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ROBUST OPTIMIZATION AND INFERENCE ON MANIFOLDS

LIZHEN LIN, DREW LAZAR, BAYAN SARPABAYEVA, AND DAVID B. DUNSON

ABSTRACT. We propose a robust and scalable procedure for general opti-
mization and inference problems on manifolds leveraging the classical idea of
‘median-of-means’ estimation. This is motivated by ubiquitous examples and
applications in modern data science in which a statistical learning problem can
be cast as an optimization problem over manifolds. Being able to incorporate
the underlying geometry for inference while addressing the need for robustness
and scalability presents great challenges. We address these challenges by first
proving a key lemma that characterizes some crucial properties of geometric
medians on manifolds. In turn, this allows us to prove robustness and tighter
concentration of our proposed final estimator in a subsequent theorem. This
estimator aggregates a collection of subset estimators by taking their geometric
median over the manifold. We illustrate bounds on this estimator via calcula-
tions in explicit examples. The robustness and scalability of the procedure is
illustrated in numerical examples on both simulated and real data sets.

KEYWORDS: Geometric median on manifolds; Median-of-means; Optimization on
manifolds; Robust inference; Robust principal geodesic analysis (RPGA); Scalabil-

ity
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1. INTRODUCTION

There is a rapidly growing collection of learning problems and applications in
data science that can be formalized as optimization problems over non-Euclidean
spaces, such as non-linear Riemannian manifolds. Advancement in technology and
computing leads to the increasing prevalence of complex data that are in non-
Euclidean forms, such as positive definite matrices (diffusion matrices) in diffusion
tensor imaging [1], shape objects in medical vision [16], network data objects [17],
subspaces or orthonormal frames and so on [21]. Proper statistical inference from
such data involves optimization over the underlying manifold to which the data are
constrained. For example, there is a vibrant line of research based on estimation of
Fréchet means [12], which are minimizers of Fréchet functions on manifolds [5,6]. In
this case, both the data and parameters of interest are on manifolds. In addition, it
is common to represent lower-dimensional structure in high-dimensional data as a
manifold. Learning such a manifold is a non-trivial optimization problem. In each
of the above problems, developing algorithms that are robust to data contamination
and heavy tails and that scale efficiently to large datasets is crucial.

With this motivation, our main aim is to propose a robust and scalable proce-
dure for general optimization on manifolds. We generalize the powerful ‘median-of-
means’ estimator [29], to manifolds by establishing some key properties of the geo-
metric median on manifolds with which we can prove tighter concentration bounds
of our proposed estimator. The key idea is to obtain optimizers from subset data
which are aggregated to form a final estimator. Our estimator can be shown to be
robust to outliers and contaminations of arbitrary nature and has provable robust-
ness. Scalability of the algorithm is automatically gained via the divide-and-conquer
nature of combining subset-based estimators.

There is a related literature outside of the non-Euclidean manifold setting. For
example, [26] applies the ‘median-of-means’ procedure for robust estimation in Ba-
nach spaces. In [27], a robust Bayesian estimator is proposed as the geometric
median of subset posteriors measures. There has been recent theoretical and com-
putational developments on applying the median of mean procedure in learning
theory [19,24]. Characterizing properties of the geometric median on manifolds re-
quires a substantially different approach, which deals with the underlying geometry.
We prove a key lemma characterizing the robustness property of geometric medi-
ans on manifolds, which allows us to show our estimator has tighter concentration
bounds than subset estimators. This is done for both the extrinsic geometric me-
dian and the intrinsic geometric median with the former employing an embedding
of manifolds into some higher-dimensional Euclidean space and the later adopting
a Riemannian structure. We illustrate the bounds with explicit calculations in both
the extrinsic and intrinsic cases. Our procedure is demonstrated in a class of mani-
folds through both simulated and real data examples. Manifolds considered include
the sphere, positive definite matrices and the planar shape spaces, all of which are
commonly applicable in real data analyses.

The paper is organized as follows: in section 2 we introduce the general procedure
and prove a key property of the geometric median on manifolds. Section 3 is
devoted to robust estimation and optimization on manifolds. In particular, we
prove the concentration property of our final estimator in estimating the population
parameter of interest and provide examples of calculations of the bounds. In section
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4 we consider an extensive simulation study and data analysis illustrating both the
robustness and scalability of our procedure. The papers ends with a discussion.

2. GEOMETRIC MEDIAN AND ROBUST ESTIMATION ON MANIFOLDS

Let @ be a probability distribution on some space X and M be a manifold. We
consider the problem of estimating the population parameter

2.1 = in L*
(2.1) p = arg min L*(p),
where L*(p) is defined as

U@=L}m@mw)

for some loss function L.
Let = {z1,...,2,} where z1, ..., 2, are sampled from Q). The parameter p is
often estimated by the empirical risk estimator

1 n
2.2 i = in L, (p, ) = in — S L(p, ).
(2:2) fin = arg min Ly (p, @) arg;glﬂgn; (p, )

Remark 2.1. An important example is the Fréchet mean in which the risk function
is

H@:/fmmmmx

with @ supported on a manifold X = M and p a metric defined on M, and
[, corresponds to the sample Fréchet mean. There is significant literature on
nonparametric statistical inference on manifolds in which estimation of the Fréchet
mean is addressed (see [5,6]). Similarly, in a regression problem with manifold-
valued output, the underlying problem can be cast as an optimization problem on
manifolds [22]. In many other applications, we do not have X = M with X a
higher-dimensional ambient space and optimization done over a lower-dimensional
manifold such as the Grassmannian [23, 31], which has abundant applications in
manifold learning and low-rank estimation matrix problems [7,9].

Real data sets often contain outliers that can be errors, extreme observations
or contamination of various sorts which occur when sampling from heavy tailed or
mixture distributions. Thus, there is interest in robust estimation of population
parameters by estimators which are stable and not unduly effected by the presence
of outliers.

In this paper, we consider the classic and intuitive estimator formed by taking
the geometric median of a collection of subset estimators or optimizers. Before
formally introducing our procedure in the next section, we introduce the notion
of the geometric median on a manifold and prove an important lemma about its
properties.

For a metric space (M, p) the geometric median, p*, of points p1,...,p, € M
minimizes the sum of distances to the points, i.e.,

1 m
2.3 * — med(py,....pm) = in — ,
(2.3) p* =med(p1, .., Pm) arggrenﬁmkz_lp(p i)

assuming that p* exists and is unique. When M is a manifold, there are different
ways to metrize the space. Let J : M — R be an embedding of a manifold M into
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some higher-dimensional Euclidean space R”. One can define an extrinsic distance
on M induced from the embedding J in which

pp,q) = 1lJ(p) = J(@),

where | - || is the Euclidean norm on R”. Alternatively, one can take p to be the
intrinsic distance as the geodesic distance arising from a Riemannian structure on
M.

With the choice of p as the extrinsic or intrinsic distance in (2.3), we have corre-
sponding definitions of the extrinsic geometric median and the intrinsic geometric
median, respectively. Some properties of the intrinsic geometric median are studied
in [11] by, for example, characterizing the uniqueness conditions of the intrinsic
sample median along with a Weizfeld algorithm for finding the median. Our theo-
retical results below on robustness are of a fundamentally different nature, allowing
us to construct an estimator that is not only robust but also has tighter bounds
around the true parameter of interest.

We prove the following lemma, which says if w € M is at least a constant, Cy,
times e distance away from the geometric median p* = med(py,...,pm), then w is
at least e distance away from at least an « fraction of the points pi,...,pm. This
result is illustrated in Figure 1. A similar result was proved in [26] in the case of
Banach spaces. The proof of the following, a general lemma for manifolds, requires
additional machinery.

FIGURE 1. Geometric Illustration of Lemma 2.1 on Manifold M

Lemma 2.1. Let p1,...,pm € M, p* = med(p1,...,pm) as in (2.3). Then (a)
and (b) below hold.

(a) Let p be the extrinsic distance for some embedding J : M — M C RP. Let
w e M, 1 be angle between J(w) — J(p*) and the tangent space Ty, M
and let

1l-«a
V1 —2acosy —asiny
where o € (0, cot 1) tan %) If p(w,p*) > Cqe, then there exists an « portion
of elements of p1,...,pm which are at least € distance away from w. That
is, there exists an index set T C {1,...,m} with |T| > am, and p(p;j,w) > €
forany j €T.

Co =
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(b) Let p be an intrinsic distance on M with respect to some Riemannian struc-
ture. Let w € M, the log map log,. be K-Lipschitz continuous from B(w,¢€)
to Tp- M and let

1
=K(1-
Ca =KL -al\75,
where o € (0,1/2). If p(w,p*) > Cque, then there exists an « portion of
elements of p1,...,pm which are at least € distance away from w.

Proof. (a) Let L(J(p)) = 3272y p(p.p;) = X5y [17(p) = J(py)| for J(p) € M. Let
~(t) be a curve from J(p*) to J(w) on M, where v(0) = J(p*), v(1) = J(w), and
7'(0) = v. The directional derivative of L at J(p*) evaluated at v is given by

L () = L ((0))

dLJ(p*)(’U) = lim

t—0+ t
24 iy LOO) LU
t—0t

with the above inequality holding as J(p*) minimizes L for p € M. Let
Wt =Py (T + (I (@) = T0") ),
where P is the projection of R” onto M, that is,

P(z) = arg min p(y, ).
yeM
We assume the projection map P is differentiable at ¢ = 0. Denote J as the
Jacobian matrix of the projection map P at J(p*). Then one has

v=7'(0)= T (J(w) - J(p")),

which will be needed in determining the constant C. One can see that

L(y(t) = L{(J(p")) = Zl (v (@) = T (@)l = Iv(0) = T()) -
Let J
4y = O TN O =T g 5y
Then
t) — J(p)|I* = 7(0) — J(p;)|I?
4 = T T+ O =T = Lo
One has
(2.5) Jim ([ (#) = T (@)l + [1v(0) = T (py)ll) = 2[v(0) = T ()]l
Also,
Iy () = T)I* = (v(8) = T (), 7(8) = T (p)))
= (y(®),7(8)) = 2(v(2), J(p;)) + (J(ps), T (P5)),
and

17(0) = J(py)II* = (7(0),7(0)) = 2(3(0), ()} + (J(p), J (p1))-
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Then
v () = T = [I7(0) = J(ps)II”
= (7(), (1)) = (7(0),7(0)) — 2{x(t) — ~(0), J(p;))
= ((v(®), (@) = (v(0),7(£))) + ((7(0),7(2)) — (+(0),7(0)))
= 2(y(t) = (0), J(p)))
= (7() = 7(0),7(2)) + (v(0), v(t) — v(0)) — 2{y(t) —(0), J(p;))
= (7(t) = 7(0),7(t) +~(0) — 2J(p;))-
Therefore,
t1_>%1+ H'Y(t) — J(pj)” ; ”’V(O) — ‘](pj)” _ tl_igl+ <7(t) ; 7( ),'y(t) + ’Y(O) _ 2J(pj)>
= (7'(0),7(0) +7(0) — 2J(p;))
= 2(y'(0),7(0) = J(p;)) = 2(7'(0), J(p*) — J(p;))-
Thus, by (2.5) and the above equation, if J(p;) # J(p*), one has
o (0(0), () = J(py))
AR TG = Tl

Otherwise, if J(p;) = J(p*), then
i 4, — i DO=I@I o

t—0+ t—0+ t

Therefore,

dLJ(p*)( ) t1_1>1(1)1+ A
Jj=1

((0), J(p*) = I (p;
2 170%) — Ty Loty ”pry—p

where I(+) is the indicator function. The above implies

Ay (v) N~ A
CO ol © = o

B SR
27 = 2 hollie 21

The Jacobian matrix of the projection map P at J(p*), j is the orthogonal projec-
tion of TJ(p*)RD =RP to Ty(p )/\/l That is, for a € Ty (- ]R , J(a) = a1, where
a = a1 + ag is the unique orthogonal decomposition of a Wlth a; € TJ(p*)M. Now
assume that there does mot exist an « portion of elements of p1,...,p, which are
at least e distance away from w, that is, without loss of generality,

|J(pj) = J(w)|| <efor j=1,...,[(1—a)m] + 1.
Let us denote by Z(J(w) — J(p*),J(p;) — J(p*)) the angle between the vectors
J(w) — J(p*) and J(p;) — J(p*). Then for j =1,..., (1 —a)m] + 1,

sin (4( (w)—J(p ),J(pj)—J(p*))) <C'ia
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and so

Notice that
2(T(I@) = T, Tw) = T@")) + £(T @) = T0*), I (b5) = ("))
=+ 2L(J(w) = J(0"), J(pj) = T(p")) = A(J(J(w)) —J(p"), J(pj) — J(p*))-

Therefore,

cos (4 (J(J(w))fJ(p*), J(pj)J(p*))) > cos (w+4(J(w)fJ(p*), J(pj)—J(p*)))

>4 /1= 61’2 cos ) — —Slnw

= oo (4 (J(J(w)) —J("), J(ps) — J(p*)>>

> 11— Clcosz/) —smw

Then for any a € (O, cot ¥ tan %) from (2.6)

We have
(' (0),p; = J(p"))
17" (0)[[[pj — J(p*)

dﬁfy(? ))(|| v) < —(1 —a)m( 1— C’la cosy — asinzp) +am <0,

when
l1—«

v1—2acosyy — asiny
which is a contradiction with (2.4).

(b) The intrinsic median requires a different proof. Let L(p) = Z;":l p(p,p;)
where p is the intrinsic distance; we use the Riemannian exponential map exp,, :
TpeM — M. Let v = log,. w € T, M and consider the geodesic curve ~y(t) =
exp,, (tv). Then

Co 2

Denote

. m \/<'Xis(57t)a’7js(57t)> - \/<7js(8a0)a’7js(3a0)>
A= lim E ,
t—0+ 4 t
Jj=1
where 7;(s,t) = exp.;)(s10g, 1) Pj) = exp. ) (sv;(t)) is the geodesic curve connect-
ing v(t) with p;, then v,s(s,t) = W. Set

A - \/<7js(57t)77js(3at)> - \/<’Yjs(570)7’}/js(5,0)>

J t

,forj=1,....m
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Then
1 <7j8(57t)57j3(57t)> — <7js(570)57js(570)> .
Aj=- ,forj=1,....m
t \/<7j5(87t)’7j8(87t)> + \/<7j5(570)77j5(370)> o
We see that
i (450500020500 4 4/ 33 5. 076,01 ) = 2405500 2350

On the other hand,

lim <’Yjs(5at)’7js(57t)> - <7js(570)77js(570)> 2<D
t—0+ t dt

= 2<£%—t(s, 0); v5s(s, 0)> = Qdils<7ﬁ(s,0),7js(s,o)>,

755(5,0),75(5,0) )

Thus if p; # p*, one has

d
lim Aj _ £<7]t(8a0)77]3(3,0
=07 \/<7j3 S, 0)7 7]3(5,

Otherwise, if p; = p*, then

lim A = lim \/<_t71((1 B S)t)ﬂ —t’}//((l B S)t) — lim M — H ||

t—0+ TS0t t t—0+
Therefore,

U):Z/O tgrgl+A ids
0),7;s(5,0)) -
> [ s, 19(57 )>ds+||v|\§_jf<pj

Jpj#p*
-y |f Ll Y 1o
Jipi#p Yi

dexp,. ). (1050 ,dex v, Uj - .
- 3, {om), 150, Womy ), >+IIUHZI(pj=p)

J:p#P ”ij Jj=1
< 7(0) UJ
Jipi#p* J
(v, v,
= Z v |J| + v ”ZI
ipgpe 1

where I(-) is the indicator function. Then one has,

dLy-(v) (v, v5)
o =2 *Z

ez Tl

- _ Z cos(v, v;) + ZI(Z’J
j=1

Jipj#p*
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From the condition that log,,. is K-Lipschitz continuous from B(w,r) to T)«M,

lv; — v < Kdg(expp* Vjj, €XP, v).

dLy+(v) K?
— < —(l-—a)my|/l— = +am <0,
o] /—EF

whenever C,, > K(1 — «)

Then this yields

5= which leads to a contradiction with (2.8). O

There are many known Riemannian manifolds with K-Lipschitz continuous log
maps as required in part (b) of the above lemma. Below we provide a few examples
including the sphere, the planar shape space and the space of positive definite
matrices, which are commonly encountered manifolds in the statistics and medical
imaging literature.

Proposition 2.1. Let S¢ = {p € R . ||p| = 1} which is the d-dimensional
sphere. The inverse exponential map, log,, on S is 2-Lipschitz continuous from
B(p,7/2) to T,S? for all p € S°.
Proof. The tangent space at p is given as
7,87 = {v e R . vTp = 0}.

Then for ¢ € S¢ the inverse exponential map can be expressed as
arccos(p’'q)

1—(pTq)?

Hence, the distance between log, ¢1 and log, g2 is equal to

log,(q) = (¢— (" q)p).

| log, ¢1—log, g2 = \/arccos(qu1)2 + arccos(pTqz)? — 2 arccos(pT q1) arccos(pT qz) cos

where ¢ is the angle between log, ¢ and log,, ¢2. The geodesic distance between ¢,
and ¢o is then given by

dy(q1,q2) = arccos(qi gz).
One can easily obtain that

o = (0T 0) 0" a2) + /1 - 0Ta0)%\/1 - (07 g2)2 cos .

Then one can check directly that

[ log, ¢1 —log, q2|| < 2dy(q1,q2).
O

The following proposition shows that the log map in similarity-shape spaces [16]
also satisfies the K — Lipschitz condition.

Proposition 2.2. The similarity or planar shape space is given as
(2.9) yh = §%k=3 /g1,

The inverse exponential map, log,, on Y5 is 2-Lipschitz continuous from B(p,T/4)
to TyX5 for all p € 5.
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Proof. ¥ is the quotient of the sphere S?*~3 under the following group of trans-
formations

A ... 0
G= € M(2k), A€S0(2), ~S.
0 ... A

For any B € G, we have that B = cost] + sintI, where

1 0 ... 00 o 1 ... 0 O

o1 ... 0O -1 0 ... 0 O
= R

0 0 1 0 0 0 0 1

0 0 0 1 0 O -1 0

For each p € ¥§ we define the tangent space
7,55 = {v e R*=2:yTp =0, (Ip)Tv = 0}.
The inverse exponential map can be expressed as

arccos(p”q) (- T a)p).

1—(p"q)?

Hence, the distance between log), g1 and log, g2 is equal to

log,(q) =

| log, ¢1—log, ¢z = \/arccos(qu1)2 + arccos(pTqz)? — 2 arccos(pT q1) arccos(pT'qz) cos p,

where ¢ is an angle between log, ¢1 and log,, g2. The geodesic distance between ¢;
and ¢o is then given by

dg(q1,q2) = te(igfr . arccos(qT (costI 4 sintl)gsy)

=arccos sup (costql gy + sintql Iqy)
te(—m,m)

= arccos \/(qfq2)2 + (qFIqy)2.
One can easily obtain that
(6l ) + (a7 102)* = (0" a) @) + /1~ PT0)2 /1~ (07 2)? cos )
+ (1= (" @)1 = (07 g2)*)(cosv)?
where 9 is the angle between log,, ¢1 and I log, g2. Note that
/2 —p <Y <7/24 .
Thus cos ) > cos(n/2 — ) = sinp, and

dy(q1,92) > 2arccos (((qul)(quz) /1= 07021~ (07 2)? cos o)

1/2
1= G ) — (7)) (sin @2) |
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Then it can be verified directly that

2
I og,, a1 — log, ¢z < 2arccos (((qul)(quz) /1= 07 0)2\ /1 - (97 2)? cos )

1/2
- () - () (sin w?) .
Thus [[log, g1 — log,, q2|| < 2d4(q1,q2). O

Proposition 2.3. The manifold of positive definite n by n matrices PD(n) has a
1-Lipchitz continuous inverse exponential map at any p € PD(n).

Proof. We consider the Killing metric [30] in the manifold of invertible n by n
matrices GL(n)
ds*(a) = tr(a~'da)?.
In other words, in the Lie algebra gl(n) = TyGL(n) = M(n), we have the symmetric
inner product
(A,B); = tr(AB), A, B € gl(n),
which generates the bilaterally invariant metric in the group GL(n). That is, for
any A, B € T,GL(n) and a € GL(n),
(A,B)y = (a™*A,a™'B); = (Aa™, Ba™); = tr(a ' Aa"'B).
Since vectors p~ 1A, p~'B do not always belong to the tangent space TyPD(n), we
instead take vectors p—'/2Ap~1/2 and

<AvB>p = <p_1/2A,p_1/2B>p1/2
= (p~12Ap~1/2 p12Bp1/%),
= tr(p_l/zAp_pr_l/Q) = tr(p~tAp~'B),

where A, B € T,PD(n). Hence we have the metric in PD(n) induced from the
Killing metric in GL(n). This metric is usually known as the Fisher-Rao metric.
For this metric we have the following exponential and logarithm mappings

exp, A = P2 exp (pfl/ZAp71/2)p1/27
log, q = p'/*log (p~'/2qp~1/?)p'/?,

where
Y Y?2 yn
expY =T+t ot
— 1) Y aY0
logm‘:(x—[)_%_’__’_(_l)n—l%_’_

for any A,Y € Sym(n) and p, g,z € PD(n).
Let a,q1,g2 € PD(n). Then we have

—1/2)

log, a1 —log, azlla = |[log(a™*q1a™/%) —log(a™"/2g2a™/?)I1

<dg(a™Pqa™? a7 P07 ?) = dy(q1, q2)
where the inequality follows from the exponential metric increasing property of the

Fisher-Rao metric as in [4].
O
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3. ROBUST OPTIMIZATION ON MANIFOLDS: CONCENTRATION PROPERTIES

In this section, we introduce our proposed estimator, which aggregates a collec-
tion of subset optimizers of the empirical risk function. We first divide the data set
Z1,...,%n into m subsets Uy, ..., U, each of roughly size |n/m]. Let py,..., tm
be the optimizers of the empirical risk function from each subset, Uy, ..., U,,, re-
spectively. That is,

(3.1) i = arg;relij\r/lleﬂ(p, Uj)forj=1,....m

as in (2.2). Our estimator p* is the geometric median of the subset optimizers, that
is,

(3:2) = argmin y _ plp, ;).
peMj:1

We will show that p* has desired robustness properties in estimating the population
parameter p.

In [26] it is proven that the geometric median of a collection of weakly concen-
trated estimators admits a tighter deviation bound in a Hilbert space. With the
help of the Lemma 1, we generalise this result to manifolds in the following theorem.

Theorem 3.1. Let py,...,un be a collection of independent estimators of the
parameter u, and let geometric median p* = med (1, ..., thm)-

(a) Let p be the extrinsic distance on M for some embedding J : M — M C
RP. Assume for any w € M the angle between J(w)—J(u*) and the tangent
space TJ(H*)M is no bigger than 1. For any « € (0, cot 1) tan %_) set

11—«

MCOS’JJ — asinz/;'

(b) Let p be an intrinsic distance on M with respect to some Riemannian struc-
ture. Assume log,,. is K-Lipschitz continuous from B(p*,€) to T« M. For

any o € (0, %) set

Ty =

Co=K(l-a) T 50"
Under (a) or (b), if
(3.3) P(p(uj,p) >e€) <nfori=1,....n
where n < o then
(3.4) P(p(i, 1) > ) < exp(—m(a, 1),
where L
d(a,n) = (1 —a)log 1:04 —l—ozlog%.

Proof. Let ¢ be the angle between J(u)—J(p*) and the tangent space Tm/\;l. Since
Y < 1 we have C, < C, and cot z/;tan% < cot wtan% where

11—«
V1 —=2acost —asiny’
Thus, when the event {p(u*,u) > Cue} occurs, the event {p(u*, ) > Cye} oc-
curs. Then, by Lemma 1, when the event {p(u*,u) > Cue} occurs, there exists

Co =
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an « portion of elements of u1, ..., u,;, which are at least ¢ distance away from pu.
Therefore,

(35)  P(p(u, 1) > Ca€) < P(p(p*, 1) > Cae) < P(ZIP(MMN > am)-

j=1
Let A =[|{j =1,...m : p(u;,n) > €}| and let B be a random variable with a
binomial distribution, B ~ b(m,n). Then with (3.3) and by Lemma 23 in [20] there
exists a coupling C' = (4, B) such that A has the same distribution as A and B has
the same distribution as B such that A < B. Hence

P(A > am) < P(B > am) < exp(—me(a, 1))

where the second inequality follows from Chernoff’s bound. Then with (3.5) we
have

P(p(u”, 1) > Cae) < exp(—mao(a,n)).
For the intrinsic case (b) we have a similar proof. O
Remark 3.1. One important aspect in constructing the estimator p* is the choice
of the number of subsets m. By (3.4), a larger number of subset estimators, m,
yields more robustness and a tighter concentration around the true parameter. At
the same time, there must be enough data in each subset to ensure that each subset
estimator behaves well and 7 in (3.3) is sufficiently small. For a given confidence

level €, one can determine the number of subsets to achieve 7 in (3.3) and the
desired bound on the concentration or confidence level in (3.4).

In the following, we provide examples, in both the intrinsic and extrinsic cases,
of finding an 7 in (3.3) which allows the computation of the bound in (3.4).

Ezample 1. Consider the embedding J : M — RP. We have the induced measure
Q on the image where Q =QoJ ' Let 1,...,2, be an i.i.d. sample from a
distribution @, such that we have the extrinsic mean p for the random variable x

p=J1 (P(/RD u@(du))>.

Divide the sample z1, ..., z, into m disjoint groups Uy, ..., U, of size [n/m] each,
and define

i€Uj
pj € J7H(P(iy))-

One can easily conclude that

p(rs ) = |1 (1) = J (1)

= [1J() = By + B — I (1)
< NI ) = agll 4+ Nl — I (ug)
< 2[|J(w) = fi]-

Therefore

Ep®(p, 1) < 4E|J () — fus]|?
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- |U4| SOENI () — ()|

icUj
4 2
J i€U;
4

m
Ep?(p, 1) < 4 {ﬂ Ep? (1, 1)

S

|
So by Chebyshev’s inequality
1 4 rm
(3:6) P(p(njs ) =€) = P(p*(pj, 1) 2 €°) < ZBp(y, ) < [ﬂ Ep? (1, 1)
Finally, we have the collection of independent estimators pi1, ..., ftm, such that
P(p(pj, p) > €) <n,
where n = % [Z] Ep?(u1,21). So by theorem 3.1 for any a € (0, cot ¢ tan %)

P(p(p*, p) > Cue) < exp(—me(a,n)),

where
p* = med(p1, ..., fim),
o — 11—«
“ V1T =2acost —asiny’
1l-« «
¢(a,n) = (1 — @) log + alog —.
L—=n U
FEzxample 2. Let x1,...,x, be an i.i.d. sample from a distribution @, such that we
have the Fréchet mean p for the random variable ;.
Divide the sample z1,...,z, into m disjoint groups Uy,...,U,, each of size

[n/m], and define
1
; = arg min —— d%(y, z; i =1,...,m.
N’] gyeb\/l |UJ| iEZU. g(ya 1)7 J 9 )
J

Considering the jth subsample corresponding to U; on the tangent space at j;,

1

logw i = m Z loguj z; = 0.

J z;€U;

Thus on the tangent space T),;, M, we can obtain the equality

2

Z (log,,, @; —log,,, 1)

1
d (s 1) = log,, pll* = 3
Uil N %2,

Thus,

> Elllog,, z; —log,, ul*
z;€Uj

1
2 —
]Edg(ﬂaﬂj) = W

K? m
2 _ 2 2 2
E Ed; (1, ;) = | ledg(y,xl) <K {n} Edg (p, x1).

2
<
- |2

Ui1* &
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So by Chebyshev’s inequality,
(3.7)
2

Pldy(ps, 1) > ) = P((0s, 1) > @) < By ) < - || B2, 1).
Finally, we have the collection of independent estimators g1, ..., ftm, such that
P(dg(pj, 1) > €) <,
where n = K? [%] Edﬁ(u,xl). So by theorem 3.1 for any « € (0, %)

P(p(p*, p) > Cyue) < exp(—me(a,n)),

where

*

n= med(,ula"'a,um)a

Co=K(1-a)

1-—2a’

11—« «a
o(a,n) = (1 —a)log —— + alog —.
(0) = (1 — ) log p

4. SIMULATIONS AND APPLICATIONS

In this section, through extensive numerical examples, we show robustness and
improved concentration about the population parameter of the geometric median of
subset estimators in agreement with theorem 3.1. We first consider some simulated
examples in estimating population means in S% and PD(3). We then formulate
a robust procedure for estimating explanatory directions for dimension reduction
in PD(3) and do a simulation study using this procedure. Finally, we apply the
median-of-means method in the shape space to a hand shape data set as in [11].

Numerical results from both simulated and real data analysis in this section
agree with the robustness and concentration properties of the estimator. We see in
these results that

(1) In simulations 1, 2, 3, and 4, and with various numbers of outliers, the
average distance of the median-of-means is always an improvement over
the average distances of the subset means.

(2) The average distance of the median-of-means is almost always an improve-
ment over the overall mean in the presence of outliers.

(3) In the case of PD(3), in Simulation 4, the average distance of the median-
of-means for m = 5,10,15 often gives an improvement over the overall
median (m = 60) in the presence of outliers. Number of groups m = 15
seems to provide the best concentration overall. That the effect in more
pronounced seems to agree with the log map in PD(3) being 1-Lipschitz as
in proposition 2.3 and with the bound given in theorem 3.1 with K = 1.

In simulation 5, the median-of-means estimator is applied in estimating both the
center of operations and explanatory directions for dimension reduction. The ro-
bustness property is shown as explanatory submanifolds maintain their fit to data
in terms of intrinsic sum-of-squared residuals in the presence of outliers better than
the ordinary PGA procedure. All code and data used in this section can be found
in https://github.com/DrewLazar/RobustManifold.
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4.1. Simulation Study on S¢. In this subsection, we provide examples with data
simulated from the von Mises-Fisher distribution on the sphere. We consider the
estimation of both intrinsic and extrinsic means in the presence of various numbers
of outliers. As shown by the numerical comparisons below, the estimator obtained
from the robust estimation procedure shows improved concentration over subset-
based estimators and often is closer to the true parameter of interest compared to
the overall sample mean and overall sample median. We first describe algorithms
used for computing various summary statistics related to our estimators in S9.

4.1.1. Computation of Sample Statistics on S¢. Given {pi1,...,p,} C S we com-

pute sample statistics as follows:

(1) Intrinsic mean. With objective function L, (z) = 2 """  arccos?((z, p;))

n
and constraint function g(z) = (x, x) let

() = arccos((x,pz)).
V1= (z,p:)?

Then the sample mean i satisfies Lagrange multiplier condition
> yil@)p: = M with (i, i) = Land A= > 5;(0) (pi, j1).
i=1 i=1

As in [13], letting ¥(z) = .7, vi(x)pi, we use the fixed-point algorithm

Hi = Hi+1
i = ol
1 (fae )|
Then pg — fi.
(2) Intrinsic median. We use a generalization of Ostresh’s modification of
Weiszfeld’s algorithm as introduced in [11]. Let

-1
Y= Z arccos({z, pi)) (Z arccos<<w7pi>>>

)

mg — Mig41
me1 = Eap,, (¥(me)).
Then my — ™m where m is the intrinsic sample median.

(3) Extrinsic mean. As in [5], the extrinsic sample mean is the projection of
the sample mean under the embedding. That is,

p=P (i 3 J(p»)
i=1

where J is our embedding map. In the case of S¢, where J is the identity
map and projection is done by normalizing in R+, = 2/ ||z|| where 7 is
the Euclidean sample mean.
(4) Extrinsic median. Let
n
ZHx — pi|| for z € R and g(x) = Ly|ga.

i=1

1

n

Ln(x) =
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With S¢ as a submanifold of R4, for p € S¢ the gradient of ¢ is the
orthogonal projection of VL, onto Tde, that is,

Vpg = projr, ga(VpLn).

We take V,L,, as in Weiszfeld’s algorithm [33] and compute the sample
geometric median m by gradient descent as follows:

. pi— X 1 -
@) =2 (Z e = xn)

mrg — Mki1

i1 = Eapy,, (projr,, si((my)))
Then my — m, the extrinsic sample median.

4.1.2. Simulations in S¢. We consider the von Mises-Fisher distribution on the unit
sphere. Distributions on the sphere, and the estimations of their intrinsic means
have important applications in directional statistics, as in [25], and cluster analysis,
as in [3]. A von Mises-Fisher distribution on S¢ has pdf

/21
27T)d/2.[d/2_1(l€)
where I,, is the modified Bessel function of the first kind

27 R™

I, (k) = €759 gin" 9dg.
(x) T(n+1/2)(1/2) /0
The intrinsic mean of the distribution is  and & is a concentration parameter about
1 with a larger x giving increased concentration. One has
r((d-1)/2)

. — (i )
fd(1'7 H K) 2q(d=1)/2 fOﬂ- ercosd gipd—2 edge :

Thus, sampling = from the von Mises-Fisher distribution,
I((d—1)/2) o(d—1)/2 €
P(dy(z,p) <€)= — ( ) / "0 sin?=2 9dp
(sl 1) < €) = S [ reom it g \T((d — 172} Jy
€ er cos 6 sind_2 0do

4.1 = -0 :
1) J emeosfsin?=2 0do

e/‘c(m%)7

fd(x;uaﬁ) = (

Simulation 1. Estimating Intrinsic Mean in S?: Using [14] we sample n = 60 data
points from the von Mises-Fisher distribution on S$2. We take x = 30, which by
(4.1) guarantees with probability =~ 1 that the sample is within a hemisphere and
thus the intrinsic mean and median uniquely exist.

We include k& = 0,5,10, and 15 outliers outside a symmetric 95% confidence
region about the mean with the confidence region computed using (4.1). We then
apply the median-of-means technique of section 3 for m = 1, 5,15, 30 and 60 groups.
Over 1000 runs, we compute

(1) the average intrinsic distance p(p*, pt) from the true mean p to the geometric
median of subsets estimator p*.
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(2) the average intrinsic distance p(u;, pt) from p to the average of the subset

means i;, ¢ =1,...,m.
k P, 1) Pt ) plpi i) | p(p*s 1) p(pi, 1)
0 0.0597 0.0583  0.0947 | 0.0514  0.1496
) 0.0647 0.0615  0.1159 | 0.0531  0.1652
10 0.1194 0.1116  0.1414 | 0.1018 0.2113
15 0.1819 0.1731  0.1973 | 0.1631  0.2419
| || sample mean (m=1) | m=>5 | m=15 |
k|| p(p* ) pQpis p) | p(ri, p) (i, 1)
0 0.0455  0.2118 | 0.0424 0.2829
5 0.0453  0.2350 | 0.0447 0.2959
10 || 0.0776  0.2501 | 0.0614 0.3259
15| 0.1383  0.2954 | 0.0925 0.3738
L m=30 | sample median (m=60) |

TABLE 1. Results from Simulation 1 showing performance for var-
ious estimators of the mean under a von Mises-Fisher distribution
in S?, with k the number of outliers and p intrinsic distance.

Note that when m =1, p; and p* are both the sample Fréchet mean of the whole
data set, which we denote as fi. Also, when m = 60, u* is the sample median and
w; =p; for i =1,...,60. The same situation holds in simulations 2, 3 and 4.

In Figure 2 we have a sample of n = 60 from the von Mises-Fisher Distribution
including 5 added outliers. We take m = 5 subsets and we see the improved
concentration about the population mean of the geometric median of the 5 subset

means.

= e ————
[~ 95% Conf. Boundary y NS

08| @ Added Outiiers
[

06— H

04—

02—

02|

04—

06—

08—

FiGURE 2. Von-Mises Fisher, x = 30, 5 added outliers
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Simulation 2. Approximation of the Intrinsic Mean in S7: We repeat the first part
of the experiment in Simulation 1 in S7 except with n = 200, x = 20, k = 0, 10, 20, 40
outliers and m = 1, 10, 50, 100, 200 groups.

k p(f, 1) p(u* i) pQuis ) | p(p*, 1) p(pa, 1)
0 0.0396 0.0399  0.1186 | 0.0384  0.2570
10 0.0565 0.0541  0.1258 | 0.0514  0.2669
20 0.0897 0.0900 0.1462 | 0.0834  0.2827
40 0.1656 0.1678  0.2082 | 0.1596  0.3376
[ [ Sample mean (m=1) | m=10 \ m=>50
k|| p(p*s i) ppi pr) | p(ri, 1) p(fi, 1)
0 0.0398  0.3590 | 0.0387 0.4896
10 || 0.0469 0.3676 | 0.0457 0.4978
20 || 0.0760  0.3896 | 0.0682 0.5301
40 || 0.1513  0.5176 | 0.1305 0.5987
1 m=100 | sample median (m=200) |

TABLE 2. Results from Simulation 2 showing performance for var-
ious estimators of the mean under a von Mises-Fisher distribution
in S7, with k& the number of outliers and p intrinsic distance.

Simulation 3. Approximation of the Extrinsic Mean in S%: We repeat the exper-
iment in Simulation 1, but with p as the extrinsic distance and with each average

taken over 1200 runs.

k p(fi, 1) Pt ) pQuis i) | p(u*, 1) p(pa, 1)
0 0.0272 0.0330  0.0676 | 0.0312  0.1179
5 0.0621 0.0634  0.0943 | 0.05641 0.1512
10 0.1231 0.1190  0.1456 | 0.1083  0.1952
15 0.1771 0.1688  0.1956 | 0.1632  0.2337
| ] Sample mean (m=1) | m=>h ‘ m=15 ‘
k|| p(u* ) pQpis p) | p(ri, p) p(pis 1)
0 0.0305 0.1681 | 0.0312 0.2312
5 0.0453 0.2034 | 0.0411 0.2745
10 || 0.0847  0.2479 | 0.0612 0.3241
15 || 0.1453  0.2971 | 0.0837 0.3728
] m=30 | sample median (m=60) |

TABLE 3. Results from Simulation 3 showing performance for var-
ious estimators of the mean under a von Mises-Fisher distribution
in S7, with k the number of outliers and p intrinsic distance.
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The results in Tables 1-3, showing the performance of the various estimators
in Simulations 1-3 respectively, demonstrates that the median-of-means estimator
almost always improves over the average of subset means and overall Fréchet sample
mean estimators in the presence of outliers.

4.2. Simulation study on PD(3). In this subsection, we consider simulated data
from a generalized log-normal distribution on the space of 3 x 3 positive definite
matrices, PD(3). As in subsection 4.1, we consider the estimation of intrinsic means
in the presence of various numbers of outliers. There are multiple applications in
which it is of interest to estimate the mean of a sample of positive definite matrices.
This includes principal geodesic analysis (PGA), as in [10], where optimization to
find explanatory directions is done in the tangent space at the sample mean. Using
our median-of-means procedure, we formulate a robust PCA procedure (RPGA).
We first describe algorithms used for computing various summary statistics related
to our estimators in PD(3).

4.2.1. Computation of Sample Statistics on PD(3). To compute the sample intrin-
sic mean in the following simulation, we use the damped gradient descent algorithm
as in [10]. As shown in [15], as PD(3) is of non-negative curvature, the intrinsic
mean is guaranteed to exist and to be unique. To compute the sample intrinsic
median, we use the generalization of Weiszfeld’s algorithm given in [11] where the
sample intrinsic median is shown to exist and to be unique. Computations of pro-
jection to subspaces and of principal geodesic directions are done using MATLAB
minimization routines and user-supplied gradients as formulated in [32] with the
derivative of the matrix exponential map provided by [28, Theorem 4.5].

4.2.2. Robust Principal Geodesic Analysis (RPGA). Principal Geodesic Analysis
(PGA) as in [18] is a two-step procedure which involves 1) computing a center of
the data and 2) successively finding orthogonal tangent vectors at that center so that
their exponentiated span best fits the data according to intrinsic sum-of-squared
residuals.

We propose a Robust PGA procedure (RPGA) which 1) uses the median-of-
means estimate as the center of the data and 2) finds orthogonal directions in the
tangent space using the robust median-of-means Principal Component Analysis
(PCA) procedure given in [26]. Specifically, in RPGA

(1) Divide the data into m subsets Uy, . .., Uy, and for each compute an intrinsic
mean £ as in (3.1) and then compute p* = med(u1, ..., 1m) as in (3.2).

(2) Compute V; = vec(Log,-(U;)) where Log,,.(U;) is the image of U; under
the Riemmanian log map. As in [26], compute sample covariance matrices
¥.; for each V; and then compute

S =med(Sy,...,5,)

where the median is taken with respect to Frobenius norm ||A||p = trace(ATA).
We take the eigenvectors of f), {w1,...,wg}, arranged in order by largest
to smallest eigenvalue. Then our robust principal geodesic directions in
the tangent space at u* are {v1,...,vs} where v; is the vector correspond-
ing to w; by the vec operator. To form explanatory subspaces we then
exponentiate the span of {vy,..., v} at u* for k=1,...,6.
This procedure is robust as it ensures both the located center of the data and the
located explanatory directions are not unduly affected by the presence of outliers.



ROBUST OPTIMIZATION AND INFERENCE ON MANIFOLDS 21

4.2.3. Simulations in PD(3).

Simulation 4. Estimating the Intrinsic Mean in PD(3): We sample n = 60 data
points from a log-normal distribution where if the random variable X has this
distribution then vec(Log; (X)) ~ N (0, kI) with x a scaling parameter. We repeat
the experiment of Simulation 1 of section 4.1.2 with each average taken over 1200
runs.

k P(f, 1) Pt ) pQuis ) | p(w*, 1) p(pi, 1)
0 0.2630 0.2781  0.5909 | 0.2753  1.0408
5 0.2640 0.2512  0.5776 | 0.2683  1.0745
10 0.3568 0.3179  2.7485 | 0.2986  1.3158
15 0.5292 0.3001  1.0433 | 0.3437  1.4246
| [ Sample mean (m=1) | m=>h ‘ m=15

k || p(u* ) pQpis p) | p(rin, p) p(pis 1)

0 [ 02750 1.5230 | 0.2728 2.3449

51| 0.2724  1.5930 | 0.2675 2.4139

10 || 0.3306  1.7607 | 0.3482 2.5002

15| 0.4183  1.8107 | 0.5265 2.5617

[ m=30 | Sample median (m=60) |

TABLE 4. Results for Simulation 4 with data simulated from a
log-normal distribution in PD(3), k the number of outliers, and p
the intrinsic distance.

The results are shown in Table 4. Again, in this example, the median-of-mean
estimator always improves over the average of the means and almost always over the
overall sample Fréchet mean. The average distance from the truth of the median-
of-means for m = 5,10, 15 is an improvement over the overall median (m = 60) in
the presence of outliers. The number of groups m = 15 seems to provide the best
concentration overall.

Simulation 5. Estimating Explanatory Directions in PD(3) with RPGA: We sample
from a log-normal distribution, where if the random variable X has this distribution
then vec(Log,; (X)) ~ N(0,xkX) with s a scaling parameter. X is diagonal with
diagonal entries which vary from 1 to 20 to ensure that population PGA directions
exist,.

Over 200 runs, we add 0, 5, 10, 15 outliers outside a 95% confidence region in n =
60 data points and compute PGA and RPGA explanatory directions. We then find
the intrinsic mean sum of squared residuals (mSSRs) of the data without outliers
relative to the estimated explanatory submanifolds. Table 5 gives the average of
the mSSRs over 200 runs for submanifolds of 1, 2, and 3 dimensions for PGA and
for RPGA computed with 5, 10 and 15 groups.

We see that without outliers, the PGA procedure, which sequentially optimizes a
fit to the data at the intrinsic mean, produces the lowest average mSSR, regardless
of the number of groups for RPGA. However, as outliers are added, the mSSR,
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for PGA increases to a greater extent than RPGA. Note that RPGA with m =1
groups is the linear approximation of the PGA procedure given in [10]

k || PGA | RPGA | RPGA | RPGA
0 | 0.4206 | 0.4265 | 0.4259 | 0.4320
5 | 0.4529 | 0.4465 | 0.4314 | 0.4342
10 || 0.4541 | 0.4438 | 0.4508 | 0.4374
15 || 0.4540 | 0.4445 | 0.4492 | 0.4442
20 || 0.4527 | 0.4473 | 0.4507 | 0.4496

’ m groups \ m=>5 \ m=10 \ m=15 ‘

k || PGA | RPGA | RPGA | RPGA
0 | 0.2629 | 0.2686 | 0.2691 | 0.2751
5 {1 0.2924 | 0.2870 | 0.2803 | 0.2795
10 || 0.2963 | 0.2838 | 0.2925 | 0.2791
15 |1 0.2994 | 0.2835 | 0.2758 | 0.2850
20 || 0.3041 | 0.2841 | 0.2889 | 0.2775

m=5 | m=10 [ m=15 |

] m groups

k || PGA | RPGA | RPGA | RPGA
0 |/ 0.1472 | 0.1497 | 0.1533 | 0.1608
5 |/ 0.1919 | 0.1801 | 0.1600 | 0.1588
10 || 0.2242 | 0.2102 | 0.1940 | 0.1743
15 || 0.2208 | 0.2149 | 0.2134 | 0.2079
20 || 0.2305 | 0.2259 | 0.2169 | 0.2206

’ m groups \ m=>5 \ m=10 \ m=15 ‘

TABLE 5. Average mSSRs to explanatory submanifolds computed
with k outliers to data without outliers in PD(3)

4.3. Hand Shape Data in 2. We consider the hand shape data set in [8] of 18
hands with each hand in planar shape space 7%, A planar shape XX consists of
objects with K landmarks in R modulo the Euclidean motions including rotation,
scaling and translation [5,16]. As in [11], we use ellipses as outliers with each one
as
{(acos(km/36),bsin(kn/36);k =0,...,71}

where a, b are sampled from the uniform distribution on [0.5,1]. With k = 3 added
outliers, we divide the data of size n = 21 into m = 7 random subsets, each of size
3. We then compute and observe the geometric median and the sample mean.

4.3.1. Computation of Sample Statistics on L. We identify 72 with S%°/S' as in
(2.9), and compute intrinsic sample means and medians using direct modifications
of the algorithms in section 4.1.1.

In Figure 3 (a) we show n = 21 hands with 3 outliers. In (b) we show 7 randomly
assigned subsets indicated with seven different colors, and in (c¢) we show the subset
means of each group. In (d) we see less influence of the outliers in the geometric
median, as it retains the shape of a hand similar to the original 18 hands.
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FIGURE 3. Median-of-Means on Hand Shape Data

5. DiscussioN

We propose a robust and scalable procedure for general optimization problems
on manifolds. Scalability is of particular importance in dealing with the difficult
computational issues that arise in estimating sample statistics for manifold data or
extracting low-dimensional manifold in high-dimensional data. Along these lines,
parallel computation can be implemented trivially from the subsampling procedure.

It is shown through lemma 2.1, which provides an important property of geo-
metric medians on manifolds, and the following theorem 3.1, that the resulting
estimator yields provable robustness and tighter concentration bounds about the
true parameter of interest. Numerical results from both simulated and real data
analysis in Section 4 agree with the robustness and concentration properties of the
estimator.

Future research might include considering the optimal numbers and sizes of sub-
groups for estimation as discussed in remark 3.1. In theorem 3.1, for a given €, more
groups provide a larger m but also a larger 7 in the bound provided by 3.4. This
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is reflected in Examples 1 and 2 in (3.6) and (3.7). In finding the optimal m, the
number of outliers and amount of contamination in the data also must be factored
in. In addition, challenging computational considerations for large data sets on
manifolds and advantages in partitioning data needs to be considered. Also, the
second step of the RPGA procedure in 4.2.2 might be done instead by partitioning
the data in the manifold rather than their Riemannian logs in the tangent space at
w*. Computation of RPGA, as formulated in 4.2.2, only requires the computation
of the median-of-means p*, and then the linear operation of computing sample co-
variance matrices of the Riemannian logs of data in the tangent space at u*. Robust
estimation on manifolds in other contexts such as manifold regression [2] might also
be considered. As in the case of estimation of the mean, additional machinery and
complications arise in the more general context of a manifold.
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