
Non-Fusion Based Coherent Cache Randomization Using
Cross-Domain Accesses

Kartik Ramkrishnan
University Of Minnesota, Twin Cities

Minneapolis, Minnesota, USA

Stephen McCamant
University Of Minnesota, Twin Cities

Minneapolis, Minnesota, USA

Antonia Zhai
University Of Minnesota, Twin Cities

Minneapolis, Minnesota, USA

Pen-Chung Yew
University Of Minnesota, Twin Cities

Minneapolis, Minnesota, USA

ABSTRACT

Randomization has proven to be a effective defense against conflict-

based side-channel attacks in a shared cache. It improves security by

assigning a unique randomization scheme to each security domain,

e.g., though a different hashing function. However, if two domains

have shared data, the domains must be fused in order to guarantee

correctness (i.e., data coherence). Such domain fusion significantly

reduces the effectiveness of randomization and weakens its security

protection.

We propose randomization with sharing (RAWS), which enables

secure cross-domain accesses while enforcing cache coherence

(and thus data coherence). Based on RAWS, we design a non-fusion

based inter-domain coherence protocol (NF-IDCP). NF-IDCP enables

cache coherence by looking up and flushing multiple cache lines

associated with shared-writable data during their cross-domain

accesses. Furthermore, NF-IDCP uses constant-delay banking to

securely reduce the latency of the cache line flushes. We also use a

secure tag-based filter (STF) to reduce flush costs, for example, by

explicitly storing the exact cache locations to be flushed.

The security evaluation shows that conflict attacks on the opti-

mized NF-IDCP structures cannot leak conflict observations at a

meaningful rate. Attack simulations using CacheFX demonstrate

that domain fusion significantly retards the protection provided by

randomization schemes. Performance overhead of SPECrate 2017

and PARSEC 3.0 benchmarks is evaluated on ZSim, a microarchi-

tectural simulator. To study the performance impact on realistic

workloads, such as Firefox, Chromium and X Server, we use a cache

simulator built on top of PANDA, a full-system emulator. Across all

configurations, the average performance overhead is less than 5%,

and the hardware overhead is less than 3% compared to a domain-

fused randomization.

CCS CONCEPTS

· Security and privacy → Side-channel analysis and counter-

measures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3645011

KEYWORDS

Cache, Side-channel, Randomization, Sharing, Coherence

ACM Reference Format:

Kartik Ramkrishnan, Stephen McCamant, Antonia Zhai, and Pen-Chung

Yew. 2024. Non-Fusion Based Coherent Cache Randomization Using Cross-

DomainAccesses. InACMAsia Conference on Computer and Communications

Security (ASIA CCS ’24), July 1ś5, 2024, Singapore, Singapore. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3634737.3645011

1 INTRODUCTION

Side-channel attacks, especially on the last-level cache, have contin-

ued to grow in significance due to their applicability in a wide-range

of modern processors [9, 18]. One of the most important classes of

side-channel attacks is the conflict-based side-channel, which at-

tempts to leak information about access patterns of security-critical

memory addresses via a cache interference pattern [23, 25, 33, 35,

38, 52, 57, 58, 73, 75] across security domains (mutually distrusting

processes, parts of processes, threads, virtual machines or other).

Researchers have developed a novel countermeasure to conflict-

based side-channel attacks (see ğ2), known as address-set random-

ization [31, 40, 50, 53, 60, 62, 63, 69], which mitigates the ability

of attackers to carry out conflict-based attacks, especially via the

shared last-level cache. This allows victim domains to scatter their

cache lines in random cache sets selected via a cryptographic hash-

ing of the cache line address, thus mitigating conflict-based attacks.

Randomization schemes protect two classes of memory addresses,

namely, private addresses and shared-read-only addresses. The for-

mer refers to addresses that are not reachable by more than one

security domain, and the latter refers to addresses that are reachable

by two or more security domains, but only by using reads. The third

class includes shared-writable memory addresses. They are unpro-

tectable by default because their information can be leaked between

domains without relying on side-channels merely by observing the

results of reads/writes.

State-of-the-art randomization schemes use a different random-

ization function for each security domain (see ğ2.2). For shared-

writable addresses, aliasing will occur in the shared last-level cache

(LLC), which means that each security domain will not know the

whereabouts of those cache lines used by other security domains.

Thus, there will be many uncoordinated per-domain write accesses

leading to a loss of global coherence invariants, such as single-write-

multiple-read (SWMR) and data-invariance (see ğ2.2.1). To prevent

aliasing, randomization schemes assume that the privileged system

software can tell them which addresses are shared-writable, so that

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

all domains can use a common hashing function on them. However,

existing system software may not have such functionality across

domains (see ğ2.2.2).

In the absence of software support, the only recourse is to use

domain fusion, where programs in different security domains are

re-assigned to the same security domain. This allows them to use

the same randomization function and eliminates aliasing. How-

ever, it gives up on occupancy-attack resilience and flush-attack

resilience (see ğ2.2), two prominent security benefits of random-

ization schemes. While flush-attack resilience can be recovered

using orthogonal techniques like First-Time-Miss [40, 49], there is

no known way to recover occupancy-attack resilience. The above

domain fusion problem has significant practical implications be-

cause many programs such as Google-Chrome [10], Chromium [14],

Firefox [11] and X Server [13] have deep ties with shared-memory

inter-process communication (IPC), including IPC between untrust-

ing processes (see ğ2.2.4). Thus, the following question arises:

Can randomization be augmented to support non-fusion based

data coherence in order to retain its security benefits?

To eliminate aliasing, we propose a global cache coherence prin-

ciple, randomization with sharing (RAWS). The main idea of RAWS

is to perform cross-domain accesses to find all copies of cache lines

in the LLC. In Figure 1, we illustrate why multi-domain random-

ization is unable to support cache coherence, and how RAWS can

help. The left-half of the figure shows the state-of-the-art (SOTA)

non-fused randomization. An access to the shared cache is carried

out by domain 1 for a cache line address that is dirty and is being

accessed by domain 2 (highlighted in red). It is different from the lo-

cation determined by randomization function 1 (random 1) because

domain 2 uses a different randomization function, leading to a loss

of global coherence via aliasing. In the right-half of the figure, we

show how RAWS augments non-fused randomization to carry out

two lookups instead of one, by also employing randomization func-

tion 2 (random 2). Thus, the dirty cache line used by domain 2 can

be found, and the cache coherence protocols can be made aware of

each other. For a secure and practical use of the RAWS principle in

a generalized target environment, we propose to use cross-domain

cache flushes due to their ready availability in most caches. For

reducing the number of cross-domain flushes, we propose to use

banking/parallelization or filtering (see ğ2.3).

Accordingly, we leverage existing invalidation-based coherence

protocols, and trigger flushes to maintain coherence invariants

across processor groups used by different domains (see ğ3.1). For

maintaining inter-domain SWMR, each cache line is augmented

with an inter-domain coherence protocol read-write bit (NF-IDCP-

RW), which is set if there is a possibility of a write by the domain.

Setting the NF-IDCP-RW bit will trigger a flush in the coherence

protocols of other domains if they have a cache line corresponding

to the same cache line address, thus preventing concurrent reads

or writes from other domains to the cache line address. This is as

required by the inter-domain SWMR invariant. If there is no cache

line in the reader domain (i.e., a read miss), then it will trigger a

flush in the coherence protocols of other domains to writeback the

content of any dirty NF-IDCP-RW cache line with the same cache

line address. It can then proceed with the read of the latest data

content (data invariance). We present a generic state-diagram of a

coherence protocol that highlights the NF-IDCP flushes in ğ3.

ASOTA

dirty

Non-Coherent

Randomization
BRAWS Coherent

Randomization

Figure 1: RAWS enables multi-domain lookup in order to

facilitate global cache coherence in randomization schemes.

To efficiently support the above inter-domain coherence actions,

we propose two optimizations to enhance the performance securely.

The first optimization is parallelization of the cross-domain accesses

(lookups or flushes), which will need to be done for the two in-

variants. This can be achieved using existing approaches such as

banking [20, 51, 78] (see ğ4.1). The second optimization is to use a

secure tag-based filter (STF) to reduce the number of cross-domain

lookups for flushes. For the SWMR flushes, the STF keeps a counter,

which is pointed to by all the corresponding cache lines in the LLC.

Upon the need of flushing, it sets the invalid bit in this counter

and defers the actual flushes for later. The flushes will be done off

the critical path and the counter will be decremented to track their

progress, finally, de-allocated when all the cache lines are flushed.

For the data invariance flushes, the STF will store the SDID of any

cache line that has the IDCP-RW state. Hence, it will take only one

lookup to locate those cache lines for flushing. A crucial security

issue is that any set of cache line addresses in the cache should

always be represented in the STF, which requires it to behave like a

fully-associative structure. We achieve this fully-associative behav-

ior using a combination of a main storage region and an overflow

storage region. We discuss the STF filter in ğ4.2.

We implement NF-IDCP randomization schemes on each cache

slice of a multicore processor. Our security evaluation of constant-

time banking and STF via simulation shows that they are not helpful

for an attacker (see ğ5.1). We also analyze eviction-set, occupancy

and flush-based attacks and conclude that the attacker is not aided

by the added NF-IDCP mechanism (see ğ5.2). Lastly, we demon-

strate via attack simulation on encryption libraries that domain

fusion significantly improves the effectiveness of occupancy-based

attacks (more than 70% more effective) compared to non-fused

randomization (see ğ5.2).

For the performance evaluation, we simulate two different sce-

narios. The first scenario is highly intensive in terms of shared data

usage, which stresses the flush-actions of NF-IDCP and magnifies

their performance overheads. We use PARSEC 3.0 [77] and real-

world workloads that include Firefox, Chromium and X Server (see

ğ6.2) workloads. The infrastructure uses ZSim [55] and PANDA-

based [28] simulators, respectively, for the above scenario. The

second scenario has a low amount of data sharing, in which we

should ideally retain most of the performance of non-coherent ran-

domization. We simulate the SPEC2017Rate [24] benchmarks on

ZSim for the second scenario. The performance overhead in all

cases is less than 5% compared to the domain-fused randomization

schemes (see ğ6).

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

Contribution Summary: To the best of our knowledge, this

is the first work that systematically addresses the cross-domain

data sharing issue for cache randomization schemes. We make the

following contributions.

(1) A new approach, Randomization-With-Sharing (RAWS), which

enables global cache coherence in randomization schemes

that allows cross-domain accesses without using domain

fusion.

(2) A new non-fusion based inter-domain coherence protocol

(NF-IDCP) that enables cache coherence among the multiple

cache coherence protocols running in a randomized cache.

(3) A security evaluation via analysis and simulation that shows

NF-IDCP can recover the security guarantees of the random-

ization schemes by preventing domain fusion.

(4) A performance evaluation which shows that the NF-IDCP-

enhanced randomized cache has less than 5% overhead com-

pared to domain-fused randomization. Hardware overheads

are less than 3%.

The rest of the paper is organized as follows: ğ2 discusses side-

channel attacks, state-of-the-art randomization strategies and do-

main fusion. ğ3 shows how NF-IDCP enables inter-domain coher-

ence. ğ4 presents constant-latency banking and secure tag-based

filters (STF) to optimize NF-IDCP. ğ5 performs a security evalua-

tion of NF-IDCP. ğ6 does the performance evaluation on PARSEC

3.0 (significant amount of shared addresses), real-world workloads

and the SPECrate 2017 (no shared addresses) benchmarks. ğ7 has

discussion/related work and ğ8 concludes the paper.

2 SIDE-CHANNELS, RANDOMIZATION
SCHEMES AND RAWS

In this section, we present relevant background for this paper,

which includes conflict-based side-channel attacks (ğ2.1), random-

ization schemes (ğ2.2), coherence protocols (ğ2.2.1) and data shar-

ing (ğ2.2.4). This will set the stage for the introduction of the

randomization-with-sharing principle (RAWS) that enables the use

of cross-domain accesses to maintain coherence. We present the

targeted environment in which we intend RAWS to function, and

its security, performance and hardware overhead (ğ2.3). We further-

more propose a secure non-fusion based inter-domain coherence

protocol (NF-IDCP) as away to apply the RAWS techniquewithmin-

imal modifications to existing randomization schemes (ğ2.4). Lastly,

we present background about banking (ğ2.4.1) and fully-associative

structures (ğ2.4.2) as two approaches that can be adapted to help

us securely reduce the latency and contention of NF-IDCP flushes.

2.1 Conflict-Based Side-Channels

A very important class of cache side-channels are the conflict-based

side-channel attacks, which have been shown to be capable of

leaking secret encryption keys. There are three major kinds of such

attacks: the conflict-set attacks, the occupancy-based attacks, and

the shared memory flush-based attacks.

The most general set-conflict attack is the PRIME + PROBE

attack [33]. In this attack, the attacker attempts to evict all of the

addresses in a cache set using an eviction set [38, 64]. This eviction

set contains many addresses that map to the same set (PRIME). It

then waits to see whether its cache lines are evicted by further

D0

A. B.

A B

D1

P0 P1 P2 P3

C
MESI MESI ESI ESI

Shared-
Read-Only

Private

C

Figure 2: The per-domain coherence protocol used by existing

randomization scheme MIRAGE (see ğ2.2).

accesses from the victim. Lastly, it tries to access its cache lines in

the cache set, and look for cache misses (due to their higher access

time). If any cache miss is detected, it means that there must have

been victim accesses in the intervening time period (PROBE). There

are also other variants of PRIME + PROBE that can speed up the

rate of leakage [34, 35, 44, 45, 70, 71]. Some attacks use a cache

set’s replacement states to augment conflict-based attacks [23]. The

occupancy attacks [58, 59] do not target any particular set, but try

to observe the total evictions of a randomly selected pool of cache

lines over a period of time. Instead of evictions, flushing instructions

can also be used to explicitly eliminate cache lines, and to speed up

conflict attacks [60].

The above conflict-set and occupancy attacks target either pri-

vate memory or shared read-only memory. For shared read-only

memory, cache line flushes can also be used to directly eliminate

the corresponding cache lines for a faster rate of attack [32, 74].

2.2 Randomization Schemes Have A Domain
Fusion Problem

Randomization schemes use address encryption to protect caches

against conflict-based attacks [37, 46, 47, 50, 60, 62, 68]. The most

secure randomization schemes [31, 53, 69] concatenate the ad-

dress with the security domain ID before the encryption to cre-

ate per-domain set mappings. Such address encryption can scat-

ter addresses across the cache sets in a domain-sensitive manner.

It substantially increases the difficulty of finding security-critical

cache lines, thus mitigating conflict-based attacks. Randomization

schemes, such as SassCache [31], can also limit the coverage of the

cache for different security domains, making it impossible for attack-

ers to touch victim cache lines. Randomization schemes are trans-

parent to the applications and can scale to tens of security-domains.

Randomization schemes can also protect memory addresses that are

either private (accessible to only one security domain), or read-only

shared (accessible to multiple security domains). Randomization

does not protect shared-writable addresses (accessible to multiple

security domains) due to its ability of direct (i.e., non-side-channel)

transmission of information.

Some of the most recent CVEs related to conflict-based side-

channel attacks are CVE-2023-32691 [7], CVE-2023-26557 [6], CVE-

2023-26566 [5], CVE-2023-25000 [3] and CVE-2023-25332 [4]. We

observe that randomization defenses won’t work properly against

web-browser based attackers [58], due to a domain fusion issue that

we describe in ğ2.2.3. Hence, we need to augment randomization

to function without domain fusion.

2.2.1 Per-Domain Coherence Protocol: We briefly describe the

well known MESI [61] protocol in which there are four states, M,

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

E, S and I. They are short for modified, exclusive, shared and invalid.

The modified state means that the cache line has the latest copy of

the data and the copy in memory is stale. Exclusive means that the

data is clean and that there is only one CPU that is currently using

the cache line. Shared means that multiple CPUs may be using the

cache line, and that the copy is clean (same as memory). Invalid

means that the cache line does not have any usable data.

In the coherence protocols for an inclusive cache, there is always

a copy of the cache line in the last-level cache if there are to be

copies in the private caches. This cache line will be tagged with

coherence metadata, such as the list of processor cores that may

have a private copy of the cache line (also known as sharers). Non-

inclusive caches will have a separate directory with the coherence

metadata, instead of associating it with each cache line. To the best

of our knowledge, state-of-the-art randomization schemes have all

been implemented on inclusive caches [31, 53, 69], so our discussion

is accordingly carried out from that viewpoint. However, it should

also be possible to apply similar techniques, if a randomization

scheme is implemented on a non-inclusive cache.

We show an example where a state-of-the-art randomization

scheme, such as MIRAGE [53], ScatterCache [69] or SassCache [31]

execute per-domain coherence protocols, in Figure 2 . There are two

domains in this example,𝐷0 and𝐷1. Each domain has access to two

cores. 𝐷0 has access to 𝑃0 and 𝑃1. 𝐷1 has access to 𝑃2 and 𝑃3. There

are two scenarios presented here. In Scenario A, we have cache lines

corresponding to private addresses A and B (solid outlined boxes).

Scenario A’s per-domainMESI protocol maintains coherence among

𝑃0, 𝑃1 and the LLC, each of which can have a copy of the cache

line. Similarly, in Scenario B, we have a cache line C corresponding

to a shared read-only address (dotted outlined boxes). Scenario B’s

per-domain protocol maintains coherence among P2, P3 and the

LLC. The coherence states will be only ESI in this case because

there will never be any write to shared read-only addresses.

2.2.2 Software Coherence: State-of-the-art randomization schemes,

such as ScatterCache [69] and SassCache [31], speculate that privi-

leged software can be augmented to transparently detect shared-

writable addresses, which can be used to prevent domain fusion. To

satisfy the above requirement, we need to make non-trivial changes

to several data structures and subsystems in the operating system

(OS) or other privileged software that can affect the shared-writable

status of a page. This includes the metadata for each page frame to

store security domain identifiers (SDIDs), the page-table contents

(to store associated SDIDs) and memory related system calls (to

update SDID metadata). The extra metadata may significantly in-

crease the total memory consumption of the system, and changes to

the software subsystems may significantly affect performance due

to the extra page-tracking operations. Given the above complexity,

it is also unknown whether transparency can be guaranteed in all

cases, or whether application modifications are needed. Therefore,

a thorough design and evaluation will be necessary to determine

the feasibility of the software-based approach, which is beyond the

scope of the paper. We have instead taken the orthogonal hard-

ware route towards supporting cache coherence, which has the

advantage of simplifying the software developers’ life because it is

transparent to their applications.

/ / g l e s2_cmd_decoder . cc / /

/ / Consume GL commands from shared b u f f e r / /

5906 . . . DoCommandsImpl (. . .) {

−

5913 CommandBufferEntry ∗ cmd_data =

5914 s t a t i c _ c a s t <CommandBufferEntry ∗ >(b u f f e r) ;

−

5918 whi l e (. . .

5919 . . .) {

5920 con s t uns igned i n t s i z e =

cmd_data −> va lue_heade r . s i z e ;

− / / S e c u r i t y checks , p r o c e s s i n g

5988 }

−

6007 }

/ / g l e s2_cmd_fo rmat_au togen . h

/ / Shared r eg i on c a s t as s t r u c t TexImage3D

8537 s t r u c t TexImage3D {

−

8549 vo id I n i t (GLenum _ t a r g e t , / / commands

8550 GLint _ l e v e l ,

−

8558 u i n t 3 2 _ t _ p i x e l s _ s hm_o f f s e t) {

8559 Se tHeader () ;

8560 t a r g e t = _ t a r g e t ;

− / / Wri te o th e r f i e l d s

8570 }

−

8590 u i n t 3 2 _ t t a r g e t ; / / b u f f e r f i e l d

−

8601 } ;

Listing 1: A simplified code snippet showing command buffer

usage in a Chromium server process.

2.2.3 Domain Fusion: The code snippet of Listing 1 shows an

example from the Chromium code base [1]. The privileged server

process helps to run/emulate OpenGL commands received from a

client, for which it implements a function called DoCommandsImpl

whose argument is a pointer to a shared ring-buffer (also known

as a ‘command buffer’). The client is one of the renderer processes

associated with the browser tabs. It may contain malicious code and

therefore runs at a lower privilege level [2]. The top half of the code

(lines 5906-6007) corresponds to the server process, which extracts

commands from the command buffer. It carries out a security check

for its validity, and then processes the commands in a while loop

(lines 5918-5988).

The latter part of the code (lines 8537-8601) shows how the client

modifies the command buffer content. The command buffer is cast

as a structure (line 8537), and an Init function (lines 8549-8570)

is invoked to modify the content of the buffer (8590-8601). One of

the updated fields, target, is shown on line 8601. The update to

it is shown on line 8560. The field target should be visible to the

server process as part of the commands it receives from the client.

If a randomization scheme is applied, then the domains of the

client and server would need to be fused. As mentioned in ğ1, fusion

of the security domains leads to a lower security level. This is mainly

due to the loss of protection against occupancy attacks and the loss

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

Fused

Higher Security With Non-Fused Rand

Non-FusedInsecure

Figure 3: Randomization has resistance to occupancy attacks,

but domain fusion eliminates this security benefit. Dark

cache lines are security-sensitive cache lines, which are all

hidden from the attacker (see ğ2.2).

of protection for the shared-read-only addresses. Figure 3 shows the

security issue created due to domain fusion for occupancy-based

attacks. We observe that the attackers can evict security-critical

cache line addresses in the fused domain, whereas they are hidden

in randomization without domain fusion because they use different

randomization functions. The attacker can no longer flush out

security-sensitive cache lines in the victim’s domain.

First-Time-Miss (FTM): To prevent flush-based attacks, it has

been suggested to disable user-space clflush-like instructions, or

to add First-Time-Miss [40, 49] style defenses if different security

domains are fused. In a First-Time-Miss defense, an injected timing-

delay makes it impossible to detect cache lines shared between

different security domains.

2.2.4 Other Data Sharing Examples. As discussed in ğ1, data shar-

ing is very important in many applications such as Chromium. It

also exists in browsers that are related to the Chromium code base

such as Google Chrome [10]. To motivate our work further, here are

some other popular applications that can also benefit from the pro-

posed non-fused randomization. For example, Firefox uses shared

memory IPC communication between untrusting processes, such

as the privileged browser process (parent) and the unprivileged

content process (child) [8, 11]. XServer [19] uses a pixel buffer [13],

which is shared between a server and potentially untrusted clients.

Qube OS [17] uses shared memory ring-buffers to enable commu-

nication among different virtual-machines (VMs) in the system.

The PulseAudio server may also use a shared ring-buffer [16] to

receive data from client processes using the enable-memfd option.

The memfd_create system call is provided by Linux to facilitate

sealable data sharing between untrusting processes [12].

2.3 RAWS To The Rescue

Targeted Software and Hardware Environment: All code run-

ning at a higher privilege level than userspace, e.g., in supervisor

mode or above, is considered to be secure. The privileged software

assigns different security domains to processes, virtual machines,

threads and others with security domain identifiers (SDIDs) of its

choosing. Different security domains do not trust each other but

may yet share writable-data, as we had pointed out in ğ2.2.4. The

hardware environment is a multicore processor with private and

shared caches. Different security domains are assigned to different

cores with private caches, but there is no restriction on concurrent

use of the shared caches. The above environment is a good target

because most of the data sharing examples that we mentioned in

ğ2.2.4 do appear in such an environment. We can imagine that a

laptop user could be running a web-browser with many concurrent

tabs, or that it could be running on a virtual desktop on cloud server.

It is also possible that the other applications could run in a cloud

based scenario or a laptop/desktop personal computing scenario. In

all these cases, our solution is applicable for a more secure system

environment.

Targeted Properties of the Cache : Any modifications to the

randomized cache should be practical and secure. We prescribe four

properties to this end.

• P1: The extra inter-domain coherence actions should trans-

parently restore coherence invariants.

• P2: The latency and contention overheads due to the added

cache accesses should be as low as possible so that perfor-

mance is not affected.

• P3: The hardware overheads need to be as low as possible

so that our solution can be deployed in a practical setting.

• P4: Attack resilience of randomization schemes should be

restored, in particular, against the three kinds of attacks

discussed in ğ2.1.

Out Of Scope: All attacks that randomization is not intended

to protect are beyond the scope of this work. This includes leak-

ages through shared-writable memory addresses [36], stateless

attacks [65, 66, 75] or non-cache side-channels [43]. For these at-

tacks, orthogonal defense techniques can be used in conjunction

with randomization [41, 42]. While beyond the scope of this work,

we briefly discuss how some of these methods could be used in

conjunction with our NF-IDCP solution (see ğ7).

2.4 Our Approach To Realizing The Targeted
Cache Properties

We have already mentioned that a possible solution to domain fu-

sion is to use the RAWS principle of cross-domain accesses. More

specifically, we would like to do it using cache line flushes due to

their availability in existing coherence protocols, which are usu-

ally invalidation based. Thus, it satisfies our first requirement of

transparently supporting data coherence, property P1. However,

doing so securely is complicated by the use of additional flushes. It

is known that adding flushes in the LLC can help speed up the rate

of conflict-based attacks (see ğ2.1). Fortunately, a straightfoward

solution is that flushed cache lines persist in the cache, and behave

like normal cache lines from a replacement perspective although

their contents cannot be used. This will help us achieve our security

property P4 by preventing new conflict-set attacks from becom-

ing possible. We present the NF-IDCP protocol in the context of a

generic invalidation-based coherence protocol in ğ3.

Näive application of RAWS can suffer from a higher latency

and contention due to the need to lookup a significant number

of cache locations concurrently during each cache access. Hence,

we propose additional supporting hardware structures, which can

either enable parallel accesses (see ğ2.4.1), or cut down on the

number of flushes on the critical path (see ğ2.4.2). This will help

us to achieve our performance targets P2. Towards this end, we

present some background concepts that are helpful in the above

pursuits, namely, constant-delay banking and tag-based filtering.

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

2.4.1 Constant-Delay Banking. Banking has long been used in

memories to improve memory bandwidth [20]. Here, the cache

is divided up into several mini-caches (i.e., banks), which can be

accessed in parallel. These mini-caches are effectively connected by

a bus, so that request and messages can be broadcast to all of them

in parallel. We can leverage this infrastructure to carry out parallel

lookups to multiple cache locations. The overheads of banking

should be low because there is no additional storage overhead. The

key change we make is to make the access time constant. Otherwise,

the banking may reveal set mapping information that is otherwise

hidden in the randomization. Hence, constant-delay banking can

also help us to achieve the targeted properties P3 and P4. We

discuss constant-delay banking in ğ4.

2.4.2 Tag-Based Filters . One way to filter out unnecessary cache

lookups is to maintain metadata in the LLC about the cache line

addresses represented inside. The metadata is tagged with the cache

line address, and can tell us which cache locations need to be flushed

precisely, or they can contain counters, which can help track de-

ferred flushes. The above metadata approach makes sense if there

are enough domains present to justify the extra costs. For example,

for a 32-domain system, there will be 32 bits per cache line due to

firt-time-miss (FTM) protections on domain-fused randomization.

These bits can be eliminated because we prevent domain fusion. It

helps to offset the hardware overhead of adding the above tag-based

filter, helping us to satisfy the P3 hardware overhead requirement.

One of the key security issues with the above tag-based filter is that

the metadata needs to be housed in a fully-associative structure

to prevent set over-subscriptions. We can achieve that by using a

set-associative structure for the main region, an additional overflow

region for tags that do not fit into the main region, thus helping

our security target of P4. We discuss the performance enhancing

functionality of the STF in ğ4.2.1, and the fully-associative housing

in ğ4.2.2.

3 SECURELY ENABLING INTER-DOMAIN
COHERENCE USING CACHE LINE FLUSHES

.

In this section, we present a state-machine for NF-IDCP that

maintains cache coherence among security domains. It allows only

one domain to have the read-write permission to a cache line at any

given time (see ğ3.1, ğ3.2). We lastly show that this is a sufficient

guarantee for the cache coherence invariants (see ğ3.3).

3.1 Coherence Protocol NF-IDCP Transitions

The invalid state NF-IDCP-I indicates that there is no valid cache

line for that address in the security domain. This could either be

because there is no copy of the cache line for that address, or because

there are copies of the cache line but none of them has valid data in

them. The read-write state NF-IDCP-RW indicates that only one

per-domain protocol will have a copy of the cache line in the shared

LLC, and in its private caches. Other security domains will not have

any cache line copy in the shared LLC, or their private caches. The

cache line may be dirty because writes may have occurred to the

cache line. In the read-only state NF-IDCP-RO, it is possible that

multiple domains may have copies of the cache line in LLC and the

their private caches, but none of them is dirty (i.e., written to).

Figure 4: The states and transitions of the NF-IDCP state ma-

chine (left). An example (right) that shows how it maintains

cache coherence between two security domains (see ğ3.2).

3.2 NF-IDCP Transitions

Figure 4 shows how the NF-IDCP protocol works. It includes three

NF-IDCP states, namely,NF-IDCP-I,NF-IDCP-RW andNF-IDCP-

RO. The transitions among the states are shown in the left half of

the figure. For simplicity, we will not use the NF-IDCP prefix while

describing the transitions.

Flush Transitions:

1. RWÐ>I: The transition occurs whenever there is a flush or an

eviction on the cache line address in the RW state.

3. ROÐ>I: An eviction or a flush occurred on an RO cache line.

9. IÐ>I: This transition occurs if there is a flush or an eviction of

the cache line, but the security domain does not have a valid copy

of the cache line.

Transitions To RW Status:

2. IÐ>RW: The transition occurs when a write-miss on the cache

line address occurs. The cache line copies in the other domains are

flushed. As the result, it is the only domain that has the cache line

with the RW state.

5. ROÐ>RW: If a domain already has the cache line(s) in the RO

state, then a flush of the copies in all other-domain happens. After

its completion, the cache line transitions to RW and the write can

occur.

7. RWÐ>RW: This transition occurs if there are reads or writes

from the same domain to an RW cache line.

Transitions To RO Status:

4. IÐ>RO: Upon a read-miss, all cache lines with the RW state are

flushed from the cache. Then, an RO cache line can be fetched into

the cache by the domain carrying out the read. Since no other dirty

cache line is present, the data is up-to-date with the latest write.

8. ROÐ>RO: This transition occurs if there are reads to a cache

line that a domain already has a copy of.

In the right half of Figure 4, it shows the different coherence

states a cache line may be in. There are two security domains: 𝐷0

and 𝐷1. Each has access to two cores, 𝑃0, 𝑃1 for 𝐷0 and 𝑃2, 𝑃3 for

𝐷1. In Part A, it shows the I state as its initial state. No valid cache

line is present in the LLC or elsewhere. Part B refers to a security

domain having a cache line in the RW state. There is only one copy

of the cache line in the LLC (red color), and there may be multiple

copies in the private caches associated with the security domain

𝐷0. The cache lines are allowed to be dirty. In Parts C and D, they

show the two possibilities of the RO state. There may be one copy

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

of the cache line in the LLC (Part C), or there may be two copies of

the cache line in the LLC (Part D). Both cache lines in Part D are

clean (yellow color). Note that the MESI coherence protocol is run

between the cores assigned to the same domain for their cache line

copies in LLC.

3.3 Maintaining Coherence Invariants

We layout the argument below regarding why the SWMR and data-

invariance are satisfied by the NF-IDCP.

A. Only One Domain Can Have RW Lines: The RW cache

lines are only available to one security domain at a time. In order

to prove this, we consider the lifetime of an RW cache line. An RW

cache line is fetched into LLC when there is a write miss on the

cache line (transition 2), or when there is a write to an RO cache line

(transition 5). In both cases, all cache lines used by other domains

are flushed out. Furthermore, when any other domain tries to access

the cache line, they can only get the cache line once it has been

flushed out from the domain with RW permission (transitions 2

and 4). Therefore, only one domain can have the RW cache line at

any given time.

B. RO and RW Per-Domain Protocols Have The Latest Data:

If a security domain has RO or RW cache lines, it means that it

has the latest copies of those cache lines. When they are fetched,

they are the latest copies because all other dirty copies must have

been flushed out to the main memory (transitions 2 and 4). If any

other domain tries to do a write, then it needs to remove the RO or

RW cache lines being used by a different domain. Thus, the above

property holds.

SWMR Property: If a write occurs, it will either be a cache

miss (I), or happen on a cache line in the RO or the RW state. In

the first two cases (I->RW or RO->RW transitions), there will be a

flush of the cache lines in all other domains before the write can

happen. This guarantees that no other domain has a copy of the

cache line when the write takes place. Hence, SWMR property is

maintained because only one domain has the write permission. In

the third case (RW->RW), we already know from the property A

that no other domain has a copy. Therefore, SWMR is maintained

at the inter-domain level. Intra-domain SWMR will be maintained

by the per-domain coherence protocol.

Data Invariance: If a read occurs on an already-present cache

line, it could be associated with an I->RO, RO->RO or RW->RW

transition. Since we know by the property B that the obtained RO or

RW cache lines always have the latest copy of the data, we satisfy

the required data invariance property. In Appendix ğB, we present

a simple implementation of NF-IDCP on top of a MESI protocol

for two domains, and the simulation results using the coherence

protocol verification tool Murphi [27].

Takeaway 1

TheNF-IDCP approachmaintains coherence in the absence

of domain fusion using cache line flushes, thus maintain-

ing coherence invariants and the security guarantees of

randomization.

n

Figure 5: NF-IDCP with banked cache accesses. The banked

accesses are faster to complete compared to a non-banked

cache. (see ğ4.1).

4 SECURELY REDUCING INTER-DOMAIN
COMMUNICATION LATENCY

In this section, we discuss ways to improve the performance of the

NF-IDCP schemes, as per our targeted property of low performance

overhead (see ğ2.3). The first optimization is secure parallelization

and the second optimization is secure tag-based filtering (STF). The

parallelization strategy (see ğ4.1) uses constant-delay banking to

increase the number of concurrent accesses to the cache securely,

which is useful for faster cross-domain flushes.

The STF approach (see ğ4.2) uses tagged metadata to reduce

flush latency. It stores counters to facilitate lazy flushes of the RO

cache lines in the LLC. It also stores precise domain-information

to locate the RW cache lines in the LLC. The above metadata can

be housed in two fully-associative structures, 𝐷𝑖𝑟0 and 𝐷𝑖𝑟1, for

immunity against conflict-based attacks.

Lastly (see ğ4.2.2), we discuss the hardware design of the fully-

associative structures inside the STF. It has a main region, which

houses tags in a set-associative structure. It also has an overflow

region, which hosts any tags that do not fit into the main region

due to set oversubscription. Also, cache lines are moved out of the

overflow region back into the main region, if there is space in the

main region. Hence, the STF works like a fully-associative cache,

which is secure against conflict-based attacks.

4.1 Secure Parallel Accesses

Caches already support well-established banking techniques to in-

crease parallel accesses (see ğ2.4.1). In banking, the cache is divided

into multiple sections known as banks, which can be accessed in

parallel. The use of parallel cross-domain accesses improves the

performance by reducing access latency. However, we do not want

attackers to learn the relative locations of sets in different banks by

measuring the access time to the cache, hence, a constant latency

is imposed. The imposed constant latency should be the expected

maximum access time as observed over a large number of accesses.

Figure 5 shows the scheme of our secure banked cache. Part A

shows the non-banked cache, which has a single bank 𝐵0. Part B

shows𝑛 banks, 𝐵0 ...𝐵𝑛 , with
1

𝑛 of the total sets in each bank. In both

the parts, the encryption key in a box signifies the randomization

functions that are associated with the cache.

In Part C, we also show an example lookup of the non-banked

and the banked cache, by an address 𝐴. The domain for 𝐴 can

arbitrary (not shown). We assume that there are 𝑁 domains in

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

this example, so there will 𝑁 lookups, each using a different ran-

domization function for each domain. In the first time step (0-1),

the banked cache will access all 𝑛 banks in parallel. Thus, upto

𝑛 locations can be accessed in parallel. However, the non-banked

cache can access only one location. This goes on 𝐾 times, where

𝐾 < 𝑁 . At this point in the sequence, the banked cache would have

completed all of its accesses to the 𝑁 different locations. However,

the non-banked cache has only completed 𝐾 accesses. The next

interesting point in the sequence is at the 𝐾𝑡ℎ
𝐷

access, which is the

expected maximum time for the banked cache. At this time, the

banked cache can securely declare the cache access to 𝑁 locations

as completed. Between time𝐾 and𝐾𝐷 , the banked cache will be idle.

The extra delays for the constant time banking are indicated by the

red 𝐷𝐿 letters. However, the non-banked cache has only accessed

𝐾𝐷 locations. Hence, it will now continue the access sequence until

it completes 𝑁 accesses to the cache. The banked cache has already

completed its lookups indicated by the red 𝑁𝐴 letters.

4.2 Secure Tag-Based Filters (STF)

Hardware Modifications: The hardware modifications are shown

in Figure 6. The left half of the first row, 𝐴0, shows the NF-IDCP

cache. The NF-IDCP cache contains a randomization function (box

with key inside). The cache lines have tag (white), data (black) and

SDID (grey) fields. The right half, 𝐵0, shows all the added hardware

for the STF optimization. STF structures 𝐷𝑖𝑟0 and 𝐷𝑖𝑟1 are added to

the hardware. 𝐷𝑖𝑟0 has counters (dash-dot outlined box). 𝐷𝑖𝑟1 has

pointers, SDIDs and tags (light grey box, white box dark grey box).

To facilitate the STF optimizations, the NF-IDCP cache is modified

so that each tag also holds pointers to the appropriate𝐷𝑖𝑟0 counters

(dark grey box). Below, we shall discuss how the above hardware

is used (ğ4.2.1). The STF structures are themselves randomized so

that they behave in a fully associative manner.

4.2.1 How STF Works. In the 𝐷𝑖𝑟0 structure, we keep counters

with valid/invalid bits, corresponding to the RO cache lines in the

LLC. The valid RO cache lines will maintain a pointer to the counter.

A valid counter is incremented every time a new domain gets a copy

of the RO cache line from the LLC. It is decremented during cache

evictions.When a NF-IDCP flush occurs that needs to remove all RO

lines due to writes by a domain, we set the bit to invalid thus making

it an invalid counter. The RO cache lines can be flushed "lazily" in

future accesses, and each flush will decrement the corresponding

counter. There can exist multiple valid RO lines pointing to a valid

counter, and also multiple groups of RO lines, which are being lazily

flushed/evicted, pointing to their corresponding invalid counters.

The valid counter location for that cache line address is stored in

the corresponding 𝐷𝑖𝑟1 entry.

In the second row of Figure 6, we show an example, contrasting

how regular NF-IDCP flushes and lazy NF-IDCP flushes work. In

the left-hand half of the second row (example 𝐴1), there are three

cache line copies in the shared cache that correspond to the different

security domains. Steps 2, 3 and 4 are needed to carry out the flushes.

In the right half of the second row (example 𝐵1), the initial state in

Step 1 has four copies of the cache line, which are used in different

security domains. The cache lines are all clean initially. Hence, they

all point to the same valid counter in 𝐷𝑖𝑟0. In Step 2, we reset the

pointer associated with the cache line written to because it is no

RW

STF

RO RO

RW Quick

Cache Cache
S
T
F

0 1

Figure 6: The secure tag-based filter for optimizing NF-IDCP,

using lower latency cache evictions (see ğ4.2).

.

Figure 7: A fully-associative structure using a main region

and an overflow region (see ğ4.2.2).

longer an RO cache line (marked in red). In Step 3, the invalid bit is

set for the counter associated with the remaining RO lines (marked

in mesh gradient). In both examples 𝐴1 and 𝐵1, invalidation is sent

to remove all private copies.

Quick Flushes Of RWLines: We first lookup the𝐷𝑖𝑟1 structure

while doing an NF-IDCP flush of RW cache lines upon a cache miss.

It tells us which domain currently has the RW cache line (if any).

Then, we need to flush the RW cache line that location. In the third

row of Figure 6, we show how the flush for an RW cache line is

done in the unoptimized NF-IDCP and in the STF-optimized version

of NF-IDCP. In the left half of the third row (example 𝐴2), we show

that it takes four steps (Step 1, Step 2, Step 3 and Step 4) to find the

RW cache line and flush it. In the right side example (𝐵2), 𝐷𝑖𝑟1 is

looked up (Step 1), and the SDID corresponding to the RW cache

line address is determined. In the next step (Step 2), the RW cache

line is flushed from the LLC.

Eliminating Tag Duplication: In the above setup, tags are

duplicated in the 𝐷𝑖𝑟1 and the cache. This can be eliminated by

having a pointer from the cache to 𝐷𝑖𝑟1 instead, thus saving on

space.

4.2.2 Fully Associative Housing For STF . One way to create a fully

associative structure is to use two regions, a main region and an

overflow region. The main region has a set-associative structure.

The overflow region also has a set-associative structure but with a

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

higher associativity. Alternately, it can use a strategy like MIRAGE

to lower its associativity.

For each access, the main region and the overflow region are

both accessed simultaneously. A domain-insensitive randomization

function is used for each cache line address to determine the the

respective sets to be accessed. This does not cause any security

issue, because the STF housing merely houses the 𝐷𝑖𝑟0 or 𝐷𝑖𝑟1
metadata for the cache line addresses in the main cache, and does

not drive any conflict misses. Metadata can be retrieved from either

region. As the cache adds and removes cache line addresses, corre-

sponding metadata will be added or removed. We can also move

any metadata from the overflow region into main region if space

becomes available there.

Figure 7 shows the hardware diagram for a set-associative struc-

ture and a fully-associative cache structure. In Part A, it is a regular

set-associative cache. This can host the metadata that the STF re-

quires. In the Part B on the right-hand side, there are two regions,

the main region (1) and the overflow region (2). The overflow region

is a more highly associative region, but smaller in size. These two

regions are connected, indicated by the bold double-arrow line. The

set to be accessed is determined by a randomization function on

the cache line address (not shown).

Takeaway 2

The two optimizations to NF-IDCP, namely parallelization

and STF, securely reduce the latency of the cache-flush

operations generated by IDCP, at a low hardware overhead.

5 SECURITY ANALYSIS AND EVALUATION

As specified in (see ğ2.3), NF-IDCP should restore the security guar-

antees of randomization schemes by preventing domain fusion. Our

security argument for the above has three parts. First, we carry out

stress tests on the parallelization optimization at different banks and

domain counts, to determine maximum expected latencies . Second,

we stress the fully-associative structures in the STF using a random

access pattern to see if we can trigger any set over-subscriptions

(see ğ5.1.1) . Third, we determine that a randomization scheme that

uses NF-IDCP has the same attack resilience to conflict attacks

(discussed in ğ2.1) as the underlying randomization scheme. For

the above, we use a generalized representation of a conflict attack

as a sequence of random variables that represent the accesses and

hit/miss observations of an attacker. Then, we show that the joint

distribution of the accesses and the observations are not affected by

the NF-IDCP flushes. We discuss these three security issues in ğ5.2.

Furthermore, we show that resilience against occupancy attacks

is maintained at a high level due to identical coverage for any

attacker, regardless of whether the NF-IDCPmechanism is switched

on or switched off. We argue that flush attacks on shared read-only

addresses aremitigated due to the inability of an attacker to do cross-

domain flushes on read-only shared addresses. Finally, we carry out

extensive simulations and show that domain fusion substantially

reduces the attack resilience of randomization (see ğ5.2.3).

Table 1: Bank Contention Simulation Results. Eachmeasured

Max Contention in column 3 corresponds to the number

of banks in column 1 of the same row, for the number of

domains shown in column 2.

Banks Domains Max Cont Accesses

8,16,32,64,128 8 7,7,7,7,6 40 trillion

8,16,32,64,128 16 13,11,9,8,8 40 trillion

8,16,32,64,128 32 20,15,12,11,9 40 trillion

5.1 NF-IDCP Optimization Security

5.1.1 Parallelization Security . To stress the parallelization opti-

mization, we carry out 40 trillion random accesses on a parallelized

cache slice. Table 1 shows experimental results for the total con-

tention on each bank. Each of the max-contention numbers was

determined using an experiment with over a trillion cache accesses.

Each row in the first column of Table 1 lists 5 different LLC’s with

different number of banks, 8, 16, 32, 64, 128. The second column

shows the total number of domains involved in the system. This

corresponds to the total number of accesses for the NF-IDCP flushes.

Each row in the third column lists the maximum number of accesses

that happen to the same bank for a single address. This is related to

the worst-case latency for carrying out the NF-IDCP flushes. The

last column corresponds to the duration of the experiment in terms

of the number of accesses to the multi-banked cache slice.

Observations: As expected, a larger bank count significantly

reduces the maximum observed contention. Therefore, for each

of these combinations of bank counts and domain counts, the im-

position of the NF-IDCP flush-operation latency corresponding to

several sequential accesses, similar to max contention, will guar-

antee no timing side-channels due to the banking, at least for the

duration of our experiment. Since we have carried out 40 trillion

accesses for each combination of domain counts and bank counts,

this means that we can conservatively estimate that the cache slice

will need to be flushed after that many accesses. However, the

magnitude of leakage due to this (say, one reset every 40 trillion

accesses), is negligible compared to the leakage rate needed for a

successful recovery of a secret key (empirically, one observation

every few thousands or tens of thousands of cycles [72, 74]).

STF Security: The STF’s security guarantee is connected to

the probability that an attacker will be able to oversubscribe a set

in the overflow region. We carried out a simulation of a trillion

random accesses on a regularly sized cache slice, and found that

the maximum subscription on the overflow region was 48, for an

overflow region that was 12.5% the size of the main region. Hence,

a 48-way associative overflow region is sufficient to prevent any

resets in that number of accesses. This reset rate is at least several

orders of magnitude less than the rate at which randomization leaks

information.

5.2 No Improvement To Conflict-Based Attacks

The resilience against conflict-based attacks for an NF-IDCP ran-

domization scheme needs to be identical to the underlying ran-

domization scheme, according to the targeted security property P4.

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

We discuss the above in the context of the three conflict attacks

introduced in ğ2.

5.2.1 Conflict-Set Attack Resilience. A conflict-set attack (as dis-

cussed in ğ2) can be generalized in the context of an NF-IDCP cache,

as an attacker making hit/miss measurements using a sequence of

accesses that can be reads, writes and flushes. The above flushesmay

affect hit/miss timing measurements. However, we have already

argued that the NF-IDCP flushes do not help a conflict attacker,

because they have no effect from a replacement standpoint (see

ğ2.4). Therefore, an attacker cannot generate new conflict patterns

by engaging the NF-IDCP.

More concretely, we can represent any conflict-set attack as a se-

quence of random variables 𝑆
′

0
, 𝐴

′

0
,𝑂𝐵

′

0
...𝑆

′

𝑖 ,𝑂𝐵𝑖
′, 𝐴

′

𝑖 ...𝑆
′

𝑛,𝑂𝐵𝑛
′, 𝐴

′

𝑛 ,

for a sequence of length 𝑛. The 𝑆
′

𝑖 variables represent the cache

state, which is a set of pairs consisting of cache locations and the

cache line addresses therein. The 𝐴
′

𝑖 variables represent an access

to a cache line address from a particular security domain, which

could be a read, write or flush. The 𝑂𝐵
′

𝑖 variables represent an ob-

servation about a hit, an observation about a miss or no observation

(for flushes).

We also consider an analogous attacker that uses only reads,

without writes or flush instructions, to mimic the above attack.

The access sequence can be represented as 𝑆∗
0
, 𝐴∗

0
,𝑂𝐵∗

0
...𝑆∗𝑖 ,𝑂𝐵

∗
𝑖 , 𝐴

∗
𝑖

...𝑆∗𝑛,𝑂𝐵
∗
𝑛, 𝐴

∗
𝑛 , for a sequence of length 𝑛. The random variable

𝑆∗𝑖 represents the cache locations and cache line addresses therein,

similar to 𝑆
′

𝑖 .𝐴
∗
𝑖 represents reads, pseudo-writes and pseudo-flushes.

The pseudo-writes cause a read to be executed. Pseudo-flushes do

nothing. 𝑂𝐵∗𝑖 is the adjusted observation. They can be cache hits

or misses for reads and pseudo-writes. There is no observation

for pseudo-flushes. The cache hits can be adjusted by the attacker

to be recorded as cache misses, based on previous pseudo-writes

and pseudo-flushes. We can show via inductive strategy that the

joint probability distribution p
𝐴
′

0
,𝑂𝐵

′

0
...𝐴

′
𝑛,𝑂𝐵

′
𝑛

is exactly the same as

p𝐴∗
0
,𝑂𝐵∗

0
...𝐴∗

𝑛,𝑂𝐵∗
𝑛
. Thus, the attackers have the same power because

there is equal probability of recording any sequence of accesses

and timing observations. In Appendix ğA, we show the details of

the inductive proof of the above intuitive assertion.

5.2.2 Occupancy Attack Resilience. As we discussed in ğ2.2, Sass-

Cache can control the coverage of different security domains. This

enables occupancy attack protections. Cache lines can partially

isolated, fully isolated or not isolated at all. Fully isolated means that

an attacker’s security domain has no chance of evicting the cache

line. Partially isolated means that the attacker has the possibility

of evicting the cache line in some, but not all skews. Not isolated

means that in all skews, the attacker has a chance of evicting the

cache line of the victim.

The main security benefits of SassCache occur because the proba-

bility that a security-sensitive cache line is fully isolated or partially

isolated is high (greater than 99.999%), and the fraction of cache

lines that aren’t isolated is low (less than 0.0001%), for the default

coverage settings of 39% for the attacker. Consider a SassCache

that has NF-IDCP mechanisms available. SassCache divides the

cache into 𝑘 mini-caches, or skews) in the system. In each skew,

the attacker has access to a random subset of the cache line loca-

tions, 39% by default. A security sensitive cache line will need to

be mapped to one of those locations to be evictable by the attacker.

Since this mapping is decided by the underlying randomization

function, and not the NF-IDCP, therefore, the isolation property for

any skew is not affected by NF-IDCP. If domain fusion occurred

due to the absence of NF-IDCP, then the victim cache lines would

all be evictable by the attacker, substantially reducing resilience

against attack (see Figure 12 in Appendix ğC).

Shared Read-Only Memory Flush Attack Resilience: Due to the

tagging of cache lines with an SDID (see ğ4.2), cross-domain flushes

via clflush instructions will never happen in any NF-IDCP enhanced

cache. Thus, we have robust resilience against the above attacks.

5.2.3 Demonstrating Negative Effects Of Domain Fusion: We im-

plemented SassCache inside CacheFX [30], a popular tool for eval-

uating the security of randomization. We configure SassCache so

that there are two security domains, one for the attacker and the

other for the victim. We used a cache with 2048 cache lines to

model a significant size while keeping computational costs as eco-

nomical as possible (100 billion attacker accesses simulated). The

criteria for the resilience of the randomization, is to measure how

often an attacker can distinguish two different cryptographic keys,

only based on side-channel observations. In our experiment, we ran

AES [22] encryption and RSA [74] encryption inside CacheFX. Each

attack runs 200,000 encryptions, alternating between two randomly

chosen encryption keys. The attacker observes the cache state via

eviction-set attack (same as conflict-set attack) or occupancy attack,

and tries to make a distinction between the two keys based on the

differences in the observed eviction pattern. The entire process was

repeated more than 300 times for each of the keys, and a success

rate was measured, which is the fraction of attempts where the

attacker could distinguish the two keys.

Table 2 summarizes the result of the attack experiments. The

first column shows the the four attacks simulated. Each attack ei-

ther used AES or RSA (SquareMult) encryption algorithms, and

used occupany attack or eviction-set strategy. The percent of at-

tacks that could successfully distinguish the keys in domain-fused

SassCache are shown in the second column. In non-fused random-

ization (third column), the success rate of the attacker is 70% higher

than non-fused SassCache. In the fourth column we consider a

SassCache configuration, where the two domains have their cover-

ages constrained within two different cache halves, using simple

scale-and-shift of the index function (see Appendix ğD.). The attack

success is reduced to zero due to no cross-domain evictions.

We extensively evaluate the resistance to eviction-set and occu-

pancy attacks of other randomization schemes (CEASER, CEASER-

S, ScatterCache, MIRAGE); non-fused SassCache enables the best

security guarantees (see Appendix ğC).

6 PERFORMANCE EVALUATION

Using ZSim [55], we carry out a performance evaluation of our

scheme using PARSEC 3.0 workloads, which has significant data

sharing. The processor configuration used for simulation mainly

consists of a Nehalem-like out-of-order core coupled with a three-

level cache hierarchy. The L1I cache is 32KB in size (4-way assoc),

the L1D is 32KB in size (4-way assoc) and the L2 cache is 256KB

in size. The shared LLC consists of one slice per-core, where the

size of each cache slice is 2MB with a 16-way associativity. We also

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

Table 2: Side-Channel Attacks To Distinguish Two

Encryption-Keys. The columns refer to different Sass-

Cache configuration and the rows refer to different kinds

of attacks. The cells contain percentage of attacks which

succeeded out of 300 trials.

Attack Type Sass (f) Sass (nf) Sass-P (nf)

Eviction-Set, AES 18% 7.5% 0%

Eviction-Set, RSA 100% 15% 0%

Occupancy, AES 100% 22% 0%

Occupancy, RSA 100% 22% 0%

simulate real-world Firefox, Chromium and X Server workloads on

a similar cache configuration, using a PANDA [28] based simulator.

We also present SPECRate2017 results in an online Appendix [15].

An insecure cache is devoid of any side-channel protection. The

ceaser and ceaser-s strategies are fused-domain as discussed in ğ2.

The next three schemes used are sass_magic, scatter_magic and

mirage_magic, which are the same as SassCache, ScatterCache and

MIRAGE, but with an ideal zero-overhead coherence mechanism.

That means, each write to a cache line address transmits the written

contents to cache lines used by all domains instantaneously. Next,

there are three configurations: sass_par, scatter_par andmirage_par.

They are the coherent versions of the same via NF-IDCP strategy

and parallelization optimization. Finally, there are three approaches:

sass_tag, scatter_tag and mirage_tag. These three approaches are

the versions of the above randomizations with NF-IDCP and the

added STF optimization. Since we want to be conservative on the

performance overheads, we add a latency of 8 cycles for the paral-

lelization optimization, and a latency of 4 cycles for the tag-based

filter optimization on the critical cache hit path.

6.1 PARSEC 3.0 (with Significant Data Sharing)

The PARSEC 3.0 benchmarks represent a wide range of sharing

patterns that are used by multi-threaded applications. In theory,

any two domains that use shared memory could potentially use

such access patterns. Therefore, we use PARSEC 3.0 benchmarks

as one possible way to evaluate the performance of the NF-IDCP-

enhanced cache. In our 8-core simulations, we use them to run 8

threads in parallel, each assigned to a different security domain. The

key performance metric is the total execution time, which indicates

how many cycles it took the multicore processor to complete the

workload. To better understand the performance, we also record

supporting figures, such as the MPKI (misses per kilo instruction)

and the LLC access fraction.

Performance Results: On average, we see less than 5% per-

formance degradation compared to domain-fused randomization,

for NF-IDCP randomization. In two cases, canneal and vips, there

is upto 30% and 10% performance degradation, respectively. This

overhead is mainly due to a lack of cache hits on shared-writable

memory cache lines in the LLC. Figure 8 shows the performance

results for the PARSEC 3.0 benchmarks. Part (a) of the figure shows

the performance results for the benchmarks normalized to the in-

secure configuration, and the geometric mean of the same is also

shown. Part (b) of the figure shows the normalized MPKI numbers

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

N
o
rm

 E
x
e
c
 T

im
e ceaser

ceaser-s
sass_magic
scatter_magic

mirage_magic

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

N
o
rm

 E
x
e
c
 T

im
e sass_par

sass_tag
scatter_par
scatter_tag

mirage_par
mirage_par

(a) The total execution time for the PARSEC 3.0 benchmarks simu-

lated for twelve cache configurations (see ğ6.1)

1e-01
2e-01
5e-01

1e+00
2e+00
4e+00
8e+00
2e+01

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

N
o
rm

 M
P
K

I

ceaser
ceaser-s

sass_magic
scatter_magic

mirage_magic

2e-02
6e-02
2e-01

1e+00
4e+00
2e+01
6e+01
3e+02

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

N
o
rm

 M
P
K

I

sass_par
sass_tag

scatter_par
scatter_tag

mirage_par
mirage_tag

(b) The MPKI (misses-per-kilo-instruction) for PARSEC 3.0 bench-

marks simulated for twelve cache configurations (see ğ6.1).

1e-06
1e-05
1e-04
1e-03
1e-02
1e-01

1e+00

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

L
3
 F

ra
c
ti

o
n

ceaser
ceaser-s

sass_magic
scatter_magic

mirage_magic

1e-06
1e-05
1e-04
1e-03
1e-02
1e-01

1e+00

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

L
3
 F

ra
c
ti

o
n

sass_par
sass_tag

scatter_par
scatter_tag

mirage_par
mirage_tag

(c) The fraction-of-accesses going to the LLC for PARSEC 3.0 bench-

marks simulated for twelve cache configurations (see ğ6.1). GEO is

short for geometric mean.

Figure 8: The performance results and the supporting data

for PARSEC 3.0 obtained from simulations on ZSim.

for the simulations, and Part (c) shows the fraction of memory ac-

cesses that went to the LLC. We generally see a correlation where

a higher MPKI results in lower performance. However, this effect is

tempered by the LLC access fraction. Generally, a lower LLC access

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

G
EO

_8

G
EO

_16

G
EO

_32

(N
)

E
x
e
c
 T

im
e

baseline
ceaser
ceaser-s
sass_magic
scatter_magic
mirage_magic

sass_par
sass_tag
scatter_par
scatter_tag
mirage_par
mirage_tag

 0.1

 1

 10

 100

G
EO

_8

G
EO

_16

G
EO

_32
(N

)
M

P
K

I

baseline
ceaser
ceaser-s
sass_magic
scatter_magic
mirage_magic

sass_par
sass_tag
scatter_par
scatter_tag
mirage_par
mirage_tag

Figure 9: The average trends in performance and MPKI for

PARSEC 3.0 using 16 domains/16 cores and 32 domains/32

cores.

 0.25
 1
 4
 16
 64
 256

f_goog

f_yout

f_face

f_w
iki

f_redd

c_goog

c_yout

c_face

c_w
iki

c_redd

m
_tabl

m
_agst

m
_back

m
_colu

m
_elec

m
_outp

G
EO

M
P
K

I

baseline
ceaser

ceaser_s
scatter_magic

mirage_magic
sass_magic

(a) The MPKI results of a cache simulation for real-world workloads,

for the first six configurations (see ğ6.2)

 0.25
 1
 4

 16
 64

 256

f_goog

f_yout

f_face

f_w
iki

f_redd

c_goog

c_yout

c_face

c_w
iki

c_redd

m
_tabl

m
_agst

m
_back

m
_colu

m
_elec

m
_outp

G
EO

M
P
K

I

scatter_par
scatter_tag

mirage_par
mirage_tag

sass_par
sass_tag

(b) The MPKI results of a cache simulation for real-world workloads,

for the last six configurations (see ğ6.2)

Figure 10: Simulations on real-world workloads show mini-

mal impact of NF-IDCP on cache MPKI.

fraction leads to a lower MPKI. The performance overhead of PAR-

SEC 3.0 remains less than 5% for 16-core and 32-core workloads

also (see Figure 9).

6.2 Real-World Workloads (Low Data Sharing)

Firefox and Chromium are configured to run a single tab. The

content/renderer process for that tab is configured to run in one

security domain. The other processes are all configured to run in

another domain. X Server is configured to use a client MuPDF [39],

which decrypts PDF files before display.

On our PANDA-based cache simulator, we find that performance

degradation in terms of MPKI is less than 0.5 (see Figures ğ10a

and ğ10b), for simulations of 1 billion memory accesses. This can

be attributed to the relatively low proportion of shared memory

accesses used by Firefox, Chromium and X Server (less than 2%).

7 DISCUSSION AND RELATED WORK

Hardware Overheads: We estimate the hardware overhead of

the system using a standard cache design exploration tool, CACTI

7.0 [20]. The main hardware overheads are due to parallelization

overheads and STF overheads. The parallelization overhead is less

than 3% upto 32-banks. The STF overhead is less than 8% for 32

domains compared to an insecure cache. This is only 3% more than

the cost of an FTM-enhanced domain-fused scheme, which has

more than 5% storage overhead.

Energy Overheads: Majority of the extra energy consumption

is due to the extra tag-lookups in the LLC for cache flushes. Based on

CACTI 7.0 results, the dynamic energy cost for the twelve NF-IDCP

configurations we simulated is less than 2% for the SPECRate2017,

PARSEC 3.0 and real-world workloads. The static energy cost is

increased by 3%, similar to the hardware overhead increase for the

STF configuration. It is not increased significantly for the multi-

banked configuration.

Cache Partitioning And Other Randomization Techniques:

A wide-array of cache-partitioning techniques have been proposed

in recent literature targeting the security use cases [21, 29, 36, 41, 48,

54, 56, 67, 76]. We can augment all the existing cache partitioning

strategies using our approach. We evaluated a partitioned version

of SassCache in Appendix ğD. Phantom Cache [62] randomizes

within a small number of sets instead of randomizing across the

entire cache. Song et.al [60] propose new reallocation techniques to

reduce the overheads of re-keying in randomization. HybCache [26]

uses cache randomization and partitioning in a hybrid manner.

NewCache [37] and RPCache [68] are applied to the private caches

rather than the shared caches. MIRAGE [53] uses load-balancing

for fully associative caching.

8 CONCLUSIONS

We identified the important problem of domain fusion due to data

sharing between different security domains. In existing randomiza-

tion schemes, domain fusion forces different security domains to

use the same randomization function, thus reducing the security

level significantly.

We introduce a new randomization-with-sharing approach, RAWS,

which enables non-fusion based data coherence using randomized

cross-domain accesses.We develop a secure inter-domain coherence

protocol (NF-IDCP) using RAWS. It uses cache flushes to restore co-

herence without relying on domain fusion. We integrate NF-IDCP

into existing state-of-the-art randomization schemes (ScatterCache,

MIRAGE and SassCache) using secure parallelization and tag-based

filter optimizations.

We perform a security evaluation using CacheFX attack simula-

tions and a probabilistic analysis, and a performance evaluation on

a wide-range of benchmarks, including SPECRate 2017, PARSEC

3.0 and real-world workloads. In all analysis and evaluations, we

demonstrate that the security breaches induced by domain fusion

are eliminated by NF-IDCP. Across all evaluation, the average per-

formance overhead is less than 5% and the hardware overhead is

less than 3%.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant CNS-2106771.

REFERENCES
[1] [n. d.]. codebase. https://www.chromium.org/developers/design-documents/gpu-

command-buffer. Accessed: 2023-07-15.
[2] [n. d.]. commandbuffer. https://www.chromium.org/developers/design-

documents/gpu-command-buffer. Accessed: 2023-07-15.

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

[3] [n. d.]. cve-2023-25000. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-25000. Accessed: 2023-12-12.

[4] [n. d.]. cve-2023-25332. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-25332. Accessed: 2023-12-12.

[5] [n. d.]. cve-2023-26556. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-26556. Accessed: 2023-12-12.

[6] [n. d.]. cve-2023-26557. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-26557. Accessed: 2023-12-12.

[7] [n. d.]. cve-2023-32691. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-32691. Accessed: 2023-12-12.

[8] [n. d.]. firefoxSharing. https://blog.mozilla.org/attack-and-defense/2021/01/27/
effectively-fuzzing-the-ipc-layer-in-firefox/. Accessed: 2023-07-15.

[9] [n. d.]. intelsidechannel. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/securing-
workloads-against-side-channel-methods.html. Accessed: 2023-07-15.

[10] [n. d.]. ipc-sniffer. https://github.com/tomer8007/chromium-ipc-sniffer. Ac-
cessed: 2023-07-10.

[11] [n. d.]. IPDL. https://firefox-source-docs.mozilla.org/ipc/ipdl.html. Accessed:
2023-07-10.

[12] [n. d.]. memfdSharing. https://man7.org/linux/man-pages/man2/memfd_create.
2.html. Accessed: 2023-07-15.

[13] [n. d.]. mit-shm. https://en.wikipedia.org/wiki/MIT-SHM. Accessed: 2023-07-10.
[14] [n. d.]. mojo-ipc. https://chromium.googlesource.com/chromium/src/+/refs/tags/

72.0.3586.1/ipc/. Accessed: 2023-07-10.
[15] [n. d.]. onlineAppendix. https://github.com/kartikram3/RAWS-Supplementary.

Accessed: 2023-12-12.
[16] [n. d.]. pulseaudio. https://man.archlinux.org/man/pulseaudio.1.en. Accessed:

2023-07-15.
[17] [n. d.]. qubes. https://www.qubes-os.org/. Accessed: 2023-07-15.
[18] [n. d.]. sidechannel1. https://www.intel.com/content/www/us/en/developer/

articles/technical/software-security-guidance/secure-coding/security-best-
practices-side-channel-resistance.html. Accessed: 2023-07-15.

[19] [n. d.]. xserver. https://en.wikipedia.org/wiki/X.Org_Server. Accessed: 2023-07-
15.

[20] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1ś25.

[21] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable software-defined
caches. In Proceedings of the 22nd international conference on Parallel architectures
and compilation techniques. IEEE, 213ś224.

[22] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against
AES. In InternationalWorkshop on Cryptographic Hardware and Embedded Systems.
Springer, 201ś215.

[23] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth. 2020.
RELOAD+ REFRESH: Abusing cache replacement policies to perform stealthy
cache attacks. In 29th {USENIX} Security Symposium ({USENIX} Security 20).
1967ś1984.

[24] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering. 41ś42.

[25] Yun Chen, Lingfeng Pei, and Trevor E Carlson. 2021. Leaking Control Flow
Information via the Hardware Prefetcher. arXiv preprint arXiv:2109.00474 (2021).

[26] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid side-channel-resilient caches for trusted execution environments. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 451ś468.

[27] David L Dill. 1996. The Mur𝜙 verification system. In Computer Aided Verification:
8th International Conference, CAV’96 New Brunswick, NJ, USA, July 31śAugust 3,
1996 Proceedings 8. Springer, 390ś393.

[28] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. 1ś11.

[29] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong
Ma, and Daniel Sanchez. 2018. KPart: A hybrid cache partitioning-sharing
technique for commodity multicores. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 104ś117.

[30] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou, Thomas Unter-
luggauer, and Yuval Yarom. 2023. Cachefx: A framework for evaluating cache
security. In Proceedings of the 2023 ACM Asia Conference on Computer and Com-
munications Security. 163ś176.

[31] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unter-
luggauer, Stefan Mangard, and Daniel Gruss. 2022. Scatter and Split Securely:
Defeating Cache Contention and Occupancy Attacks. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 1101ś1115.

[32] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279ś
299.

[33] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th {USENIX}
Security Symposium ({USENIX} Security 15). 897ś912.

[34] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor
cache attacks. In Proceedings of the 11th ACM on Asia conference on computer and
communications security. 353ś364.

[35] Sowoong Kim, Myeonggyun Han, and Woongki Baek. 2022. DPrime+ DAbort: A
High-Precision and Timer-Free Directory-Based Side-Channel Attack in Non-
Inclusive Cache Hierarchies using Intel TSX. IEEE.

[36] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974ś987.

[37] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B Lee. 2016. Newcache: Secure
cache architecture thwarting cache side-channel attacks. IEEE Micro 36, 5 (2016),
8ś16.

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on security
and privacy. IEEE, 605ś622.

[39] Miles Arthur Munson and Jesse S Cross. 2011. Deep PDF parsing to extract features
for detecting embedded malware. Technical Report. Sandia National Laboratories
(SNL), Albuquerque, NM, and Livermore, CA

[40] Divya Ojha and Sandhya Dwarkadas. 2021. TimeCache: Using Time to Eliminate
Cache Side Channels when Sharing Software. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 375ś387.

[41] Hamza Omar, Brandon D’Agostino, and Omer Khan. 2020. OPTIMUS: A security-
centric dynamic hardware partitioning scheme for processors that prevent mi-
croarchitecture state attacks. IEEE Trans. Comput. 69, 11 (2020), 1558ś1570.

[42] Hamza Omar and Omer Khan. 2020. IRONHIDE: A secure multicore that effi-
ciently mitigates microarchitecture state attacks for interactive applications. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 111ś122.

[43] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. {DRAMA}: Exploiting {DRAM} addressing for cross-cpu attacks.
In 25th {USENIX} security symposium ({USENIX} security 16). 565ś581.

[44] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic analysis of randomization-based protected cache architectures. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 987ś1002.

[45] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. [n. d.]. Prime+ Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks.
([n. d.]).

[46] Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 775ś787.

[47] Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address
cache. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 360ś371.

[48] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE, 423ś432.

[49] Kartik Ramkrishnan, Stephen McCamant, Pen Chung Yew, and Antonia Zhai.
2020. First Time Miss: Low Overhead Mitigation for Shared Memory Cache Side
Channels. In 49th International Conference on Parallel Processing-ICPP. 1ś11.

[50] Kartik Ramkrishnan, Antonia Zhai, Stephen McCamant, and Pen Chung Yew.
2019. New attacks and defenses for randomized caches. arXiv preprint
arXiv:1909.12302 (2019).

[51] Jude A Rivers, Gary S Tyson, Edward S Davidson, and Todd M Austin. 1997. On
high-bandwidth data cache design for multi-issue processors. In Proceedings of
30th Annual International Symposium on Microarchitecture. IEEE, 46ś56.

[52] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. 2021.
Streamline: a fast, flushless cache covert-channel attack by enabling asynchro-
nous collusion. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 1077ś1090.

[53] Gururaj Saileshwar and Moinuddin Qureshi. 2021. {MIRAGE}: Mitigating
Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In 30th
{USENIX} Security Symposium ({USENIX} Security 21).

[54] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and efficient
fine-grain cache partitioning. In Proceedings of the 38th annual international
symposium on Computer architecture. 57ś68.

[55] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475ś486.

[56] Brian C Schwedock and Nathan Beckmann. 2020. Jumanji: The Case for Dynamic
NUCA in the Datacenter. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 665ś680.

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

[57] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling hardware-based data prefetcher, a hidden source of infor-
mation leakage. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 131ś145.

[58] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. {Prime+ Probe} 1,{JavaScript} 0: Overcoming Browser-
based {Side-Channel} Defenses. In 30th USENIX Security Symposium (USENIX
Security 21). 2863ś2880.

[59] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the
cache occupancy channel. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 639ś656.

[60] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu. 2021.
Randomized last-level caches are still vulnerable to cache side-channel attacks!
But we can fix it. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
955ś969.

[61] Daniel Sorin, Mark Hill, and David Wood. 2011. A primer on memory consistency
and cache coherence. Morgan & Claypool Publishers.

[62] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscating
Cache Conflicts with Localized Randomization.. In NDSS.

[63] Thomas Unterluggauer, Austin Harris, Scott Constable, Fangfei Liu, and Carlos
Rozas. 2022. Chameleon Cache: Approximating Fully Associative Caches with
Random Replacement to Prevent Contention-Based Cache Attacks. In 2022 IEEE
International Symposium on Secure and Private Execution Environment Design
(SEED). IEEE, 13ś24.

[64] Pepe Vila, Boris Köpf, and José F Morales. 2019. Theory and practice of finding
eviction sets. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 39ś54.

[65] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. [n. d.]. MeshUp: Stateless
Cache Side-channel Attack on CPU Mesh. ([n. d.]).

[66] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2021. Volcano: Stateless
Cache Side-channel Attack by Exploiting Mesh Interconnect. arXiv preprint
arXiv:2103.04533 (2021).

[67] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel
protection. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 1ś6.

[68] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the 34th annual
international symposium on Computer architecture. 494ś505.

[69] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. Scattercache: Thwarting cache attacks via
cache set randomization. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 675ś692.

[70] Zihan Xue, Jinchi Han, and Wei Song. 2023. CTPP: A Fast and Stealth Algorithm
for Searching Eviction Sets on Intel Processors. (2023).

[71] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 888ś904.

[72] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher, and Josep Torrellas. 2019.
Secdir: a secure directory to defeat directory side-channel attacks. In Proceedings
of the 46th International Symposium on Computer Architecture. 332ś345.

[73] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are coherence
protocol states vulnerable to information leakage?. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 168ś179.

[74] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 719ś732.

[75] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7, 2
(2017), 99ś112.

[76] Ying Ye, RichardWest, Zhuoqun Cheng, and Ye Li. 2014. Coloris: a dynamic cache
partitioning system using page coloring. In 2014 23rd International Conference on
Parallel Architecture and Compilation Techniques (PACT). IEEE, 381ś392.

[77] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017. PARSEC3. 0: A
multicore benchmark suite with network stacks and SPLASH-2X. ACM SIGARCH
Computer Architecture News 44, 5 (2017), 1ś16.

[78] Zhaomin Zhu, Koh Johguchi, Hans Jürgen Mattausch, Tetsushi Koide, Tai Hi-
rakawa, and Tetsuo Hironaka. 2003. A novel hierarchical multi-port cache.
In ESSCIRC 2004-29th European Solid-State Circuits Conference (IEEE Cat. No.
03EX705). IEEE, 405ś408.

A MODELLING CONFLICT-SET ATTACKS AS A
SEQUENCE OF RANDOM VARIABLES

A.1 Setting Up The Attack Scenario

We reiterate the scenario that was mentioned in ğ5.2.1. We can

represent any conflict-set attack as a sequence of random variables

𝑆
′

0
, 𝐴

′

0
,𝑂𝐵

′

0
, ...𝑆

′

𝑖 ,𝑂𝐵𝑖
′, 𝐴

′

𝑖 ...𝑆
′

𝑛,𝑂𝐵𝑛
′, 𝐴

′

𝑛 . The 𝑆
′

𝑖 variables represent

the cache state, which is a set of pairs consisting of cache locations

and the cache line addresses therein. The 𝐴
′

𝑖 variables represent

an access to a cache line address from a particular security do-

main, which could be a read, write or flush. The 𝑂𝐵
′

𝑖 variables

represent an observation about a hit, an observation about a miss

or no observation (for flushes). We also consider an analogous at-

tacker that uses only reads, and not writes nor flush instructions,

to mimic the above attack. The access sequence can be represented

as 𝑆∗
0
, 𝐴∗

0
,𝑂𝐵∗

0
, ...𝑆∗𝑖 ,𝑂𝐵

∗
𝑖 , 𝐴

∗
𝑖 ...𝑆

∗
𝑛,𝑂𝐵

∗
𝑛, 𝐴

∗
𝑛 , for a sequence of length

𝑛. The random variable 𝑆∗
0
represents the cache locations and cache

line addresses therein, similar to 𝑆
′

𝑖 . 𝐴
∗
𝑖 represents reads, pseudo-

writes and pseudo-flushes. The pseudo-writes cause a read to be

executed. Pseudo-flushes do nothing. 𝑂𝐵∗𝑖 is the adjusted observa-

tion. They can be cache hits or misses for reads and pseudo-writes.

There is no observation for pseudo-flushes. The cache hits can be

adjusted by the attacker to be recorded as cache misses, based on

previous pseudo-writes and pseudo-flushes. We can show via induc-

tive strategy that the joint probability distribution p
𝐴
′

0
,𝑂𝐵

′

0
...𝐴

′
𝑛,𝑂𝐵

′
𝑛

is exactly the same as p𝐴∗
0
,𝑂𝐵∗

0
...𝐴∗

𝑛,𝑂𝐵∗
𝑛
, for a sequence of length 𝑛.

Thus, the attackers have the same power because there is equal

probability of recording any sequence of accesses and timing ob-

servations.

A.2 Inductive Argument

A.2.1 Base Case. Let us consider the base case. We want to prove

that 𝑝
𝑆
′

0
,𝐴

′

0
,𝑂𝐵

′

0

is identical to 𝑝𝑆∗
0
,𝐴∗

0
,𝑂𝐵∗

0
. We start building the above

joint distributions one random variable at a time. The probability

distributions p
𝑆
′

0

(𝑠0) and p𝑆∗
0

(𝑠0) are the same because we start from

an empty cache for both attackers. Next, the conditional probabil-

ity distributions of the access for the first attacker is p
𝐴
′

0
|𝑆

′

0

(𝑎0 |𝑠0),

which could be reads, writes or flushes on a particular address.

p𝐴∗
0
|𝑆∗

0

(𝑎0 |𝑠0) is the same because the reads-only attacker has no

further information than the first attacker in determining what

accesses to carry out. The resultant joint distribution p𝑆0,𝐴0
(𝑠, 𝑎)

is the product p
𝐴
′

0
|𝑆

′

0

(𝑎0 |𝑠0) * p𝑆 ′
0

(𝑠0). Similarly, the joint distribu-

tion p𝑆∗
0
,𝐴∗

0

(𝑠0, 𝑎0) is the product p𝐴∗
0
|𝑆∗

0

(𝑎0 |𝑠0) * p𝑆∗
0

(𝑠0). Since the

corresponding product terms are the same in both the above ex-

pressions, therefore, the resultant joint distributions p𝑆0,𝐴0
(𝑠, 𝑎)

and p𝑆∗
0
,𝐴∗

0

(𝑠, 𝑎) are the same. Let us also consider the next joint

distributions p
𝑆
′

0
,𝐴

′

0
,𝑂𝐵

′

0

(𝑠0, 𝑎0, 𝑜𝑏0) and p𝑆∗
0
,𝐴∗

0
,𝑂𝐵∗

0

(𝑠0, 𝑎0, 𝑜𝑏0). Each

can be written as the product of two terms p
𝑂𝐵

′

0
|𝑆

′

0
,𝐴

′

0

(𝑜𝑏0 |𝑠0, 𝑎0)

* p
𝑆
′

0
,𝐴

′

0

(𝑠0, 𝑎0) and p𝑂𝐵∗
0
|𝑆∗

0
,𝐴∗

0

(𝑜𝑏0 |𝑠0, 𝑎0) * p𝑆∗
0
,𝐴∗

0

(𝑠0, 𝑎0). The first

terms of the above products (conditional distribution terms) are

the same because, for each initial state 𝑠0, if the same operation 𝑎0
is performed (read, write or flush), then it will be a miss for read

or write and it will be no observation for flush. This is because

the initial state 𝑠0 is empty. The second terms of the products are

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

also the same, as we had shown above. Therefore, the overall joint

distribution is also the same. This proves the base case.

A.2.2 Inductive Hypothesis And General Case. The inductive hy-

pothesis is that two joint distributions will be the same upto the

𝑖𝑡ℎ term in the sequence. Thus, the two probability distributions

p
𝑆
′

0
,...𝑆

′

𝑖
,𝐴

′

𝑖
,𝑂𝐵

′

𝑖

and p𝑆∗
0
,...𝑆∗

𝑖
,𝐴∗

𝑖
,𝑂𝐵∗

𝑖

will be identical. Let us call this

distribution D.

A.2.3 General Case. The general case we would like to prove is

that the joint distributions are the same upto the 𝑖 + 1
𝑡ℎ part of the

sequence. p
𝑆
′

0
,...𝑆

′

𝑖+1 𝐴
′

𝑖+1,𝑂𝐵
′

𝑖+1
and p𝑆∗

0
,...𝑆∗

𝑖+1,𝐴
∗
𝑖+1,𝑂𝐵∗

𝑖+1
need to be the

same. Let us now add one random variable at a time, similar to the

base case.

Adding 𝑆𝑖+1 To The Sequence: First, let us add the random vari-

able 𝑆𝑖+1. We need to prove that K1 : p𝑆 ′
0
,...𝑂𝐵

′

𝑖
,𝑆

′

𝑖+1
and K2 : p𝑆∗

0
,...

𝑂𝐵∗
𝑖
,𝑆∗
𝑖+1

are equal. In order to prove the above, we can split the above

terms into two subterms, a baseline distribution and a conditional

distribution. Hence, K1 can be represented as p
𝑆
′

𝑖+1 |𝑆0′ ...,𝑆
′

𝑖
,𝐴

′

𝑖
,𝑂𝐵

′

𝑖

* D. Similarly, K2 can be represented as p𝑆∗
𝑖+1 |𝑆0∗ ...,𝑆∗

𝑖
,𝐴∗

𝑖
,𝑂𝐵∗

𝑖

* D0.

Therefore, to prove that K1 = K2, we only need to prove that the

two conditional distributions above are equal. Let us consider the

two analogous conditional distributions p
𝑆
′

𝑖+1 |𝑆
′

0
,... 𝑆

′

𝑖
,𝐴

′

𝑖
,𝑂𝐵

′

𝑖

and

p𝑆∗
𝑖+1 |𝑆

∗
0
,...𝑆∗

𝑖
,𝐴∗

𝑖
,𝑂𝐵∗

𝑖

. Consider the 𝑖𝑡ℎ tag state 𝑠𝑖 and the 𝑖𝑡ℎ address

access,𝑎𝑖 . Exhaustively, there are three possibilities, cache hit, cache

miss and flush. Since the replacement function is identical for both

attackers, therefore, the conditional distributions, upon a cache

miss for 𝑎𝑖 , will be the same. If 𝑎𝑖 is a cache hit on 𝑠𝑖 or if 𝑎𝑖 is a

cache flush, then the new state 𝑠𝑖+1 will always be the same as 𝑠𝑖
for both attackers, because neither of those operations change the

tag state. Therefore, in all cases, we shall get the same values for

the conditional joint distributions. Therefore, K1 = K2 = K .

Adding 𝐴𝑖+1 To The Sequence: We are adding in the next

random variable 𝐴𝑖+1 to the sequence. We would like to prove

that the joint probability distributions L1 : p𝑆 ′
0
,...𝑂𝐵

′

𝑖
,𝑆

′

𝑖+1, 𝐴
′

𝑖+1
and

L2 : p𝑆∗
0
,... 𝑂𝐵∗

𝑖
,𝑆∗
𝑖+1,𝐴

∗
𝑖+1

are equal. Hence, L1 can be represented

as p
𝐴
′

𝑖+1 |𝑆0′ ...,𝑆
′

𝑖
,𝐴

′

𝑖
,𝑂𝐵

′

𝑖
,𝑆

′

𝑖+1
* K . Similarly, L2 can be represented

as p𝐴∗
𝑖+1 |𝑆

∗
0
...,𝑆∗

𝑖
,𝐴∗

𝑖
,𝑂𝐵∗

𝑖
,𝑆∗
𝑖+1

* K . Therefore, to prove that L1 = L2,

we only need to prove that the two conditional distributions above

are equal. We note that for both the attackers, the marginal distri-

butions are identical. The conditional distribution values for any

given subsequence 𝑎0, 𝑜𝑏0 ...𝑎𝑖 , 𝑜𝑏𝑖 , will be identical for both attack-

ers, because they are both carrying out the same attack strategy.

Therefore, L1 = L2 = L.

Adding 𝑂𝐵𝑖+1 To The Sequence: We are adding in the next

random variable 𝑂𝐵𝑖+1 to the sequence. We would like to prove

that the joint probability distributionsM1 : p𝑆 ′
0
,...𝑂𝐵

′

𝑖
,𝑆

′

𝑖+1, 𝐴
′

𝑖+1,𝑂𝐵
′

𝑖+1

and M2 : p𝑆∗
0
,... 𝑂𝐵∗

𝑖
,𝑆∗
𝑖+1,𝐴

∗
𝑖+1,𝑂𝐵∗

𝑖+1
are equal. Hence, M1 can be

represented as p
𝑂𝐵

′

𝑖+1 |𝑆0′ ...,𝑆
′

𝑖
,𝐴

′

𝑖
,𝑂𝐵

′

𝑖
,𝑆

′

𝑖+1,𝐴
′

𝑖+1
* L. Similarly, M2

can be represented as p𝑂𝐵∗
𝑖+1 |𝑆

∗
0
...,𝑆∗

𝑖
,𝐴∗

𝑖
,𝑂𝐵∗

𝑖
,𝑆∗
𝑖+1,𝐴

∗
𝑖+1

* L. Therefore,

to prove that M1 = M2, we only need to prove that the two

conditional distributions above are equal.

We make the observation 𝑜𝑏𝑖+1, which depends on 𝑎𝑖+1, 𝑠𝑖 . If it

is a read or write, then the observation will be cache hit or cache

miss for the first attacker. First, let us consider that the first attacker

had a cache hit on the access 𝑎𝑖+1. For the second attacker, the

corresponding actions would have been read or pseudo-write. Since

the tag states they are operating on are the same (𝑠𝑖), therefore, they

should get the same observation 𝑜𝑏𝑖+1. Next, let us consider that

the first attacker had a cache miss on the access 𝑎𝑖+1. This could be

because the tag was not present, or it could be because the tag was

invalidated. To determine the valid/invalid state of the tag, we look

backwards in the sequence. If there are any flushes (due to writes or

flush instructions) after the last read/write to the address, then it is

invalid. Otherwise, the tag is in a valid state. For the second attacker,

if the tag was not present, it will see a cache miss. If the tag was

present, the attacker would still adjust the observation to a cache

miss, based on the backwards look on the sequence. Hence, the

observation 𝑜𝑏𝑖+1 is always the same for the two attackers. Hence,

the conditional distributions are the same, leading us to the result

M1 = M2 = M.

Extracting The Marginal Distribution: Based on the above,

if the attack went on for 𝑛 steps, we can extract the marginal distri-

butions p
𝐴
′

0
,𝑂𝐵

′

0
...𝐴

′
𝑛,𝑂𝐵

′
𝑛

and p𝐴∗
0
,𝑂𝐵∗

0
...𝐴∗

𝑛,𝑂𝐵∗
𝑛
, which should also

be identical. Each sequence in the distribution has the exact same

probability of occurring, and thus the two attackers have the same

attack power.

B COHERENCE PROTOCOL VERIFICATION

We implement a four-processor system using the programming

language provided by the Murphi [27]. Two processors are assigned

to one domain, and the other two processors to another domain.

There is a single cache line for domain 1 in the LLC and upto one

cache line in each of its private caches. Similarly, there is a single

cache line in the LLC for domain 2 and upto one cache line in each

of its private caches.

In the above system, each cache line holds one of the four co-

herence states, M, E, S or I. They also hold many other transient

states that are used during transitions between M, E, S and I. There

is also a single NF-IDCP-RW bit for each cache line address. This

is set whenever there is a cache write to a domain. We also model

flushes whenever there are read or write misses, as per the NF-IDCP

protocol of ğ3.

The baseline MESI protocol (without the NF-IDCP flushes) was

exhaustively verified using Murphi. This confirms that the two

coherence invariants of SWMR and data invariance are always

maintained. This was a relatively quick verification (a few minutes)

due to the small size of the protocol and small number of cache lines.

The MESI + NF-IDCP procotol is larger due to double the core count

and two LLC cache lines instead of one. This exponentially increases

the state space. Hence, we need to use a simulation approach to

detect errors. Murphi underwent four days of simulation to find

errors. After testing more than 45 billion rules at the time of writing

this document, there was no error found, indicating a significant

degree of stability of our implementation. We were able to also run

an exhaustive verification algorithm for > 100 GB worth of states

until the memory was exhausted by the Murphi.

ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore Kartik Ramkrishnan, et al.

MRO

ERO

SRO

I MRW

ERW

SRW

I

Figure 11: A simplified diagram showing the aMESI-NF-IDCP

coherence protocol. The important transitions that are used

for inter-domain coherence are highlighted in bold solid or

bold dotted style (see Appendix ğB).

B.1 Important Transitions

B.1.1 How MESI-NF-IDCP Works. The functionality of MESI-NF-

IDCP is very similar to the baseline MESI protocol, but with the

additional NF-IDCP transitions explained in ğ3. Let us consider the

lifetime of a cache line. Initially, a cache line corresponding to the

cache line address is not present in the cache, or it may be in the

invalid state. Next, the cache line is fetched, either due to a read or

a write. If it is fetched due to a read, the cache line flushes out all

the other cache lines in the system, if any have NF-IDCP-RW bit set.

Then the domain that did the read transitions between the MESI

states as normal in a per-domain protocol. Note that the M state

is possible but the new contents will not be written immediately.

Instead, there will be a transition where all the cache line copies

used by that domain will set their NF-IDCP-RW. Then only, the

actual value will be written into the cache line. At some point, if

another domain then does a read or a write, then the cache line will

be removed. If the NF-IDCP-RW bit is never set (the domain does

only reads), then the cache lines may still be flushed due to a write

by another domain.

Figure 11 shows the important transitions in the MESI imple-

mentation of the protocol for any one of the involved domains. The

four MESI states have been expanded into 8 states, depending upon

the value of the NF-IDCP bit, which can be either NF-IDCP-RW

(RW for short) or NF-IDCP-RO (RO for short). The main transitions

related to NF-IDCP are highlighted in bold. The bold solid lines

show the transition regarding a change from NF-IDCP-RO state to

NF-IDCP-RW state. The bold dashed lines are the NF-IDCP flushes

which are brought on due to either a read or a write by another

domain. NF-IDCP-RO cache lines are flushed due to a write by

another domain. NF-IDCP-RW cache lines are flushed due to a read

or a write by another domain. The thin lines are part of the vanilla

MESI protocol.

C DEMONSTRATING A LOSS OF ATTACK
RESILIENCE DUE TO DOMAIN FUSION

We discuss a couple of analytical results regarding domain fusion

in SassCache. Then, we present our argument about how Flush +

Reload attacks will become a problem if there is domain fusion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1 1 10 100 1000 10000 100000 1x106 1x107

0.0003% RSA, 39%, domain-unfused

0.0005% AES, 39%, domain-unfused

*|

100% RSA, 39%, domain-fusion

100% AES, 39%, domain-fusion

+#

O
b

s
e
rv

a
b

il
it

y
 P

ro
b

a
b

il
it

y

 (
L
e
s
s
 I
s
 B

e
tt

e
r)

Num Accesses

non-fused
fused

(a) Observability probability of SassCache under conditions of do-

main fusion and no domain fusion. (see Appendix ğC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9

R
e
p

 P
ro

b
a
b

il
it

y

 (
L
e
s
s
 I
s
 B

e
tt

e
r)

Num Accesses

non-fused
fused

(b) Repeated-Eviction probability of SassCache under conditions of

domain fusion and no domain fusion. (see Appendix ğC)

Figure 12: Observability and Repeated-Eviction probability

in fused and non-fused SassCache.

Lastly, we present extensive simulation results which demonstrate

that domain fusion significantly lowers conflict-attack resilience.

Observability Probability: In Figure 12a, we show that the

Observability probability of the security-sensitive cache lines, is

extremely high for the real-world workloads. It is 0.0005% for AES

encryption, which has only 10 security sensitive cache lines related

to T-table lookups. It is 0.0003% for RSA, which also has less than 20

security sensitive cache lines, such as those related to modular expo-

nentiation [31]. These points are marked on the lower curve. How-

ever, the observability probability rises to 100% if domain-fusion

is engaged (line at 𝑦 = 1). This means, attacker has a much higher

change to evict security-sensitive cache lines in domain-fused ran-

domization [31]. In Figure 12b, the Repeated-Eviction probability is

also extremely high. In non-fused SassCache, cache lines usually get

hidden after a few evictions by the attacker, with a high probability

(bottom line). However, domain fusion makes it so that there is

no chance of a cache line getting hidden even after an arbitrary

number of evictions (line at 𝑦 = 1).

Flush + Reload Resilience: Figure 13 shows that expected

measurements of a Flush + Reload attacker (see ğ2.1) are all cache

misses. Due to tagging of cache lines with security domain ID

(SDID), there is no chance for an attacker to flush a cache line used

by another security domain. This transforms all measurements

of a Flush + Reload [74] attack attacker into cache misses. In a

domain-fused randomization, this guarantee is lost.

Attack Experiments: Figure 14 carries out attacks defined in

ğ5.2.3 on a wide range of randomization configurations. We have

ceaser_rand [46] and ceasers_rand [47], which necessarily have

domain fusion engaged, being fused randomizations. We also have

sasscache [31] where each domain has a random coverage of the

cache, assoc_rand (MIRAGE [53], fully associative randomization)

and scattercache [69] (like SassCache, but all domains have full

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses ASIA CCS ’24, July 1ś5, 2024, Singapore, Singapore

 0 20000 40000 60000 80000 100000

Miss

H
it

/M
is

s

Cycles

Flush+Reload

Figure 13: The attacker’s measurements in a Flush+Reload

attack on a non-fused randomization scheme. (see Appendix

ğC)

coverage). We carry out four kinds of attacks, which are represented

as AES_o, AES_e, SM_o and SM_e. AES_o has a victim carrying out

AES encryptions and an attacker carrying out occupancy attacks.

AES_e has a victim carrying out AES encryptions and an attacker

carrying out eviction-set attacks. SM_o has a victim carrying out

Square-Multiply based encryption (like RSA encryption) and an

attacker carrying out occupancy attacks. Lastly, SM_e has a victim

carrying out Square-Multiply based encryption and an attacker

carrying out eviction-set attacks.

Figure 14a shows the success rate (see ğ5.2.3), when operating in

domain-fused mode (f). There is no attack resilience for the Square-

Multiply algorithm (both 𝑆𝑀_𝑒 and 𝑆𝑀_𝑜), which has almost a 100%

attack success rate. In the AES_e attack, there is some resilience

against conflict-based attacks, except for ceaser_rand, which has

almost 100% attack success. In the AES_o attack, the attack success

rate is close to 100%. In Figure 14b, in non-fused mode (nf), only

sasscache shows significant attack resilience across the board. All

other schemes have substantially less attack resilience. This tells

us that the best randomization is sasscache and we should always

run it without domain fusion. sasscache-p is a modified version

of SassCache where there is no overlap between the attacker and

victim domain, and so there is no possibility of attack success (see

Appendix ğD).

D PERFORMANCE OF PARTITIONED
SASSCACHE

We can optionally modify the SassCache indexing function, so that

each domain maps to a different range of cache sets. This should

not have a significant latency effect, because it will only need a shift

and an addition operation to carry out the above transformation.

Consider an example where there are two security domains. Then,

the regular SassCache configuration will choose 39% of cache lines

randomly to be used by one domain and another 39% randomly for

the other domain. All we’ll need to do, is to divide the set index by

2 (one right shift) for the first domain. For the second domain, we

will shift and also add a constant whose value is the number of sets

divided by 2. In this setup, there will be no overlap. Similarly, if there

are N domains, we can shift the index obtained by vanilla SassCache

right by 𝑙𝑜𝑔(𝑁) bits and add the value 𝑑𝑜𝑚𝑎𝑖𝑛_𝑖𝑑 ∗ (𝑛𝑢𝑚𝑆𝑒𝑡𝑠/𝑁),

to get a partitioned indexing function.

Figure 15 shows the PARSEC 3.0 performance results for a par-

titioned version of SassCache (1/8th for each security domain).

Performance overheads are high for canneal, due to a lack of cache

 0

 0.5

 1

 1.5

 2

AES_o

AES_e

SM
_o

SM
_e

A
tt

a
c
k
 S

u
c
c
e
s
s
 ceaser_rand(f)

ceasers_16(f)
sasscache(f)

scattercache(f)
assoc_rand(f)

(a) The attack results for fused randomizations shows that attack

success is the lowest for SassCache overall and that there is no occu-

pancy attack resilience (see Appendix ğC).

.

 0

 0.5

 1

 1.5

 2

AES_o

AES_e

SM
_o

SM
_e

 0 0 0 0

A
tt

a
c
k
 S

u
c
c
e
s
s
 ceaser_rand(nf)

ceasers_16(nf)
sasscache(nf)

scattercache(nf)
assoc_rand(nf)
sasscache-p(nf)

(b) The attack results of non-fused randomizations shows that Sass-

Cache has maximum eviction and occupancy attack resilience (see

Appendix ğC).

Figure 14: The attack simulation results using CacheFX

shows that non-fused and partitioned SassCache are themost

secure randomization candidates.

 0.5

 1

 1.5

 2

 2.5

(N
)

C
y
c
le

s

sass-p

 1

 10

blac
body

cann

dedu

ferr
flui

freq
stre

sw
ap

vips
G
EO

(N
)

M
P
K

I

sass-p

Figure 15: Performance of sass-p for PARSEC 3.0 workloads,

normalized to a baseline insecure cache. We see that the

performance is comparable to existing systems.

hits on shared-writable memory. The average performance over-

heads are less than 5%, thus indicating that SassCache running in

partitioned mode can also be a reasonable solution.

Received 21 August 2023; revised 20 Dec 2023; accepted 17 Jan 2024

	Abstract
	1 Introduction
	2 Side-Channels, Randomization Schemes And RAWS
	2.1 Conflict-Based Side-Channels
	2.2 Randomization Schemes Have A Domain Fusion Problem
	2.3 RAWS To The Rescue
	2.4 Our Approach To Realizing The Targeted Cache Properties

	3 Securely Enabling Inter-Domain Coherence Using Cache Line Flushes
	3.1 Coherence Protocol NF-IDCP Transitions
	3.2 NF-IDCP Transitions
	3.3 Maintaining Coherence Invariants

	4 Securely Reducing Inter-Domain Communication Latency
	4.1 Secure Parallel Accesses
	4.2 Secure Tag-Based Filters (STF)

	5 Security Analysis And Evaluation
	5.1 NF-IDCP Optimization Security
	5.2 No Improvement To Conflict-Based Attacks

	6 Performance Evaluation
	6.1 PARSEC 3.0 (with Significant Data Sharing)
	6.2 Real-World Workloads (Low Data Sharing)

	7 Discussion And Related Work
	8 Conclusions
	Acknowledgments
	References
	A Modelling Conflict-Set Attacks As A Sequence Of Random Variables
	A.1 Setting Up The Attack Scenario
	A.2 Inductive Argument

	B Coherence Protocol Verification
	B.1 Important Transitions

	C Demonstrating A Loss Of Attack Resilience Due To Domain Fusion
	D Performance Of Partitioned SassCache

