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Abstract: We propose extrinsic and intrinsic deep neural network archi-
tectures as general frameworks for deep learning on manifolds. Specifically,
extrinsic deep neural networks (eDNNs) preserve geometric features on
manifolds by utilizing an equivariant embedding from the manifold to its
image in the Euclidean space. Moreover, intrinsic deep neural networks
(iDNNs) incorporate the underlying intrinsic geometry of manifolds via
exponential and log maps with respect to a Riemannian structure. Con-
sequently, we prove that the empirical risk of the empirical risk minimiz-
ers (ERM) of eDNNs and iDNNs converge in optimal rates. Overall, The
eDNNs framework is simple and easy to compute, while the iDNNs frame-
work is accurate and fast converging. To demonstrate the utilities of our
framework, various simulation studies, and real data analyses are presented
with eDNNs and iDNNs.
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1. Introduction

The last two decades have witnessed an explosive development in deep learn-
ing approaches. These approaches have achieved breakthrough performance in
a broad range of learning problems from a variety of applications field such as
imaging recognition [32], speech recognition [17], natural language processing
[2] and other areas of computer vision [45]. Deep learning has also served as the
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main impetus for the advancement of recent artificial intelligence (AI) technolo-
gies. This unprecedented success has been made possible due to the increasing
computational prowess, availability of large data sets, and the development of
efficient computational algorithms for training deep neural networks. There have
been increasing efforts to understand the theoretical foundations of deep neural
networks, including in the statistics community [42, 28, 3, 25, 30, 12].

Most of these efforts from model and algorithmic development to theoretical
understanding, however, have been largely focused on the Euclidean domains.
In a wide range of problems arising in computer and machine vision, medical
imaging, network science, recommender systems, computer graphics, and so on,
one often encounters learning problems concerned with non-Euclidean data, par-
ticularly manifold-valued data. For example, in neuroscience, data collected in
diffusion tensor imaging (DTI), now a powerful tool in neuroimaging for clinical
trials, are represented by the diffusion matrices, which are 3×3 positive definite
matrices [1]. In engineering and machine learning, pictures or images are often
preprocessed or reduced to a collection of subspaces with each data point (an
image) in the sample data represented by a subspace [18, 43]. In machine vision,
a digital image can also be represented by a set of k-landmarks, the collection of
which form landmark-based shape spaces [27]. One may also encounter data that
are stored as orthonormal frames [10], surfaces, curves, and networks [31]. The
underlying space where these general objects belong falls in the general cate-
gory of manifolds whose geometry is generally well-characterized, which should
be utilized and incorporated for learning and inference. Thus, there is a natural
need and motivation for developing deep neural network models over manifolds.

This work aims to develop general deep neural network architectures on man-
ifolds and take some steps toward understanding their theoretical foundations.
The key challenge lies in incorporating the underlying geometry and structure
of manifolds in designing deep neural networks. Although some recent works
propose deep neural networks for specific manifolds [46, 16, 23, 24], there is a
lack of general frameworks or paradigms that work for arbitrary manifolds. In
addition, the theoretical understanding of deep neural networks on manifolds
remains largely unexplored. To fill in these gaps, in this work, we make the fol-
lowing contributions: (1) we develop extrinsic deep neural networks (eDNNs) on
manifolds to generalize the popular feedforward networks in the Euclidean space
to manifolds via equivariant embeddings. The extrinsic framework is conceptu-
ally simple and computationally easy and works for general manifolds where
nice embeddings such as emquivariant embeddings are available; (2) we develop
intrinsic deep neural networks (iDNNs) for deep learning networks on mani-
folds employing a Riemannian structure of the manifold; (3) we study theoret-
ical properties such as approximation properties and estimation error of both
eDNNs and iDNNs, and (4) we implement various deep neural networks over a
large class of manifolds under simulations and real datasets, including eDNNs,
iDNNs and tangential deep neural networks (tDNNs), which is a special case of
iDNNs with only one tangent space.

The rest of the paper is organized as follows. In Section 2, we introduce the
eDNNs on manifolds and study their theoretical properties. In Section 3, we
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propose the iDNNs on manifolds that take into account the intrinsic geometry
of the manifold. The simulation study and the real data analysis are carried out
in Section 4. Our work ends with a discussion.

Notation For two real numbers x, y ∈ R, we write x ∨ y = max{x, y} and
x∧y = min{x, y}. For a real number x ∈ R, we write �x� = max{z ∈ Z : z ≤ x},
and �x	 = min{z ∈ Z : z ≥ x}. We write a � b or b � a if there exists some
universal constant C > 0 such that a ≤ Cb, and write a � b if both a � b
and a � b hold. For two real-valued functions f1 and f2 defined on a set X , we
denote ‖f1 − f2‖L∞(X ) = supx∈X |f1(x) − f2(x)|.

2. Extrinsic deep neural networks (eDNNs) on manifolds

2.1. eDNNs and equivariant embeddings

Let M be a d-dimensional manifold. Let (xi, yi), i = 1, . . . , n be a sample of
data from some regression model with input xi ∈ M and output yi ∈ R, and we
propose deep neural networks for learning the underlying function f : M → R.
The output space can be {1, . . . , m} for a classification problem. In this work, we
propose to develop two general deep neural network architectures on manifolds
based on an extrinsic and an intrinsic framework, respectively. The first frame-
work employs an equivariant embedding of a manifold into the Euclidean space
and builds a deep neural network on its image after embedding, which is the fo-
cus of this section, while the intrinsic framework utilizes Riemannian or intrinsic
geometry of the manifold for designing the deep neural networks (Section 3).
Our initial focus will be on proposing appropriate analogs of feed-forward neural
networks on manifolds which are popular deep neural networks in the Euclidean
space and suitable objects for theoretical analysis. The theoretical properties of
the proposed geometric deep neural networks will be studied.

Before describing our proposed frameworks, we introduce our mathematical
definition of deep neural networks and related classes. A deep neural network
f̃ with depth L and a width vector (p0, · · · , pL+1) ∈ N

L+2 is a function of the
form

f̃(x̃) := AL+1 ◦ σL ◦ AL ◦ · · · ◦ σ1 ◦ A1(x̃), (1)

where Al : Rpl−1 → Rpl is an affine linear map defined by Al(x̃) = Wlx̃ + bl for
pl ×pl−1 weight matrix Wl and pl dimensional bias vector bl, and σl : Rpl → R

pl

is an element-wise nonlinear activation map with the ReLU activation func-
tion σ(z) = max{0, z} as a popular choice. We referred to the maximum value
maxj=1,...,L pj of the width vector as the width of the deep neural network. For
θ =

(
(W1, b1), . . . , (WL+1, bL+1)

)
, the collection of all weight matrices and bias

vectors, we denote by ‖θ‖0 the number of non-zero parameter values (i.e., the
sparsity) and by ‖θ‖∞ the maximum of parameters. We denote by F(L, (p0 ∼
P ∼ pL+1), S, B) the class of deep neural networks with depth L, input di-
mension p0, width P , output dimension pL+1, sparsity S and the maximum of
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parameters B. For simplicity, if the input and output dimensions are clear in
the context, we write F(L, P, S, B) = F(L, (p0 ∼ P ∼ pL+1), S, B).

Let J : M → R
D be an embedding of M into some higher dimensional Eu-

clidean space RD (D ≥ d) and denote the image of the embedding as M̃ = J(M).
By definition of an embedding, J is a smooth map such that its differential
dJ : TxM → TJ(x)R

D at each point x ∈ M is an injective map from its tan-
gent space TxM to TJ(x)R

D, and J is a homeomorphism between M and its
image M̃ . Our idea of building an extrinsic deep neural network (eDNN) on
manifold relies on building a deep neural network on the image of the manifold
after the embedding. The geometry of the manifold of M can be well-preserved
with a good choice of embedding, such as an equivariant embedding which will
be defined rigorously in Remark 2.2 below. The extrinsic framework has been
adopted for the estimation of Fréchet means [5], regression on manifolds [34],
and construction of Gaussian processes on manifolds [33], which have enjoyed
some notable features such as ease of computations and accurate estimations.

The key idea of proposing an extrinsic feedforward neural network on a man-
ifold M is to build a one-to-one version of its image after the embedding. More
specially, we say that f is an eDNN if f is of the form

f(x) = f̃(J(x)), (2)

with a deep neural network f̃ . We define the eDNN class induced by F(L, P, S, B)
as

FeDNN (L, P, S, B) = {f = f̃ ◦ J : f̃ ∈ F(L, P, S, B)}

The extrinsic framework is very general and works for any manifold where
a good embedding, such as an equivariant embedding, is available. Under this
framework, training algorithms in the Euclidean space, such as the stochastic
gradient descent (SGD) with backpropagation algorithms, can be utilized work-
ing with the data (J(xi), yi), i = 1, . . . , n, with the only additional computation
burden potentially induced from working higher-dimensional ambiance space.
In our simulation Section 4, the extrinsic deep neural network yields better
accuracy than the Naive Bayes classifier, kernel SVM, logistic regression clas-
sifier, and the random forester classifier for the planar shape datasets. Due to
its simplicity and generality, there is a potential for applying eDNNs in medical
imaging and machine vision for broader scientific impacts.

Remark 2.1. In [41] and [7], a feedforward neural network was used for non-
parametric regression on a lower-dimensional submanifold embedded in some
higher-dimensional ambient space. It showed that with appropriate conditions
on the neural network structures, the convergence rates of the ERM would de-
pend on the dimension of the submanifold d instead of the dimension of the
ambient space D. In their framework, they assume the geometry of the subman-
ifold is unknown. From a conceptual point of view, our extrinsic framework can
be viewed as a special case of theirs by ignoring the underlying geometry. In this
case, the image of the manifold M̃ = J(M) can be viewed as a submanifold in
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Fig 1. An simple illustration of equivariant embeddings

R
D, so their results follow. On the other hand, our embedding framework allows

us to work with very complicated manifolds, such as the quotient manifolds for
which no natural ambient coordinates are available. An example is the planar
shape which is the quotient of a typically high-dimensional sphere consisting of
orbits of equivalent classes, with the submanifold structure only arising after the
embedding. And such an embedding is typically not isometric.

In [7], the charts were constructed by intersecting small balls in R
D with the

submanifold M . In our case, we provide explicit charts of the submanifold based
on the knowledge of the geometry of the original manifold M and the embedding
map J that works with the ambient coordinates in R

D.

Remark 2.2. One of the essential steps in employing an eDNN is the choice of
the embedding J , which is generally not unique. It is desirable to have an embed-
ding that preserves as much geometry as possible. An equivariant embedding is
one type of embedding that preserves a substantial amount of geometry. Figure 1
provides a visual illustration of equivariant embedding. Suppose M admits an
action of a (usually ‘large’) Lie group H. Then we say that J is an equivariant
embedding if we can find a Lie group homomorphism φ : H → GL(D,R) from
H to the general linear group GL(D,R) of degree D acting on M̃ such that

J(hp) = φ(h)J(p)

for any h ∈ H and p ∈ M . For example, in many cases H can be an isometry
group, which is a Lie group for Riemannian symmetric spaces. In this case,
the embedding preserves a lot of symmetries of the underlying manifold. The
definition seems technical at first sight. However, the intuition is clear. If a
large group H acts on manifolds such as by rotation before embedding, such an
action can be preserved via φ on the image M̃ , thus potentially preserving many
of the geometric features of M , such as its symmetries. Therefore, the embedding
is geometry-preserving in this sense. For the case of the planar shape, which is a
collection of shapes consisting of k-landmarks modular Euclidean motions such
as rotation, scaling, and translation, which is a quotient manifold of a sphere
of dimension S2k−3, and the embedding can be given by the Veronese-whitnning
embedding which is equivariant under the special unitary group. Another example
that’s less abstract to understand is the manifold of symmetric positive definite
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matrices whose embedding can be given as the log map (the matrix log function)
into the space of symmetric matrices, and this embedding is equivariant with
respect to the group action of the general linear group via the conjugation group
action. See Section 4 for some concrete examples of equivariant embeddings
for well-known manifolds, such as the space of the sphere, symmetric positive
definite matrices, and planar shapes.

2.2. Approximation analysis for eDNNs

In this section, we study the ability of the eDNN class in approximating an
appropriate smooth class of functions on manifolds. First, we define the ball of
β-Hölder functions on a set U ∈ RD with radius A > 0 as

Cβ
D(U, A) = {f : ‖f‖Cβ

D(U) ≤ A},

where ‖ · ‖Cβ
D(U) denotes the β-Hölder norm defined as

‖f‖Cβ
D(U) =

∑
m∈ND

0 :‖m‖1≤�β�

‖∂mf‖∞

+
∑

m∈ND
0 :‖m‖1=�β�

sup
x1,x2∈U,x1 �=x2

|∂mf(x1) − ∂mf(x2)|
‖x1 − x2‖β−�β�

∞
.

Here, ∂mf denotes the partial derivative of f of order m and N0 = N ∪ {0}.
Let Cβ

D(U) = ∪A>0Cβ
D(U, A). To facilitate smooth function approximation on

manifolds, following [41], we impose an additional smooth assumption on local
coordinates which project inputs in an ambient space to a lower dimensional
space.

Definition 1. We say that a compact d-dimensional manifold M ⊂ RD has
smooth local coordinates if there exist charts (V1, ψ1), . . . , (VK , ψK), such that
for any γ > 0, ψk ∈ Cγ

D(Vk) and ψ−1
k ∈ Cγ

d (ψk(Vk)) for every k = 1, . . . , K.

The next theorem reveals the approximation ability of the eDNN architecture.

Theorem 1. Let M ⊂ R
D be a d-dimensional compact manifold and J : M →

RD be an embedding map. Assume that J(M) has smooth local coordinates.
Then there exist positive constants C1, . . . , C6 depending on none of D, β and
A such that for any N ∈ N \ {1},

sup
f0:f0◦J−1∈Cβ

D(J(M),A)
inf

f∈FeDNN (L,P,S,B)
‖f − f0‖L∞(M)

≤ C6A(1 + (β ∨ 1)D/d)2D3(β∨1)D/(2d)N−2β/d

with L = C1(β ∨ 1)D/d + 1)2 + 2D, P = C2((β ∨ 1)D/d)D(β∨1)D/d+1N , S =
C3((β∨1)D/d+1)4D2(β∨1)D/d+3N2 and B = C4((β∨1)D2/d)DNC5((β∨1)/d+1).

In the above theorem, the sparsity is of order O(N2), so we can write that
the approximation error is bounded by O(S−β/d).
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Remark 2.3. Using the improved mathematical techniques used in a series of
papers [25, 12, 35, 38], we do not require the network depth to increase as the
desired approximation error goes to 0, unlike [6, 7] and [41].

2.3. Statistical risk analysis for eDNNs

In this section, we study the statistical risk of the empirical risk minimizer
(ERM) based on the eDNN class. We assume the following regression model

yi = f0(xi) + εi (3)

for i = 1, . . . , n, where x1, . . . , xn ∈ M are i.i.d inputs following a distribution
Px on the manifold and ε1, . . . , εn are i.i.d. sub-Gaussian errors with mean zero.
We consider the ERM over the eDNN class such that

f̂eDNN = argmin
f∈FeDNN (L,P,S,B)

1
n

n∑
i=1

(yi − f(xi))2. (4)

A natural question to ask is whether the ERM type of estimators such as f̂n

defined above achieve minimax optimal estimation of β-Hölder smooth functions
on manifolds, in terms of the excess risk

R(f̂eDNN , f0) = E(f̂eDNN (x) − f0(x))2

where the expectation is taken over the random variable x ∼ Px.

Theorem 2. Assume the model (3) with a d-dimensional compact manifold
M ⊂ R

D and an embedding map J : M → RD. Moreover, assume that J(M) has
smooth local coordinates. Then there exist positive constants C1, . . . , C4 and a >
1 such that the ERM estimator f̂eDNN over the eDNN class FeDNN (L, P, S, B)
in (4) with L ≥ C1, na ≥ P ≥ C2(n/ log n)d/(4β+2d), S = C3(n/ log n)d/(2β+d)

and na ≥ B ≥ C4n(β∨1)/(4β+2d)+1 satisfies

sup
f0:f0◦J−1∈Cβ

D(J(M),A)
R(f̂eDNN , f0) �

(
log n

n

) 2β
2β+d

Remark 2.4. In the above there, we improve the logarithmic factor log3 n of
the rates of [41] and [7] to log2β/(2β+d) n. This improvement is from our approx-
imation analysis with constant depth L � 1, while those in [41] and [7] require
L � log n.

The following two remarks discuss possible extensions of our result.

Remark 2.5. Our result can be easily extended to a true function f0 with a
hierarchical composition structure which was considered in [42, 30, 12] by using
a function approximation result to such a function by neural networks [e.g.,
Theorem 4 of 12] to each f0 ◦ ψ−1

k , the component on the k-th coordinate. With
this analysis, we can get a faster convergence rate. For instance, if every f0◦ψ−1

k

has an additive structure, i.e., represented as a sum of univariate functions on
ψk(Vk), the convergence rate becomes n−2β/(2β+1) up to a logarithmic factor.
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Remark 2.6. To get the optimal rate, the sparsity of the eDNN estimator in
Theorem 2 should be selected in a non-adaptive manner in the sense that it
depends on the smoothness β and the dimension d of the manifold, but they
are unknown in practice. We may be required to use a data-adaptive method to
overcome this limitation. One simple method is to introduce a sparsity-inducing
penalty function such as the clipped L1 penalty, which was proposed by [39] for
deep learning and after that used in [12]. In these studies, a penalized deep neural
network estimator with the clipped L1 penalty can attain the optimal convergence
rate without knowing any aspect of a true function. We believe that applying a
penalization method to our eDNN architecture can lead to adaptive estimation
to β and d, but we leave the detailed derivation to future work.

3. Intrinsic deep neural networks (iDNNs) on manifolds

3.1. The iDNN architectures on a Riemannian manifold

Despite the generality and computational advantage enjoyed by eDNNs on man-
ifolds proposed in the previous section, one potential drawback is that an em-
bedding is not always available on complex manifolds such as some intrinsic
structure spatial domains. In this section, we propose a class of intrinsic deep
neural networks (iDNNs) on manifolds by employing the intrinsic geometry of
a manifold to utilize its exponential and log maps with respect to a Rieman-
nian structure. Some works construct a deep neural network on the manifold
via mapping the points on the manifold to a single tangent space (e.g., with
respect to some central points of the data) or proposing deep neural networks
on specific manifolds, in particular, matrix manifolds [21, 16]. Using a deep
neural network on a single tangent space approximation cannot provide a good
approximation of a function on the whole manifold, unless when the manifold
can be represented by a global chart [8]. Below we provide a rigorous framework
for providing a local approximation of a function on a Riemannian manifold via
Riemannian exponential and logarithm maps and thoroughly investigate their
theoretical properties.

The key ideas here are to first cover the manifold with images of the subset
of tangent spaces U1, . . . , UK under the exponential map, approximate a local
function over the tangent space using deep neural networks, which are then
patched together via the transition map and a partition of unity on the Rie-
mannian manifold. Specifically, let {x1, . . . , xK ∈ M} be a finite set of points,
such that for an open set of subsets Uk ⊂ Txk

M with k = 1, . . . , K, one has⋃K
k=1 expxk

(Uk) = M . Namely, one has
{(

expxk
(Uk), expxk

)
: k = 1 . . . , K

}
as

the charts of the manifold M .
For each k = 1, . . . , K one has orthonormal basis vk1, . . . , vkd ∈ Txk

M and
respectively the normal coordinates of x ∈ expxk

(Uk)

vj
k(x) =

〈
logxk

x, vkj

〉
for j = 1, . . . , d.
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Fig 2. The iDNN architecture on a Riemannian manifold M . Given the base points
x1, . . . , xK ∈ M and the charts Uk ⊂ Txk M for k = 1 . . . , K on the manifold M , the input
data X is mapped to the kth chart Uk after the log map logxk

(.). Afterward, the transformed
data is fed into the deep neural network fk on each chart k. The final prediction Y is given
by the partition of unity τ(.) as Y =

∑K
k=1 τk(x)fk

(
logxk

(x)
)

.

Thus

vk(x) =
(
v1

k(x), . . . , vd
k(x)

)
=

d∑
j=1

vj
k(x)vkj ∈ Txk

M.

The normal coordinate allows one to perform elementwise non-linear activation
to tangent vectors easily. For example, any 1 ≤ k < l ≤ K one has the transition
map on expxl

(Ul) ∩ expxk
(Uk)

vj
k(x) =

〈
logxk

x, vkj

〉
=

〈
logxk

expxl
vl(x), vkj

〉
for j = 1, . . . , d.

A compact manifold M always admits a finite partition of unity
{

τk : M →
R+ : k = 1, . . . , K

}
such that

∑K
k=1 τk(x) = 1, and for every x ∈ M there is

a neighbourhood of x where all but a finite number of functions are 0 (e.g.,
Proposition 13.9 of [44]). Therefore, for each function f : M → R, we can write

f(x) =
K∑

k=1

τk(x)f
(

expxk

(
logxk

x
))

=
K∑

k=1

τk(x)fk(logxk
(x)) (5)

with fk = f ◦ expxk
: Uk → R. As a result, one can model the compositions

fk = f ◦ expxk
instead of f , for which we propose to use deep neural networks.

This idea gives rise to our iDNN architecture f(x) =
∑K

k=1 τk(x)fk

(
logxk

(x)
)

.
Figure 2 illustrates the core ideas of the iDNN architecture. Given a set of points
{x1, . . . , xK} ⊂ M , we define the iDNN class with depth L, width P , sparsity
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S and the maximum of parameters B as

FiDNN (L, P, S, B) =

⎧⎨
⎩

K∑
k=1

τk(x)fk

(
logxk

(x)
)

: fk ∈ F(L, (d ∼ P ∼ 1), S, B)

⎫⎬
⎭ .

(6)

3.2. Approximation analysis for iDNNs

In this section, we investigate the approximation theory for the iDNN for smooth
functions on manifolds.

Theorem 3. Let M ⊂ R
D be a d-dimensional compact manifold. Assume that

expxk
∈ Cγ

D(Uk) for γ > β for every k = 1, . . . , K. Then there exist positive
constants C1, . . . , C6 depending on none of D, β and A such that for any N ∈
N \ {1},

sup
f0∈Cβ

D(M,A)
inf

f∈FiDNN (L,P,S,B)
‖f − f0‖L∞(M)

≤ C6A(β + 1)2d3(β∨1)/2N−2β/d

with L = C1{(β + 1)2 + 2d}, P = C2(β ∨ 1)dβ+1N , S = C3(β ∨ 1)2{(β + 1)2 +
2d}2d2β+3N2 and B = C4(β ∨ 1)dNC5((β∨1)/d+1)

Remark 3.1. Several existing works [41, 6, 7, 25] propose feedforward neu-
ral networks on a manifold that’s embedded in a higher-dimensional Euclidean
space. They utilize local charts and partition of unities, but due to the unknown
geometry of the manifold, they need to use deep neural networks to approximate
the local chart ψk, the partition of unity function τk as well as the mapping
f0 ◦ ψ−1

k for all k = 1, . . . , K. Under our iDNN framework, we utilize the Rie-
mannian geometry of the manifold and the log map. Further, the partition of
unity functions can be constructed so there is no need to approximate them
with deep neural networks. From a theoretical point of view, this gives a smaller
prefactor of order O((β+1)2d3(β∨1)/2) of the approximation error than the state-
or-art one of O(D1/2(β + 1)2d3β/2+1)) established in Theorem 6.2 of [25]. Note
that our prefactor has no dependence on the input dimension D.

Remark 3.2. Our result can be extended to an unknown partition of the unity
function. In this case, τk can be modeled by a deep neural network. If we assume
that τk is sufficiently smooth, then τk can be well approximated by a deep neural
network, which leads to a similar approximation error bound.

Remark 3.3. In our theorems, we have assumed that the underlying Rieman-
nian manifold is compact. The assumption on compactness is to ensure the ex-
istence of a nice (finite) partition of unity functions, which are feasible for prac-
tical algorithms. Compactness guarantees the existence of a partition of unity
in which for each point, only a finite number of partition of unity functions are



1170 Y. Fang et al.

non-zero, thus feasible for practical computations. Technically speaking, our the-
ory also works for non-compact manifolds, for example, for manifolds that are
locally compact.

3.3. Statistical risk analysis for iDNNs

In this section, we study the statistical risk of the ERM over the iDNN class
given by

f̂iDNN = argmin
f∈FiDNN (L,P,S,B)

1
n

n∑
i=1

(yi − f(xi))2. (7)

for the nonparametric regression model (3) where the true function f0 is β-
Hölder smooth on a manifold. The following theorem shows that the iDNN
estimator attains the optimal rate.

Theorem 4. Assume the model (3) with a d-dimensional compact manifold M
isometrically embedded in RD. Then there exist positive constants C1, . . . , C4
and a > 1 such that the ERM estimator f̂iDNN over the iDNN class
FiDNN (L, P, S, B) in (7) with L ≥ C1, na ≥ P ≥ C2(n/ log n)d/(4β+2d), S =
C3(n/ log n)d/(2β+d) and na ≥ B ≥ C4n(β∨1)/(4β+2d)+1 satisfies

sup
f0∈Cβ

D(M,A)
R(f̂iDNN , f0) �

(
log n

n

) 2β
2β+d

.

The extensions in Remarks 2.5 and 2.6 can be done also for the iDNN archi-
tecture.

4. Simulations study and real data analysis

Applications will illustrate the practical impact and utilities of our methods to
simulated data sets and some important real data sets, such as in the context
of the AFEW database, HDM95 database, the ADHD-200 dataset, an HIV
study, and others. The proposed eDNNs, tDNNs, and iDNNs will be applied
to learning problems such as regression and classification on various manifolds,
including the sphere, the planar shapes, and the manifold of symmetric positive
definite matrices, which are the most popular classes of manifolds encountered
in medical diagnostics using medical imaging and image classification in digital
imaging analysis. For the eDNN models, we list explicit embeddings below and
the corresponding lie groups that act on them equivariantly. For the iDNN
models, we elaborate on the exponential map and inverse-exponential (log) map
on those manifolds. As mentioned before, the tDNN model is the special case of
the iDNN model when K = 1, which utilizes the exponential map and inverse-
exponential map as well.
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4.1. Sphere

One of the simplest manifolds of interest is the sphere in particular in directional
statistics and spatial statistics [14, 36, 13, 26, 20]. Statistical analysis of data
from the two-dimensional sphere S

2, often called directional statistics, has a
fairly long history [14, 36, 13]. Modeling data on the sphere has also received
recent attention due to applications in spatial statistics, for example, global
models for climate or satellite data [26, 20].

To build the eDNN on the sphere, first note that Sd is a submanifold of Rd+1,
so that the inclusion map J serves as a natural embedding of Sd into R

d+1. It
is easy to check that J is an equivariant embedding with respect to the Lie
group H = SO(d + 1), the group of d + 1 by d + 1 special orthogonal matrices.
Intuitively speaking, this embedding preserves a lot of symmetry of the sphere.
On the other hand, one can use the geodesics (in this case, the big circles on
the sphere) for which the closed-form exponential map and inverse-exponential
map are available to construct the iDNN model. Furthermore, given the base
points xk for k = 1, ..., K, one has τ(x) = exp(− 1

1−‖x−xk‖2 ) by utilizing the
bump function on the sphere.

In this simulation study, we consider the classification problem where Von
Mises-Fisher distribution (MF) on the sphere S

2 is considered, which has the
following density:

fMF(y; μ, κ) ∝ exp
(

κμT y
)

, (8)

where κ is a concentration parameter with μ a location parameter. Then we
simulate the data from m different classes on the sphere S

d via a mixture of MF
distributions as:

uj1, ..., uj10 ∼ MF(μj , κ1), j = 1, · · · , m. (9)
mij ∼ Unif({uj1, ..., uj10}), i = 1, · · · , n, j = 1, · · · , m (10)
xij ∼ MF(mij , κ2), i = 1, · · · , n, j = 1, · · · , m, (11)

where xij is the ith sample from jth class, μj is the mean for the jth class, and κ2
is the dispersion for all classes. We first generated 10 means uj1, ..., uj10 from the
MF distribution for jth class. Then for each class, we generated n observations
as follows: for each observation xij , we randomly picked mij from uj1, ..., uj10
with probability 1/10, and then generated a observation from MF(mij , κ2), thus
leading to a mixture of MF distributions. Moreover, κ1 controls the dispersion
of the intermediate variable mij while κ2 controls the dispersion of observations
xij . Figure 3 shows observations from the mixture model on the sphere under
different dispersions.

In the following simulation, we follow the mixture model on the hyper-sphere
S

2, S10, S50 with m = 2, n = 2000, κ1 = 4, κ2 = 20 and divide the data into 75
percent training set and 25 percent test set. We repeat this split 50 times. Then
we compare the eDNN, tDNN, iDNN models to other competing estimators via
the classification accuracy on the test set as shown in Table 1.
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Fig 3. Observations for K = 2 classes from the mixture of MF distribution, N = 100. The
nonlinear boundary between the two classes becomes harder to see with bare eyes due to the
surging variance of the data as the κ1, κ2 drop, which makes the classification problem harder.

Table 1

The test accuracy is calculated over 50 random split. The 5-layers network (with 100 hidden
nodes in each layer) is used for our deep neural network models in all experiments. Our

tDNN model achieved the best result when the dimension was low S2, S10, while our iDNN
is the best in high-dimension cases (S50, S100). Moreover, our tDNN, iDNN models show

better accuracy than the classical deep neural network, especially in high-dimensional cases.
S2 S10 S50 S100

DNN 94.12 ± 0.67 96.22 ± 0.63 75.93 ± 1.07 62.53 ± 1.35
tDNN 94.88 ± 0.53 97.13 ± 0.39 80.07 ± 0.95 68.26 ± 1.16
iDNN 94.69 ± 0.65 97.11 ± 0.41 80.72 ± 0.94 68.43 ± 1.20
kNN 92.16 ± 0.77 94.98 ± 0.60 69.18 ± 1.44 56.24 ± 1.30
LR 92.98 ± 0.76 88.64 ± 0.76 72.38 ± 1.14 66.73 ± 1.37
RF 93.66 ± 0.83 89.93 ± 0.65 70.29 ± 1.48 62.29 ± 1.45
SVM 94.07 ± 0.1 96.85 ± 0.44 79.38 ± 1.15 68.25 ± 1.18

For competitors, we consider the k-nearest neighbors (kNN), the random
forest (RF), the logistic regression (LR), and the support vector machine (SVM)
with the radial basis function (RBF) kernel. The tuning parameters in each
method are selected by evaluation on a validation data set whose size is 25% of
the training set.

For all deep neural network models, we apply a network architecture of 5
hidden layers with the numbers of widths (100, 100, 100, 100, 100). The deep
neural network model is the same as the eDNN model on Euclidean since the
embedding map from the sphere to the higher Euclidean space is the identity
map. In the tDNN model, we consider the Fréchet mean of the training set as
the base point and transform all data in the batch to tangent vectors before
feeding to the neural network. In the iDNN model, we consider the north and
south poles (±1, 0, .., 0) as base points and use the neural network with the same
structure for all tangent spaces. All models are trained with Adam optimizer
[29]. As shown in Table 1, our tDNN model and iDNN model outperform other
competing estimators. Specifically, our tDNN models achieve the best accuracy
94.88 ± 0.53 and 97.13 ± 0.39 in the low dimensional cases. Our iDNN models
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obtained the best result 80.72 ± 0.94 and 68.43 ± 1.20 in the high dimensional
spaces.

4.2. The planar shape

Let z = (z1, . . . , zk), with z1, . . . , zk ∈ R
2, be a set of k landmarks. The planar

shape Σk
2 is the collection of z’s modulo under the Euclidean motions, including

translation, scaling, and rotation. One has Σk
2 = S

2k−3/SO(2), the quotient
of sphere by the action of SO(2) (or the rotation), the group of 2 × 2 special
orthogonal matrices. A point in Σk

2 can be identified as the orbit of some u ∈
S

2k−3, which we denote as σ(z). Viewing z as a vector of complex numbers, one
can embed Σk

2 into S(k,C), the space of k × k complex Hermitian matrices, via
the Veronese-Whitney embedding (see, e.g., [4]):

J(σ(z)) = uu∗ = ((uiūj))1≤,i,j≤k. (12)

One can verify that J is equivariant (see [27]) with respect to the Lie group

H = SU(k) = {A ∈ GL(k,C) : AA∗ = I, det(A) = I},

with its action on Σk
2 induced by left multiplication.

We consider a planar shape data set, which involves measurements of a group
of typically developing children and a group of children suffering the ADHD (At-
tention deficit hyperactivity disorder). ADHD is one of the most common psy-
chiatric disorders for children that can continue through adolescence and adult-
hood. Symptoms include difficulty staying focused and paying attention, diffi-
culty controlling behavior, and hyperactivity (over-activity). In general, ADHD
has three subtypes: (1) ADHD hyperactive-impulsive, (2) ADHD-inattentive,
(3) Combined hyperactive-impulsive and inattentive (ADHD-combined). ADHD-
200 Dataset (http://fcon_1000.projects.nitrc.org/indi/adhd200/) is a
data set that records both anatomical and resting-state functional MRI data
of 776 labeled subjects across 8 independent imaging sites, 491 of which were
obtained from typically developing individuals and 285 in children and adoles-
cents with ADHD (ages: 7-21 years old). The planar Corpus Callosum shape
data are extracted, with 50 landmarks on the contour of the Corpus Callosum
of each subject (see [19]). See Figure 4 for a plot of the raw landmarks of a
normal developing child and an ADHD child) After quality control, 647 CC
shape data out of 776 subjects were obtained, which included 404 (n1) typically
developing children, 150 (n2) diagnosed with ADHD-Combined, 8 (n3) diag-
nosed with ADHD-Hyperactive-Impulsive, and 85 (n4) diagnosed with ADHD-
Inattentive. Therefore, the data lie in the space Σ50

2 , which has a high dimension
of 2 × 50 − 4 = 96.

As shown in the table 2, we consider the classification problem with 4 different
classes. We also divided the dataset into a 75 percent training set and a 25
percent test set and evaluated the classification accuracy in the test set compared
to other learning methods. Since the sample size is unbalanced, the total number

http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Table 2

Demographic information about processed ADHD-200 CC shape dataset, including disease
status, age, and gender.

Disease status Num. Range of age in years(mean) Gender(female/male)
Typically Developing Children 404 7.09 − 21.83(12.43) 179/225

ADHD-Combined 150 7.17 − 20.15(10.96) 39/111
ADHD-Hyperactive/Impulsive 8 9.22 − 20.89(14.69) 1/7

ADHD-Inattentive 85 7.43 − 17.61(12.23) 18/67
All data 647 7.09 − 21.83(12.09) 237/410

Fig 4. CC shapes

of some classes is too small, i.e., ADHD-Hyperactive case. We also considered
the classification with two classes by combing those ADHD samples into one
class shown in the right figure in Figure 4.

Similar to the sphere case, we select the k-nearest neighbors (kNN), the ran-
dom forest (RF), the logistic regression (LR), and the support vector machine
(SVM) with the radial basis function (RBF) kernel as competing estimators.
The tuning parameters in each method are selected by evaluation on a valida-
tion data set whose size is 25% of the training set. For all deep neural network
models, we utilize the same network architecture of 5 hidden layers with the
numbers of width (100, 100, 100, 100, 100). The deep neural network model is
applied to the raw data, while the eDNN model is applied to the embedded
data by Veronese-Whitney embedding. And the preshape data (normalized raw
data) lying in the hyperspere S

100 is used for the tDNN model and iDNN model.
In the iDNN model, we chose the north pole and south pole (±1, 0, .., 0) as base
points and utilized the geometry of the hypersphere as before. In the tDNN
model, we pick the Fréchet mean of the training set as the base point and trans-
form all data in a batch to tangent vectors before feeding to the neural network.
All models are trained with Adam optimizer. The competition results can be
observed in Table 3. Our tDNN model achieves the best accuracy at 65.84±3.10
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Table 3

The average accuracy on the test dataset is calculated over 50 random splits. The 5-layers
network (with 100 hidden nodes in each layer) is used for our deep neural network models

in all experiments. Consequently, our tDNN model obtains the best accuracy in the 2 classes
case while our iDNN model achieves the best accuracy in the 4 classes case. Furthermore,

all our eDNN, tDNN and iDNN models outperform the classical deep neural network model,
indicating the advantages of our frameworks.

4 Classes 2 Classes
DNN 56.40 ± 10.83 61.09 ± 8.44
eDNN 62.98 ± 3.91 63.81 ± 3.72
tDNN 63.20 ± 3.70 65.84 ± 3.10
iDNN 63.55 ± 3.80 65.42 ± 3.41
kNN 57.62 ± 3.37 61.26 ± 3.84
LR 61.35 ± 3.54 59.58 ± 3.44
RF 61.38 ± 3.50 63.20 ± 3.13
SVM 61.80 ± 3.92 64.89 ± 3.64

among 50 splits in the 2 classes case. Also, our iDNN model showed the best
result of 63.55 ± 3.80 in the 4 classes case.

4.3. Symmetric semi-positive definite matrix (SPD)

The space SPD(d) of all d×d positive definite matrices belongs to an important
class of manifolds that possesses particular geometric structures, which should
be taken into account for building the deep neural networks. [15] investigates its
Riemannian structure and provides somewhat concrete forms of all its geometric
quantities. [11] studies different notions of means and averages in SPD(3) with
respect to different distance metrics and considers applications to DTI data and
covariance matrices.

Under the Riemannian framework of tensor computing [40], several metrics
play an important role in machine learning on SPD matrices. Generally, the
Riemannian distance d(P1, P2) between two points P1 and P2 on the manifold
is defined as the length of the geodesic γP1→P2 , i.e., the shortest parameterized
curve connecting them. In the SPD manifold, the distance under the affine
metric could be computed as [40]:

d (Q1, Q2) = 1
2

∥∥∥∥∥log
(

Q
− 1

2
1 Q2Q

− 1
2

1

)∥∥∥∥∥
F

,

where ‖ · ‖ denotes the Frobenius norm.
Other important natural mappings to and from the manifold and its tangent

bundle are the logarithmic mapping LogQ0
and the exponential mapping ExpQ0

at the point Q0. Under the affine metric, those two mappings are known in closed
form:

ExpQ0
(W ) = Q

1
2
0 exp

(
Q

− 1
2

0 SQ
− 1

2
0

)
P

1
2

0 ∈ SPD(d)
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for every W ∈ TQ0 , and

LogQ0
(Q) = Q

1
2
0 log

(
Q

− 1
2

0 QQ
− 1

2
0

)
Q

1
2
0 ∈ TQ0 ,

for every Q ∈ SPD(d), where TQ0 denotes the tangent space at Q0. Furthermore,
we consider the log map on the matrix as the embedding J , mapping SPD(d) to
Sym(d), the space of the symmetric matrix. For example, let Q ∈ SPD(d) with
a spectral decomposition Q = UΣUT , we have the log-map of Q as log(Q) =
U log(Σ)UT where log(Σ) denotes the diagonal matrix whose diagonal entries
are the logarithms of the diagonal entries of Σ. Moreover, the embedding J is
a diffeomorphism, equivariant with respect to the actions of GL(d,R), the d
by d general linear group. That is, for H ∈ GL(d,R), we have log(HQHT ) =
H log(Q)H−1.

In the context of deep neural networks on SPD, our models build on the
SPDNet introduced by [22], which mimicked the classical neural networks with
the stage of computing an invariant representation of the input data points
and a second stage devoted to performing the final classification. The SPDNet
exploited the geometry based on threefold layers as described below.

• The BiMap (bilinear transformation) layer, analogous to the usual dense
layer; the induced dimension reduction eases the computational burden
often found in learning algorithms on SPD data:

X(l) = W (l)T

Q(l−1)W (l) with W (l) semi-orthogonal.

• The ReEig (rectified eigenvalues activation) layer, analogous to the ReLU
activation, can also be seen as an Eigen-regularization, protecting the ma-
trices from degeneracy:

X(l) = U (l) max
(

Σ(l), εIn

)
U (l)T

, with Q(l) = U (l)Σ(l)U (l)T .

• The LogEig (log eigenvalues Euclidean projection) layer:

X(l) = vec
(

U (l) log
(

Σ(l)
)

U (l)T

)

with again U (l) the eigenspace of Q(l).

Under our framework, the SPDNet is both an eDNN and a tDNN model.
The LogEig layer applies the logarithmic mapping logI(Q(l))

= vec
(

U (l) log
(

Σ(l)
)

U (l)T

)
, which is identical to the transformation in the

LogEig layer. Thus, SPDNet can also be viewed as a tDNN model. In our ex-
periments, we only consider tDNN models as one tangent space from the base
point is sufficient to cover the entire manifold. Our eDNN models on SPD(p)
consist of 3 BiMap layers, 3 ReEig layers, one LogEig layer (for embedding), and
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Table 4

The accuracy of the test set was reported. We follow the setup and protocols in [22] and our
tDNN models outperform the eDNN (SPDNet) under both log and affine metrics.

Data AFEW HDM05
(n, d) (2135, 4002) (2086, 932)
eDNN(SPDNet) 34.23 ± 1.44 61.35 ± 1.12
tDNN-Log 35.85 ± 1.49 62.59 ± 1.35
tDNN-Affine 35.31 ± 1.68 62.23 ± 1.43

a 5-layer deep neural network with 100 hidden nodes per layer. In tDNN mod-
els, we replace the LogEig layer with the intrinsic logarithmic mapping under
different metrics.

In our experiments, we evaluate the performance of tDNN and eDNN models
on the AFEW and HDM05 datasets using the same setup and protocol as in
[22]. The AFEW dataset [9] includes 600 video clips with per-frame annotations
of valence and arousal levels and 68 facial landmarks, depicting 7 classes of
emotions. The HDM05 dataset [37] contains over three hours of motion capture
data in C3D and ASF/AMC formats, covering more than 70 motion classes
across multiple actors. We divide the data into a 75-25 percent training-test
split, with 10 repetitions, and use the validation set (25 percent of training
data) to tune hyperparameters. We implement tDNN models on both affine
metrics and log-Euclidean metrics, using the Frechet mean of the batch as the
base point. As shown in Table 4, our tDNN model under the Log-Euclidean
metric achieves the best results on both datasets, with a 35.85 ± 1.49 accuracy
on the AFEW dataset and 62.59 ± 1.35 accuracy on the HDM05 dataset.

5. Discussion

In this work, we develop intrinsic and extrinsic deep neural network architec-
tures on manifolds and characterize their theoretical properties in terms of ap-
proximation error and statistical error of the ERM based estimator. The neural
networks explore the underlying geometry of the manifolds for learning and
inference. Future work will be focused on developing convolutional neural net-
works in manifolds for image classifications of manifold-values images, which
have abundant applications in medical imaging and computer vision.

Appendix A: Proofs

A.1. Approximation of smooth functions on a manifold

The aim of this section is to develop a function approximation result by deep
neural networks for smooth functions on a manifold, which is used in the analysis
of both the eDNN and iDNN architectures. In this section, we let F̄(L, P, B) =
∪SF(L, P, S, B) be the set of non-sparse deep neural networks with depth L
and width P .
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Lemma A.1 (Theorem 4 of [12]). Assume that f0 ∈ Cβ
D([0, 1]D, A). Then there

exist universal positive constants C1, . . . , C5 depending only on D, β, A such
that for any N ∈ N \ {1}, there exists a deep neural network f ∈ F̄(L, P, B)
with L = C1, P = C2N and B = C3NC4 such that

‖f − f0‖L∞([0,1]D) ≤ C5N−2β/D.

By inspecting the proof of Theorem 4 of [12] as well as Theorem 3.3 of [25],
we can determine the dependence of the universal constants C1, . . . , C5 on the
input dimension D and the smoothness β explicitly. To this end, we can set

C1 ≥ C ′
1{(β + 1)2 + 2D}

C2 ≥ C ′
2(β ∨ 1)Dβ+1

C3 ≥ C ′
3(β ∨ 1)D

C4 ≥ C ′
4((β ∨ 1)/D + 1)

C5 ≥ C ′
5A(β + 1)2Dβ+(β∨1)/2

for some positive constants C ′
1, · · · , C ′

5 depending on none of D, β and A without
changing the conclusion.

The following lemma is a generalization of Lemma A.1 to an arbitrary com-
pact domain, where we give a detailed specification of the absolute constants as
we stated above.

Lemma A.2. Assume that f0 ∈ Cβ
D(U, A) where U ∈ RD is a bounded sub-

set. Let R = 1 ∨ maxx∈U ‖x‖∞. Then there exist universal positive constants
C ′

1, . . . , C ′
5 depending on none of D, β and A such that for any N ∈ N \ {1},

there exists a deep neural network f ∈ F̄(L, P, B) with L = C ′
1{(β + 1)2 + 2D},

P = C ′
2(β ∨ 1)Dβ+1N and B = C ′

3(β ∨ 1)DNC′
4((β∨1)/D+1) such that

‖f − f0‖L∞([0,1]D) ≤ C ′
5ARβ(β + 1)2Dβ+(β∨1)/2N−2β/D.

Proof. Let T be an affine transfromation such that Tx = R−1x+(1/2, . . . , 1/2)�.
Then we have T (U) = [1/4, 3/4]D and f0 ◦ T −1 ∈ Cβ

D(T (U), RβK). Applying
Lemma A.1 concludes the proof.

We here give our approximation theorem.

Theorem 5. Let M ⊂ R
D be a d-dimensional compact manifold with smooth

local coordinates. Assume that f0 ∈ Cβ
D(M, A) Then there exists universal pos-

itive constants C ′′
1 , . . . , C ′′

5 depending on none of D, β and A such that for
any N ∈ N \ {1}, there exists a deep neural network f ∈ F̄(L, P, B) with
L = C ′′

1 {(β ∨ 1)D/d + 1)2 + 2D}, P = C ′′
2 ((β ∨ 1)D/d)D(β∨1)D/d+1N and

B = C ′′
3 ((β ∨ 1)D2/d)DNC′′′

4 ((β∨1)/d+1) such that

‖f − f0‖L∞([0,1]D) ≤ C ′
5A(1 + (β ∨ 1)D/d)2D3/2(β∨1)D/dN−2β/d.

Proof. In the proof, the inequality notations � and � hide absolute constants
depending on none of D, β and A.
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Most of the proof resembles the proof of Theorem 2 of [41]. Since M has
smooth local coordinates, there exist charts (V1, ψ1), . . . , (Vr, ψr), such that for
any γ > 0, ψj ∈ Cγ

D(Vj). Morover, by Lemma 3 of [41], there exist δ > 0 and
a partition of unity on the manifold τk : M → R for k = 1, . . . , K, such that
for any γ > 0, and any x ∈ M , we have

{
y ∈ M : τk(y) > 0

}
⊆ V −δ

k = {y ∈
Vk : ‖y − (M \ Vk)‖∞ ≥ δ}, τk ∈ Cγ

D(M), and
∑K

k=1 τk(x) = 1. Using these, we
decompose the target function f0 as

f0(x) =
K∑

k=1

τj(x) × (f0 ◦ ψ−1
j ) ◦ ψk(x)

We will construct deep neural networks τ̂k, ĝk and ψ̂k that approximate τk,
gk = f0 ◦ ψ−1

k and ψk, respectively, for k = 1, . . . , K and combine them as

f =
K∑

k=1
×̂(τk, ĝk ◦ ψ̂k),

where ×̂ is a deep neural network that approximates the multiplication opera-
tion. Then following the last argument of the proof of Theorem 2 of [41], for a
deep neural network f constructed as above, we have

‖f − f0‖L∞(M) �
K∑

k=1

[
‖×̂(τ̂k, ĝk ◦ ψ̂k) − τ̂k(ĝk ◦ ψ̂k)‖L∞(M) + ‖τ̂k − τk‖L∞(M)

+ ‖ĝk − gk‖L∞(Hk) + ‖‖ψ̂k − ψk‖∞‖β∧1
L∞(Vk)

]

where Hk = ψk(V −δ
k )δ′ = {y ∈ Rd : ‖y − ψj(V −δ

k )‖∞ ≤ δ′} for some δ′ > 0.
We set γ = (β∨1)D/d ≥ 1. Then by applying Lemma A.2 to each component

of ψj and parallelizing the approximating networks, there exists a d-dimensional
network ψ̂j : RD → Rd with depth L1 � (γ+1)2 +2D and width P1 � γDγ+1N
such that

‖‖ψ̂k − ψk‖∞‖L∞(Vk) � (1 + (β ∨ 1)D/d)2D3/2(β∨1)D/dN−2(β∨1)/d.

for any N ∈ N. Next, by Lemma A.2, there exists a network ĝk with depth
L2 � (β + 1)2 + 2d and width P2 � (β ∨ 1)dβ+1N such that

‖ĝk − gk‖L∞(Hk) � A(β + 1)2d3(β∨1)/2N−2β/d (13)

and a network τ̂k with depth L3 � (γ + 1)2 + 2D and width P3 � γDγ+1N

‖τ̂j − τj‖L∞(M) � (1 + (β ∨ 1)D/d)2D3(β∨1)D/(2d)N−2β/d.

for any N ∈ N. Lastly, by Lemma 4.2 of [35], for any N ∈ N there is a network
×̂ with depth L4 � β/d and width P4 = 9N + 1 such that |×̂(x, y) − xy| ≤
6(b − a)2N−2β/d for any x, y ∈ [a, b]. Combining these approximation results,
we get the desired result.
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A.2. Proofs for Section 2

The following lemma translates approximation results by non-sparse deep neural
networks to sparse ones.

Lemma A.3. F̄(L, P, B) ⊂ F(L, P̄ , S, B) for any P̄ ≥ P and S ≥ P (D + 1) +
(P 2 + P )(L − 1) + P + 1.

Proof. This is trivial since the number of parameters of a depth L and width P
is given by P (D + 1) + (P 2 + P )(L − 1) + P + 1.

Proof of Theorem 1. Let f̃0 = f0◦J−1, then f̃0 is a function on the d-dimensional
manifold M̃ = J(M) ⊂ RD. Since M̃ has smooth local coordinates, we can ap-
ply Theorem 5 to construct a deep neural network f̃ ∈ F̄(L, P, B) that approx-
imates f̃0. The approximation error of f̃ to f̃0 is the same as that of f = f̃ ◦ J
to f0:

‖f − f0‖L∞(M) = ‖f̃ ◦ J − f̃0 ◦ J‖L∞(M) = ‖f̃ − f̃0‖L∞(M̃).

But in view of Lemma A.3, f̃ ∈ F(L, P̄ , S, B) with P̄ ≥ P and S = P (P +1)LD,
which completes the proof.

Proof of Theorem 2. For any f̃1, f̃2 ∈ F(L, P, S, B), we have ‖f̃2 ◦ J − f̃2 ◦
J‖L∞(M) = ‖f̃2 − f̃2‖L∞(M̃) ≤ ‖f̃2 − f̃2‖L∞(RD). Hence the entropy of the
eDNN class FeDNN (L, P, S, B) is bounded by that of F(L, P, S, B). Thus, by
Lemmas 4 and 5 of [42] together with our approximation analysis in Theorem 1,
we have

R
(

f̂eDNN , f0

)
� inf

f∈FeDNN (L,P,S,B)
‖f − f0‖2

L∞(M)

+
(S + 1) log

(
2n(L + 1)P 2L(D + 1)2)

+ 1
n

� S−2β/d + S log n

n
.

Then if we take S � (n/ log n)d/(2β+d), we get the desired result.

A.3. Proofs for Section 3

Proof of Theorem 3. We construct a deep neural network approximating f0k =
f0 ◦ expxk

for each k = 1, . . . , K. Note that f0k is β-Hölder smooth by as-
sumption. Therefore, by Lemma A.2, there exists a network fk with depth
L2 � (β + 1)2 + 2d and width P2 � (β ∨ 1)dβ+1N such that

‖fk − f0k‖L∞(Uk) � A(β + 1)2d3(β∨1)/2N−2β/d (14)

Now, let f =
∑K

k=1 τk(x)fk(logxk
(x)) ∈ FiDNN (L, P, S, B). Then

‖f − f0‖L∞(M) = sup
x∈M

∣∣∣∣∣∣
K∑

k=1

τk(x)fk(logxk
(x)) −

K∑
k=1

τk(x)f0k(logxk
(x))

∣∣∣∣∣∣
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≤ sup
x∈M

K∑
k=1

τk(x)
∣∣∣fk(logxk

(x)) − f0k(logxk
(x))

∣∣∣
≤ max

1≤k≤K
‖fk − f0k‖L∞(Uk) .

But in view of Lemma A.3, f ∈ F(L, P̄ , S, B) with P̄ ≥ P and S = P (P +1)LD,
which completes the proof.

Proof of Theorem 4. For any two iDNNs f(·) =
∑K

k=1 τk(·)fk(logxk
(·)) and

f ′(·) =
∑K

k=1 τk(·)f ′
k(logxk

(·)) in FiDNN (L, P, S, B), we have

‖f − f ′‖L∞(M) ≤ sup
x∈M

K∑
k=1

τk(x)
∣∣∣fk(logxk

(x)) − f ′
k(logxk

(x))
∣∣∣

≤ max
1≤k≤K

∥∥fk − f ′
k

∥∥
L∞(Uk) .

Therefore, the entropy of FiDNN (L, P, S, B) is bounded by the K-times of the
entropy of the class F(L, P, S, B). So by the same argument as in the proof of
Theorem 2, we get the desired result.

Acknowledgments

We would like to thank Dong Quan Nguyen, Steve Rosenberg, and Bayan
Saparbayeva for very helpful discussions.

Funding

LL and YF are supported by grants DMS CAREER 1654579 and DMS 2113642.
IO was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (NRF-2022R1F1A1069695) and Inha
University Research Grant.

References

[1] Alexander, A., Lee, J. E., Lazar, M. and Field, A. S. (2007). Diffu-
sion Tensor Imaging of the Brain. Neurotherapeutics 4(3) 316–329.

[2] Bahdanau, D., Cho, K. and Bengio, Y. (2015). Neural Machine Trans-
lation by Jointly Learning to Align and Translate. Proceedings of the 4th
International Conference on Learning Representations abs/1409.0473.
MR4390194

[3] Bauer, B. and Kohler, M. (2019). On deep learning as a remedy for
the curse of dimensionality in nonparametric regression. The Annals of
Statistics 47 2261–2285. MR3953451

https://mathscinet.ams.org/mathscinet-getitem?mr=4390194
https://mathscinet.ams.org/mathscinet-getitem?mr=3953451


1182 Y. Fang et al.

[4] Bhattacharya, A. and Bhattacharya, R. N. (2012). Nonparametric
Inference on Manifolds: with Applications to Shape Spaces. Cambridge Uni-
versity Press IMS monographs #2. MR2934285

[5] Bhattacharya, R. and Lin, L. (2017). Omnibus CLTs for Fréchet means
and nonparametric inference on non-Euclidean spaces. The Proceedings of
the American Mathematical Society 145 413-428. MR3565392

[6] Chen, M., Jiang, H., Liao, W. and Zhao, T. (2019). Efficient approx-
imation of deep relu networks for functions on low dimensional manifolds.
Advances in neural information processing systems 32.

[7] Chen, M., Jiang, H., Liao, W. and Zhao, T. (2022). Nonparametric
regression on low-dimensional manifolds using deep ReLU networks: Func-
tion approximation and statistical recovery. Information and Inference: A
Journal of the IMA 11 1203–1253. MR4526322

[8] Chevallier, E., Li, D., Lu, Y. and Dunson, D. (2022). Exponential-
Wrapped Distributions on Symmetric Spaces. SIAM Journal on Mathemat-
ics of Data Science 4 1347-1368. MR4522875

[9] Dhall, A., Goecke, R., Lucey, S. and Gedeon, T. (2011). Static fa-
cial expression analysis in tough conditions: Data, evaluation protocol and
benchmark. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops) 2106–2112. IEEE.

[10] Downs, T., Liebman, J. and Mackay, W. (1971). Statistical methods for
vectorcardiogram orientations. In Vectorcardiography 2: Proc. XIth Inter-
national Symposium on Vectorcardiography (I. Hoffman, R.I. Hamby and
E. Glassman, Eds.) 216-222. North-Holland, Amsterdam.

[11] Dryden, I. L., Koloydenko, A. and Zhou, D. (2009). Non-Euclidean
statistics for covariance matrices, with applications to diffusion tensor imag-
ing. The Annals of Applied Statistics 3 1102–1123. MR2750388

[12] Fan, J. and Gu, Y. (2022). Factor augmented sparse throughput deep
relu neural networks for high dimensional regression. arXiv preprint arXiv:
2210.02002.

[13] Fisher, N. I., Lewis, T. and Embleton, B. J. J. (1987). Statistical
Analysis of Spherical Data. Cambridge Uni. Press, Cambridge. MR0899958

[14] Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal
Society A 217 295-305. MR0056866

[15] Fletcher, P. T. and Joshi, S. (2007). Riemannian geometry for the
statistical analysis of diffusion tensor data. Signal Processing 87 250 – 262.
Tensor Signal Processing. http://dx.doi.org/10.1016/j.sigpro.2005.
12.018

[16] Harandi, M. and Fernando, B. (2016). Generalized BackPropagation,
Étude De Cas: Orthogonality. arXiv e-prints arXiv:1611.05927.

[17] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N. and Kings-

bury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine 29 82-97. https://doi.org/10.1109/MSP.2012.
2205597

https://mathscinet.ams.org/mathscinet-getitem?mr=2934285
https://mathscinet.ams.org/mathscinet-getitem?mr=3565392
https://mathscinet.ams.org/mathscinet-getitem?mr=4526322
https://mathscinet.ams.org/mathscinet-getitem?mr=4522875
https://mathscinet.ams.org/mathscinet-getitem?mr=2750388
https://arxiv.org/abs/2210.02002
https://arxiv.org/abs/2210.02002
https://mathscinet.ams.org/mathscinet-getitem?mr=0899958
https://mathscinet.ams.org/mathscinet-getitem?mr=0056866
http://dx.doi.org/10.1016/j.sigpro.2005.12.018
http://dx.doi.org/10.1016/j.sigpro.2005.12.018
https://arxiv.org/abs/1611.05927
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597


Intrinsic and extrinsic deep learning on manifolds 1183

[18] Ho, J., Lee, K.-C., Yang, M.-H. and Kriegman, D. (2004). Visual
tracking using learned linear subspaces. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on 1 I-782-I-789 Vol.1. https://doi.org/10.1109/
CVPR.2004.1315111

[19] Huang, C., Styner, M. and Zhu, H. (2015). Clustering High-
Dimensional Landmark-Based Two-Dimensional Shape Data. Journal of
the American Statistical Association 110 946-961. https://doi.org/10.
1080/01621459.2015.1034802 MR3420675

[20] Huang, C., Zhang, H. and Robeson, S. (2011). On the Validity of Com-
monly Used Covariance and Variogram Functions on the Sphere. Math-
ematical Geosciences 43 721-733. https://doi.org/10.1007/s11004-
011-9344-7 MR2824128

[21] Huang, Z. and Gool, L. V. (2017). A Riemannian Network for SPD
Matrix Learning. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence. AAAI’17 2036–2042. AAAI Press.

[22] Huang, Z. and Van Gool, L. (2017). A Riemannian network for spd
matrix learning. In Proceedings of the AAAI Conference on Artificial In-
telligence 31.

[23] Huang, Z., Wan, C., Probst, T. and Van Gool, L. (2017). Deep Learn-
ing on Lie Groups for Skeleton-Based Action Recognition. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) 1243-
1252. https://doi.org/10.1109/CVPR.2017.137

[24] Huang, Z., Wu, J. and Van Gool, L. (2016). Building Deep Networks
on Grassmann Manifolds. arXiv preprint arXiv:1611.05742.

[25] Jiao, Y., Shen, G., Lin, Y. and Huang, J. (2023). Deep nonparametric
regression on approximate manifolds: Nonasymptotic error bounds with
polynomial prefactors. The Annals of Statistics 51 691–716. MR4600998

[26] Jun, M. and Stein, M. L. (2008). Nonstationary covariance models for
global data. The Annals of Applied Statistics 2 1271–1289. https://doi.
org/10.1214/08-AOAS183 MR2655659

[27] Kendall, D. G. (1984). Shape Manifolds, Procrustean Metrics, and
Complex Projective Spaces. Bull. of the London Math. Soc. 16 81-121.
MR0737237

[28] Kim, Y., Ohn, I. and Kim, D. (2021). Fast convergence rates of deep
neural networks for classification. Neural Networks 138 179–197.

[29] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

[30] Kohler, M. and Langer, S. (2021). On the rate of convergence of fully
connected deep neural network regression estimates. The Annals of Statis-
tics 49 2231–2249. MR4319248

[31] Kolaczyk, E. D., Lin, L., Rosenberg, S., Walters, J. and Xu, J.

(2020). Averages of unlabeled networks: Geometric characterization and
asymptotic behavior. Ann. Statist. 48 514–538. https://doi.org/10.
1214/19-AOS1820 MR4065172

[32] Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet

https://doi.org/10.1109/CVPR.2004.1315111
https://doi.org/10.1109/CVPR.2004.1315111
https://doi.org/10.1080/01621459.2015.1034802
https://doi.org/10.1080/01621459.2015.1034802
https://mathscinet.ams.org/mathscinet-getitem?mr=3420675
https://doi.org/10.1007/s11004-011-9344-7
https://doi.org/10.1007/s11004-011-9344-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2824128
https://doi.org/10.1109/CVPR.2017.137
https://arxiv.org/abs/1611.05742
https://mathscinet.ams.org/mathscinet-getitem?mr=4600998
https://doi.org/10.1214/08-AOAS183
https://doi.org/10.1214/08-AOAS183
https://mathscinet.ams.org/mathscinet-getitem?mr=2655659
https://mathscinet.ams.org/mathscinet-getitem?mr=0737237
https://arxiv.org/abs/1412.6980
https://mathscinet.ams.org/mathscinet-getitem?mr=4319248
https://doi.org/10.1214/19-AOS1820
https://doi.org/10.1214/19-AOS1820
https://mathscinet.ams.org/mathscinet-getitem?mr=4065172


1184 Y. Fang et al.

classification with deep convolutional neural networks. In Advances in neu-
ral information processing systems 1097–1105.

[33] Lin, L., Mu, N., Cheung, P. and Dunson, D. (2019). Extrinsic Gaussian
Processes for Regression and Classification on Manifolds. Bayesian Anal.
14 887–906. https://doi.org/10.1214/18-BA1135 MR3960775

[34] Lin, L., Thomas, B. S., Zhu, H. and Dunson, D. B. (2017). Extrinsic
Local Regression on Manifold-Valued Data. Journal of the American Statis-
tical Association 112 1261-1273. https://doi.org/10.1080/01621459.
2016.1208615 MR3735375

[35] Lu, J., Shen, Z., Yang, H. and Zhang, S. (2021). Deep network approx-
imation for smooth functions. SIAM Journal on Mathematical Analysis 53
5465–5506. MR4319100

[36] Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley, New
York. MR1828667

[37] Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B.

and Weber, A. (2007). Mocap database hdm05. Institut für Informatik
II, Universität Bonn 2.

[38] Nakada, R. and Imaizumi, M. (2020). Adaptive approximation and gen-
eralization of deep neural network with intrinsic dimensionality. The Jour-
nal of Machine Learning Research 21 7018–7055. MR4209460

[39] Ohn, I. and Kim, Y. (2022). Nonconvex sparse regularization for deep
neural networks and its optimality. Neural computation 34 476–517.
MR4381798

[40] Pennec, X., Fillard, P. and Ayache, N. (2006). A Riemannian frame-
work for tensor computing. International Journal of computer vision 66
41–66.

[41] Schmidt-Hieber, J. (2019). Deep ReLU network approximation of func-
tions on a manifold. arXiv preprint arXiv:1908.00695. MR2659223

[42] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neu-
ral networks with ReLU activation function. The Annals of Statistics 48
1875–1897. https://doi.org/10.1214/19-AOS1875 MR4134774

[43] Teja, G. P. and Ravi, S. (2012). Face recognition using subspaces tech-
niques. In Recent Trends In Information Technology (ICRTIT), 2012 In-
ternational Conference on 103-107. https://doi.org/10.1109/ICRTIT.
201

[44] Tu, L. W. (2011). An introduction to manifolds. Springer. MR2723362
[45] Voulodimos, A., Doulamis, N., Doulamis, A. and Protopa-

padakis, E. (2018). Deep Learning for Computer Vision: A Brief Review.
Computational Intelligence and Neuroscience 2018.

[46] Zhang, J., Zhu, G., Heath, R. and Huang, K. (2018). Grassmannian
Learning: Embedding Geometry Awareness in Shallow and Deep Learning.
arXiv preprint arXiv:1808.02229.

https://doi.org/10.1214/18-BA1135
https://mathscinet.ams.org/mathscinet-getitem?mr=3960775
https://doi.org/10.1080/01621459.2016.1208615
https://doi.org/10.1080/01621459.2016.1208615
https://mathscinet.ams.org/mathscinet-getitem?mr=3735375
https://mathscinet.ams.org/mathscinet-getitem?mr=4319100
https://mathscinet.ams.org/mathscinet-getitem?mr=1828667
https://mathscinet.ams.org/mathscinet-getitem?mr=4209460
https://mathscinet.ams.org/mathscinet-getitem?mr=4381798
https://arxiv.org/abs/1908.00695
https://mathscinet.ams.org/mathscinet-getitem?mr=2659223
https://doi.org/10.1214/19-AOS1875
https://mathscinet.ams.org/mathscinet-getitem?mr=4134774
https://doi.org/10.1109/ICRTIT.201
https://doi.org/10.1109/ICRTIT.201
https://mathscinet.ams.org/mathscinet-getitem?mr=2723362
https://arxiv.org/abs/1808.02229

	Introduction
	Extrinsic deep neural networks (eDNNs) on manifolds
	eDNNs and equivariant embeddings
	Approximation analysis for eDNNs
	Statistical risk analysis for eDNNs

	Intrinsic deep neural networks (iDNNs) on manifolds
	The iDNN architectures on a Riemannian manifold
	Approximation analysis for iDNNs
	Statistical risk analysis for iDNNs

	Simulations study and real data analysis
	Sphere
	The planar shape
	Symmetric semi-positive definite matrix (SPD)

	Discussion
	Proofs
	Approximation of smooth functions on a manifold
	Proofs for Section 2
	Proofs for Section 3

	Acknowledgments
	Funding
	References

