
EdgeURB: Edge-driven Unified Resource Broker for
Real-time Video Analytics

Xiaojie Zhang∗, Amitangshu Pal†, Saptarshi Debroy∗
∗City University of New York, New York, NY, USA; †Indian Institute of Technology Kanpur, Kanpur, India

Email: xzhang6@gradcenter.cuny.edu, amitangshu@cse.iitk.ac.in, saptarshi.debroy@hunter.cuny.edu

Abstract—Real-time video analytics applications are one of the
driving forces towards adoption of edge computing due to the
latter’s ability to provide ‘near cloud-scale’ resources closer to
the application site. However, striking a balance between system
energy-efficiency and video quality satisfaction still remains a
challenge. In this paper, we propose an edge-driven unified
resource broker (URB) framework, viz., EdgeURB that seeks
to find a trade-off between edge devices’ energy-efficiency and
video configuration adaptation, with an aim to satisfying the
real-time latency requirements without compromising analytics
accuracy. Particularly, we design a two-stage algorithm: 1) a
centralized algorithm for resource allocation, frame resolution
selection, and user device to sever assignment and 2) a strategic
game to further improve the energy-efficiency. We evaluate the
performance of EdgeURB framework using an edge hardware
testbed prototype that demonstrates EdgeURB’s success in si-
multaneously satisfying application latency, analytics accuracy,
and devices’ energy consumption requirements. Also, through
extensive simulations, we demonstrate EdgeURB’s schedulability
and scalability improvement over baseline algorithms for a large
number of devices and for varying edge resource availability.

Index Terms—Edge computing, resource management, real-
time video analytics, energy efficiency, joint optimization.

I. INTRODUCTION

In recent years, machine learning (ML) driven video ana-
lytics have become one of the killer applications in mission-
critical fields such as, emergency management [1], [2], au-
tonomous vehicles (AV) [3], and surveillance system [4].
Since these applications often have low/ultra-low latency re-
quirements, processing such video data locally on user IoT
devices, although desirable, is far from realistic. Nevertheless,
massive data transmission and privacy requirements make
cloud data-center based processing imparactical. Therefore,
edge computing has recently emerged as an ideal compromise
between local device and remote cloud based processing.
However, effective edge-driven video analytics is fraught with
design challenges.

Two such most important challenges are: a) energy-efficient
resource management and b) video configuration adaptation,
that can satisfy the analytics quality and real-time latency
requirements. These challenges are more formidable when
the system is required to optimize a set of often mutually
diverging performance metrics such as, network delay, compu-
tation latency, accuracy of the analytics outcome, and system
energy consumption. This is because: 1) Users’ preferences
over edge resources and video configurations are different as
they can have diverse video application requirements; 2) The
wireless channel quality and consequently radio transmission
characteristics experienced by users (i.e., their devices) can
vary greatly resulting in varying performance; and 3) Joint op-
timization of such often mutually diverging metrics is typically
NP-hard and thus compute-intensive. However, edge systems
with their limited resource budgets can only support light-
weight solutions that do not impede on hosted applications’
performance.

This material is partially supported by the National Science Foundation
under Award Number: CNS-1943338.

In this paper, we propose an edge-driven unified resource
broker (URB) framework, viz., EdgeURB that can jointly
address the two aforementioned challenges through energy-
efficient edge resource management and video configuration
adaptation. The proposed EdgeURB framework collects and
uses the edge server utilization information, network band-
width condition, application profiling results, and energy con-
sumption statistics of user devices to run a two-stage algorithm
with the aim of addressing the trade-off between system energy
consumption and the accuracy of video analytics outcome
under given latency constraints. In the first stage, a cen-
tralized algorithm utilizes linear programming relaxation and
Lagrangian method to obtain a valid initial, yet sub-optimal
solution for resource allocation, frame resolution selection,
and sever selection problems. While in the second stage,
EdgeURB formulates a strategic game to further improve the
efficiency of the initial user-server assignment. This stage
decouples the original problem into two interconnected sub-
problems that solve resource allocation and user-server assign-
ment, respectively. The resource allocation algorithm runs on
individual edge servers and the optimized results are passed
to the user-server assignment algorithm. Here, a bandwidth-
efficiency based priority mechanism is adopted to update the
server selection of the users. Finally, EdgeURB broadcasts the
updated global strategy profile to the edge servers when the
framework runs the resource allocation algorithm again. This
inter-exchange between algorithms terminates and converges
when the system reaches a Nash Equilibrium (NE) - thus
achieving optimal energy-efficiency.

For evaluation, we design an edge hardware testbed pro-
totype and implement the EdgeURB framework along with
services such as, server discovery, user identification, control
information exchange, and virtual-to-physical resource map-
ping [5]. Experiments validate EdgeURB’s effectiveness in
terms of latency satisfaction, resource allocation, and resolu-
tion adaptation for varying edge resource availability. The re-
sults demonstrate the success of the framework in successfully
satisfying the latency, application outcome accuracy, energy
consumption requirements of heterogeneous applications. To
add more scalability that the testbed can provide, we perform
extensive simulations to demonstrate EdgeURB schedulability
and scalability for a large number of user devices and for
varying edge resource availability. EdgeURB comparison re-
sults against traditional uni-dimensional algorithms show that
EdgeURB is able to increase the schedulability between 33.5%
to 58% with average utility improvement of 10%, on a case to
case basis. The results also demonstrate EdgeURB’s upto 36%
analytics’ accuracy improvement over baseline algorithms at
the cost of merely 6% increase in energy consumption.

The rest of the paper is organized as follows. Section II
presents the related work. Section III proposes the system
model and problem formulation. Section IV presents the
resource allocation algorithm. Section V discusses the user-
server assignment. Section VI discusses testbed and simula-
tion. Section VII concludes the paper.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)
N

O
M

S
20

24
-2

02
4

IE
EE

 N
et

w
or

k
O

pe
ra

tio
ns

 a
nd

 M
an

ag
em

en
t S

ym
po

si
um

 |
97

9-
8-

35
03

-2
79

3-
9/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
O

M
S5

98
30

.2
02

4.
10

57
51

31

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Real-time video analytics: The performance of video ana-
lytics is jointly determined by orchestrating resource allocation
and configuration parameters and there exists a group of work
seeking the trade-off between accuracy and the cost (i.e.,
latency and energy consumption). Authors in [6] optimize
the selections of a variety of configurations, including frame
sample rate, frame resolution, video bitrate, and model variant.
In [7], the authors propose an edge-based orchestrator for
Mobile Augmented Reality (MAR). This work aims to find
the optimal server assignment and frame resolution in terms
of optimizing the trade-off between the service latency and
analytics accuracy. On the other hand, [6], [7] follow a sim-
ple network model and fair computation resource allocation.
While [8] proposes a bandwidth-efficiency framework which
jointly optimizes resource allocation and configuration adapta-
tion, the authors only consider bandwidth allocation in single
server use cases. Above work mostly focus on configuration
adaptation rather than resource allocation, whereas our prob-
lem aims at solving joint optimization of resource allocation
and configuration adaptation in multi-server scenarios.

Joint optimization in edge systems: Joint optimization
problems on edge video analytics are usually NP-hard due
to their discrete and combinatorial elements such as server
selection, channel allocation, and application model selec-
tion [9]. Typically, it is challenging and time-consuming
to find the optimal solution to such problems. Works such
as [10], [11] utilize bi-level optimization method to decouple
discrete elements from the original problems. Authors in [10]
apply a two-sided matching game to implement sub-channel
allocation, while [11] uses Hungarian method to find the
optimal offloading strategy. The authors in [12] perform a
device classification and priority determination strategy to
solve task offloading. However, few works have considered
the characteristics of video analytics applications which is
precisely our problem environment.

III. SYSTEM MODEL AND EMPIRICAL MOTIVATION

For this work, we assume an edge environment consisting
of a set of edge servers K= {1,2,...,K} where each server
has a certain amount of radio and computational resources.
We assume that multiple end-users N = {1,2,...,N} equipped
with camera enabled devices simultaneously capture videos
of a target scene and live stream the video feed to chosen
edge server(s) for real-time video analytics. The environment
also consist of centralized URB, hosted by one of the edge
servers and responsible for radio and computational resource
allocation for the real-time video processing. In this paper,
we describe the server selection problem as user-server as-
signment, i.e., an,k = {0,1}, where an,k = 1 indicates that
the n-th user is assigned to the k-th edge server; otherwise,
an,k = 0. Since one user can be assigned to only one server, we
have

∑K
k=1an,k = 1, ∀n∈N . In addition, we consider a time-

slotted optimized system where each time slot t∈{1,2,3,...T}
is further divided into transmission and computation periods.

A. Application Model

In order to support live streaming, we assume that user
devices split their video streams into a sequence of video
segments/chunks. We also assume that the frames in each
segment need to be transmitted and processed within a single
time slot. We denote the number of frames in each segment
as sn. The latency requirement is measured by sn/τ frames
per second (fps) which indicates the constraint of the video
output (e.g., 5 fps). Additionally, we assume that the users care

about the accuracy of analytics outcome and device energy
consumption. We assume that the users are requesting different
ML models mn ∈M= {1,2,...,M} and video frame resolu-
tions un ∈U = {128×128,...,640×640} with some specific
performance requirements. Ideally, these configurations should
be adjusted according to the actual edge resource availability.

B. Application Benchmarking: An Edge System Prototype

To capture the characteristics of the video analytics’ perfor-
mance metrics in a realistic edge environment, we design an
edge system prototype with one edge server implemented on
a Dell desktop equipped with NVIDIA GeForce RTX 2060
(1920 CUDA cores). The edge server also has a wireless
component, an eNodeB (LTE base station) installed on a Dell
desktop equipped with Intel i7-10700k @3.8GHz and 32GB
RAM with an Ettus B210 USRP device implementing the
RF front-end using OpenAirInterface (OAI) and OpenAir-CN
platforms. The edge server and the eNodeB are connected
through a 1 Gbps Ethernet cable mimicking ‘single-unit’ setup.
A Nokia 2.2 Android smartphone is used as the user device
which continuously sends the video frames to the edge server
through the allocated sub-channels (from eNodeB). For the
video frames, we use COCO 2014 video dataset that is pre-
installed on the end-device.

To study the accuracy of user selected ML models, the
edge server runs a well-known object detection algorithm,
viz., YOLOv5. For the benchmarking experiments, we test
four such models of YOLOv5 (e.g., v5x, v5l, v5m, v5s). We
obtain the voltage (V) and current (A) readings of the end-
user device in real-time by using Android Battery Manager
and estimate the energy consumption in Joules (J) during the
transmission period.Overall, we measure the network delay
and energy consumption of user devices when total channel
bandwidth is adjusted to 1.8 MHz, 3.6 MHz, and 5.4 MHz.
We also run the same experiments under a Wi-Fi/2.4 GHz
(802.11n) environment (instead of LTE) where the bandwidth
is 20 MHz in order to establish the universality of the results.

C. Analytics Accuracy and Computation Latency Models

We define analytics accuracy as the average precision IOU0.5

(intersection over union). The accuracy results of YOLOv5
against different frame resolutions (measured by un×un) are
shown in Fig. 1(a). As expected, higher resolution leads to
better accuracy and for fixed frame resolution, different models
have different accuracies. The figure demonstrates that the
relationship between accuracy and video frame resolution can
be fitted into a concave function. Here, the dashed lines
indicate the fitted accuracy with mean squared error (MSE)
less than 0.01. Based on the observations, we characterize the
accuracy of a video segment for a given model mn as:

Φi(un;mn) = sn(αi1mn
−
αi2mn

u
α

i3
mn
n

)

where the functions have different convergence features and
maximum values. We also observe that the YOLOv5 computa-
tion latency increases as frame resolution increases with larger
models consuming longer computation times (in Fig. 1(b)).
Thus, such relationship can be fitted into a convex function.
Thus, the fitted latency follows:

ltn,k=

{
sn

Φc(un;mn)
yn,k

an,k = 1, yn,k > 0

0 otherwise
(1)

where Φc(un;mn) =αc1mn
u3
n+αc2mn

is the computational com-
plexity w.r.t. the video frame resolution un and model mn. The
amount of shared computational resources is denoted by yn,k
with constraint

∑
n∈N yn,k =Yk, ∀k∈K.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (a) Model accuracyand (b) Computation latency

Fig. 2: (a) Network latency and (b) Energy consumption per frame

D. Network Latency and Energy Consumption Models

For modeling the network latency, we first define ηn,k
as the Signal-to-interference-plus-noise ratio (SINR) of the
communication between the n-th user device and the k-th edge
server (i.e., its eNodeB). Thus, the achievable data rate is:

rn,k =xn,k log2(1+ηn,k), ∀n∈N , ∀k∈K (2)
where the amount of shared network bandwidth is denoted by
xn,k with the constraint

∑
n∈N xn,k =Xk, ∀k∈K (i.e., each

edge server has different amount of available bandwidth Xk).
We assume that for a device, the average data rate is fixed
under the given bandwidth as long as the SINR between the
user device and the edge server remains unchanged.

The results of per frame network latency are shown in
Fig. 2(a). The number of pixels is measured by u2

n (i.e., width
× height). As expected, we notice that the network latency
increases linearly with the number of pixels carried by each
frame for a given data rate. Therefore, the average bits of
frames to resize with resolution un×un can be represented
as Φd(un) =α1

du
2
n+α2

d, where α1
d and α2

d are constants [8].
On the other hand, network latency is inversely proportional
to the data rate rn,k. Now since the user device transmits an
entire video segment to the edge server in each time slot,
the size of the segment sn determines the overall networking
latency. Based on these observations, our network latency
model ln,k, ∀n∈N is defined as:

ltn,k=

{
sn

Φd(un)
xn,k log2(1+ηn,k) an,k = 1, xn,k > 0

0 otherwise
(3)

where we consider the value of SINR (i.e., ηn,k) as a constant
during the optimization (e.g., users mobility is limited while
sending the video frames). However, the SINR can change
when the user device connects to other edge servers.

Nevertheless, energy consumption results, as shown in
Fig. 2(b), share the same characteristics of network latency
in terms of the number of pixels and the bandwidth. Since
the energy consumption can be interpreted as the transmission
power times the transmission time, we model energy consump-
tion en,k, ∀n∈N as:

en,k=

{
sn(Φd(un)

xn,k log2(1+ηn,k)pn) an,k = 1

0 otherwise
(4)

where pn is the unit transmission energy consumption (i.e.,
pn =Vn×An) of the user device (in Watts). It is assumed that
user devices can have different unit energy consumption.

E. Problem Formulation

Given a video analytics model mn and frame resolution
un, the end-to-end latency to process a video segment with
sn frames is expressed as:

ln,k=

sn
(

Φd(un)
xn,k log2(1+ηn,k) + Φc(un;mn)

yn,k

)
an,k = 1

0 otherwise
(5)

In order to model the trade-off between analytics accuracy
and energy consumption, we introduce β as the desired balance
factor between energy consumption and accuracy. The multi-
objective optimization problem, thus, can be formulated as:

min
N∑
n=1

K∑
k=1

an,k

(
βen,k−Φi(un;mn)

)

s.t.C1:
N∑
n=1

an,kyn,k =Yk, ∀k∈K

C2:
N∑
n=1

an,kxn,k =Xk, ∀k∈K

C3: an,k ∈{0,1}, ∀n∈N , ∀k∈K

C4:
K∑
k=1

an,k = 1 ∀n∈N , ∀k∈K

C5:
K∑
k=1

an,kln,k ≤ τ, ∀n∈N

C6:un ∈{umin,...,umax}, ∀n∈N (P1)
In EdgeURB, we propose a two-stage solution for (P1) which
is a classic NP hard Mixed-Integer Nonlinear Programming
(MINLP) problem. In the 1st stage, we convert P1 into a
convex integer relaxation and use a naive rounding method
to achieve an initial user-server assignment. While in the 2nd

stage, we divide it into two sub-problems as:
User-Server Assignment (UA)︷ ︸︸ ︷

argmin
a

{
argmin

x,y,u

N∑
n=1

K∑
k=1

an,k

(
βen,k−Φi(un;mn)

)
︸ ︷︷ ︸

Resource Allocation (RA)

}
(6)

The inner sub-problem of joint network and computational
resource allocation (RA) aims to find the optimal resource
allocation and frame resolution strategies that minimizes the
cost for all users. Whereas, the outer sub-problem of user-
server assignment (UA) is a strategic game where users are
modeled as selfish in nature and are always willing to select
the best edge server to minimize their own cost. The solution
to the 2nd stage of P1 is obtained by performing RA and UA
alternatively and iteratively until convergence. We denote these
two sub-problems as P(a,x,y,u) and P(a,x,y,u), respectively.

IV. RA: JOINT NETWORK AND COMPUTATIONAL

In this section, we first relax the video frame resolutions
u, ∀n∈N to continuous variables û, ∀n∈N . Once the op-
timal û∗ is obtained, we convert it back the nearest integer
resolution (defined in U) that does not violate the constraint
C5. This makes P(a,x,y,û) a convex optimization problem in
terms of resource allocation and resolution selection:

P(a,x,y,û) : argmin
x,y,û

N∑
n=1

K∑
k=1

an,k

(
βen,k−Φi(ûn;mn)

)
s.t.C1,C2,C5

C6 : û∈ [umin,umax]

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

A. Convexity of P(a,x,y,û)

Once UA a is fixed, we observe that the Hessian matrix of
P(a,x,y,û), being positive semi-definite, makes the problem
convex w.r.t. variables xn,k, yn,k, and ûn. Therefore, applying
the Karush-Kuhn-Tucker (KKT) conditions yields the optimal
solution. We first introduce a set of Lagrangian multipliers Θ:
{λ, ν, µ} that are associated with network resource alloca-
tion, computation resource allocation, and latency constraints
respectively. Then, we formulate the following Lagrange func-
tion of P(a,x,y,û):

L(a,x,y,û,Θ) =
N∑
n=1

K∑
k=1

an,k

(
βen,k−Φi(ûn;mn)

)

+
K∑
k=1

λk

(N∑
n=1

an,kxn,k−XK

)
+

K∑
k=1

νk

(N∑
n=1

an,kyn,k−YK
)

+
N∑
n=1

µn

(K∑
k=1

an,kln,k−τ
)

+
N∑
n=1

σn(
K∑
k=1

an,k−1)

(7)
We first initialize ûn =umin. Once the resolution ûn is se-
lected, the computation and network resource allocation can
be adjusted. Subsequently, the value of ûn is updated based
on the new resource allocation results.

B. Network Resource Allocation

Based on the KKT conditions and Eq. (7), the optimal
network resource allocation can be computed by solving:

OL(a,x,y,û,Θ)|xn,k
=λkan,k

−an,k
sn(βpn+µn)Φd(ûn)

(xn,k)2 log2(1+ηn,k)
= 0

(8)

where the optimal x∗n,k is obtained as:

x∗n,k=

{√
sn(βpn+µn) Φd(ûn)

log2(1+ηn,k)×
√

1
λk

an,k = 1

0 otherwise
Since the edge server allocates all its network resources to the
users in Nk|an,k=1, it results in users choosing higher frame
resolution un in getting more resources. Therefore:

x∗n,k =
an,k×

√
sn(βpn+µn) Φd(ûn)

log2(1+ηn,k)∑
i∈N|ai,k=1

√
si(βpi+µi)

Φd(ûi)
log2(1+ηi,k)

×Xk, ∀k∈K

(9)
We notice that x∗n,k is determined by the size of the video
segment sn, frame resolution ûn, and transmission energy pn.

C. Computation Resource Allocation

Similar to the analysis in Section IV-B, the optimal compu-
tation resource allocation for users can be expressed as:

OL(a,x,y,û,Θ)|yn,k
= an,k(νk−µnsn

Φc(ûn;mn)

(yn,k)2
) = 0

(10)
where

y∗n,k=

{√
snµnΦc(ûn;mn)×

√
1
νk

if an,k = 1

0 otherwise
Substituting multiplier νk leads to:

y∗n,k =
an,k×

√
snµnΦc(ûn;mn)∑

i∈N|ai,k=1

√
siµiΦc(ûi;mi)

×Yk, ∀k∈K (11)

We notice that user applications with larger DNN models,
high frame resolution, and long video segment require more
computation resources.

D. Video Frame Resolution

Next, we find the best frame resolution û∗n in terms of
minimizing the weighted cost without violating the latency
constraint. This problem is defined as:

û∗n = argmin
û∈[umin,umax]

L(a,x,y,û,Θ)

Here the first derivative of L w.r.t. ûn is defined by:

OL(a,x,y,û,Θ)|ûn
= an,k

sn(βpn+µn)OΦd(ûn)

xn,k log2(1+ηn,k)

−an,kOΦi(ûn;mn)+an,k
OΦc(ûn;mn)

yn,k

(12)

According to the fitted functions defined in Section III:
OΦd(ûn) = 2α1

dûn

OΦi(ûn;mn) = sn
αi2mn

(ûn)α
i3
mn+1

OΦc(ûn;mn) = 3αc1mn
(ûn)2

(13)

where α(·) are the fitted parameters. Combined with Eq. (12)
and Eq. (13), the derivative function OL(a,x,y,û,Θ)|ûn is
monotonically increasing when ûn> 0. The optimal resolution
û∗n can thus be found with the following expression:

û∗n=


umin OL|ûn

> 0
ûn OL|ûn=û∗

n
= 0

umax OL|ûn < 0

The proposed bisection method terminates when |umin−
umax| ≤ ε, where ε is a tolerance factor (e.g., 32×32).

V. UA: USER-SEVER ASSIGNMENT

In this section, we aim to address the other sub-problem
UA, i.e., P(a,x,y,u), defined as:

P(a,x,y,u) : argmin
a

N∑
n=1

K∑
k=1

an,k

(
βen,k−Φi(un;mn)

)
s.t.C1,C2,C5

Here, the original problem P1 reduces to P(a,x,y,u), which
is a classic 0−1 integer linear program. To solve P(a,x,y,u)
efficiently, we utilize linear programming relaxation to obtain
an initial assignment. Afterward, a strategic game is applied
to improve the quality of that initial assignment.

A. Integer Relaxation

We first relax the binary variables an,k to ân,k ∈ [0,1], where
an,k can be interpreted as the fraction of time that the n-th
user utilizes the resources on the k-th edge server. The relaxed
optimization of P(â,x,y,u) is defined as:

â∗n,k = argmin
â∈[0,1]

L(â,x,y,u,Θ)

Then, according to the KKT conditions:

â∗n,k=


0 OL|ân,k

> 0
0< ân,k < 1 OL|ân,k=â∗n,k

= 0

1 OL|ân,k
< 0

(14)

where L|ân,k
is the first derivative of the Lagrange function

w.r.t. ân,k, which is express as:
OL(â,x,y,u,Θ)|ân,k

=Un,k+Ln,k+σn

Un,k =βen,k−Φi(un;mn)

Ln,k =µnln,k

(15)

where σn is a Lagrange multiplier that is associated to the
constraint

∑K
k=1 ân,k = 1, Un,k and Ln,k indicate the weighted

cost and the end-to-end latency. We consider ân,k as the
preference of the n-th user over the k-th edge server, which
is jointly determined by Un,k and Ln,k. Combining Eq. (14)

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

with Eq. (15), we get:

â∗n,k = 1−Un,k+Ln,k+σn
ρ

(16)

where ρ� 1 is a positive value that enforces â∗n,k to be
bounded to 1. According to P(a,x,y,u), any viable µn and
σn should facilitate all users to finish a video segment within
a single time slot τ (i.e., best case scenario) and find an optimal
edge server. Once optimized, we convert â∗n,k to a∗n,k as:

a∗n,k=
{

1 k= argmaxân,k, ∀k∈K
0 otherwise

(17)

B. Initial UA: Integer Relaxation Algorithm

Next, we update µn and σn. We define the parameter update
iteration i≤ Imax and the difference between the latency of
the current iteration and the length of a time slot as:

κin =
K∑
k=1

sn

(Φd(utn)

xtn,k log2(1+ηn,k)
+

Φc(utn;mn)

ytn,k

)
−τ

where κin< 0 indicates that the video segment from n-th user
can be processed before the end of a time slot; otherwise,
it violates constraint C5. With κin, the update rule of µn is
defined as follows:

µi+1
n =

[
µin+∆(t)κin

]+
(18)

As shown in Eq. (18), the diminishing step sizes are denoted
by ∆(t) (e.g., {1/t} 1

2). Similarly, σn is updated by:

σi+1
n =

[
σin+∆(t)(

K∑
k=1

an,k−1)
]+

(19)

C. Enhanced UA: A Strategic Game

If the relaxed solution of problem P(â,x,y,u) happens to
have all variables with values of either 0 or 1, then the solution
is optimal. However, in most cases, many of the relaxed
variables are fractional values (between 0 and 1). In such cases,
the rounded result does not guarantee the optimal solution.
When this is true, the relaxed solution gives an upper bound
of the original problem, that is, P(â∗,x,y,u)≤P(a∗,x,y,u).
Generally, methods such as Branch and Bound (B&B) and
Cutting-plane can be applied to effectively solve such discrete
and combinatorial optimization problems when facing frac-
tional values. However, such algorithms need to solve the en-
tire sub-problem P(â,x,y,u) repeatedly to evaluate candidate
solutions. This may result in huge computational complexity
when the edge environment contains a large number of user
devices and edge servers.

Thus for EdgeURB framework, we propose an Enhanced
UA where user devices are initially connected to the edge
server according to the rounded solution given in Eq. (17).
Afterward, we formulate a strategic game to further improve
the overall performance. Strategic game is a powerful tool
to transform centralized optimization problems (i.e., usually
NP-hard) into decentralized problems [13]. It provides a
sub-optimal solution with less computational overhead and
guarantees that all players are mutually satisfied, which is key
for real-world edge system implementation. Here, we define
game iteration t and formulate the game as follows:

Players: For the strategic game, we define N as the set of
players, i.e., user end-devices. It is assumed that players are
inherently selfish such that they are only concerned about
increasing their own utilities. It is a realistic assumption for
real-world mission-critical use-cases (e.g., tactical scenarios,
disaster response) where applications are managed by individ-
ual stakeholders (e.g., teams, agencies).

Fig. 3: EdgeURB framework hardware testbed prototype

Strategy: A player strategy an = {1,...,K}, ∀n∈N indicates
the selection of an edge server, with EdgeURB global strategy
denoted by A(t) = {a1(t),..,aN (t)}. We define a−n(t) as the
set of strategies made by all other players except for player n.
Utility: The utility of the players represents the negative
weighted cost. Thus, the utility function for player n can be
formulated as:

φn(an(t),a−n(t)) =−Un,k|k=an(t) (20)
The Enhanced UA problem is formulated as a strategic game
with individual utilities calculated by Eq. (20). Given a−n(t),
each player chooses a best strategy an(t) to maximize its own
utility (in a selfish manner) where ∀n∈N ,

a∗n,k=

{
1 k= argmax

an(t)∈{1,2,...,K}
φn(an(t),a−n(t))

0 otherwise
(P3)

It is to be noted that (P3) can be treated as N×K paralleliz-
able resource allocation problems. Thereby the computational
complexity is reduced to polynomial time. In order to solve
P3, EdgeURB assigns a ‘Helper’ process to each user device
(randomly or from the nearest edge node). The helpers apply
the Best Response Strategy algorithm in response to P3. This
is done by iterating all the edge servers under a given profile
a−n and finding the best update strategy an(t−1)→ an(t) for
utility maximization.

Nash equilibrium: Since any unilateral strategy update may
affect the preferences of other players and may lead to
continuous updating of individual strategies, EdgeURB aims
to find a Nash equilibrium (NE) for the proposed game:

Definition 1: A strategy profile A∗= {a∗1,a∗2,...,a∗N} is a
NE of a strategic game, if at the equilibrium S∗, no player can
further increase its utility by unilaterally altering its strategy,
i.e.,

un(a∗n,a
∗
−n)≥un(a′n,a

∗
−n),∀a′n ∈A,n∈N

In accordance to Definition (1), the URB broadcasts the
current global strategy profile A(t−1) to all the ‘Helpers’.
The ‘Helpers’ solve P3 and propose the best update request
an(t−1)→ an(t) to the EdgeURB. At each iteration t, the
users in need submit their update requests to the URB se-
quentially. Upon each submission, the updated global strategy
profile A(t) is again forwarded to the ‘Helpers’ when the URB
waits for the next update request. When there is no new update
request, the process terminates and returns the final outcomes
of UA and RA.

VI. PERFORMANCE EVALUATION

In this section, we present a testbed based implementation
and experimental results, followed by extensive simulation
results. The hardware limitations of the testbed allows the
system to be evaluated for only a small number of edge servers
and user devices. Thus, via simulation we evaluate EdgeURB’s
performance against a larger set of system components.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

A. Testbed Design, Implementation, and Experiment Results

In order to evaluate EdgeURB performance on ‘near real-
world’ edge systems, we use the hardware prototype described
in Section III-B, as shown in Fig. 3. In the testbed, the URB
and the edge server are placed on the same physical machine,
while other framework and eNodeB components (e.g., core
network, ran controller, and flexran controller) are installed
on another. Since server/service discovery [14] is one of the
key issues in the implementation of edge systems, we consider
access point name (APN) as an edge server identifier and its
associated access point (either LTE eNodeB or Wifi AP). We
assume that the URB contains a list of APNs that are available
in the system and the user devices are initially connected to
the URB (i.e., the APN of the URB is known in advance).

Application Profiling: Since most well-known video an-
alytics models are publicly available, we assume that the
pre-trained models are pre-cached in edge servers and their
accuracy and computation latency models are known, as in
Fig. 1. Once user devices are connected to the URB, the
URB will respond by sending the existing APN list. Based on
received APN list, the user devices start to establish a short
connection period with each edge server in the list to obtain
network quality (i.e., log2(1+ηn,k) in Eq. 2). Afterwards, the
URB starts to collect the user information including signal
strengths, energy consumption (e.g., voltage and current),
application requirement (i.e., the selected model and the length
of the video segment) and user identification (i.e., International
Mobile Subscriber Identity). Upon completion, the URB per-
forms the optimization and delivers the resource allocation
results to each edge server. In the meantime, the APN of the
edge server that is assigned to the user will be sent to the user
device as the final user-server assignment.

Resource Mapping: For resource allocation, we need to
convert the virtual resources (i.e., x and y) to the actual
radio and computational resources. In the EdgeURB prototype
LTE setup, the value of x indicates the amounts of allocated
bandwidth. Therefore, we map x to the number of allocated
sub-channels. Given that the sub-channel bandwidth is 180
KHz, the number of allocated sub-channels is computed by
bx/180c. As for computational resources, we consider the
GPU-enabled (NVIDIA GeForce RTX 2060) edge system for
real-time video processing. EdgeURB computational resource
allocation scheme follows [15], where the GPU is shared by
multiple video streams in a time-division manner i.e., the
system grants the exclusive GPU usage to different analytics
models during consecutive time periods. This method avoids
the model interference and reload overhead caused by multiple
video streams using a single GPU concurrently. In order to
preserve the real-time processing characteristics, the GPU
usage time frame Tg is set to a very small value (i.e., 300 ms).
Here, we measure the computational complexity mentioned in
Section III-C as the pure GPU inference time and convert y
to the length of GPU usage time by the following mapping
function:

yn,k→
yn,k∑N
i=1yi,k

×Tg, ∀n∈N , ∀k∈K

Testbed Experiment Results: The results of latency satis-
faction (C5 in P1), resource allocation, accuracy and energy
consumption are shown in Fig. 4 with two bandwidth settings:
X = 3.6 MHz and X = 7.2 MHz (i.e., 20 and 40 LTE sub-
channels). In this experiment, we let User 1 select model
YOLOv5x and require 3 fps (computationally intensive), while
User 2 chooses model YOLOv5s and needs 6 fps (bandwidth-
hungry). Here, we choose β= 0.1 as the balance factor (more
discussions on β are given in Section VI-B). The time slot

is configured as τ = 1 s. Fig. 4(a) and Fig. 4(b) show the
network (NT) and computation (CT) latency. We notice that
the network latency dominates the overall latency in both
cases. The figure also demonstrates that all the video segments
from the two users can be processed within the pre-defined
time slot τ = 1 (the dotted line).

We also observe that when there are insufficient bandwidth
as shown in Fig. 4(d), User 2 dominates the network resource
while the User 1 dominates the computation resource. This
is due to differences in the computational complexity and
fps requirements of their analyics models. However, with
sufficient bandwidth condition (i.e., 7.2 MHz), the overall re-
source allocation shows a proportional distribution. As shown
in Fig. 4(e), User 1 occupies 40% of the bandwidth and
GPU usage time and User 2 takes the remaining 60%. Such
distribution is determined by the trade-off between accuracy
and energy consumption. The results of accuracy and energy
consumption are shown in Fig. 4(c) and Fig. 4(f). When the
bandwidth increases from 3.6 MHz to 7.2 MHz, the accuracy
increases while the energy consumption decreases. The above
experiment results demonstrate the success of EdgeURB in
handling video analytics with heterogeneous requirements
under varying edge resource availability.

B. Simulation Results

Next, we show simulation results to validate EdgeURB
schedulability and scalability when facing a large number of
heterogeneous applications and requirements due to the testbed
prototype’s hardware limitations. In the simulation, the users
use YOLOv5 algorithm with different analytics models and fps
requirements (e.g., the length of a time slot τ is set to 1s and
the fps varies from 5 to 15). We allow applications to choose a
resolution from 128×128 to 640×640 which is a multiple of
32×32. The user device energy consumption parameters are
obtained from testbed experiments as they are representative
of common smartphone settings. The signal strength of the
wireless channels is measured in dB. The available bandwidth
for each edge server is randomly selected between {5MHz,
10MHz, 15MHz, 20MHz}. Such SNR and bandwidth values
together model heterogeneous wireless resources. On the other
hand, the GPU speed of edge servers is accelerated upto 10X
based on the computing capacity of NVIDIA GeForce RTX
2060. We randomly create 50 test cases for each simulation.
Through such massive simulations, we demonstrate the valid-
ity and efficiency of EdgeURB in handling different real-world
scenarios.

Baseline algorithms: For fair comparison against
EdgeURB, we choose the following set of traditional
de-factor edge resource management algorithms.

1) maxSNR: User devices are connected to the edge
server which gives the maximum signal strength.

2) randLoad: User devices are evenly assigned to edge
servers, i.e., each server hosts at most N

K applications.
3) fairAlloc: Under fair allocation strategy, both the net-

work and computational resources are evenly allocated
to the connected users.

The impact of β: We first study the impact of the balance
factor β in handling the trade-off between energy consumption
and accuracy (normalized to 0−1). The results are shown in
Fig. 5 with 16 users and 4 edge servers. Both the energy con-
sumption and accuracy converge to baseline performance (i.e.,
maxSNR with fixed resolution) for larger β≥ 30, where the
energy consumption for transmitting each frame is 1.07×10−2

J and the accuracy is 0.25. When β= 0 (i.e., indicating that
the users are not concerned about the energy consumption at
all), the maximum accuracy is bounded to the computation

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Testbed experiment results on latency satisfaction, resource allocation, accuracy and energy consumption.

Fig. 5: (a) Energy consumption and (b) Accuracy against different β

capacity. In Fig. 5, when the video frame resolution is fixed at
640×640, the maximum accuracy is 0.54. However, the actual
accuracy is limited to 0.52 due to the processing constraint.
That is, if the users continue to increase the resolution, edge
servers start to fail in completing the processing of all video
segments in time. As shown in Fig. 6, for the values in
between these two extremes β= 0 and β= 40, e.g., at β= 8,
the proposed EdgeURB is able to improve the accuracy by
36% at the cost of only 6% increase in energy consumption.
Consequently in the following simulations and experiments,
we choose β= 8 as the balance factor to achieve balanced
accuracy and energy comparison.

Schedulability vs. scalability: It is critical that EdgeURB
framework is able to handle practical real-world applications
with heterogeneous user requests (e.g., different fps and ana-
lytics models). We demonstrate the importance of user-server
assignment (UA) algorithm towards the overall EdgeURB
performance and scheduling of a large number of users. For
the evaluation, we introduce a new performance indicator,
viz., the probability that EdgeURB can successfully schedule
user-server assignment. A successful assignment signifies that
all video segments can be processed in time at least with a
minimum resolution of 128×128. The results are shown in
Fig. 7 with 4 edge servers and β= 8.

We observe that as the number of users increases (i.e.,
N = 16 to N = 32), the competition for resources among
users becomes increasingly fierce as expected. For randLoad

Fig. 6: The accuracy and energy comparison against different β.

Fig. 7: Comparison among different user-server association strategies

algorithm where edge servers accept equal amount of users,
schedulability is ensured when there are a fewer users (N ≤
16). However, with the arrival of more users, the schedulability
starts to decline significantly. In addition, randLoad produces
a low average utility since it ignores the impact of the
signal strength ηn,k to the energy efficiency. In comparison
to randLoad, our proposed EdgeURB solution improves the
average utility by 42% while increasing the average schedu-
lability by 27.5% and upto 56% based on test cases.

Compared to randLoad, the users under maxSNR al-
gorithm are always connected to the edge server that pro-
vides the maximum signal strength i.e.,k= argmaxηn,k. The
maxSNR algorithm guarantees the most effective bandwidth
utilization, however edge servers with good signals never-
theless face offloading and computation congestion problems
caused by too many users selecting the same edge server.
Especially for limited edge resources and a large number of
users (N ≥ 24), the user-server assignment of maxSNR is
even worse than randLoad. Unlike maxSNR, our proposed
EdgeURB assigns users to the edge server that are most sought
after while avoiding congestion problems. This is achieved
by bringing the heterogeneous user requirements and the
resources availability of edge server into the optimization of
user-server assignment in problem P1.

The same figure also compares EdgeURB’s performance
against a fair resource allocation strategy, viz., the fairAlloc.
We observe that when there are enough edge resources for
small number of users to use, the performance of fairAlloc
and EdgeURB are very close. However, fairAlloc becomes
less effective when facing more users and its schedulability
starts to drop greatly once N ≥ 24. Compared to fairAlloc,
the proposed EdgeURB adapts the frame resolution and re-
source allocation according to the changes of the edge resource
availability. In addition, EdgeURB jointly considers the com-
putational complexity of the user application and achievable
data rate along with the energy consumption characteristics of
a user device (i.e., Eq. (9) and Eq. (11)). This yields a more
efficient resource sharing strategy.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: EdgeURB utility improvement over maxSNR and randLoad.

Fig. 9: Comparison of 1st stage and 2nd stage solutions

Fig. 10: An exemplary of strategy update and NE point

Probability of improvement: From the results we observe
that the utility between different test cases fluctuates greatly
(with some values in the negative region) as calculating the
improvement through average utility of all the test cases does
not reveal the actual difference. Therefore, in Fig. 8, we
demonstrate the cumulative distribution function (CDF) of
such improvements that allows a more detailed comparison
between EdgeURB and the other competing algorithms. It is to
be noted that we do not show the case with N = 32 because of
its low schedulability that makes its utility value meaningless,
in other words it violates the processing constraint. We notice
that when N = 16, the probability that the average utility has
increased by more than 10% are 0.92 and 0.38 in compared to
algorithms randLoad and maxSNR respectively. Evidently
such probabilities will increase when there are more users. In
Fig. 8, we see that at N = 28, EdgeURB is able to increase the
average utility by more than 20% for almost all the test cases
in comparison to randLoad while that value is 0.25 when
compared to maxSNR.

Evaluation and convergence of 2-stage algorithm: Fig. 9
shows the comparison between the solutions of the 1st and 2nd

stages in terms of average utility. The average improvement
against different number of users is around 9%. We also show
an example of strategy update where the system has 4 edge
servers and 32 users. The results of convergence are shown
in Fig. 10. We notice that the 2nd stage converges after the
25-th update. This convergence is guaranteed by the finite
improvement property (FIP) of the proposed game [16], [17].
Therefore, EdgeURB’s 2nd stage algorithm, using the best
response strategy to solve P3, should result a NE within finite
updates. Under constrained resources, we can conclude that
naive strategies such as fairAlloc, randLoad, and maxSNR
(from Figs. 7, 8) fail to effectively address applications which
have strict processing constraints. Inferring from all the results,
we can state that EdgeURB exhibits highly adaptive and
efficient user-server assignment when facing heterogeneous
user requests and edge resources.

VII. CONCLUSIONS

In this paper, we presented EdgeURB, a framework for
real-time video analytics at edge. We showed that unlike
existing solutions, EdgeURB jointly optimizes edge resource
management and video configuration adaptation towards sat-
isfying the real-time latency requirements of video analytics
applications. We demonstrated how the proposed framework
can find the trade-off between device energy consumption
and video analytics accuracy under given latency constraints
using a two-stage algorithm. We implemented EdgeURB on
a hardware testbed prototype to validate the framework’s
utility towards latency satisfaction and resolution adaptation
under varying edge resources. We also performed extensive
simulations to demonstrate EdgeURB’s improvements towards
schedulability and scalability over other baseline strategies.

REFERENCES

[1] X. Zhang, A. Pal, and S. Debroy, “Effect: Energy-efficient fog computing
framework for real-time video processing,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021, pp. 493–503.

[2] X. Zhang, M. Li, A. Hilton, A. Pal, S. Dey, and S. Debroy, “End-
to-end latency optimization of multi-view 3d reconstruction for disaster
response,” in 2022 10th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2022, pp. 17–24.

[3] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[4] J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed deep
learning model for intelligent video surveillance systems with edge
computing,” IEEE Transactions on Industrial Informatics, 2019.

[5] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,” in
2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2020, pp. 234–244.

[6] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[7] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orches-
trator for mobile augmented reality,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 756–764.

[8] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 257–266.

[9] X. Zhang and S. Debroy, “Migration-driven resilient disaster response
edge-cloud deployments,” in 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA), 2019, pp. 1–8.

[10] Y. Chen, B. Ai, Y. Niu, Z. Zhong, and Z. Han, “Energy efficient
resource allocation and computation offloading in millimeter-wave based
fog radio access networks,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–7.

[11] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint
offloading and wireless resource allocation strategy in multi-mec server
systems,” in 2018 IEEE international conference on communications
(ICC). IEEE, 2018, pp. 1–6.

[12] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5g heterogeneous networks,” IEEE access, vol. 4,
pp. 5896–5907, 2016.

[13] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing,” IEEE Access, vol. 6, pp. 19 324–19 337, 2018.

[14] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the green
internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60, 2018.

[15] W.-J. Kim and C.-H. Youn, “Lightweight online profiling-based config-
uration adaptation for video analytics system in edge computing,” IEEE
Access, vol. 8, pp. 116 881–116 899, 2020.

[16] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: CUNY Hunter College Library. Downloaded on September 13,2024 at 06:16:52 UTC from IEEE Xplore. Restrictions apply.

