the largest scales, where
this occurs, the final power spectrum is dominated by the large-scale correlated part
from before, so these choices have a negligible impact on the final result.

3. On scales above ktrans, we find the measured spectra to exhibit small noise-like oscilla-
tions, which we reduce by smoothing the spectra with a Savitzky-Golay (SG) filter of
order 1 and window size 25.

4. Finally, we combine the large-scale polynomial P
n,L
xy (k) and the SG-smoothed small-scale

component P
n,S
xy (k) by smoothing the transition between the two regimes such as:

P
n
xy(k) = e

≠(k/ktrans)
5
P

n,L
xy (k) +

Ë
1 ≠ e

≠(k/ktrans)
5È

P
n,S
xy (k). (A.5)

This procedure thus provides us with a smooth set of tabulated measurements of P
n
xy,

which we then interpolate linearly in log(k). In a last step, we compute the final power
spectrum from the theoretical linear power spectrum of the initial conditions combined with
the models for bx(k) and P

n
xy(k) as:

Pxy(k) = bx(k)by(k)P̄IC,IC(k) + P
n
xy(k). (A.6)

To go beyond the smallest scale measured by AbacusSummit (kmax ƒ 2.7 Mpc≠1) we use
a power law extrapolation with a logarithmic slope calculated from the last 50 points in
the measurement. As our results will be mostly based on scales k . 0.4 Mpc≠1, the e�ects
of this extrapolation are largely irrelevant.

Note that other approaches have been recently proposed in the literature [121, 122] to
reduce the impact of noise on simulation-based measurements of summary statistics. We
verified that the scheme described above is able to provide a good description of the measured
power spectra, well below the statistical uncertainties of the AbacusSummit simulation box
(see bottom panel of figure 13), and leave a comparison to other approaches to future work.

B Detailed description of goodness-of-fit tests

B.1 HEFT

In the following, we describe the goodness-of-fit tests employed to test the performance of
the two HEFT implementations considered.
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Figure 14. Normalized residuals between the AbacusSummit data and the predictions for the red
galaxy sample obtained using the bias models considered in this work. Left panel: results for the
auto-correlation of the highest clustering redshift bin. Right panel: results for the cross-correlation
between the highest clustering bin and the highest weak lensing bin. In both figures, the gray area
denotes relative deviation of 1% with respect to the theoretical prediction.

The number of degrees-of-freedom for our fiducial red sample is given by ‰
2
noise = 478,

where we have used nC¸ = 786, nC““
¸

= 270, and np = 38. Therefore, the maximal ‰
2

theory

allowed by our p-value criterion is given by ‰
2

theory,max
= 51. The recovered ‰

2-values for
both HEFT models pass this test, with ‰

2

theory
ƒ 11 for anzu, and ‰

2

theory
ƒ 17 for BACCO.45

The associated p-values are p = 0.36 and p = 0.28, respectively. In figure 14, we also show
the normalized fit residuals for the auto-correlation of the highest clustering redshift bin as
well as its cross-correlation with the highest weak lensing bin.46 As can be seen, we find most
of the residuals to be within 1‡, and the relative di�erences generally lie within 1%.

Additionally, we consider two noisy realizations of the synthetic data, finding ‰
2

p-values
of p = 0.096 (p = 0.63) and p = 0.012 (p = 0.11) for anzu and BACCO respectively. The
distributions of galaxy clustering and galaxy-galaxy lensing residuals are consistent with
Gaussians, as can be seen in figure 15 for one of the realizations, and a Kolmogorov-Smirnov
(KS) test yields p-values of p = 0.38 (p = 0.93) for BACCO and p = 0.21 (p = 0.89) for anzu.
Given these results, we conclude that the two HEFT implementations we consider in this work
are both suited to the analysis of high-precision data as expected from LSST, and we regard
the failed p-value test for one of the noisy realizations for BACCO as a statistical fluctuation.

B.2 LPT/EPT

For the NLPk implementations of LPT and EPT, we obtain minimal ‰
2-values of ‰

2

theory
= 8.6

for LPT, and ‰
2

theory
= 13.8 for EPT when using the noiseless data vector. Furthermore, as

can be seen from figure 14, we find the residuals between model and data to mostly lie within
their 1‡ uncertainties, with relative di�erences largely smaller than 1% as we found for the
HEFT models. For the PTPk models on the other hand, we find ‰

2-values of ‰
2

theory
= 28.7

for LPT, and ‰
2

theory
= 59.0 for EPT at our minimal cuto� scale (kmax = 0.4 Mpc≠1).

45To illustrate the e�ect of the systematic error floor, we note that ‰2
theory increases to ‰2

theory ƒ 16 for anzu
when we only consider statistical uncertainties.

46We choose these particular two combinations as they display some of the largest di�erences between the
simulated data and the models, and thus serve as illustration of the worst model performance.
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Finally, we also analyze the same two noisy realizations of the data vector as used in the
HEFT case with our fiducial NLPk implementation of LPT and EPT, finding ‰

2
p-values of

p = 0.16 (p = 0.77) and p = 0.064 (p = 0.83) for LPT and EPT respectively. As shown in
figure 15 for one of the realizations, we also find the distribution of fit residuals to be consistent
with a Gaussian (with corresponding p-values of p = 0.99 for LPT and p = 0.98 for EPT).

C Consistency of bias parameter values from di�erent models

In order to test for possible systematic modeling uncertainties, we compare the consistency of
the bias parameter values obtained for the two HEFT implementations. As discussed in more
detail in appendix D below, we find the Fisher matrix uncertainties on the bias parameters
to be rather unstable when varying both bs2 and bÒ2 . The constraints obtained for the
cosmological parameters on the other hand, are stable in all cases considered. Fixing one of
the two parameters, bs2 or bÒ2 , yields stable error bars in all cases, which are additionally
consistent with their MCMC analogs (see appendix D). We therefore compare the recovered
bias parameters for anzu and BACCO fixing bs2 to its recovered value, and the results are
shown in figure 16 for all parameters except bs2 .47 As can be seen, these are generally
consistent, the only exception being bÒ2 for which we find consistently higher values for
BACCO than we do for anzu. These di�erences might be due to the fact that the nonlocal
bias parameter bÒ2 depends on small-scale properties of the fields considered and is thus
a�ected by implementation details such as di�erent smoothing scales used when deriving
template spectra (see e.g. ref. [9]). In addition, anzu and BACCO employ di�erent methods
to model power spectra involving higher derivative terms: while in BACCO these terms are
determined from the simulations, anzu uses the approximation ÈX, Ò2

”LÍ = ≠k
2ÈX, 1Í, where

X denotes one of the fields described in section 2.
We find similar results when comparing the bias parameter values obtained using our

fiducial NLPk implementation of LPT and EPT. As can be seen from figure 16, we generally
find good agreement between both methods, although the EPT approach seems to prefer
significantly larger values for bÒ2 and PSN compared to LPT. It is also interesting to note that

47We find the recovered values for bs2 to be generally consistent between all four models considered here,
and thus do not show the plots as we are unable to provide error bars for the measurements.
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Figure 16. Comparison of bias parameter values obtained from fitting our fiducial red galaxy sample
with all nonlinear bias models considered in this work.

the recovered bias parameters for the two PT-based models are generally consistent with those
obtained from the HEFT methods. As above, the notable exception is bÒ2 , for which we obtain
significantly lower values for the HEFT implementations than we do for the perturbation-
theory-based models, particularly at high redshift. We see two possible explanations for these
findings: (i) As discussed above, our results could be another consequence of di�erent bias
parameter normalizations due to implementation details such as smoothing. (ii) Nonlocal
bias terms parameterized by bÒ2 have the same functional form as EFT counter-terms,
which absorb corrections to the bias model due to small-scale physics. These corrections are
partly accounted for in the HEFT approach, while they are not present in PT-based models.
Without providing rigorous confirmation, these results suggest that the larger nonlocal bias
values obtained for LPT and EPT are due to larger contributions from EFT counterterms
for these models (see ref. [19] for similar results).

D Comparison to MCMC results

Fisher matrix analyses are prone to numerical instabilities (see e.g. refs. [109–111]), and
it is therefore essential to validate our results by comparing our FM constraints to those
derived using a Monte Carlo Markov Chain (MCMC). Here we focus on our fiducial case
using anzu with kmax = 0.4 Mpc≠1, and perform two separate MCMC analyses using the
same specifications as used for the Fisher matrix computation: in our first analysis we allow
for variations in all cosmological and bias parameters, while in the second case we fix bs2 = 0.
The comparison of the MCMC constraints on cosmological parameters obtained in the first
case and their FM counterparts are shown in the left hand panel of figure 17. As can be
seen, we find the two approaches to yield consistent constraints on the �c ≠ ‡8 plane. This is
not the case for the constraints on bias parameters as discussed above and we thus repeat
this analysis setting bs2 = 0 in both cases. The ratio of the 1-‡ uncertainties obtained from
the FM and MCMC analyses respectively are shown in the right hand panel of figure 17 for
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all bias parameters considered. Similarly to before, we find those to be consistent within
roughly 30%. This is a reasonable level of agreement, given the approximations and numerical
instabilities involved in Fisher matrix analyses.

E Fitting data from UNIT

As an additional consistency test of the results presented in sections 6.1 and 6.2, we repeat
our analysis using the redmagic sample from the UNIT simulations [113] employed in ref. [31].
Specifically, we work with the three-dimensional power spectrum and fit the combination
of d = {Pgg(z, k), Pgm(z, k)} using the covariance matrix derived in ref. [31]. The results
for all bias models considered in this work are shown in figure 18. As can be seen, we
find results very similar to those obtained for AbacusSummit data, i.e. both HEFT and
NLPk implementations of EPT and LPT yield unbiased constraints on ‡8 and �c, while the
PTPk methods give rise to biases in the recovered cosmological parameters for large maximal
wavenumbers kmax. Compared to the results shown in figure 3, we find the PTPk models
to break down at smaller wavenumbers. This is particularly true for EPT, which yields
significantly biased constraints on cosmological parameters for kmax & 0.2 Mpc≠1. These
results suggest that spherical harmonic power spectra might indeed be less susceptible to
nonlinear bias modeling systematics than their three-dimensional counterparts, and provide
confirmation that the findings reported in sections 6.1 and 6.2 are not driven by our usage
of data from the AbacusSummit simulations.
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Figure 18. Results of fitting the UNIT data with the main nonlinear bias models considered in this
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F Three-dimensional power spectrum analysis

In order to investigate stochasticity in the red and maglim galaxy samples, we analyze
three-dimensional power spectrum data. Specifically, we use power spectra at six discrete
redshifts covered by the AbacusSummit simulations, i.e. z = {0.1, 0.3, 0.5, 0.8, 1.1, 1.4}.
We consider a data vector d = {Pgg(z, k), Pgm(z, k), Pmm(z, k)} and assume a Gaussian
likelihood with Gaussian covariance matrix given by (see e.g. [31, 123])

Cov(Pij(k), Pln(kÕ)) = Ÿ
2fi

2
”kkÕ

k2�kV

Y
___]

___[

2P
2
ii(k), if i = j = l = n

2Pgg(k)Pgm(k), if i, j = g and l = g, n = m

[Pgg(k)Pmm(k) + P
2
gm(k)], if i, l = g, and j, n = m,

(F.1)
where V denotes the volume of the survey and �k is the width of each k-bin. For consistency
with our previous analysis, we aim to ensure a similar signal-to-noise ratio for the P (k)
measurements. We therefore follow a rather crude approach and introduce a scaling factor
Ÿ that scales the relative P (k) errors to be equal to those for C¸ data obtained for bins
with matching mean redshift.48 We then use this likelihood and fit the data with the

48We note that we repeat this analysis without the scaling factor and recover very similar values for the
stochasticity.
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Figure 19. Comparison of bias parameters obtained by fitting three di�erent data sets using anzu:
(i) fit each redshift bin separately, (ii) fit all redshift bins simultaneously, (iii) fit three-dimensional
power spectra instead of spherical harmonic power spectra.

anzu implementation of HEFT, keeping the cosmological parameters fixed at their fiducial
AbacusSummit values.49

G Consistency of results for di�erent data sets

Extending the analysis described in section 6.5 and as a further consistency test of our results,
we compare the bias values obtained using di�erent combinations of our simulated data.
Specifically, we compare our fiducial constraints obtained using spherical harmonics and fitting
all redshift bins simultaneously to those obtained by fitting each bin separately both using
spherical harmonics and three-dimensional power spectra. For the P (k) data we proceed as
described in section 6.5, while for the single-bin spherical harmonic fits, we choose to only fit the
galaxy auto-correlation and the cross-correlation between the galaxies and DM while keeping
the cosmological parameters fixed at their fiducial values as above. As discussed in section 6.1,
we find that while our fiducial analysis fits for all bias parameters simultaneously, the Fisher
matrix constraints obtained in this setup are numerically unstable. In order to compare the
constraints obtained from di�erent data sets, we therefore follow the approach described in
section 6.1, and consider the FM errors obtained at the best-fit values when setting bs2 = 0.
In addition, given the ad-hoc procedure to rescale the covariance matrix used for analyzing
P (k) data, we do not consider any error bars for these measurements. The results obtained
for anzu are shown in figure 19, and as can be seen we find a very good agreement between
the bias values derived in all cases. This suggests that the fits to the spherical harmonic power
spectra show internal consistency, and that the redshift-averaged bias parameters obtained
from these are consistent with the single-redshift fits obtained from the P (k) analysis.

49We find this to be necessary, as the single bin fits exhibit a strong degeneracy between cosmological and
bias parameters, and thus the minimization and error bars become unstable when fitting all parameters jointly.
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