Non-Fusion Based Coherent Cache Randomization Using
Cross-Domain Accesses

Kartik Ramkrishnan
University Of Minnesota, Twin Cities
Minneapolis, Minnesota, USA

Antonia Zhai
University Of Minnesota, Twin Cities
Minneapolis, Minnesota, USA

ABSTRACT

Randomization has proven to be a effective defense against conflict-
based side-channel attacks in a shared cache. It improves security by
assigning a unique randomization scheme to each security domain,
e.g., though a different hashing function. However, if two domains
have shared data, the domains must be fused in order to guarantee
correctness (i.e., data coherence). Such domain fusion significantly
reduces the effectiveness of randomization and weakens its security
protection.

We propose randomization with sharing (RAWS), which enables
secure cross-domain accesses while enforcing cache coherence
(and thus data coherence). Based on RAWS, we design a non-fusion
based inter-domain coherence protocol (NF-IDCP). NF-IDCP enables
cache coherence by looking up and flushing multiple cache lines
associated with shared-writable data during their cross-domain
accesses. Furthermore, NF-IDCP uses constant-delay banking to
securely reduce the latency of the cache line flushes. We also use a
secure tag-based filter (STF) to reduce flush costs, for example, by
explicitly storing the exact cache locations to be flushed.

The security evaluation shows that conflict attacks on the opti-
mized NF-IDCP structures cannot leak conflict observations at a
meaningful rate. Attack simulations using CacheFX demonstrate
that domain fusion significantly retards the protection provided by
randomization schemes. Performance overhead of SPECrate 2017
and PARSEC 3.0 benchmarks is evaluated on ZSim, a microarchi-
tectural simulator. To study the performance impact on realistic
workloads, such as Firefox, Chromium and X Server, we use a cache
simulator built on top of PANDA, a full-system emulator. Across all
configurations, the average performance overhead is less than 5%,
and the hardware overhead is less than 3% compared to a domain-
fused randomization.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07

https://doi.org/10.1145/3634737.3645011

Stephen McCamant
University Of Minnesota, Twin Cities
Minneapolis, Minnesota, USA

Pen-Chung Yew
University Of Minnesota, Twin Cities
Minneapolis, Minnesota, USA

KEYWORDS

Cache, Side-channel, Randomization, Sharing, Coherence

ACM Reference Format:

Kartik Ramkrishnan, Stephen McCamant, Antonia Zhai, and Pen-Chung
Yew. 2024. Non-Fusion Based Coherent Cache Randomization Using Cross-
Domain Accesses. In ACM Asia Conference on Computer and Communications
Security (ASIA CCS °24), July 1-5, 2024, Singapore, Singapore. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3634737.3645011

1 INTRODUCTION

Side-channel attacks, especially on the last-level cache, have contin-
ued to grow in significance due to their applicability in a wide-range
of modern processors [9, 18]. One of the most important classes of
side-channel attacks is the conflict-based side-channel, which at-
tempts to leak information about access patterns of security-critical
memory addresses via a cache interference pattern [23, 25, 33, 35,
38, 52, 57, 58, 73, 75] across security domains (mutually distrusting
processes, parts of processes, threads, virtual machines or other).

Researchers have developed a novel countermeasure to conflict-
based side-channel attacks (see §2), known as address-set random-
ization [31, 40, 50, 53, 60, 62, 63, 69], which mitigates the ability
of attackers to carry out conflict-based attacks, especially via the
shared last-level cache. This allows victim domains to scatter their
cache lines in random cache sets selected via a cryptographic hash-
ing of the cache line address, thus mitigating conflict-based attacks.
Randomization schemes protect two classes of memory addresses,
namely, private addresses and shared-read-only addresses. The for-
mer refers to addresses that are not reachable by more than one
security domain, and the latter refers to addresses that are reachable
by two or more security domains, but only by using reads. The third
class includes shared-writable memory addresses. They are unpro-
tectable by default because their information can be leaked between
domains without relying on side-channels merely by observing the
results of reads/writes.

State-of-the-art randomization schemes use a different random-
ization function for each security domain (see §2.2). For shared-
writable addresses, aliasing will occur in the shared last-level cache
(LLC), which means that each security domain will not know the
whereabouts of those cache lines used by other security domains.
Thus, there will be many uncoordinated per-domain write accesses
leading to a loss of global coherence invariants, such as single-write-
multiple-read (SWMR) and data-invariance (see §2.2.1). To prevent
aliasing, randomization schemes assume that the privileged system
software can tell them which addresses are shared-writable, so that

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

all domains can use a common hashing function on them. However,
existing system software may not have such functionality across
domains (see §2.2.2).

In the absence of software support, the only recourse is to use
domain fusion, where programs in different security domains are
re-assigned to the same security domain. This allows them to use
the same randomization function and eliminates aliasing. How-
ever, it gives up on occupancy-attack resilience and flush-attack
resilience (see §2.2), two prominent security benefits of random-
ization schemes. While flush-attack resilience can be recovered
using orthogonal techniques like First-Time-Miss [40, 49], there is
no known way to recover occupancy-attack resilience. The above
domain fusion problem has significant practical implications be-
cause many programs such as Google-Chrome [10], Chromium [14],
Firefox [11] and X Server [13] have deep ties with shared-memory
inter-process communication (IPC), including IPC between untrust-
ing processes (see §2.2.4). Thus, the following question arises:

Can randomization be augmented to support non-fusion based
data coherence in order to retain its security benefits?

To eliminate aliasing, we propose a global cache coherence prin-
ciple, randomization with sharing (RAWS). The main idea of RAWS
is to perform cross-domain accesses to find all copies of cache lines
in the LLC. In Figure 1, we illustrate why multi-domain random-
ization is unable to support cache coherence, and how RAWS can
help. The left-half of the figure shows the state-of-the-art (SOTA)
non-fused randomization. An access to the shared cache is carried
out by domain 1 for a cache line address that is dirty and is being
accessed by domain 2 (highlighted in red). It is different from the lo-
cation determined by randomization function 1 (random 1) because
domain 2 uses a different randomization function, leading to a loss
of global coherence via aliasing. In the right-half of the figure, we
show how RAWS augments non-fused randomization to carry out
two lookups instead of one, by also employing randomization func-
tion 2 (random 2). Thus, the dirty cache line used by domain 2 can
be found, and the cache coherence protocols can be made aware of
each other. For a secure and practical use of the RAWS principle in
a generalized target environment, we propose to use cross-domain
cache flushes due to their ready availability in most caches. For
reducing the number of cross-domain flushes, we propose to use
banking/parallelization or filtering (see §2.3).

Accordingly, we leverage existing invalidation-based coherence
protocols, and trigger flushes to maintain coherence invariants
across processor groups used by different domains (see §3.1). For
maintaining inter-domain SWMR, each cache line is augmented
with an inter-domain coherence protocol read-write bit (NF-IDCP-
RW), which is set if there is a possibility of a write by the domain.
Setting the NF-IDCP-RW bit will trigger a flush in the coherence
protocols of other domains if they have a cache line corresponding
to the same cache line address, thus preventing concurrent reads
or writes from other domains to the cache line address. This is as
required by the inter-domain SWMR invariant. If there is no cache
line in the reader domain (i.e., a read miss), then it will trigger a
flush in the coherence protocols of other domains to writeback the
content of any dirty NF-IDCP-RW cache line with the same cache
line address. It can then proceed with the read of the latest data
content (data invariance). We present a generic state-diagram of a
coherence protocol that highlights the NF-IDCP flushes in §3.

Kartik Ramkrishnan, et al.

random1

dirty
SOTA Non-Coherent
Randomization

random 2

RAWS Coherent
Randomization

Figure 1: RAWS enables multi-domain lookup in order to
facilitate global cache coherence in randomization schemes.

To efficiently support the above inter-domain coherence actions,
we propose two optimizations to enhance the performance securely.
The first optimization is parallelization of the cross-domain accesses
(lookups or flushes), which will need to be done for the two in-
variants. This can be achieved using existing approaches such as
banking [20, 51, 78] (see §4.1). The second optimization is to use a
secure tag-based filter (STF) to reduce the number of cross-domain
lookups for flushes. For the SWMR flushes, the STF keeps a counter,
which is pointed to by all the corresponding cache lines in the LLC.
Upon the need of flushing, it sets the invalid bit in this counter
and defers the actual flushes for later. The flushes will be done off
the critical path and the counter will be decremented to track their
progress, finally, de-allocated when all the cache lines are flushed.
For the data invariance flushes, the STF will store the SDID of any
cache line that has the IDCP-RW state. Hence, it will take only one
lookup to locate those cache lines for flushing. A crucial security
issue is that any set of cache line addresses in the cache should
always be represented in the STF, which requires it to behave like a
fully-associative structure. We achieve this fully-associative behav-
ior using a combination of a main storage region and an overflow
storage region. We discuss the STF filter in §4.2.

We implement NF-IDCP randomization schemes on each cache
slice of a multicore processor. Our security evaluation of constant-
time banking and STF via simulation shows that they are not helpful
for an attacker (see §5.1). We also analyze eviction-set, occupancy
and flush-based attacks and conclude that the attacker is not aided
by the added NF-IDCP mechanism (see §5.2). Lastly, we demon-
strate via attack simulation on encryption libraries that domain
fusion significantly improves the effectiveness of occupancy-based
attacks (more than 70% more effective) compared to non-fused
randomization (see §5.2).

For the performance evaluation, we simulate two different sce-
narios. The first scenario is highly intensive in terms of shared data
usage, which stresses the flush-actions of NF-IDCP and magnifies
their performance overheads. We use PARSEC 3.0 [77] and real-
world workloads that include Firefox, Chromium and X Server (see
§6.2) workloads. The infrastructure uses ZSim [55] and PANDA-
based [28] simulators, respectively, for the above scenario. The
second scenario has a low amount of data sharing, in which we
should ideally retain most of the performance of non-coherent ran-
domization. We simulate the SPEC2017Rate [24] benchmarks on
ZSim for the second scenario. The performance overhead in all
cases is less than 5% compared to the domain-fused randomization
schemes (see §6).

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

Contribution Summary: To the best of our knowledge, this
is the first work that systematically addresses the cross-domain
data sharing issue for cache randomization schemes. We make the
following contributions.

(1) A new approach, Randomization-With-Sharing (RAWS), which
enables global cache coherence in randomization schemes
that allows cross-domain accesses without using domain
fusion.

(2) A new non-fusion based inter-domain coherence protocol
(NF-IDCP) that enables cache coherence among the multiple
cache coherence protocols running in a randomized cache.

(3) A security evaluation via analysis and simulation that shows
NF-IDCP can recover the security guarantees of the random-
ization schemes by preventing domain fusion.

(4) A performance evaluation which shows that the NF-IDCP-
enhanced randomized cache has less than 5% overhead com-
pared to domain-fused randomization. Hardware overheads
are less than 3%.

The rest of the paper is organized as follows: §2 discusses side-
channel attacks, state-of-the-art randomization strategies and do-
main fusion. §3 shows how NF-IDCP enables inter-domain coher-
ence. §4 presents constant-latency banking and secure tag-based
filters (STF) to optimize NF-IDCP. §5 performs a security evalua-
tion of NF-IDCP. §6 does the performance evaluation on PARSEC
3.0 (significant amount of shared addresses), real-world workloads
and the SPECrate 2017 (no shared addresses) benchmarks. §7 has
discussion/related work and §8 concludes the paper.

2 SIDE-CHANNELS, RANDOMIZATION
SCHEMES AND RAWS

In this section, we present relevant background for this paper,
which includes conflict-based side-channel attacks (§2.1), random-
ization schemes (§2.2), coherence protocols (§2.2.1) and data shar-
ing (§2.2.4). This will set the stage for the introduction of the
randomization-with-sharing principle (RAWS) that enables the use
of cross-domain accesses to maintain coherence. We present the
targeted environment in which we intend RAWS to function, and
its security, performance and hardware overhead (§2.3). We further-
more propose a secure non-fusion based inter-domain coherence
protocol (NF-IDCP) as a way to apply the RAWS technique with min-
imal modifications to existing randomization schemes (§2.4). Lastly,
we present background about banking (§2.4.1) and fully-associative
structures (§2.4.2) as two approaches that can be adapted to help
us securely reduce the latency and contention of NF-IDCP flushes.

2.1 Conflict-Based Side-Channels

A very important class of cache side-channels are the conflict-based
side-channel attacks, which have been shown to be capable of
leaking secret encryption keys. There are three major kinds of such
attacks: the conflict-set attacks, the occupancy-based attacks, and
the shared memory flush-based attacks.

The most general set-conflict attack is the PRIME + PROBE
attack [33]. In this attack, the attacker attempts to evict all of the
addresses in a cache set using an eviction set [38, 64]. This eviction
set contains many addresses that map to the same set (PRIME). It
then waits to see whether its cache lines are evicted by further

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

A.PO P1 P2 P3 B.

Sy o R Fee
‘I‘}'_JIA IA_"ZIB‘ ‘“C “C‘ Shared-

MESI MESI Read-Only

Figure 2: The per-domain coherence protocol used by existing
randomization scheme MIRAGE (see §2.2).

accesses from the victim. Lastly, it tries to access its cache lines in
the cache set, and look for cache misses (due to their higher access
time). If any cache miss is detected, it means that there must have
been victim accesses in the intervening time period (PROBE). There
are also other variants of PRIME + PROBE that can speed up the
rate of leakage [34, 35, 44, 45, 70, 71]. Some attacks use a cache
set’s replacement states to augment conflict-based attacks [23]. The
occupancy attacks [58, 59] do not target any particular set, but try
to observe the total evictions of a randomly selected pool of cache
lines over a period of time. Instead of evictions, flushing instructions
can also be used to explicitly eliminate cache lines, and to speed up
conflict attacks [60].

The above conflict-set and occupancy attacks target either pri-
vate memory or shared read-only memory. For shared read-only
memory, cache line flushes can also be used to directly eliminate
the corresponding cache lines for a faster rate of attack [32, 74].

2.2 Randomization Schemes Have A Domain
Fusion Problem

Randomization schemes use address encryption to protect caches
against conflict-based attacks [37, 46, 47, 50, 60, 62, 68]. The most
secure randomization schemes [31, 53, 69] concatenate the ad-
dress with the security domain ID before the encryption to cre-
ate per-domain set mappings. Such address encryption can scat-
ter addresses across the cache sets in a domain-sensitive manner.
It substantially increases the difficulty of finding security-critical
cache lines, thus mitigating conflict-based attacks. Randomization
schemes, such as SassCache [31], can also limit the coverage of the
cache for different security domains, making it impossible for attack-
ers to touch victim cache lines. Randomization schemes are trans-
parent to the applications and can scale to tens of security-domains.
Randomization schemes can also protect memory addresses that are
either private (accessible to only one security domain), or read-only
shared (accessible to multiple security domains). Randomization
does not protect shared-writable addresses (accessible to multiple
security domains) due to its ability of direct (i.e., non-side-channel)
transmission of information.

Some of the most recent CVEs related to conflict-based side-
channel attacks are CVE-2023-32691 [7], CVE-2023-26557 [6], CVE-
2023-26566 [5], CVE-2023-25000 [3] and CVE-2023-25332 [4]. We
observe that randomization defenses won’t work properly against
web-browser based attackers [58], due to a domain fusion issue that
we describe in §2.2.3. Hence, we need to augment randomization
to function without domain fusion.

2.2.1 Per-Domain Coherence Protocol: We briefly describe the
well known MESI [61] protocol in which there are four states, M,

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

E, S and L. They are short for modified, exclusive, shared and invalid.
The modified state means that the cache line has the latest copy of
the data and the copy in memory is stale. Exclusive means that the
data is clean and that there is only one CPU that is currently using
the cache line. Shared means that multiple CPUs may be using the
cache line, and that the copy is clean (same as memory). Invalid
means that the cache line does not have any usable data.

In the coherence protocols for an inclusive cache, there is always
a copy of the cache line in the last-level cache if there are to be
copies in the private caches. This cache line will be tagged with
coherence metadata, such as the list of processor cores that may
have a private copy of the cache line (also known as sharers). Non-
inclusive caches will have a separate directory with the coherence
metadata, instead of associating it with each cache line. To the best
of our knowledge, state-of-the-art randomization schemes have all
been implemented on inclusive caches [31, 53, 69], so our discussion
is accordingly carried out from that viewpoint. However, it should
also be possible to apply similar techniques, if a randomization
scheme is implemented on a non-inclusive cache.

We show an example where a state-of-the-art randomization
scheme, such as MIRAGE [53], ScatterCache [69] or SassCache [31]
execute per-domain coherence protocols, in Figure 2 . There are two
domains in this example, Dy and D;. Each domain has access to two
cores. Dy has access to Py and Py. D1 has access to Py and P3. There
are two scenarios presented here. In Scenario A, we have cache lines
corresponding to private addresses A and B (solid outlined boxes).
Scenario A’s per-domain MESI protocol maintains coherence among
Py, P; and the LLC, each of which can have a copy of the cache
line. Similarly, in Scenario B, we have a cache line C corresponding
to a shared read-only address (dotted outlined boxes). Scenario B’s
per-domain protocol maintains coherence among P2, P3 and the
LLC. The coherence states will be only ESI in this case because
there will never be any write to shared read-only addresses.

2.2.2 Software Coherence: State-of-the-art randomization schemes,
such as ScatterCache [69] and SassCache [31], speculate that privi-
leged software can be augmented to transparently detect shared-
writable addresses, which can be used to prevent domain fusion. To
satisfy the above requirement, we need to make non-trivial changes
to several data structures and subsystems in the operating system
(OS) or other privileged software that can affect the shared-writable
status of a page. This includes the metadata for each page frame to
store security domain identifiers (SDIDs), the page-table contents
(to store associated SDIDs) and memory related system calls (to
update SDID metadata). The extra metadata may significantly in-
crease the total memory consumption of the system, and changes to
the software subsystems may significantly affect performance due
to the extra page-tracking operations. Given the above complexity,
it is also unknown whether transparency can be guaranteed in all
cases, or whether application modifications are needed. Therefore,
a thorough design and evaluation will be necessary to determine
the feasibility of the software-based approach, which is beyond the
scope of the paper. We have instead taken the orthogonal hard-
ware route towards supporting cache coherence, which has the
advantage of simplifying the software developers’ life because it is
transparent to their applications.

Kartik Ramkrishnan, et al.

// gles2_cmd_decoder.cc//
// Consume GL commands from shared buffer//

5906 ... DoCommandsImpl(...) {

5913 CommandBufferEntry+ cmd_data =

5914 static_cast <CommandBufferEntry«>(buffer);
5918 while (...

5919 o)

5920 const unsigned int size =

cmd_data->value_header.size;
- //Security checks, processing
5988

6007 }

// gles2_cmd_format_autogen.h
// Shared region cast as struct TexImage3D
8537 struct TexImage3D {

8549 void Init(GLenum _target ,//commands
8550 GLint _level,
8558 uint32_t _pixels_shm_offset) {
8559 SetHeader () ;
8560 target = _target;
- // Write other fields
8570 }
8590 uint32_t target; //buffer field
8601 };

Listing 1: A simplified code snippet showing command buffer
usage in a Chromium server process.

2.2.3 Domain Fusion: The code snippet of Listing 1 shows an
example from the Chromium code base [1]. The privileged server
process helps to run/emulate OpenGL commands received from a
client, for which it implements a function called DoCommandsImpl
whose argument is a pointer to a shared ring-buffer (also known
as a ‘command buffer’). The client is one of the renderer processes
associated with the browser tabs. It may contain malicious code and
therefore runs at a lower privilege level [2]. The top half of the code
(lines 5906-6007) corresponds to the server process, which extracts
commands from the command buffer. It carries out a security check
for its validity, and then processes the commands in a while loop
(lines 5918-5988).

The latter part of the code (lines 8537-8601) shows how the client
modifies the command buffer content. The command buffer is cast
as a structure (line 8537), and an Init function (lines 8549-8570)
is invoked to modify the content of the buffer (8590-8601). One of
the updated fields, target, is shown on line 8601. The update to
it is shown on line 8560. The field target should be visible to the
server process as part of the commands it receives from the client.

If a randomization scheme is applied, then the domains of the
client and server would need to be fused. As mentioned in §1, fusion
of the security domains leads to a lower security level. This is mainly
due to the loss of protection against occupancy attacks and the loss

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

Higher Security With Non-Fused Rand

% 3 d® O® 8
o o .
B © ma—

5o =
= ©F®)y
Insecure Fused

G

—
|
—c

Non-Fused

Figure 3: Randomization has resistance to occupancy attacks,
but domain fusion eliminates this security benefit. Dark
cache lines are security-sensitive cache lines, which are all
hidden from the attacker (see §2.2).

of protection for the shared-read-only addresses. Figure 3 shows the
security issue created due to domain fusion for occupancy-based
attacks. We observe that the attackers can evict security-critical
cache line addresses in the fused domain, whereas they are hidden
in randomization without domain fusion because they use different
randomization functions. The attacker can no longer flush out
security-sensitive cache lines in the victim’s domain.

First-Time-Miss (FIM): To prevent flush-based attacks, it has
been suggested to disable user-space clflush-like instructions, or
to add First-Time-Miss [40, 49] style defenses if different security
domains are fused. In a First-Time-Miss defense, an injected timing-
delay makes it impossible to detect cache lines shared between
different security domains.

2.2.4 Other Data Sharing Examples. As discussed in §1, data shar-
ing is very important in many applications such as Chromium. It
also exists in browsers that are related to the Chromium code base
such as Google Chrome [10]. To motivate our work further, here are
some other popular applications that can also benefit from the pro-
posed non-fused randomization. For example, Firefox uses shared
memory IPC communication between untrusting processes, such
as the privileged browser process (parent) and the unprivileged
content process (child) [8, 11]. XServer [19] uses a pixel buffer [13],
which is shared between a server and potentially untrusted clients.
Qube OS [17] uses shared memory ring-buffers to enable commu-
nication among different virtual-machines (VMs) in the system.
The PulseAudio server may also use a shared ring-buffer [16] to
receive data from client processes using the enable-memfd option.
The memfd_create system call is provided by Linux to facilitate
sealable data sharing between untrusting processes [12].

2.3 RAWS To The Rescue

Targeted Software and Hardware Environment: All code run-
ning at a higher privilege level than userspace, e.g., in supervisor
mode or above, is considered to be secure. The privileged software
assigns different security domains to processes, virtual machines,
threads and others with security domain identifiers (SDIDs) of its
choosing. Different security domains do not trust each other but
may yet share writable-data, as we had pointed out in §2.2.4. The
hardware environment is a multicore processor with private and
shared caches. Different security domains are assigned to different
cores with private caches, but there is no restriction on concurrent
use of the shared caches. The above environment is a good target

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

because most of the data sharing examples that we mentioned in
§2.2.4 do appear in such an environment. We can imagine that a
laptop user could be running a web-browser with many concurrent
tabs, or that it could be running on a virtual desktop on cloud server.
It is also possible that the other applications could run in a cloud
based scenario or a laptop/desktop personal computing scenario. In
all these cases, our solution is applicable for a more secure system
environment.

Targeted Properties of the Cache : Any modifications to the
randomized cache should be practical and secure. We prescribe four
properties to this end.

e Pq: The extra inter-domain coherence actions should trans-
parently restore coherence invariants.

e P;: The latency and contention overheads due to the added
cache accesses should be as low as possible so that perfor-
mance is not affected.

e P3: The hardware overheads need to be as low as possible
so that our solution can be deployed in a practical setting.

e P4: Attack resilience of randomization schemes should be
restored, in particular, against the three kinds of attacks
discussed in §2.1.

Out Of Scope: All attacks that randomization is not intended
to protect are beyond the scope of this work. This includes leak-
ages through shared-writable memory addresses [36], stateless
attacks [65, 66, 75] or non-cache side-channels [43]. For these at-
tacks, orthogonal defense techniques can be used in conjunction
with randomization [41, 42]. While beyond the scope of this work,
we briefly discuss how some of these methods could be used in
conjunction with our NF-IDCP solution (see §7).

2.4 Our Approach To Realizing The Targeted
Cache Properties

We have already mentioned that a possible solution to domain fu-
sion is to use the RAWS principle of cross-domain accesses. More
specifically, we would like to do it using cache line flushes due to
their availability in existing coherence protocols, which are usu-
ally invalidation based. Thus, it satisfies our first requirement of
transparently supporting data coherence, property ;. However,
doing so securely is complicated by the use of additional flushes. It
is known that adding flushes in the LLC can help speed up the rate
of conflict-based attacks (see §2.1). Fortunately, a straightfoward
solution is that flushed cache lines persist in the cache, and behave
like normal cache lines from a replacement perspective although
their contents cannot be used. This will help us achieve our security
property P4 by preventing new conflict-set attacks from becom-
ing possible. We present the NF-IDCP protocol in the context of a
generic invalidation-based coherence protocol in §3.

Naiive application of RAWS can suffer from a higher latency
and contention due to the need to lookup a significant number
of cache locations concurrently during each cache access. Hence,
we propose additional supporting hardware structures, which can
either enable parallel accesses (see §2.4.1), or cut down on the
number of flushes on the critical path (see §2.4.2). This will help
us to achieve our performance targets $,. Towards this end, we
present some background concepts that are helpful in the above
pursuits, namely, constant-delay banking and tag-based filtering.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

24.1 Constant-Delay Banking. Banking has long been used in
memories to improve memory bandwidth [20]. Here, the cache
is divided up into several mini-caches (i.e., banks), which can be
accessed in parallel. These mini-caches are effectively connected by
a bus, so that request and messages can be broadcast to all of them
in parallel. We can leverage this infrastructure to carry out parallel
lookups to multiple cache locations. The overheads of banking
should be low because there is no additional storage overhead. The
key change we make is to make the access time constant. Otherwise,
the banking may reveal set mapping information that is otherwise
hidden in the randomization. Hence, constant-delay banking can
also help us to achieve the targeted properties P3 and P4. We
discuss constant-delay banking in §4.

24.2 Tag-Based Filters . One way to filter out unnecessary cache
lookups is to maintain metadata in the LLC about the cache line
addresses represented inside. The metadata is tagged with the cache
line address, and can tell us which cache locations need to be flushed
precisely, or they can contain counters, which can help track de-
ferred flushes. The above metadata approach makes sense if there
are enough domains present to justify the extra costs. For example,
for a 32-domain system, there will be 32 bits per cache line due to
firt-time-miss (FTM) protections on domain-fused randomization.
These bits can be eliminated because we prevent domain fusion. It
helps to offset the hardware overhead of adding the above tag-based
filter, helping us to satisfy the 3 hardware overhead requirement.
One of the key security issues with the above tag-based filter is that
the metadata needs to be housed in a fully-associative structure
to prevent set over-subscriptions. We can achieve that by using a
set-associative structure for the main region, an additional overflow
region for tags that do not fit into the main region, thus helping
our security target of $4. We discuss the performance enhancing
functionality of the STF in §4.2.1, and the fully-associative housing
in §4.2.2.

3 SECURELY ENABLING INTER-DOMAIN
COHERENCE USING CACHE LINE FLUSHES

In this section, we present a state-machine for NF-IDCP that
maintains cache coherence among security domains. It allows only
one domain to have the read-write permission to a cache line at any
given time (see §3.1, §3.2). We lastly show that this is a sufficient
guarantee for the cache coherence invariants (see §3.3).

3.1 Coherence Protocol NF-IDCP Transitions

The invalid state NF-IDCP-I indicates that there is no valid cache
line for that address in the security domain. This could either be
because there is no copy of the cache line for that address, or because
there are copies of the cache line but none of them has valid data in
them. The read-write state NF-IDCP-RW indicates that only one
per-domain protocol will have a copy of the cache line in the shared
LLC, and in its private caches. Other security domains will not have
any cache line copy in the shared LLC, or their private caches. The
cache line may be dirty because writes may have occurred to the
cache line. In the read-only state NF-IDCP-RO, it is possible that
multiple domains may have copies of the cache line in LLC and the
their private caches, but none of them is dirty (i.e., written to).

Kartik Ramkrishnan, et al.

IDCP Protocol Possible Cache States

7.Read/Write 8.Read A, Do D B
5.Write OD0oQ .I%I?EID
IDCP-RW €Eren1/DCP-RO Po Py P2 P3
7 ue] [&]

|2.Write 4.Read
Flush IDCP-I [FlushRW

1.Flush

. g DIIEE,
Figure 4: The states and transitions of the NF-IDCP state ma-

chine (left). An example (right) that shows how it maintains
cache coherence between two security domains (see §3.2).

9.Flush 3-Flush

3.2 NF-IDCP Transitions

Figure 4 shows how the NF-IDCP protocol works. It includes three
NF-IDCP states, namely, NF-IDCP-I, NF-IDCP-RW and NF-IDCP-
RO. The transitions among the states are shown in the left half of
the figure. For simplicity, we will not use the NF-IDCP prefix while
describing the transitions.

Flush Transitions:

1. RW—>I: The transition occurs whenever there is a flush or an
eviction on the cache line address in the RW state.

3. RO—>I: An eviction or a flush occurred on an RO cache line.

9. I—>I: This transition occurs if there is a flush or an eviction of
the cache line, but the security domain does not have a valid copy
of the cache line.

Transitions To RW Status:

2.1—>RW: The transition occurs when a write-miss on the cache
line address occurs. The cache line copies in the other domains are
flushed. As the result, it is the only domain that has the cache line
with the RW state.

5.RO—>RW: If a domain already has the cache line(s) in the RO
state, then a flush of the copies in all other-domain happens. After
its completion, the cache line transitions to RW and the write can
occur.

7. RW—>RW: This transition occurs if there are reads or writes
from the same domain to an RW cache line.

Transitions To RO Status:

4.1—RO: Upon a read-miss, all cache lines with the RW state are
flushed from the cache. Then, an RO cache line can be fetched into
the cache by the domain carrying out the read. Since no other dirty
cache line is present, the data is up-to-date with the latest write.

8. RO—>RO: This transition occurs if there are reads to a cache
line that a domain already has a copy of.

In the right half of Figure 4, it shows the different coherence
states a cache line may be in. There are two security domains: Dy
and D;. Each has access to two cores, Py, P; for Dy and P,, P3 for
D;.In Part A, it shows the I state as its initial state. No valid cache
line is present in the LLC or elsewhere. Part B refers to a security
domain having a cache line in the RW state. There is only one copy
of the cache line in the LLC (red color), and there may be multiple
copies in the private caches associated with the security domain
Dy. The cache lines are allowed to be dirty. In Parts C and D, they
show the two possibilities of the RO state. There may be one copy

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

of the cache line in the LLC (Part C), or there may be two copies of
the cache line in the LLC (Part D). Both cache lines in Part D are
clean (yellow color). Note that the MESI coherence protocol is run
between the cores assigned to the same domain for their cache line
copies in LLC.

3.3 Maintaining Coherence Invariants

We layout the argument below regarding why the SWMR and data-
invariance are satisfied by the NF-IDCP.

A. Only One Domain Can Have RW Lines: The RW cache
lines are only available to one security domain at a time. In order
to prove this, we consider the lifetime of an RW cache line. An RW
cache line is fetched into LLC when there is a write miss on the
cache line (transition 2), or when there is a write to an RO cache line
(transition 5). In both cases, all cache lines used by other domains
are flushed out. Furthermore, when any other domain tries to access
the cache line, they can only get the cache line once it has been
flushed out from the domain with RW permission (transitions 2
and 4). Therefore, only one domain can have the RW cache line at
any given time.

B. RO and RW Per-Domain Protocols Have The Latest Data:
If a security domain has RO or RW cache lines, it means that it
has the latest copies of those cache lines. When they are fetched,
they are the latest copies because all other dirty copies must have
been flushed out to the main memory (transitions 2 and 4). If any
other domain tries to do a write, then it needs to remove the RO or
RW cache lines being used by a different domain. Thus, the above
property holds.

SWMR Property: If a write occurs, it will either be a cache
miss (I), or happen on a cache line in the RO or the RW state. In
the first two cases (I->RW or RO->RW transitions), there will be a
flush of the cache lines in all other domains before the write can
happen. This guarantees that no other domain has a copy of the
cache line when the write takes place. Hence, SWMR property is
maintained because only one domain has the write permission. In
the third case (RW->RW), we already know from the property A
that no other domain has a copy. Therefore, SWMR is maintained
at the inter-domain level. Intra-domain SWMR will be maintained
by the per-domain coherence protocol.

Data Invariance: If a read occurs on an already-present cache
line, it could be associated with an I->RO, RO->RO or RW->RW
transition. Since we know by the property B that the obtained RO or
RW cache lines always have the latest copy of the data, we satisfy
the required data invariance property. In Appendix §B, we present
a simple implementation of NF-IDCP on top of a MESI protocol
for two domains, and the simulation results using the coherence
protocol verification tool Murphi [27].

Takeaway 1

The NF-IDCP approach maintains coherence in the absence
of domain fusion using cache line flushes, thus maintain-
ing coherence invariants and the security guarantees of
randomization.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

A.Non-Banked C.Non-Banked vs Banked

<—> ;Aﬂg AﬂE DLDL NANA

B.Banked “D ’D EA'D ’D
::E - K1 KK1KN1N

Num Lookups

Figure 5: NF-IDCP with banked cache accesses. The banked
accesses are faster to complete compared to a non-banked
cache. (see §4.1).

4 SECURELY REDUCING INTER-DOMAIN
COMMUNICATION LATENCY

In this section, we discuss ways to improve the performance of the
NF-IDCP schemes, as per our targeted property of low performance
overhead (see §2.3). The first optimization is secure parallelization
and the second optimization is secure tag-based filtering (STF). The
parallelization strategy (see §4.1) uses constant-delay banking to
increase the number of concurrent accesses to the cache securely,
which is useful for faster cross-domain flushes.

The STF approach (see §4.2) uses tagged metadata to reduce
flush latency. It stores counters to facilitate lazy flushes of the RO
cache lines in the LLC. It also stores precise domain-information
to locate the RW cache lines in the LLC. The above metadata can
be housed in two fully-associative structures, Dirg and Diry, for
immunity against conflict-based attacks.

Lastly (see §4.2.2), we discuss the hardware design of the fully-
associative structures inside the STF. It has a main region, which
houses tags in a set-associative structure. It also has an overflow
region, which hosts any tags that do not fit into the main region
due to set oversubscription. Also, cache lines are moved out of the
overflow region back into the main region, if there is space in the
main region. Hence, the STF works like a fully-associative cache,
which is secure against conflict-based attacks.

4.1 Secure Parallel Accesses

Caches already support well-established banking techniques to in-
crease parallel accesses (see §2.4.1). In banking, the cache is divided
into multiple sections known as banks, which can be accessed in
parallel. The use of parallel cross-domain accesses improves the
performance by reducing access latency. However, we do not want
attackers to learn the relative locations of sets in different banks by
measuring the access time to the cache, hence, a constant latency
is imposed. The imposed constant latency should be the expected
maximum access time as observed over a large number of accesses.

Figure 5 shows the scheme of our secure banked cache. Part A
shows the non-banked cache, which has a single bank By. Part B
shows n banks, By...By,, with % of the total sets in each bank. In both
the parts, the encryption key in a box signifies the randomization
functions that are associated with the cache.

In Part C, we also show an example lookup of the non-banked
and the banked cache, by an address A. The domain for A can
arbitrary (not shown). We assume that there are N domains in

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

this example, so there will N lookups, each using a different ran-
domization function for each domain. In the first time step (0-1),
the banked cache will access all n banks in parallel. Thus, upto
n locations can be accessed in parallel. However, the non-banked
cache can access only one location. This goes on K times, where
K < N. At this point in the sequence, the banked cache would have
completed all of its accesses to the N different locations. However,
the non-banked cache has only completed K accesses. The next
interesting point in the sequence is at the K lt)h access, which is the
expected maximum time for the banked cache. At this time, the
banked cache can securely declare the cache access to N locations
as completed. Between time K and Kp, the banked cache will be idle.
The extra delays for the constant time banking are indicated by the
red DL letters. However, the non-banked cache has only accessed
Kp locations. Hence, it will now continue the access sequence until
it completes N accesses to the cache. The banked cache has already
completed its lookups indicated by the red NA letters.

4.2 Secure Tag-Based Filters (STF)

Hardware Modifications: The hardware modifications are shown
in Figure 6. The left half of the first row, Ay, shows the NF-IDCP
cache. The NF-IDCP cache contains a randomization function (box
with key inside). The cache lines have tag (white), data (black) and
SDID (grey) fields. The right half, By, shows all the added hardware
for the STF optimization. STF structures Dirg and Dir; are added to
the hardware. Diry has counters (dash-dot outlined box). Dir; has
pointers, SDIDs and tags (light grey box, white box dark grey box).
To facilitate the STF optimizations, the NF-IDCP cache is modified
so that each tag also holds pointers to the appropriate Diry counters
(dark grey box). Below, we shall discuss how the above hardware
is used (§4.2.1). The STF structures are themselves randomized so
that they behave in a fully associative manner.

4.2.1 How STF Works. In the Dirg structure, we keep counters
with valid/invalid bits, corresponding to the RO cache lines in the
LLC. The valid RO cache lines will maintain a pointer to the counter.
A valid counter is incremented every time a new domain gets a copy
of the RO cache line from the LLC. It is decremented during cache
evictions. When a NF-IDCP flush occurs that needs to remove all RO
lines due to writes by a domain, we set the bit to invalid thus making
it an invalid counter. The RO cache lines can be flushed "lazily" in
future accesses, and each flush will decrement the corresponding
counter. There can exist multiple valid RO lines pointing to a valid
counter, and also multiple groups of RO lines, which are being lazily
flushed/evicted, pointing to their corresponding invalid counters.
The valid counter location for that cache line address is stored in
the corresponding Dir; entry.

In the second row of Figure 6, we show an example, contrasting
how regular NF-IDCP flushes and lazy NF-IDCP flushes work. In
the left-hand half of the second row (example A1), there are three
cache line copies in the shared cache that correspond to the different
security domains. Steps 2, 3 and 4 are needed to carry out the flushes.
In the right half of the second row (example Bj), the initial state in
Step 1 has four copies of the cache line, which are used in different
security domains. The cache lines are all clean initially. Hence, they
all point to the same valid counter in Diry. In Step 2, we reset the
pointer associated with the cache line written to because it is no

Kartik Ramkrishnan, et al.

A,.NF-IDCP B,. NF-IDCP+ STF === Counter
Lo o 0 Tg
Cache vCache —= SDID
’EI:_‘ [-] @ Pointer

s Data

A;. RO Flush B; . RO Lazy Flush

1 2 3 4 1 2 3
) — | | o
t t]

Az.RW Flush ?2 .RW Quick Flush

1 Ze® & e D
. d 8) 1

= =i=El'mRIE ' E:
t i > D3
JE————N G N D|r0

Figure 6: The secure tag-based filter for optimizing NF-IDCP,
using lower latency cache evictions (see §4.2).

A. Regular

B. Main+Overflow Region
; 2.0Overflow

5-8| U8-8|
, : o : : o _ Load ‘EEE
'>E - E E - E Balanced| = -~ H B

Figure 7: A fully-associative structure using a main region
and an overflow region (see §4.2.2).

1.Main

longer an RO cache line (marked in red). In Step 3, the invalid bit is
set for the counter associated with the remaining RO lines (marked
in mesh gradient). In both examples A; and By, invalidation is sent
to remove all private copies.

Quick Flushes Of RW Lines: We first lookup the Diry structure
while doing an NF-IDCP flush of RW cache lines upon a cache miss.
It tells us which domain currently has the RW cache line (if any).
Then, we need to flush the RW cache line that location. In the third
row of Figure 6, we show how the flush for an RW cache line is
done in the unoptimized NF-IDCP and in the STF-optimized version
of NF-IDCP. In the left half of the third row (example Az), we show
that it takes four steps (Step 1, Step 2, Step 3 and Step 4) to find the
RW cache line and flush it. In the right side example (B), Dir; is
looked up (Step 1), and the SDID corresponding to the RW cache
line address is determined. In the next step (Step 2), the RW cache
line is flushed from the LLC.

Eliminating Tag Duplication: In the above setup, tags are
duplicated in the Dir; and the cache. This can be eliminated by
having a pointer from the cache to Dir; instead, thus saving on
space.

4.2.2 Fully Associative Housing For STF . One way to create a fully
associative structure is to use two regions, a main region and an
overflow region. The main region has a set-associative structure.
The overflow region also has a set-associative structure but with a

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

higher associativity. Alternately, it can use a strategy like MIRAGE
to lower its associativity.

For each access, the main region and the overflow region are
both accessed simultaneously. A domain-insensitive randomization
function is used for each cache line address to determine the the
respective sets to be accessed. This does not cause any security
issue, because the STF housing merely houses the Dirg or Dir;
metadata for the cache line addresses in the main cache, and does
not drive any conflict misses. Metadata can be retrieved from either
region. As the cache adds and removes cache line addresses, corre-
sponding metadata will be added or removed. We can also move
any metadata from the overflow region into main region if space
becomes available there.

Figure 7 shows the hardware diagram for a set-associative struc-
ture and a fully-associative cache structure. In Part A, it is a regular
set-associative cache. This can host the metadata that the STF re-
quires. In the Part B on the right-hand side, there are two regions,
the main region (1) and the overflow region (2). The overflow region
is a more highly associative region, but smaller in size. These two
regions are connected, indicated by the bold double-arrow line. The
set to be accessed is determined by a randomization function on
the cache line address (not shown).

The two optimizations to NF-IDCP, namely parallelization
and STF, securely reduce the latency of the cache-flush
operations generated by IDCP, at a low hardware overhead.

5 SECURITY ANALYSIS AND EVALUATION

As specified in (see §2.3), NF-IDCP should restore the security guar-
antees of randomization schemes by preventing domain fusion. Our
security argument for the above has three parts. First, we carry out
stress tests on the parallelization optimization at different banks and
domain counts, to determine maximum expected latencies . Second,
we stress the fully-associative structures in the STF using a random
access pattern to see if we can trigger any set over-subscriptions
(see §5.1.1) . Third, we determine that a randomization scheme that
uses NF-IDCP has the same attack resilience to conflict attacks
(discussed in §2.1) as the underlying randomization scheme. For
the above, we use a generalized representation of a conflict attack
as a sequence of random variables that represent the accesses and
hit/miss observations of an attacker. Then, we show that the joint
distribution of the accesses and the observations are not affected by
the NF-IDCP flushes. We discuss these three security issues in §5.2.
Furthermore, we show that resilience against occupancy attacks
is maintained at a high level due to identical coverage for any
attacker, regardless of whether the NF-IDCP mechanism is switched
on or switched off. We argue that flush attacks on shared read-only
addresses are mitigated due to the inability of an attacker to do cross-
domain flushes on read-only shared addresses. Finally, we carry out
extensive simulations and show that domain fusion substantially
reduces the attack resilience of randomization (see §5.2.3).

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Table 1: Bank Contention Simulation Results. Each measured
Max Contention in column 3 corresponds to the number
of banks in column 1 of the same row, for the number of
domains shown in column 2.

Banks Domains | Max Cont Accesses
8,16,32,64,128 8 7,7,7,7,6 40 trillion
8,16,32,64,128 16 13,11,9,8,8 40 trillion
8,16,32,64,128 32 20,15,12,11,9 40 trillion

5.1 NF-IDCP Optimization Security

5.1.1 Parallelization Security . To stress the parallelization opti-
mization, we carry out 40 trillion random accesses on a parallelized
cache slice. Table 1 shows experimental results for the total con-
tention on each bank. Each of the max-contention numbers was
determined using an experiment with over a trillion cache accesses.
Each row in the first column of Table 1 lists 5 different LLC’s with
different number of banks, 8, 16, 32, 64, 128. The second column
shows the total number of domains involved in the system. This
corresponds to the total number of accesses for the NF-IDCP flushes.
Each row in the third column lists the maximum number of accesses
that happen to the same bank for a single address. This is related to
the worst-case latency for carrying out the NF-IDCP flushes. The
last column corresponds to the duration of the experiment in terms
of the number of accesses to the multi-banked cache slice.

Observations: As expected, a larger bank count significantly
reduces the maximum observed contention. Therefore, for each
of these combinations of bank counts and domain counts, the im-
position of the NF-IDCP flush-operation latency corresponding to
several sequential accesses, similar to max contention, will guar-
antee no timing side-channels due to the banking, at least for the
duration of our experiment. Since we have carried out 40 trillion
accesses for each combination of domain counts and bank counts,
this means that we can conservatively estimate that the cache slice
will need to be flushed after that many accesses. However, the
magnitude of leakage due to this (say, one reset every 40 trillion
accesses), is negligible compared to the leakage rate needed for a
successful recovery of a secret key (empirically, one observation
every few thousands or tens of thousands of cycles [72, 74]).

STF Security: The STF’s security guarantee is connected to
the probability that an attacker will be able to oversubscribe a set
in the overflow region. We carried out a simulation of a trillion
random accesses on a regularly sized cache slice, and found that
the maximum subscription on the overflow region was 48, for an
overflow region that was 12.5% the size of the main region. Hence,
a 48-way associative overflow region is sufficient to prevent any
resets in that number of accesses. This reset rate is at least several
orders of magnitude less than the rate at which randomization leaks
information.

5.2 No Improvement To Conflict-Based Attacks

The resilience against conflict-based attacks for an NF-IDCP ran-
domization scheme needs to be identical to the underlying ran-
domization scheme, according to the targeted security property Ps.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

We discuss the above in the context of the three conflict attacks
introduced in §2.

5.2.1 Conflict-Set Attack Resilience. A conflict-set attack (as dis-
cussed in §2) can be generalized in the context of an NF-IDCP cache,
as an attacker making hit/miss measurements using a sequence of
accesses that can be reads, writes and flushes. The above flushes may
affect hit/miss timing measurements. However, we have already
argued that the NF-IDCP flushes do not help a conflict attacker,
because they have no effect from a replacement standpoint (see
§2.4). Therefore, an attacker cannot generate new conflict patterns
by engaging the NF-IDCP.

More concretely, we can represent any conflict-set attack as a se-
quence of random variables S(/), A;), OB;)...S;., OB;’, A;S;2 OB,’, A;l,
for a sequence of length n. The S;. variables represent the cache
state, which is a set of pairs consisting of cache locations and the
cache line addresses therein. The A;. variables represent an access
to a cache line address from a particular security domain, which
could be a read, write or flush. The OB; variables represent an ob-
servation about a hit, an observation about a miss or no observation
(for flushes).

We also consider an analogous attacker that uses only reads,
without writes or flush instructions, to mimic the above attack.
The access sequence can be represented as S, Ag, OBS...S;“, OB;‘, A;‘
.55, OB;,, Ay, for a sequence of length n. The random variable
S} represents the cache locations and cache line addresses therein,

similar to S;. . A represents reads, pseudo-writes and pseudo-flushes.
The pseudo-writes cause a read to be executed. Pseudo-flushes do
nothing. OB; is the adjusted observation. They can be cache hits
or misses for reads and pseudo-writes. There is no observation
for pseudo-flushes. The cache hits can be adjusted by the attacker
to be recorded as cache misses, based on previous pseudo-writes
and pseudo-flushes. We can show via inductive strategy that the
joint probability distribution p A! OB,...A% 0B, is exactly the same as
PA: OB;...A;,0B;,- Thus, the attackers have the same power because
there is equal probability of recording any sequence of accesses
and timing observations. In Appendix §A, we show the details of
the inductive proof of the above intuitive assertion.

5.2.2 Occupancy Attack Resilience. As we discussed in §2.2, Sass-
Cache can control the coverage of different security domains. This
enables occupancy attack protections. Cache lines can partially
isolated, fully isolated or not isolated at all. Fully isolated means that
an attacker’s security domain has no chance of evicting the cache
line. Partially isolated means that the attacker has the possibility
of evicting the cache line in some, but not all skews. Not isolated
means that in all skews, the attacker has a chance of evicting the
cache line of the victim.

The main security benefits of SassCache occur because the proba-
bility that a security-sensitive cache line is fully isolated or partially
isolated is high (greater than 99.999%), and the fraction of cache
lines that aren’t isolated is low (less than 0.0001%), for the default
coverage settings of 39% for the attacker. Consider a SassCache
that has NF-IDCP mechanisms available. SassCache divides the
cache into k mini-caches, or skews) in the system. In each skew,
the attacker has access to a random subset of the cache line loca-
tions, 39% by default. A security sensitive cache line will need to

Kartik Ramkrishnan, et al.

be mapped to one of those locations to be evictable by the attacker.
Since this mapping is decided by the underlying randomization
function, and not the NF-IDCP, therefore, the isolation property for
any skew is not affected by NF-IDCP. If domain fusion occurred
due to the absence of NF-IDCP, then the victim cache lines would
all be evictable by the attacker, substantially reducing resilience
against attack (see Figure 12 in Appendix §C).

Shared Read-Only Memory Flush Attack Resilience: Due to the
tagging of cache lines with an SDID (see §4.2), cross-domain flushes
via clflush instructions will never happen in any NF-IDCP enhanced
cache. Thus, we have robust resilience against the above attacks.

5.2.3 Demonstrating Negative Effects Of Domain Fusion: We im-
plemented SassCache inside CacheFX [30], a popular tool for eval-
uating the security of randomization. We configure SassCache so
that there are two security domains, one for the attacker and the
other for the victim. We used a cache with 2048 cache lines to
model a significant size while keeping computational costs as eco-
nomical as possible (100 billion attacker accesses simulated). The
criteria for the resilience of the randomization, is to measure how
often an attacker can distinguish two different cryptographic keys,
only based on side-channel observations. In our experiment, we ran
AES [22] encryption and RSA [74] encryption inside CacheFX. Each
attack runs 200,000 encryptions, alternating between two randomly
chosen encryption keys. The attacker observes the cache state via
eviction-set attack (same as conflict-set attack) or occupancy attack,
and tries to make a distinction between the two keys based on the
differences in the observed eviction pattern. The entire process was
repeated more than 300 times for each of the keys, and a success
rate was measured, which is the fraction of attempts where the
attacker could distinguish the two keys.

Table 2 summarizes the result of the attack experiments. The
first column shows the the four attacks simulated. Each attack ei-
ther used AES or RSA (SquareMult) encryption algorithms, and
used occupany attack or eviction-set strategy. The percent of at-
tacks that could successfully distinguish the keys in domain-fused
SassCache are shown in the second column. In non-fused random-
ization (third column), the success rate of the attacker is 70% higher
than non-fused SassCache. In the fourth column we consider a
SassCache configuration, where the two domains have their cover-
ages constrained within two different cache halves, using simple
scale-and-shift of the index function (see Appendix §D.). The attack
success is reduced to zero due to no cross-domain evictions.

We extensively evaluate the resistance to eviction-set and occu-
pancy attacks of other randomization schemes (CEASER, CEASER-
S, ScatterCache, MIRAGE); non-fused SassCache enables the best
security guarantees (see Appendix §C).

6 PERFORMANCE EVALUATION

Using ZSim [55], we carry out a performance evaluation of our
scheme using PARSEC 3.0 workloads, which has significant data
sharing. The processor configuration used for simulation mainly
consists of a Nehalem-like out-of-order core coupled with a three-
level cache hierarchy. The L1I cache is 32KB in size (4-way assoc),
the L1D is 32KB in size (4-way assoc) and the L2 cache is 256KB
in size. The shared LLC consists of one slice per-core, where the
size of each cache slice is 2MB with a 16-way associativity. We also

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

Table 2: Side-Channel Attacks To Distinguish Two
Encryption-Keys. The columns refer to different Sass-
Cache configuration and the rows refer to different kinds
of attacks. The cells contain percentage of attacks which
succeeded out of 300 trials.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Attack Type Sass (f) Sass (nf) Sass-P (nf)
Eviction-Set, AES 18% 7.5% 0%
Eviction-Set, RSA | 100% 15% 0%
Occupancy, AES 100% 22% 0%
Occupancy, RSA 100% 22% 0%

simulate real-world Firefox, Chromium and X Server workloads on
a similar cache configuration, using a PANDA [28] based simulator.
We also present SPECRate2017 results in an online Appendix [15].

An insecure cache is devoid of any side-channel protection. The
ceaser and ceaser-s strategies are fused-domain as discussed in §2.
The next three schemes used are sass_magic, scatter_magic and
mirage_magic, which are the same as SassCache, ScatterCache and
MIRAGE, but with an ideal zero-overhead coherence mechanism.
That means, each write to a cache line address transmits the written
contents to cache lines used by all domains instantaneously. Next,
there are three configurations: sass_par, scatter_par and mirage_par.
They are the coherent versions of the same via NF-IDCP strategy
and parallelization optimization. Finally, there are three approaches:
sass_tag, scatter_tag and mirage_tag. These three approaches are
the versions of the above randomizations with NF-IDCP and the
added STF optimization. Since we want to be conservative on the
performance overheads, we add a latency of 8 cycles for the paral-
lelization optimization, and a latency of 4 cycles for the tag-based
filter optimization on the critical cache hit path.

6.1 PARSEC 3.0 (with Significant Data Sharing)

The PARSEC 3.0 benchmarks represent a wide range of sharing
patterns that are used by multi-threaded applications. In theory,
any two domains that use shared memory could potentially use
such access patterns. Therefore, we use PARSEC 3.0 benchmarks
as one possible way to evaluate the performance of the NF-IDCP-
enhanced cache. In our 8-core simulations, we use them to run 8
threads in parallel, each assigned to a different security domain. The
key performance metric is the total execution time, which indicates
how many cycles it took the multicore processor to complete the
workload. To better understand the performance, we also record
supporting figures, such as the MPKI (misses per kilo instruction)
and the LLC access fraction.

Performance Results: On average, we see less than 5% per-
formance degradation compared to domain-fused randomization,
for NF-IDCP randomization. In two cases, canneal and vips, there
is upto 30% and 10% performance degradation, respectively. This
overhead is mainly due to a lack of cache hits on shared-writable
memory cache lines in the LLC. Figure 8 shows the performance
results for the PARSEC 3.0 benchmarks. Part (a) of the figure shows
the performance results for the benchmarks normalized to the in-
secure configuration, and the geometric mean of the same is also
shown. Part (b) of the figure shows the normalized MPKI numbers

g BE ceaser B sass_magic mirage_magic 1‘;
= | ™™ ceaser-s scatter_magic 1>
g 1.1
w 1
£ 0.9
) 0.8
= b b O % B B B Sk % L G 0.7
5 .
% P W, R % T8y o Thy B %
o [mm A 1.6
€ sass_par WM scatter_par mirage_par 15
i= | ™™ sass_tag WM scatter_tag mirage_par %431
g 1.2
w 1.%
82
= S b G % D . B Sk W L G 07
5 .
% P W, Ry % Ty o Thy B %

(a) The total execution time for the PARSEC 3.0 benchmarks simu-
lated for twelve cache configurations (see §6.1)

B ceaser W sass_magic mirage_magic 2e+01
g |™ ceasers scatter_magic 8e+00
a 4e+00
= 2e+00
€ le+00
S 5e-01
=4 2e-01

le-01
7 L,
%o 60% %/),) %o'(, % % £ % %% % %

El sass_par Bl scatter_par @ mirage_par 3e+02
|™ sass_tag ®E scatter_tag mirage_tag 6e+01
% 2e+01

4e+00
E 1e+00
2 2e-01
6e-02
2e-02
2 P L.
6/&(\ 60% (‘60/) Oé% S, /7(,/ . %9 J‘% J‘,”% %, Oé\O

(b) The MPKI (misses-per-kilo-instruction) for PARSEC 3.0 bench-
marks simulated for twelve cache configurations (see §6.1).

Bl ceaser B sass_magic mirage_magic 1e+00
_5 B ceaser-s scatter_magic 1e-01
0 le-02
2 1le-03
m le-04
- 1le-05

6 b o % B 2 S, b G 1e-:06
7
B Ty, S, T TG TR Ty, B %Y

BN sass_par B scatter_par® mirage_par 1e+00
.E BN sass_tag MM scatter_tag ™ mirage_tag 1e-01
© le-02
£ 1e-03
m le-04
- 1le-05

b b G % A B A S S, L G 1e-06
5 .
% o W, R, % T8y o Thy B %

(c) The fraction-of-accesses going to the LLC for PARSEC 3.0 bench-
marks simulated for twelve cache configurations (see §6.1). GEO is
short for geometric mean.

Figure 8: The performance results and the supporting data
for PARSEC 3.0 obtained from simulations on ZSim.

for the simulations, and Part (c) shows the fraction of memory ac-
cesses that went to the LLC. We generally see a correlation where
a higher MPKI results in lower performance. However, this effect is
tempered by the LLC access fraction. Generally, a lower LLC access

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

1.8

B baseline Bl sass_par B baseline Bl sass_par
1.6 | ™ ceaser Bl sass_tag 100 | mm ceaser B sass_tag
° B ceaser-s BN scatter_par B ceaser-s BN scatter_par
c1l4 sass_magic ®m scatter_tag sass_magic ®m scatter_tag
= scatter_magic mirage_par ™4 10 scatter_magic mirage_par
g 1.2 | mm mirage_magic mirage_tag % B mirage_magic mirage_tag
g1 s
Z08 1
0.6
0.4 o o o 0.1 o o o
o v D o v D
N o N @ N Y

Figure 9: The average trends in performance and MPKI for
PARSEC 3.0 using 16 domains/16 cores and 32 domains/32
cores.

256 mm baseline mu ceaser_s mirage_magic

scatter magic B® sass_magic

o r Q
NONLNS NG N NLANSN G &
0,70, %0 2 8 90 40, 3 Q& 0,0
0, % o % "%, 099 %G 0%, 0 C(,O/O N OQ)

(a) The MPKI results of a cache simulation for real-world workloads,
for the first six configurations (see §6.2)

256 [mm scatter_par W mirage_par
T1e | ™ scatter_tag M mirage_tag
o

sass_par
sass_tag

(b) The MPKI results of a cache simulation for real-world workloads,
for the last six configurations (see §6.2)

Figure 10: Simulations on real-world workloads show mini-
mal impact of NF-IDCP on cache MPKI.

fraction leads to a lower MPKI. The performance overhead of PAR-
SEC 3.0 remains less than 5% for 16-core and 32-core workloads
also (see Figure 9).

6.2 Real-World Workloads (Low Data Sharing)

Firefox and Chromium are configured to run a single tab. The
content/renderer process for that tab is configured to run in one
security domain. The other processes are all configured to run in
another domain. X Server is configured to use a client MuPDF [39],
which decrypts PDF files before display.

On our PANDA-based cache simulator, we find that performance
degradation in terms of MPKI is less than 0.5 (see Figures §10a
and §10b), for simulations of 1 billion memory accesses. This can
be attributed to the relatively low proportion of shared memory
accesses used by Firefox, Chromium and X Server (less than 2%).

7 DISCUSSION AND RELATED WORK

Hardware Overheads: We estimate the hardware overhead of
the system using a standard cache design exploration tool, CACTI
7.0 [20]. The main hardware overheads are due to parallelization
overheads and STF overheads. The parallelization overhead is less

Kartik Ramkrishnan, et al.

than 3% upto 32-banks. The STF overhead is less than 8% for 32
domains compared to an insecure cache. This is only 3% more than
the cost of an FTM-enhanced domain-fused scheme, which has
more than 5% storage overhead.

Energy Overheads: Majority of the extra energy consumption
is due to the extra tag-lookups in the LLC for cache flushes. Based on
CACTI 7.0 results, the dynamic energy cost for the twelve NF-IDCP
configurations we simulated is less than 2% for the SPECRate2017,
PARSEC 3.0 and real-world workloads. The static energy cost is
increased by 3%, similar to the hardware overhead increase for the
STF configuration. It is not increased significantly for the multi-
banked configuration.

Cache Partitioning And Other Randomization Techniques:
A wide-array of cache-partitioning techniques have been proposed
in recent literature targeting the security use cases [21, 29, 36, 41, 48,
54, 56, 67, 76]. We can augment all the existing cache partitioning
strategies using our approach. We evaluated a partitioned version
of SassCache in Appendix §D. Phantom Cache [62] randomizes
within a small number of sets instead of randomizing across the
entire cache. Song et.al [60] propose new reallocation techniques to
reduce the overheads of re-keying in randomization. HybCache [26]
uses cache randomization and partitioning in a hybrid manner.
NewCache [37] and RPCache [68] are applied to the private caches
rather than the shared caches. MIRAGE [53] uses load-balancing
for fully associative caching.

8 CONCLUSIONS

We identified the important problem of domain fusion due to data
sharing between different security domains. In existing randomiza-
tion schemes, domain fusion forces different security domains to
use the same randomization function, thus reducing the security
level significantly.

We introduce a new randomization-with-sharing approach, RAWS,
which enables non-fusion based data coherence using randomized
cross-domain accesses. We develop a secure inter-domain coherence
protocol (NF-IDCP) using RAWS. It uses cache flushes to restore co-
herence without relying on domain fusion. We integrate NF-IDCP
into existing state-of-the-art randomization schemes (ScatterCache,
MIRAGE and SassCache) using secure parallelization and tag-based
filter optimizations.

We perform a security evaluation using CacheFX attack simula-
tions and a probabilistic analysis, and a performance evaluation on
a wide-range of benchmarks, including SPECRate 2017, PARSEC
3.0 and real-world workloads. In all analysis and evaluations, we
demonstrate that the security breaches induced by domain fusion
are eliminated by NF-IDCP. Across all evaluation, the average per-
formance overhead is less than 5% and the hardware overhead is
less than 3%.

ACKNOWLEDGMENTS
This research was supported in part by NSF Grant CNS-2106771.

REFERENCES

[1] [n.d.]. codebase. https://www.chromium.org/developers/design-documents/gpu-
command-buffer. Accessed: 2023-07-15.

[2] [n.d]. commandbuffer. https://www.chromium.org/developers/design-
documents/gpu-command-buffer. Accessed: 2023-07-15.

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

[10
[11
[12

[13
[14

[15
[16
[17
[18
[19

[20

[21

[23

[24

[25

[26

[27

[28

[29

[30

[32

]

]

1
]

]

]

]

]

]
]

]

[n.d.]. cve-2023-25000. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-25000. Accessed: 2023-12-12.

[n.d.]. cve-2023-25332. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-25332. Accessed: 2023-12-12.

[n.d.]. cve-2023-26556. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-26556. Accessed: 2023-12-12.

[n.d.]. cve-2023-26557. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-26557. Accessed: 2023-12-12.

[n.d.]. cve-2023-32691. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2023-32691. Accessed: 2023-12-12.

[n.d.]. firefoxSharing. https://blog.mozilla.org/attack-and-defense/2021/01/27/
effectively-fuzzing-the-ipc-layer-in-firefox/. Accessed: 2023-07-15.

[n.d.]. intelsidechannel. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/securing-
workloads-against-side-channel-methods. html. Accessed: 2023-07-15.

[n.d.]. ipc-sniffer. https://github.com/tomer8007/chromium-ipc-sniffer. Ac-
cessed: 2023-07-10.

[n.d.]. IPDL. https://firefox-source-docs.mozilla.org/ipc/ipdL.html. Accessed:
2023-07-10.

[n. d.]. memfdSharing. https://man7.org/linux/man-pages/man2/memfd_create.
2.html. Accessed: 2023-07-15.

[n. d.]. mit-shm. https://en.wikipedia.org/wiki/MIT-SHM. Accessed: 2023-07-10.
[n.d.]. mojo-ipc. https://chromium.googlesource.com/chromium/src/+/refs/tags/
72.0.3586.1/ipc/. Accessed: 2023-07-10.

[n.d.]. onlineAppendix. https://github.com/kartikram3/RAWS-Supplementary.
Accessed: 2023-12-12.

[n.d.]. pulseaudio. https://man.archlinux.org/man/pulseaudio.l.en. Accessed:
2023-07-15.

[n.d.]. qubes. https://www.qubes-os.org/. Accessed: 2023-07-15.

[n.d.]. sidechannell. https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/secure-coding/security-best-
practices-side-channel-resistance. html. Accessed: 2023-07-15.

[n.d.]. xserver. https://en.wikipedia.org/wiki/X.Org_Server. Accessed: 2023-07-
15.

Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1-25.

Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable software-defined
caches. In Proceedings of the 22nd international conference on Parallel architectures
and compilation techniques. IEEE, 213-224.

Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against
AES. In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 201-215.

Samira Briongos, Pedro Malagén, José M Moya, and Thomas Eisenbarth. 2020.
RELOAD+ REFRESH: Abusing cache replacement policies to perform stealthy
cache attacks. In 29th { USENIX} Security Symposium ({USENIX} Security 20).
1967-1984.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering. 41-42.

Yun Chen, Lingfeng Pei, and Trevor E Carlson. 2021. Leaking Control Flow
Information via the Hardware Prefetcher. arXiv preprint arXiv:2109.00474 (2021).
Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid side-channel-resilient caches for trusted execution environments. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 451-468.

David L Dill. 1996. The Mur ¢ verification system. In Computer Aided Verification:
8th International Conference, CAV’96 New Brunswick, N, USA, July 31-August 3,
1996 Proceedings 8. Springer, 390-393.

Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. 1-11.

Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong
Ma, and Daniel Sanchez. 2018. KPart: A hybrid cache partitioning-sharing
technique for commodity multicores. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 104-117.

Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou, Thomas Unter-
luggauer, and Yuval Yarom. 2023. Cachefx: A framework for evaluating cache
security. In Proceedings of the 2023 ACM Asia Conference on Computer and Com-
munications Security. 163-176.

Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unter-
luggauer, Stefan Mangard, and Daniel Gruss. 2022. Scatter and Split Securely:
Defeating Cache Contention and Occupancy Attacks. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 1101-1115.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279—
299.

[33

[34

[35

[36

[37

[38

[39

[40

[42]

[43

[44

[47

(48

[49

o
=

[51

[52

[53

[56

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th { USENIX}
Security Symposium ({USENIX} Security 15). 897-912.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross processor
cache attacks. In Proceedings of the 11th ACM on Asia conference on computer and
communications security. 353-364.

Sowoong Kim, Myeonggyun Han, and Woongki Baek. 2022. DPrime+ DAbort: A
High-Precision and Timer-Free Directory-Based Side-Channel Attack in Non-
Inclusive Cache Hierarchies using Intel TSX. IEEE.

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974-987.

Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B Lee. 2016. Newcache: Secure
cache architecture thwarting cache side-channel attacks. IEEE Micro 36, 5 (2016),
8-16.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on security
and privacy. IEEE, 605-622.

Miles Arthur Munson and Jesse S Cross. 2011. Deep PDF parsing to extract features
for detecting embedded malware. Technical Report. Sandia National Laboratories
(SNL), Albuquerque, NM, and Livermore, CA

Divya Ojha and Sandhya Dwarkadas. 2021. TimeCache: Using Time to Eliminate
Cache Side Channels when Sharing Software. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 375-387.
Hamza Omar, Brandon D’Agostino, and Omer Khan. 2020. OPTIMUS: A security-
centric dynamic hardware partitioning scheme for processors that prevent mi-
croarchitecture state attacks. IEEE Trans. Comput. 69, 11 (2020), 1558-1570.
Hamza Omar and Omer Khan. 2020. IRONHIDE: A secure multicore that effi-
ciently mitigates microarchitecture state attacks for interactive applications. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 111-122.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. {DRAMA }: Exploiting {DRAM} addressing for cross-cpu attacks.
In 25th { USENIX} security symposium ({ USENIX} security 16). 565-581.
Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic analysis of randomization-based protected cache architectures. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 987-1002.

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. [n. d.]. Prime+ Scope:
Overcoming the Observer Effect for High-Precision Cache Contention Attacks.
([n.d.]).

Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 775-787.

Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address
cache. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 360-371.

Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE, 423-432.

Kartik Ramkrishnan, Stephen McCamant, Pen Chung Yew, and Antonia Zhai.
2020. First Time Miss: Low Overhead Mitigation for Shared Memory Cache Side
Channels. In 49th International Conference on Parallel Processing-ICPP. 1-11.
Kartik Ramkrishnan, Antonia Zhai, Stephen McCamant, and Pen Chung Yew.
2019. New attacks and defenses for randomized caches. arXiv preprint
arXiv:1909.12302 (2019).

Jude A Rivers, Gary S Tyson, Edward S Davidson, and Todd M Austin. 1997. On
high-bandwidth data cache design for multi-issue processors. In Proceedings of
30th Annual International Symposium on Microarchitecture. IEEE, 46-56.
Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. 2021.
Streamline: a fast, flushless cache covert-channel attack by enabling asynchro-
nous collusion. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 1077-1090.
Gururaj Saileshwar and Moinuddin Qureshi. 2021. {MIRAGE}: Mitigating
Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In 30th
{USENIX} Security Symposium ({USENIX} Security 21).

Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and efficient
fine-grain cache partitioning. In Proceedings of the 38th annual international
symposium on Computer architecture. 57-68.

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475-486.

Brian C Schwedock and Nathan Beckmann. 2020. Jumanji: The Case for Dynamic
NUCA in the Datacenter. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 665-680.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

[57] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling hardware-based data prefetcher, a hidden source of infor-
mation leakage. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 131-145.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,

and Yuval Yarom. 2021. {Prime+ Probe} 1,{JavaScript} 0: Overcoming Browser-

based {Side-Channel} Defenses. In 30th USENIX Security Symposium (USENIX

Security 21). 2863-2880.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,

Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the

cache occupancy channel. In 28th { USENIX} Security Symposium ({ USENIX}

Security 19). 639-656.

Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu. 2021.

Randomized last-level caches are still vulnerable to cache side-channel attacks!

But we can fix it. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,

955-969.

[61] Daniel Sorin, Mark Hill, and David Wood. 2011. A primer on memory consistency
and cache coherence. Morgan & Claypool Publishers.

[62] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscating
Cache Conflicts with Localized Randomization.. In NDSS.

[63] Thomas Unterluggauer, Austin Harris, Scott Constable, Fangfei Liu, and Carlos
Rozas. 2022. Chameleon Cache: Approximating Fully Associative Caches with
Random Replacement to Prevent Contention-Based Cache Attacks. In 2022 IEEE
International Symposium on Secure and Private Execution Environment Design
(SEED). IEEE, 13-24.

[64] Pepe Vila, Boris Kopf, and José F Morales. 2019. Theory and practice of finding
eviction sets. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 39-54.

[65] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. [n. d.]. MeshUp: Stateless
Cache Side-channel Attack on CPU Mesh. ([n.d.]).

[66] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2021. Volcano: Stateless
Cache Side-channel Attack by Exploiting Mesh Interconnect. arXiv preprint
arXiv:2103.04533 (2021).

[67] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel
protection. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 1-6.

[68] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the 34th annual
international symposium on Computer architecture. 494-505.

[69] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. Scattercache: Thwarting cache attacks via

cache set randomization. In 28th {USENIX} Security Symposium ({ USENIX}

Security 19). 675-692.

Zihan Xue, Jinchi Han, and Wei Song. 2023. CTPP: A Fast and Stealth Algorithm

for Searching Eviction Sets on Intel Processors. (2023).

[71] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 888-904.

[72] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher, and Josep Torrellas. 2019.
Secdir: a secure directory to defeat directory side-channel attacks. In Proceedings
of the 46th International Symposium on Computer Architecture. 332-345.

[73] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are coherence
protocol states vulnerable to information leakage?. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 168-179.

[74] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In 23rd { USENIX} Security Symposium
({USENIX} Security 14). 719-732.

[75] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing

attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7, 2

(2017), 99-112.

Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. Coloris: a dynamic cache

partitioning system using page coloring. In 2014 23rd International Conference on

Parallel Architecture and Compilation Techniques (PACT). IEEE, 381-392.

[77] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017. PARSEC3. 0: A
multicore benchmark suite with network stacks and SPLASH-2X. ACM SIGARCH
Computer Architecture News 44, 5 (2017), 1-16.

[78] Zhaomin Zhu, Koh Johguchi, Hans Jirgen Mattausch, Tetsushi Koide, Tai Hi-
rakawa, and Tetsuo Hironaka. 2003. A novel hierarchical multi-port cache.
In ESSCIRC 2004-29th European Solid-State Circuits Conference (IEEE Cat. No.
03EX705). IEEE, 405-408.

[58

[59

=
)

(70

[76

Kartik Ramkrishnan, et al.

A MODELLING CONFLICT-SET ATTACKS AS A
SEQUENCE OF RANDOM VARIABLES

A.1 Setting Up The Attack Scenario

We reiterate the scenario that was mentioned in §5.2.1. We can
represent any conflict-set attack as a sequence of random variables
S('),AE), OBQ), S; OBi',A;...S;I, OBn’,A'n. The S; variables represent
the cache state, which is a set of pairs consisting of cache locations
and the cache line addresses therein. The A; variables represent
an access to a cache line address from a particular security do-
main, which could be a read, write or flush. The OB; variables
represent an observation about a hit, an observation about a miss
or no observation (for flushes). We also consider an analogous at-
tacker that uses only reads, and not writes nor flush instructions,
to mimic the above attack. The access sequence can be represented
as Sy, A, OBy, .57, OB}, A} .S, OBy, Ay, for a sequence of length
n. The random variable S represents the cache locations and cache
line addresses therein, similar to S;. A7 represents reads, pseudo-
writes and pseudo-flushes. The pseudo-writes cause a read to be
executed. Pseudo-flushes do nothing. OB is the adjusted observa-
tion. They can be cache hits or misses for reads and pseudo-writes.
There is no observation for pseudo-flushes. The cache hits can be
adjusted by the attacker to be recorded as cache misses, based on
previous pseudo-writes and pseudo-flushes. We can show via induc-
tive strategy that the joint probability distribution p AL OB,...A}, 0B,
is exactly the same as PA:,0B;...A; 0B, for a sequence of length n.
Thus, the attackers have the same power because there is equal
probability of recording any sequence of accesses and timing ob-
servations.

A.2 Inductive Argument

A.2.1 Base Case. Let us consider the base case. We want to prove
that ps(f) AL OB, is identical to ps;,az,0B;- We start building the above
joint distributions one random variable at a time. The probability
distributions py (so) and Ps; (s0) are the same because we start from
an empty cache for both attackers. Next, the conditional probabil-
ity distributions of the access for the first attacker is p ,/ IS/ (ao|so),
010
which could be reads, writes or flushes on a particular address.
Pazis; (aolso) is the same because the reads-only attacker has no
further information than the first attacker in determining what
accesses to carry out. The resultant joint distribution pg, 4, (s, @)
is the product p ALlS, (aolso) * pS(/) (s0). Similarly, the joint distribu-
tion Ps;.A; (80, ao) is the product Pals; (aolso) * Ps; (s0). Since the
corresponding product terms are the same in both the above ex-
pressions, therefore, the resultant joint distributions s, Ao(s, a)
and Ps; A (s, a) are the same. Let us also consider the next joint
distributions ps('],A:),OB(') (s0, ag, 0bg) and Ps;.A1 OB; (s0, ag, 0bgy). Each
can be written as the product of two terms p,, B, 15,4, (obg|so, ag)

* ps('],A(’) (s0, ag) and POBS|53’A3 (obo|so, ag) * pSS’AS (s0, ag). The first
terms of the above products (conditional distribution terms) are
the same because, for each initial state s, if the same operation ag
is performed (read, write or flush), then it will be a miss for read
or write and it will be no observation for flush. This is because
the initial state sg is empty. The second terms of the products are

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

also the same, as we had shown above. Therefore, the overall joint
distribution is also the same. This proves the base case.

A.2.2 Inductive Hypothesis And General Case. The inductive hy-
pothesis is that two joint distributions will be the same upto the
ith term in the sequence. Thus, the two probability distributions
Ps!. .. OB, and Ps;,..S1,A3,0B; will be identical. Let us call this
distribution D.

A.2.3 General Case. The general case we would like to prove is
that the joint distributions are the same upto the i + 1 part of the
sequence. py ' 4’ 0O/ and Ps;,.. S5, A% OB, need to be the
same. Let us now add one random variable at a time, similar to the
base case.

Adding Siy1 To The Sequence: First, let us add the random vari-

able Si41. We need to prove that K : s 0B and K : Ps;
02 Vil e

OB.S;,, are equal. In order to prove the above, we can split the above
terms into two subterms, a baseline distribution and a conditional

distribution. Hence, K7 can be represented as p. IS
1 p Ps) 1Sy ...S,.A.OB]

* D. Similarly, K, can be represented as DSz, ISy --S].ALOB; * Dy.
Therefore, to prove that K; = K3, we only need to prove that the
two conditional distributions above are equal. Let us consider the
two analogous conditional distributions P |s.... S\, A.OB, and
Ps;,,
access, a;. Exhaustively, there are three possibilities, cache hit, cache
miss and flush. Since the replacement function is identical for both
attackers, therefore, the conditional distributions, upon a cache
miss for aj, will be the same. If a; is a cache hit on s; or if a; is a
cache flush, then the new state s;;; will always be the same as s;
for both attackers, because neither of those operations change the
tag state. Therefore, in all cases, we shall get the same values for
the conditional joint distributions. Therefore, K = Kz = K.
Adding Ajy1 To The Sequence: We are adding in the next
random variable A;;; to the sequence. We would like to prove
that the joint probability distributions £ : by,

Is*,...s*,A*,0B: - Consider the ith tag state s; and the ith address
(R R At

08,5, A, and

i+1° i+1
L2 : ps+ 0B S AL, are equal. Hence, £ can be represented
02" [A £ 5 iy §

" ..
as pA;HlSO/ .5, AL OB,.S K. Similarly, £, can be represented

as pa:_|s: ...,S;‘,A;,OB;,S;‘:* K. Therefore, to prove that £; = Lo,
we only need to prove that the two conditional distributions above
are equal. We note that for both the attackers, the marginal distri-
butions are identical. The conditional distribution values for any
given subsequence ag, 0by...a;, ob;, will be identical for both attack-
ers, because they are both carrying out the same attack strategy.
Therefore, L1 = Ly = L.

Adding OB;y1 To The Sequence: We are adding in the next
random variable OBj41 to the sequence. We would like to prove
that the joint probability distributions M; : ps!.

"OBi’SHl’ Ai+1’OBi+1

OB;,, are equal. Hence, M; can be
T

’ NSV L. Similarly, M
1a|Sy aS1.ALOBLS, LA o

can be represented as POB;, ||} --S1.ALOB; Sty Al L. Therefore,
to prove that M; = Mjy, we only need to prove that the two
conditional distributions above are equal.

We make the observation ob;.1, which depends on a;41, s;. If it

is a read or write, then the observation will be cache hit or cache

and M = ps; . 0B;.S;, .45,
represented as p,p

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

miss for the first attacker. First, let us consider that the first attacker
had a cache hit on the access aj;+1. For the second attacker, the
corresponding actions would have been read or pseudo-write. Since
the tag states they are operating on are the same (s;), therefore, they
should get the same observation ob;41. Next, let us consider that
the first attacker had a cache miss on the access a;+1. This could be
because the tag was not present, or it could be because the tag was
invalidated. To determine the valid/invalid state of the tag, we look
backwards in the sequence. If there are any flushes (due to writes or
flush instructions) after the last read/write to the address, then it is
invalid. Otherwise, the tag is in a valid state. For the second attacker,
if the tag was not present, it will see a cache miss. If the tag was
present, the attacker would still adjust the observation to a cache
miss, based on the backwards look on the sequence. Hence, the
observation obj4 is always the same for the two attackers. Hence,
the conditional distributions are the same, leading us to the result
Mi=Mz =M.

Extracting The Marginal Distribution: Based on the above,
if the attack went on for n steps, we can extract the marginal distri-
butions PA(’),OB(’)...A;,OB:, and PaA; OB;...A;,.0B}> which should also
be identical. Each sequence in the distribution has the exact same
probability of occurring, and thus the two attackers have the same
attack power.

B COHERENCE PROTOCOL VERIFICATION

We implement a four-processor system using the programming
language provided by the Murphi [27]. Two processors are assigned
to one domain, and the other two processors to another domain.
There is a single cache line for domain 1 in the LLC and upto one
cache line in each of its private caches. Similarly, there is a single
cache line in the LLC for domain 2 and upto one cache line in each
of its private caches.

In the above system, each cache line holds one of the four co-
herence states, M, E, S or L. They also hold many other transient
states that are used during transitions between M, E, S and I. There
is also a single NF-IDCP-RW bit for each cache line address. This
is set whenever there is a cache write to a domain. We also model
flushes whenever there are read or write misses, as per the NF-IDCP
protocol of §3.

The baseline MESI protocol (without the NF-IDCP flushes) was
exhaustively verified using Murphi. This confirms that the two
coherence invariants of SWMR and data invariance are always
maintained. This was a relatively quick verification (a few minutes)
due to the small size of the protocol and small number of cache lines.
The MESI + NF-IDCP procotol is larger due to double the core count
and two LLC cache lines instead of one. This exponentially increases
the state space. Hence, we need to use a simulation approach to
detect errors. Murphi underwent four days of simulation to find
errors. After testing more than 45 billion rules at the time of writing
this document, there was no error found, indicating a significant
degree of stability of our implementation. We were able to also run
an exhaustive verification algorithm for > 100 GB worth of states
until the memory was exhausted by the Murphi.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Figure 11: A simplified diagram showing the a MESI-NF-IDCP
coherence protocol. The important transitions that are used
for inter-domain coherence are highlighted in bold solid or
bold dotted style (see Appendix §B).

B.1 Important Transitions

B.1.1 How MESI-NF-IDCP Works. The functionality of MESI-NF-
IDCP is very similar to the baseline MESI protocol, but with the
additional NF-IDCP transitions explained in §3. Let us consider the
lifetime of a cache line. Initially, a cache line corresponding to the
cache line address is not present in the cache, or it may be in the
invalid state. Next, the cache line is fetched, either due to a read or
a write. If it is fetched due to a read, the cache line flushes out all
the other cache lines in the system, if any have NF-IDCP-RW bit set.
Then the domain that did the read transitions between the MESI
states as normal in a per-domain protocol. Note that the M state
is possible but the new contents will not be written immediately.
Instead, there will be a transition where all the cache line copies
used by that domain will set their NF-IDCP-RW. Then only, the
actual value will be written into the cache line. At some point, if
another domain then does a read or a write, then the cache line will
be removed. If the NF-IDCP-RW bit is never set (the domain does
only reads), then the cache lines may still be flushed due to a write
by another domain.

Figure 11 shows the important transitions in the MESI imple-
mentation of the protocol for any one of the involved domains. The
four MESI states have been expanded into 8 states, depending upon
the value of the NF-IDCP bit, which can be either NF-IDCP-RW
(RW for short) or NF-IDCP-RO (RO for short). The main transitions
related to NF-IDCP are highlighted in bold. The bold solid lines
show the transition regarding a change from NF-IDCP-RO state to
NF-IDCP-RW state. The bold dashed lines are the NF-IDCP flushes
which are brought on due to either a read or a write by another
domain. NF-IDCP-RO cache lines are flushed due to a write by
another domain. NF-IDCP-RW cache lines are flushed due to a read
or a write by another domain. The thin lines are part of the vanilla
MESI protocol.

C DEMONSTRATING A LOSS OF ATTACK
RESILIENCE DUE TO DOMAIN FUSION
We discuss a couple of analytical results regarding domain fusion

in SassCache. Then, we present our argument about how Flush +
Reload attacks will become a problem if there is domain fusion.

Kartik Ramkrishnan, et al.

> 1.8 T T T T T T . d‘
= 16 seon non-fuse
2514 P fused
DQ_ £12 o &%)vask' i
>ﬁ 1 H#+
Zu0el usequse®
8206 md\““?f\\a\“’““
el o
% o2
(o] 0 L . L L L I
0.1 1 10 100 1000 10000 100000 1x106 1x107

Num Accesses

(a) Observability probability of SassCache under conditions of do-
main fusion and no domain fusion. (see Appendix §C)

= 1.2 T T T T T T T T
£z 1
gaoer 1
2 10 0.6 i
o2 non-fused ——
‘;'_ $#0.4 fused —<—7]

[
0202 . i
7 0 ‘ ‘ - : : :

0 1 2 3 4 5 6 7 8 9

Num Accesses

(b) Repeated-Eviction probability of SassCache under conditions of
domain fusion and no domain fusion. (see Appendix §C)

Figure 12: Observability and Repeated-Eviction probability
in fused and non-fused SassCache.

Lastly, we present extensive simulation results which demonstrate
that domain fusion significantly lowers conflict-attack resilience.

Observability Probability: In Figure 12a, we show that the
Observability probability of the security-sensitive cache lines, is
extremely high for the real-world workloads. It is 0.0005% for AES
encryption, which has only 10 security sensitive cache lines related
to T-table lookups. It is 0.0003% for RSA, which also has less than 20
security sensitive cache lines, such as those related to modular expo-
nentiation [31]. These points are marked on the lower curve. How-
ever, the observability probability rises to 100% if domain-fusion
is engaged (line at y = 1). This means, attacker has a much higher
change to evict security-sensitive cache lines in domain-fused ran-
domization [31]. In Figure 12b, the Repeated-Eviction probability is
also extremely high. In non-fused SassCache, cache lines usually get
hidden after a few evictions by the attacker, with a high probability
(bottom line). However, domain fusion makes it so that there is
no chance of a cache line getting hidden even after an arbitrary
number of evictions (line at y = 1).

Flush + Reload Resilience: Figure 13 shows that expected
measurements of a Flush + Reload attacker (see §2.1) are all cache
misses. Due to tagging of cache lines with security domain ID
(SDID), there is no chance for an attacker to flush a cache line used
by another security domain. This transforms all measurements
of a Flush + Reload [74] attack attacker into cache misses. In a
domain-fused randomization, this guarantee is lost.

Attack Experiments: Figure 14 carries out attacks defined in
§5.2.3 on a wide range of randomization configurations. We have
ceaser_rand [46] and ceasers_rand [47], which necessarily have
domain fusion engaged, being fused randomizations. We also have
sasscache [31] where each domain has a random coverage of the
cache, assoc_rand (MIRAGE [53], fully associative randomization)
and scattercache [69] (like SassCache, but all domains have full

Non-Fusion Based Coherent Cache Randomization Using Cross-Domain Accesses

T
Flush+Reload ——

iss

Hit/Miss

Il Il Il Il
0 20000 40000 60000 80000 100000
Cycles

Figure 13: The attacker’s measurements in a Flush+Reload
attack on a non-fused randomization scheme. (see Appendix

§C)

coverage). We carry out four kinds of attacks, which are represented
as AES_o, AES_e, SM_o and SM_e. AES_o has a victim carrying out
AES encryptions and an attacker carrying out occupancy attacks.
AES_e has a victim carrying out AES encryptions and an attacker
carrying out eviction-set attacks. SM_o has a victim carrying out
Square-Multiply based encryption (like RSA encryption) and an
attacker carrying out occupancy attacks. Lastly, SM_e has a victim
carrying out Square-Multiply based encryption and an attacker
carrying out eviction-set attacks.

Figure 14a shows the success rate (see §5.2.3), when operating in
domain-fused mode (f). There is no attack resilience for the Square-
Multiply algorithm (both SM_e and SM_o), which has almost a 100%
attack success rate. In the AES_e attack, there is some resilience
against conflict-based attacks, except for ceaser_rand, which has
almost 100% attack success. In the AES_o attack, the attack success
rate is close to 100%. In Figure 14b, in non-fused mode (nf), only
sasscache shows significant attack resilience across the board. All
other schemes have substantially less attack resilience. This tells
us that the best randomization is sasscache and we should always
run it without domain fusion. sasscache-p is a modified version
of SassCache where there is no overlap between the attacker and
victim domain, and so there is no possibility of attack success (see

Appendix §D).

D PERFORMANCE OF PARTITIONED
SASSCACHE

We can optionally modify the SassCache indexing function, so that
each domain maps to a different range of cache sets. This should
not have a significant latency effect, because it will only need a shift
and an addition operation to carry out the above transformation.
Consider an example where there are two security domains. Then,
the regular SassCache configuration will choose 39% of cache lines
randomly to be used by one domain and another 39% randomly for
the other domain. All we’ll need to do, is to divide the set index by
2 (one right shift) for the first domain. For the second domain, we
will shift and also add a constant whose value is the number of sets
divided by 2. In this setup, there will be no overlap. Similarly, if there
are N domains, we can shift the index obtained by vanilla SassCache
right by log(N) bits and add the value domain_id * (numSets/N),
to get a partitioned indexing function.

Figure 15 shows the PARSEC 3.0 performance results for a par-
titioned version of SassCache (1/8th for each security domain).
Performance overheads are high for canneal, due to a lack of cache

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

B ceaser_rand(f)
B ceasers_16(f)
sasscache(f)

LW b IR OB
'76:5\

& %, %
Ro e \o e

scattercache(f)

15 H assoc_rand(f)

Attack Success
=

[&]

(a) The attack results for fused randomizations shows that attack
success is the lowest for SassCache overall and that there is no occu-
pancy attack resilience (see Appendix §C).

Bl ceaser_rand(nf) ®m scattercache(nf)
Bl ceasers_16(nf) assoc_rand(nf)

L5 B sasscache(nf) sasscache-p(nf)

Attack Success
=

0.5

& & %,
N0 NS NO

%
N

(b) The attack results of non-fused randomizations shows that Sass-
Cache has maximum eviction and occupancy attack resilience (see
Appendix §C).

Figure 14: The attack simulation results using CacheFX
shows that non-fused and partitioned SassCache are the most
secure randomization candidates.

25 | 7 sass-p g
2 S|
15 O
4 T O
] sass-p E

1 | :

1 =
OOl Nonne

6/@0 60% %, O'@% . % 0‘@9 &% %% %\5\ 060

Figure 15: Performance of sass-p for PARSEC 3.0 workloads,
normalized to a baseline insecure cache. We see that the
performance is comparable to existing systems.

hits on shared-writable memory. The average performance over-
heads are less than 5%, thus indicating that SassCache running in
partitioned mode can also be a reasonable solution.

Received 21 August 2023; revised 20 Dec 2023; accepted 17 Jan 2024

	Abstract
	1 Introduction
	2 Side-Channels, Randomization Schemes And RAWS
	2.1 Conflict-Based Side-Channels
	2.2 Randomization Schemes Have A Domain Fusion Problem
	2.3 RAWS To The Rescue
	2.4 Our Approach To Realizing The Targeted Cache Properties

	3 Securely Enabling Inter-Domain Coherence Using Cache Line Flushes
	3.1 Coherence Protocol NF-IDCP Transitions
	3.2 NF-IDCP Transitions
	3.3 Maintaining Coherence Invariants

	4 Securely Reducing Inter-Domain Communication Latency
	4.1 Secure Parallel Accesses
	4.2 Secure Tag-Based Filters (STF)

	5 Security Analysis And Evaluation
	5.1 NF-IDCP Optimization Security
	5.2 No Improvement To Conflict-Based Attacks

	6 Performance Evaluation
	6.1 PARSEC 3.0 (with Significant Data Sharing)
	6.2 Real-World Workloads (Low Data Sharing)

	7 Discussion And Related Work
	8 Conclusions
	Acknowledgments
	References
	A Modelling Conflict-Set Attacks As A Sequence Of Random Variables
	A.1 Setting Up The Attack Scenario
	A.2 Inductive Argument

	B Coherence Protocol Verification
	B.1 Important Transitions

	C Demonstrating A Loss Of Attack Resilience Due To Domain Fusion
	D Performance Of Partitioned SassCache

