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Abstract. We propose minimax optimal Bayesian two-sample tests for testing
equality of high-dimensional mean vectors and covariance matrices between two
populations. In many applications including genomics and medical imaging, it
is natural to assume that only a few entries of two mean vectors or covariance
matrices are different. Many existing tests that rely on aggregating the differ-
ence between empirical means or covariance matrices are not optimal or yield
low power under such setups. Motivated by this, we develop Bayesian two-sample
tests employing a divide-and-conquer idea, which is powerful especially when the
differences between two populations are rare but large. The proposed two-sample
tests manifest closed forms of Bayes factors and allow scalable computations even
in high-dimensions. We prove that the proposed tests are consistent under rela-
tively mild conditions compared to existing tests in the literature. Furthermore,
the testable regions from the proposed tests turn out to be minimax optimal in
terms of rates. Simulation studies show clear advantages of the proposed tests over
other state-of-the-art methods in various scenarios. Our tests are also applied to
the analysis of the gene expression data of two cancer data sets.

Keywords: Bayesian hypothesis test, Bayes factor consistency, high-dimensional
covariance matrix, optimal high-dimensional tests.
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1 Introduction

Consider two samples of observations from high-dimensional normal models

i.4.d. .
Xi|,u/1521 ~ Np(/’[’hzl)a 7/:1,...771]_, (11)

Y; |/u’2a22 ~ NP(NJ%ZQ)? 7’:17"'377’23

where N, (p, ) is the p-dimensional normal distribution with mean vector u € RP and
covariance matrix X € RP*P and the number of variables p can increase to infinity as the
sample sizes (n; and ng) grow. Given two samples of such observations, there is abun-
dant interest in testing the equality of high-dimensional mean vectors or covariance
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matrices with applications in medical imaging, genetics and biology (Tsai and Chen,
2009; Shen et al., 2011). Although there is an emerging literature on high-dimensional
hypothesis testing, most of the literature has focused on proposing frequentist testing
statistics with relatively little work on developing Bayesian hypothesis tests in partic-
ular for high-dimensional problems. Bayesian tests, which typically are based on Bayes
factors with appropriate design of prior distributions for the model under the null and
the alternative operate differently from their frequentist counterparts, and there is in-
dependent interest in developing Bayesian testing approaches. We add to the limited
literature by developing powerful and scalable Bayesian high-dimensional tests for test-
ing the equality of means and covariance matrices between two populations.

Our initial focus is on the two-sample mean test, where we assume X1 = Y5 and test
whether 1 = po in model (1.1). When uy # uo, we call the nonzero elements in the
mean difference vector 1 — s € RP the signals. It is well known that the power of a
test depends on both the number and the magnitude of the signals. From a frequentist
perspective, Bai and Saranadasa (1996) and Srivastava and Du (2008) proposed high-
dimensional two-sample mean tests based on estimators of ||A(u; — p2)||3 for some
positive definite matrix A € RP*P| where || - || denotes the vector ¢3-norm. We call
these tests lo-type tests because their test statistics involve the fo-norm. It is known
that fo-type tests tend to have good power when there are many signals, i.e., when a
large portion of p; — pso is nonzero. When there are many but small signals, ¢o-type
tests tend to show better performance over other types of tests.

In many applications, however, it is more natural to assume rare signals, where only
few entries of p; — ps € RP are nonzero. Under the presence of few relatively large
signals, it is well known that maximum-type tests tend to outperform /s-type tests.
Here, a maximum-type test refers to a class of tests whose test statistic involves the
maximum-norm. Cai et al. (2014) proposed a consistent maximum-type test for high-
dimensional two-sample mean test. They standardized the difference between sample
mean vectors using an estimated precision matrix based on either the constrained ¢;-
minimization for inverse matrix estimation (CLIME) (Cai et al., 2011) or the inverse of
the adaptive thresholding estimator for a covariance matrix (Cai and Liu, 2011). Because
their test statistics depend on an estimated precision matrix, practical performance of
the tests could be impacted by performance of the estimated precision matrix.

Besides the aforementioned papers, many other interesting studies have been con-
ducted for the two-sample testing setup. Gregory et al. (2015) proposed a two-sample
mean test which bypasses the needs of the estimation of precision matrix and is robust
to highly unequal covariance matrices between two populations. Xu et al. (2016) pro-
posed an adaptive two-sample mean test that retains high power against a wide range of
alternatives. Cao et al. (2018) developed a test for compositional data based on the cen-
tered log-ratio transformation. Recently, Wang et al. (2019) suggested a robust version
of the maximum-type test for contaminated data.

Our second focus is the two-sample covariance test of whether ¥; = X5 or not
in model (1.1) under the assumption p; = ps = 0. In this case, we call the nonzero
entries in ¥y — Yo € RP*P the signals. Some frequentist tests have also been suggested
in the literature for two-sample covariance in high-dimensional settings. Schott (2007)
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and Li and Chen (2012) proposed to test equality of covariance matrices based on an
estimator of ||$1 — X2 ||%, where |- | p denotes the Frobenius norm defined at Section 2.1.
Srivastava and Yanagihara (2010) suggested a test based on a consistent estimator of
tr(X3)/{tr(X1)}? — tr(22)/{tr(X2)}2. These tests can be categorized as fo-type tests.
A two-sample covariance test based on super-diagonals was proposed by He and Chen
(2018) whose test turned out to be more powerful than other existing tests when ¥; and
35 have bandable structures. However, the aforementioned tests target many signals,
where most of components of ¥; — ¥y are nonzero. Thus, they might be less powerful
under the rare signals setting, where only a few entries in ¥; — ¥y are nonzero. In
such a situation, a maximum-type test might outperform f2-type tests. Cai et al. (2013)
proposed a maximum-type test for two-sample covariance testing. Similar to two-sample
mean test in Cai et al. (2014), Cai et al. (2013) standardized the difference between
sample covariances and took the maximum over the standardized sample covariances.
Recently, Zheng et al. (2017) combined the two tests in Li and Chen (2012) and Cai
et al. (2013) by taking weighted average to handle both rare and many signals.

On the other hand, up to our knowledge, no theoretically supported Bayesian method
has been proposed for high-dimensional two-sample tests, except a recent work of Zoh
et al. (2018). They proposed a Bayesian test for high-dimensional two-sample mean test
by reducing the dimension of data via random projections. They proved consistency of
the proposed Bayesian test under the joint distribution of data and prior, where the
true mean vector is a random variable from the prior distribution.

In this paper, we develop scalable Bayesian two-sample tests supported by theoretical
guarantees. Since rare signals can be more realistic in many applications, our goal is to
develop a consistent Bayesian test achieving good power when there are rare signals.
To this end, we apply the maximum pairwise Bayes factor approach suggested by Lee
et al. (2021), which is essentially a divide-and-conquer idea. Rather than comparing the
whole mean vectors or covariance matrices at once, we divide them into smaller pieces.
Although we employ the general idea of modularization by Lee et al. (2021), the former
work however only focuses on one-sample testing of the structure of covariance matrices.
Substantial new developments have been made in this work which differs in terms of
problem setup, prior choice, theory development as well as computational approach.

The main contributions of this paper can be summarized as follows. The proposed
Bayesian tests are scalable with simple implementations that can be readily used by
practitioners. It accelerates the computation speed by circumventing computational is-
sues such as inversion of a large matrix. Furthermore, up to our knowledge, these are
the first results on Bayes factor consistency in high-dimensional two-sample testings.
We prove that the proposed Bayesian tests are consistent under both null and alterna-
tive under mild conditions (Theorems 2.1 and 3.1), where the true parameter is a fixed
unknown quantity, which differentiates our results from those in Zoh et al. (2018). Sim-
ulation studies show that the proposed tests have the desired property of being much
more powerful than f>-type tests under rare signals settings. Besides the development
of new Bayesian methods, our proposal also improves state-of-the-art methods theoreti-
cally and empirically. We show that the derived testable regions from the proposed tests
are optimal in terms of convergence rates (Theorem 3.2), and the required conditions
for achieving the theoretical results are much weaker than those used in existing liter-
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ature. Furthermore, although there are existing frequentist maximum-type tests (Cai
et al., 2013, 2014), the proposed tests in this paper outperform the contenders in various
settings.

The rest of paper is organized as follows. Sections 2 and 3 present the proposed
Bayesian two-sample tests for mean vectors and covariance matrices, respectively. In
Section 4, the practical performance of the proposed methods is evaluated based on
numerical study. Concluding remarks are given in Section 5, and proofs of the main
results are included in the supplementary material (Lee et al., 2023).

2 Two-sample mean test

2.1 Notation

For any given constants a and b, we denote the maximum and minimum between the
two by a Vb and a A b. For a vector x = (z1,... ,:cp)T and a positive integer ¢, we

1/q ..
_(SP 4
denote the vector £;-norm as ||z[lq = ( i1 xj) . For any positive sequences a,, and

by, an < by, or equivalently a,, = o(b,,), means that a,, /b, — 0 as n — co. We denote
an = O(by,) if there exists a constant C' > 0 such that a, /b, < C for all large n, and
ap < b, means that a, = O(b,) and b, = O(a,). For a given matrix A € RP*? we
denote the Frobenius norm [|Al|r = (37, 2%, afj)l/z, the matrix ¢;-norm ||Al|; =
SUP,erp |z, =1 | AZ[l1 and the matrix maximum norm || A||lmax = maxi<i<j<p |ai;|. The
maximum and minimum eigenvalues of a matrix A are denoted by Apax(A4) and A\pin(A),
respectively. For given positive numbers a and b, IG(a,b) denotes the inverse-gamma
distribution with shape parameter a and rate parameter b.

2.2 Maximum pairwise Bayes factor for two-sample mean test

Suppose that we observe the data from two populations

i.5.d.

X; , 0~ N, ,2), 1=1,...,n,
il - p(p1, %) 1 2.1)
Yi |M2?E o~ Np(u272)7 i=1,...,n2,
where 1,02 € RP and ¥ is a p X p covariance matrix. Let X,,, = (Xl,...,an)T €

R™*P and Y, = (Y1,...,Y,,)T € R"2*P be the data matrices for each population. We
are interested in the testing problem

Hy:py=ps  versus  Hy:py # po. (2.2)

Bayesian hypothesis tests are typically based on Bayes factors. To construct a Bayes
factor for two-sample mean test, marginal likelihoods should be calculated based on
priors for each hypothesis. Using normal priors for mean vectors and the Jeffreys’ prior
for a covariance matrix, which corresponds to a default choice, the resulting Bayes factor
can be calculated in a closed form when 1 < p < n — 2. See Zoh et al. (2018) for the
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details. However, the Bayes factor under such priors involves the inverse of a pooled
sample covariance matrix, which prevents one from using when p > n — 2. Zoh et al.
(2018) suggested projecting the data to a lower-dimensional subspace to reduce the
dimensionality.

In this paper, we apply the maximum pairwise Bayes factor (mxPBF) approach
suggested by Lee et al. (2021). Specifically, we compare two mean vectors by comparing
them element-by-element. For a given integer 1 < j < p, let X = (Xyj,.. .,anj)T
and Y; = (Yij,...,Yn,;)" be the jth columns of X,,, and Yn2, respectively. From
model ( 1), we have the following marginal models

Xj | wjo55 ~ Nuy(pijlng,0jiln,),
Yj | p2js055 ~  Niy(p2ilng, 055ln,),

where pr = (k1,- .., prp)t for k = 1,2, ¥ = (0y;) and 1, = (1,...,1)T € RY9. The
hypothesis testing problem (2.2) can be reformulated as

Hoj @ pij = po;  versus  Hyj:paj # pej,

in the sense that Hy is true if and only if Hy; is true for all j =1,...,p. Thus, we will
first construct Bayesian tests for each testing problem Hp; versus Hi; and calculate
pairwise Bayes factors (PBFs) based on (XJ, YJ) forj=1,...,p. Foragiven1 < j < p,
we suggest the following prior mo; (1, 0;;) under Hyj,

e
pylog; ~ N(Zj,ni;)’
w(oj;) 0;]-1,

where p1; = p1; = poj;, and the following prior 7y (p1;, poj, 0;;) under Hyj,

_ O
M1 | O55 ~ N<X7i)7
iloj P ey
g
paj | g5~ N(Ym i)
-1
m(oj;) o< o),
Where Z = (XT Y/T)T = (le,...,an)T, Zj =n! Z:L 1le, X = ?7,171 Z;lzll Xija
= n{l >, Y, n=ni+ny and vy = (nVp)~“. Throughout this paper, we consider
a as a fixed positive constant.

For any vector v, define the projection matrix H, = v(vTv) T, Let E%j =
n~ZT (I, - Hy,)Z;, 0%, = m ' XT (I, — Hy,,)X; and oy, = ny Y (I, — Hy,)Y;.
Then, the resulting log PBF is

"<z ’*<1

o p(X;
logBIO(va}/j) = 10g EX :

~ 2.3
1 ol n na%j ( )
= —log (—) +slog| ——"— |,
2 1+~ 2 nioy, +n2cryj
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where
p(X;.Y; | Hoj) = //p(Xj | 115,055, Hop)p(Yi | 15,055, Hoj)mo (wy, 055)dpsdoj,

p(X;.Y; | Hij) = ///P(Xg | g, 05, Hij)p(Yj | poj, 05, Hij)
x w15 (pags Hag, 05)dpjdps;doy;.

The derivation of (2.3) is given in the supplementary material. To aggregate PBFs for

all j =1,...,p, we define the mxPBF as

Bhc10Xny; Yon,) i=  max Bio(X;,Y)). (2.4)
' 1<j<p

Then one can conduct a Bayesian test based on the mxPBF by rejecting the null Hy :

p1 = po if the mxPBF is larger than a prespecified threshold. Note that the mxPBF

B* (Xny, Yy,) supports Hy @ p1 # pe if and only if there is at least one strong

max,10
evidence in favor of Hyj : 1 # poj.

We note here that the proposed mxPBF is quite a naive approach that completely
ignores the dependence structure of the data and treats p variables as independent of
each other. Thus, the proposed method does not require priors on the entries o;; for
1 < i # j < p, which also simplifies computations compared to the approach of Zoh
et al. (2018).

As pointed out by a referee, the prior used for the mxPBF depends on the data. A
data-dependent prior uses the data twice, so in general, it might hurt sequential analyses
and Bayesian updating. Nevertheless, empirical priors are somewhat routinely used in
Bayesian analysis, and we have used the data-dependent priors to avoid introducing
unnecessary conditions when proving theoretical results. In the subsequent section, we
partially justify the above concerns by establishing the consistency of mxPBF.

2.3 Bayes factor consistency

A mxPBF is said to be consistent if it (i) converges to zero under Hy and (ii) diverges to
inﬁnity under Hi in probability. Let Ho1 = ([L()Lj) € RP and Ho2 = (,UJQQJ') € RP be true
mean vectors for each population, respectively, and g = (00,;) € RP*P be the true
covariance matrix. Theorem 2.1 shows that, despite the ignorance of the dependence
structure, the mxPBF is consistent under mild conditions.

Theorem 2.1. Consider model (2.1) and the two-sample mean test Hy : p3 = po versus
Hy : py # po. Assume that logp < neg and
2(1 + 60)
1-— 3\/ 0160 ’
for some constant 0 < ¢y < 1 and any constant Cy1 > 1 arbitrarily close to 1. Then, the

maxPBF (2.3) is consistent under Hy: for some constant ¢ > 0,

B (Xn,Yn,) = Op{(nVvp)~©°} under Hy.

max,10

(2.5)

When H; is true, assume that there is at least one of indices 1 < j < p satisfying
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_ )2 2
mina(pior; — pozg)” [V/2C1 + /21 +aCi{1 + (1 + 8Ch)eo} | log(nVp) (9 )
n%0o,j n

Then, the mxPBF is also consistent under H;: for some constant ¢’ > 0,

{Brﬁlax,lo(anYnz)}_l = OP{(nvp)_C/} under Hl'

It is worthwhile to compare our findings to those of previous studies. As mentioned
earlier, the test statistic of Cai et al. (2014) depends on an estimated precision matrix
that some conditions for consistent estimation of the precision matrix are required. For
example, it was assumed that ¢ has bounded eigenvalues and absolute correlations
of X;, Y;, QoX; and Q¢Y; are bounded away from 1, where q is the true precision
matrix. Furthermore, y is assumed to satisfy [Q]|? = o(y/n/(logp)?) or stronger
sparsity assumption, which essentially means that a large amount of entries in € is
sufficiently small. They also assumed that pg; — po2 has at most p” nonzero entries,
where r € [0,1/4).

On the other hand, theoretical results in Theorem 2.1 do not require any condition
on the true precision matrix and allow the number of nonzero entries in o1 — g2 to have
the same order with p. Therefore, we suspect that the mxPBF would perform better than
the maximum-type test in Cai et al. (2014) when these conditions are violated. Indeed,
we find empirical evidences for this conjecture in our simulation study in Section 4.2.

Recently, Zoh et al. (2018) proposed a Bayesian two-sample mean test and proved
consistency of the Bayes factor in high-dimensional settings. They used random projec-
tions to reduce the dimensionality of the data and assumed that the reduced dimension
has the same order with (11 Ans). To conduct a Bayesian test, a single random projection
matrix was considered, which can lead to different results depending on the generated
projection matrix. Furthermore, they did not provide a condition on the lower bound
of 11 — poz of o1 — po2 like condition (2.6) to ensure consistency under the true alter-
native. They assumed that p; — ps is a random vector under Hj : pq # po rather than
considering a fixed true value po; — o2, which differentiates our results from those in
Zoh et al. (2018).

We note here that, under regularity assumptions, condition (2.6) is rate-optimal
in the following sense. When log(n V p) < logp, [|Q]|? = O(1) and S I(pory #
Hoz,;) = p" for some 0 < r < 1/4, Theorem 3 in Cai et al. (2014) implies that no
consistent test exists that also has vanishing Type I error for the alternative class satis-
fying condition (2.6). Thus, condition (2.6) is minimax rate-optimal, and the proposed
mxPBF-based test provides a minimax optimal testable region with respect to the max-
imum norm. Cai et al. (2014) assumed the condition max;(uo1,; — poz2,j)> > Clogp/n
for some constant C' > 0, which is similar to (2.6).

3 Two-sample covariance test

In this section, we propose Bayesian two-sample tests for testing the equity of high-
dimensional covariance matrices and consider their theoretical properties in terms of
Bayes factor consistency and optimality of the testing regions.
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3.1 Maximum pairwise Bayes factor for two-sample covariance test

Suppose that we observe the data from two populations

Xi ‘ Zl z}vd NP(0521)7 1= 1a" -5 N1,

id.d (3'1)
K‘ZQ ~ Np(O,Eg), izl,...7n27

where X1 = (01,45) and Xy = (02,;) are p x p covariance matrices. In this section, we
consider the testing problem

Ho : 21 = 22 versus H1 : 21 7& 22. (32)

To apply the mxPBF approach, we need to divide the comparison of two covariance ma-
trices into smaller problems. Among various options for that, we use the reparametriza-
tion trick used in Lee et al. (2021). Specifically, for a given pair (i,j) with 1 < i # j <p,
(3.1) induces the conditional distributions

Xi | Xj,a1,i5, 71,55 ~ Nay(a1,5X5, 710500, ),

S N (3.3)
3/;'|Yg‘,az,ij,T2,ij ~ Ny, (a2,ij jvTQ,ijIn2)a

where ari; = Okij/Okjj, Thij = Okii(l = pF ;) and prig = onij/(Oka0n,55)"? for
k = 1,2. The hypothesis testing problem (3.2) can be reformulated as

HO,ij : alyij = 01271']‘ and Tl,i5 = T2,ij versus Hl,ij : not HO,ija (34)
in the sense that Hy is true if and only if Hy ;; is true for all pairs (4,7), 1 <i# j <p.

To construct a Bayesian test for testing (3.4), we suggest the following prior distri-
bution 7TO,ij (aij; Tij) under HO,ija

~ Tij
aij | Tij ~ N(aij %)
"WZ;11377

7i; ~ 1G(ao,boij),

where aij = auj = agyij and Tij = T1,45 = T2,ij, and the pI‘iOI‘ 1,55 (auj, CL27ij, T1,ij5 7_271‘]‘)
under Hl,ija

~ T1,ij ~ 72,ij
aij | T~ N(%z‘j %) az,ij | T2,45 ~ N(%z‘j *)
X503 ;1377
T,i; ~ IG(ao,bo1,i;), 1245 ~ IG(ag,bo2j),
where ag, bo i, bo1,ij and boz ;j are positive constants, = (nVp)~%, a;; = ZZTZ]/HZ] I3,
a1, = X XJ/||X |3 and @s,;; = YTY/||Y 3. Let 73, = n‘lZT(I HZ VZi, T1ij =

ny lXiT(In1 — H)Z )X; and 7 ij = Mo 1Y1VT(In2 —Hy )Y The resulting log PBF is given
by

X5, Y;

10gB10(X )
2 | X5,
ap'es

(3.5)

Hiij)
Ho,ij)

I><:z ><:z
’*<1 ’*<z
’*<z ’*<z b

= log E
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1
:flog<1z )JrlogF( +a0)+logl“< +a0)

2
bg® b0 i
1 F( ) 1 ( 01,i5702,i5 )
og 5 +ag ) + log 7b8°UF( )
n n n no .
- (71 + ao) log (bo1,j + 717'1@]‘) - (72 + ao) log (bog,ij + 727'2,1‘3‘) (3.6)
n n_.
+ (5 + a0> log (bO,ij + §Ti]‘), (3.7)

where I' is the Gamma function and

= //P(Xz | X, aij, Ty Ho.ij)p(Yi | Y3, aijy 7y Ho ij) 0.4 (aij, 7ij)dasjdrij,

XZ7Y |Xja le])

/// X \ al,ijaﬁ,z‘j,Hl,ij)P(ﬁ‘ | Yj,az,z‘j,Tz,ij,Hl,ij)

X T1,ij (al,ija a2.i5, T1,i5, Tz,ij)dal,ijdaz,z‘jdﬁ,z‘jde,ij~

The derivation of (3.5) is given in the supplementary material. Then, the mxPBF for
two-sample covariance test is given by

BrEnax 10(X7L17Yn2) = I?%XBlo(Xi’YhXj?)}j)' (38)
Similar to the two-sample mean test, one can conduct a Bayesian test based on the
mxPBF by rejecting the null Hy : 31 = X9 if the mxPBF is larger than a prespecified

threshold.

We note here that the mxPBF approach for two-sample covariance test essentially
treats each pair, the ith and jth variables, as if they were independent of the other p — 2
variables. Despite this naive treatment, Theorem 3.1 in the subsequent section shows
that the mxPBF is consistent under mild conditions.

3.2 Bayes factor consistency

In this section, we show that the mxPBF in (3.8) is consistent for high-dimensional
two-sample covariance test. We first introduce sufficient conditions that guarantee con-
sistency of the mxPBF. The first condition, (A1), roughly means that p = O(exp(n°))
for some 0 < c < 1.

(A1) o :=log(nVp)/ng =o(1) for k =1,2.

When Hy : ¥ = X, is true, we denote Yy as the true covariance matrix. Fur-
thermore, we define Qao,ij = Joyij/doyjj,’royij = 0'0’1'7;(1 — paij), and RO = (po,ij) is a
correlation matrix. Condition (A2) is a sufficient condition for consistency under the
null HO : 21 = 22.
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(A2) mingz; 70,45 > {log(n v p)}~".

Condition (A2) is satisfied if minj<;<, 004 > € and max;z;pg,;; < 1 — € for some
small constant € > 0. However, in fact, condition (A2) allows more general cases where
possibly 0g ;; — 0 and P%,ij — 1 as p — oo at certain rates.

When H1 : 21 7é EQ is true, we denote 201 = (O—Ol,ij) and 202 = (0’0277;]‘) as
the true covariance matrices for each population. Furthermore, we define agr;; =
O’Ok,ij/O'Ok,jjaTOk,ij = UOk,ii(l - p(Q)k‘,ij) and Ry, = (pOk','ij) is a correlation matrix for
k = 1,2. Under the alternative Hy : 1 # X5, we assume that (Xg1,X02) satisfies the
following condition (A3) or (A3*). Note that the constant « is the hyperparameter used
in the priors mg ;; and my ;.

(A3) There exists a pair (i, ) with 4 # j such that
{log(nVp)} ' < 70145 Aoz < Torg V Toz,i; < (nV p),

satisfying either
ToLij 1+ Chmy/€o1

T02,ij 1—-4./C; (601 \Y 602)’
or
T02,ij 1+ Com+/€02

> )
T01,ij 1— 4\/ Cl (6(]1 V 602)
for some constant C2 | > 8(a+ 1) and any constant C; > 1 arbitrarily close to 1.
(A3*) There exists a pair (4, j) with ¢ # j such that oo1,4; V 0024 < (nV p) and

2

25 Tok .37 €
i —amy)? > 2oy | Ok.ig €Ok } 3.9
(ao1,ij — ao2,i5)° > 5 11c onas (1 — 2v/Creor) ) (3.9)

2
10n
2
Aot i — Qoo i > E { }
(a01,5 02,i5) n + 2ag — Loy, i 1—2\/0160 )

y [boiw {Zgok (14 41/Creon) + 2oii }Cbm,a}a

log(n V p)

(3.10)

for some constant Cpm,q > @+ ag + 1 and any constant C; > 1 arbitrarily close
to 1.

Conditions (A3) and (A3*) may seem complicated at first glance, but it can be trans-
formed into simpler conditions. For given positive constants o, Chry and Cpm o such that
CZ.>8(a+1) and Cpmq > a+ 1, define a class of two covariance matrices

Hi(Cbm; Com,a) = {(21722) : (31, %5) satisfies condition (A3) or (A3*)}.
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Conditions (A3) and (A3*) specify the minimum difference condition between ¥; and
Y2 to consistently detect the alternative Hy : X1 # X5 under the reparametrization
using {aok,ij, Tok,ij : k = 1,2 and 1 <14 # j < p}. Suppose that

2
max Imax < 1—cp
1Sk22 1<imy<p ! Okl ’

3.11)
1 . . __< ) (
{log(nVp)} < 1rgnklrgl2 élgp ookt < 1%?%(2 12?%(1) ook,ii < (nVp),
for some small constant ¢y >. If & > 1, n; < ny and
~ i —0147)% 1 \Y
Hl(C*, Co) = {(El, 22) : max (017” 0-17”) Z C* Og(n p),
1<i<i<p 01,4i01,55 1 02,ii02,5; n (3.12)

(X1, X9) satisfies conditions in (3.11) with ¢ },

then ﬁl(C*, ¢0) C H1(Chm, Com,q) for some large constant C, > 0 by Lemma 3.1 in the
supplementary material. Condition (3.12) characterizes the difference between ¥ and
Y02 using the squared maximum standardized difference. Hence, conditions (A3) and
(A3*) can essentially be understood as the squared maximum standardized difference

condition given at (3.12). Cai et al. (2013) also used a similar difference measure between
201 and 202.

The following theorem shows consistency of the mxPBF (3.8). We note that the
condition lim,, rpy)—s00 71/7 = 1/2 in Theorem 3.1 can be relaxed to n; < ng, although
constants in conditions (A2), (A3) and (A3*) should be changed accordingly.

Theorem 3.1. Consider model (3.1) and the two-sample covariance test Hy : £1 = g
versus Hy : Xy # Y. Assume that lim,, cny)—oo n1/1 = 1/2 and condition (A1) holds.
Then, under Hy, if a > 12 and condition (A2) holds, for some constant ¢ > 0,

B (Xn1, Yn,) = Op{(nvp)h

max,10

Under Hq, if (Xo1,202) € H1(Cbm, Com,a), for some constant ¢’ > 0,

{Br?lax,lo(XTLl’Yn2)}71 = Ol){(nvp)ic}

Cai et al. (2013) considered a high-dimensional setting, (logp)® = o(ny), while we
assume a weaker condition, logp = o(ny) for k = 1,2 (condition (Al)). For given con-
stants C > 0 and 0 < r < 1, define s;(C) = card{i : |po1,i;| > (logp) ™1~ or |po2,i| >
(logp)~t=¢} and A(r) = {i : |porijl > 7 or|pozi;| > 7 for some j # i}, where
card(A) means the cardinality of the set A. Cai et al. (2013) assumed that there exist
I'c{l,...,p}, C >0and 0 < r < 1 such that card(I") = o(p), max;xr s;(C) = o(p°)
for some constant ¢ > 0, and card(A(r)) = o(p). These conditions essentially restrict the
number of highly correlated variables. They are satisfied if Apax(Ro1) V Amax(Ro2) < C7
for some constant C’ > 0 and || Ro1||max V |[Ro2||max < 7 < 1. The power of their test
tends to one if

2
(001,ij — 001,35)
[1ax 1 1 )
1<i<j<p ny 901’1‘]‘ + ng 9027”‘

> Clogp,
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for C' > 4, where 6p1,;; = Var(X1,X1;) and 6p2,;; = Var(Yy,Y7;). This condition is
equivalent to condition (3.12) in terms of the rate. Thus, compared with those used
in Cai et al. (2013), we obtain consistency of the mxPBF under weaker conditions for
(n,p) and similar conditions for the true covariance matrices.

One of the interesting findings from Theorem 3.1 is that the mxPBF does not require
any standardization step. Cai et al. (2013) mentioned that the standardization of the
test statistic is necessary to deal with a wide range of variability and heteroscedasticity
of sample covariances.

However, the mxPBF (3.8) still enjoys consistency for the similar parameter space
without standardization. Although we did not mention earlier, a similar phenomenon
is observed for the two-sample mean test: the proposed mxPBF (2.4) does not require
a standardization step while having similar properties with a standardized test.

Another important finding is that condition (A3) (or (A3*)) is rate-optimal to guar-
antee consistency under Hy : 31 = X9 as well as Hy : X7 # X5. Theorem 3.2 shows
that, for some small constants Cym and Cym e > 0, no consistent test exists that also
has vanishing Type I error for the alternative class (201, Xo2) € H1(Cohm, Cbm,a)-

Theorem 3.2. Let Ex, »,, be the expectation corresponding to model (3.1) with
(201, X02). Suppose that ny < ne and p > n€ for some constant ¢ > 0. Let 0 < fy < 1
be a fized constant. Then, there exists small constants C1, Com and Cpm o > 0 such that
for all large n,

inf sup E201,202(1_¢) > ﬁOv
¢€T(2017202)6}[1(Cbnncbm,a)

where T is the set of tests over the multivariate normal distributions such that Eg¢p — 0
asmn — oo for any ¢ € T, and By is the expectation corresponding to model (3.1) under
Ho : El = EQ.

4 Numerical results

4.1 Choice of hyperparameters

The proposed mxPBFs for mean vectors and covariance matrices have hyperparameters
that need to be determined. In this section, we provide some guidelines for their choice.
The mxPBF (2.4) for mean vectors has a hyperparameter «, while the mxPBF (3.8) for
covariance matrices have hyperparameters ao, bo i, bo1,i5, bo2,s; and c. We first suggest,
for the mxPBF (3.8), using ag = by ;; = bo1,i; = bo2,;; = 0.01 for all 1 <i # j < p. Note
that the above choice of hyperparameters does not affect the mxPBF (3.8) too much.

The choice of hyperparameter « in the mxPBFs (2.4) and (3.8) is more crucial to
the performance. Although Theorems 2.1 and 3.1 provide theoretical conditions for «,
they might be overly conservative in practice. Especially, Theorem 3.1 requires a > 12
to guarantee consistency of the mxPBF (3.8) under the null. However, in simulation
studies, we found this choice produced many false negatives leading to low sensitivity.
Therefore, we suggest to choose « that controls an empirical false positive rate (FPR)
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at a prespecified level. Note that due to the nature of the mxPBF, it may be natural to
use a method that controls FPR.

Here we describe a unified FPR-based method for choosing «, which can be used
for both two-sample mean and covariance tests. Suppose we have observed samples
from two populations, say X,, and Y,,. Let fipool = (101 + n2fiz)/n and f]pool =
[0 (X — i) (Xs — ) + 302, (¥ — o) (Yi — ji2)T}/(n — 2) be the pooled sam-
ple mean vector and covariance matrix, respectively, where g; = >.', X;/ny and
g = Z:Zl Y;/na. When ipool is not positive definite, we make it positive definite
by adding {—)\min(ipool) + 0.13}1, to ipool. We generate a simulated dataset Xgj,, =
(Xl,sima . 7Xn1,sim)T € R™MXP gnd Ysim = (Yl,sim7 . 7Yn2,sim)T € R"2 ><p7 where
Xi sims and Y; gims are random samples from N, (fipool, f)pool). Note that under the null
hypothesis, we assume g1 = pug and 37 = X3. Thus, (Xgim, Ysim) can be considered as
a simulated dataset from the null hypothesis whose mean vector and covariance matrix
are roughly close to those of the true data-generating distributions. For each simulated
dataset, we calculate the mxPBF based on (Xgim, Ysim) with a hyperparameter value
«, say Bmax,lo,a(Xsim, Yim), and reject the null if the mxPBF is larger than 10. Note
that if we reject the null, it corresponds to a false positive. By generating N simulated

datasets (Xéfr)n, YSIL) N |, we can calculate the following empirical FPR for each «,

N
FPR, = N! ZI(Bmx,lo,a(ng;,Yg;@ > 10). (4.1)
s=1

To calculate the empirical FPR, we use a fixed threshold 10. Note that after cal-
culating the mxPBF once for some «, the mxPBF for some a* # « can be easily
calculated as Bmax,lO,a* (XsimaYsim) = Bmax,lO,a(XsimaYsim) - 0510g{7/(1 + 7)}) +
0.51log{v*/(1 +~*)}, where v = (n V p)~® and v* = (n V p)~ . Then, among a grid
of values « € {0.01,0.02,...,15}, for example, we can select the minimum value of «,
say &, that achieves a prespecified FPR level. It follows to calculate the value of the
mxPBF using it, say Bmax,10,4(Xn,, Yn,)- For a given threshold Cty, we reject the null
if Bmax,lO,d (anyY'Ilz) > Cth-

Throughout numerical studies in Section 4, we control the empirical FPR at 0.05. In
the supplementary material, we have described exact values of a’s chosen by the FPR-
based method in each setting and compared their performances with o’s satisfying the
theoretical conditions.

Regarding the empirical FPR, we admit that non-asymptotic control of the empirical
FPR is not guaranteed by the current theoretical results. However, we can say that the
empirical FPR converges to zero in probability as min(ni,ns) — co and N — oo as long
as we only consider the range of « satisfying the conditions in Theorems 2.1 and 3.1. In
the two-sample covariance test, for instance, we need to focus on the values of « larger
than 12, and select the minimum value of « that achieves a prespecified FPR level.

As pointed out by a referee, the choice of threshold 10 in (4.1) seems somewhat ar-
bitrary. This value of the threshold is chosen because it is a common default threshold
for Bayes factors, and no rigorous theoretical support is involved in this choice. For a
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partial justification, we would like to mention that the choice of the threshold might
not be very critical in practice at least in terms of specificity. Suppose we use the same
threshold Cyy, for (4.1) and the mxPBF, Bax 10,4(Xn,, Yr,), to make the final decision,
and control the empirical FPR at 0.05. Then if the empirical FPR is reasonably work
well, we would have FPR values close to 0.05 (or equivalently, specificity values close
to 0.95), regardless of the value of Cy,. We acknowledge that this is just a rough justi-
fication. For more rigorous theoretical justification, we plan to develop a theoretically
supported threshold selection as a future work.

4.2 Simulation study: two-sample mean test

In this section, we illustrate performance of the mxPBF for the two-sample mean test
through simulation studies. We generate the data as follows: X1,..., X, Bt Np(p1,X)
and Yi,...,Y, “&" Np(p2,X) with n = 100 and p € {100,300}. Under the null hy-
pothesis, Hy : p1 = po, we set 3 = po = 0 € RP. Under the alternative hypothe-
sis, Hy : p1 # po, we set pp = 0 € RP and randomly choose ng entries in uo, say
{p2; 11 <ji1 <+ <jn, <p},and set pg; =p >0 forall j =ji,...,n, and po; =0
for the rest. Thus, ng and p are the number and magnitude of signals in the alternative,
respectively. Here, signals mean nonzero elements in gy — 1 € RP. In our simulation

study, the following scenarios for alternatives are considered:

1. (Hig: Rare signals) To demonstrate a situation where only a few signals exist, we
set ng = 5 and consider various magnitudes of signals

€ {0.2,0.25,0.3,0.35,0.4,0.5,0.6,0.8, 1.0, 1.5}.

2. (Hyp: Many signals) To demonstrate a situation where a lot of signals exist, we
set ng = p/2 and consider various magnitudes of signals

w € {0.025,0.05,0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.6 }.

Note that relatively smaller signals are used compared to “rare signals” setting,
due to the larger number of signals.

Furthermore, we consider the following two settings for the true covariance matrix 3

1. (Sparse Q = £71) To demonstrate a situation where the true precision matrix
is sparse, we randomly choose 1% of entries in 2 = (w;;) and set their value to
wi; = 0.3. The rest of entries in 2 are set to 0. When the resulting €2 is not positive
definite, we make it positive definite by adding {—Amin(€2) +0.13}1,, to . Finally,
we set ¥ = Q7L

2. (Dense Q = ¥71) To demonstrate a situation where the true precision matrix is
dense, we randomly choose 40% of entries in Q and set their value to w;; = 0.3.
The rest of the steps for constructing ¥ is the same as above.
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Note that the words “rare” and “many” describe how many nonzeros are in o —p; € RP,
thus they are related to signals. On the other hand, the words “sparse” and “dense”
describe how many nonzeros are in the common precision matrix €2, regardless of the
number of signals.

In each setting and hypothesis, 500 data sets are generated. Recall that the mxPBF
for the two-sample mean test naively treats p variables as independent of each other.

For the proposed mxPBF for the two-sample mean test, the hyperparameter « is
chosen by the FPR-based method described in Section 4.1. We reject the null hypothesis
Hj if the mxPBF is larger than some threshold C, > 0. As contenders, we consider
the tests proposed by Bai and Saranadasa (1996), Srivastava and Du (2008) and Cai
et al. (2014), which will be simply denoted as BS, SD and CLX, respectively. Here,
CLX means the two-sample mean test based on the CLIME, while CLX.AT refers to
the two-sample mean test based on the inverse of the adaptive thresholding estimator
with the tuning parameter § = 2 as a default choice. To choose the tuning parameter
in CLIME, we used a cross-validation with sugm and sugm.select functions in the R
package flare. Note that BS and SD are ¢5-type tests, while mxPBF, CLX and CLX.AT
are maximum-type tests. It is expected that f5-type tests perform better (worse) than
maximum-type tests in “many signals” (“rare signals”) setting.

To illustrate performance of each test, receiver operating characteristic (ROC) curves
are drawn. The curves are obtained by adjusting thresholds and significance levels for
the mxPBF and frequentist tests, respectively. Furthermore, we check the practical
performance of mxPBF at a fixed threshold. As a default choice, threshold Cy, = 10 is
used. Note that Cyy, = 10 corresponds to “strong evidence” for the alternative hypothesis
based on the criteria suggested by Jeffreys (1998) and Kass and Raftery (1995).

Figure 1 shows ROC curves based on 500 simulated data sets for each hypothesis,
Hy:py = po and Hig : p1 # po, with p = 100. Here, Hy i represents the “rare signals”
scenario where po — p1 € RP has only five nonzero elements with size p. The dots in
Figure 1 show the results for the mxPBF with C}, = 10 and the FPR-based chosen a.
In the rare signals scenario, the maximum-type tests overall slightly work better than
the lo-type tests as expected. However, when the true precision matrix € is dense, CLX
failed to infer because sugm.select R function for the cross-validation-based CLIME
produced zero matrices. We suspect this is because the CLIME targets sparse precision
matrices. For this reason, the results for CLX are shown only in sparse (2 setting. On
the other hand, the mxPBF outperforms other tests in the dense €2 setting in term of
the area under the curve (AUC). Furthermore, the mxPBF with Cy, = 10 performs
reasonably well. Especially in the dense €2 setting, when p > 0.8, its specificity and
sensitivity are close to 1, while other tests suffer from low specificity or low sensitivity.
This clearly shows the relative advantage of the mxPBF-based two-sample mean test
over the existing tests.

Figure 2 shows ROC curves based on 500 simulated data sets for each hypothesis,
Hy : 1 = po and Hypg : iy # po, with p = 100. The dots in Figure 2 show the results
for the mxPBF with Cy, = 10 and the FPR-based chosen «. Here, Hyjs represents
the “many signals” scenario where po — 1 € RP has p/2 = 50 nonzero elements with
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Figure 1: ROC curves for the two-sample mean tests based on 500 simulated data sets
for each hypothesis, Hy and Hig, with p = 100. The mxPBF, SD and BS represent the
test proposed in this paper, Srivastava and Du (2008) and Bai and Saranadasa (1996),
respectively. The CLX and CLX.AT mean the tests proposed by Cai et al. (2014) based
on the CLIME and the adaptive thresholding estimator, respectively. The dots show
the results with Ci, = 10 for the mxPBF.
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Figure 2: ROC curves for the two-sample mean tests based on 500 simulated data sets
for each hypothesis, Hy and Hjys, with p = 100.
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size p. When the true precision matrix € is sparse and pu > 0.1, overall, the /o-type
tests slightly work better than the maximum-type tests as expected. However, when
the true precision matrix €2 is dense, somewhat surprisingly, the mxPBF and CLX.AT
outperform the f5-type tests. This observation can be partially explained by theoretical
properties of the £2-type tests: Bai and Saranadasa (1996) and Srivastava and Du (2008)
showed that powers of their tests decrease as the Frobenius norm of the true covariance
and correlation matrices increase, respectively. Indeed, in our simulations, we find that
IZ||F and |R||F are much larger in the dense  setting than in the sparse 2 setting.
We further confirmed that, when Hy,; is true, the fo-type tests tend to fail to reject
Hjy even when the size of signals is large. Therefore, this observation suggests another
advantage of the mxPBF that reasonable performance is maintained even when ||| F
is large.

When p = 300, similar phenomena are observed, thus we omit it here for reasons of
space. The results with p = 300 including ROC curves and descriptions are deferred to
the Supplementary material.

4.3 Simulation study: two-sample covariance test

Now, we illustrate performance of the mxPBF for two-sample covariance test. We gen-
erate the data as follows: Xq,...,X, i N, (0,%1) and Y3,...,Y, i N,(0,%2)
with n = 100 and p € {100,300}. Under the null hypothesis, Hy : ¥; = X3, we
set ¥y = Yo = ¥ € RP*P. Under the alternative hypothesis, H; : X1 # 3o, we
set 31 = ¥ and Xy = X + U for some matrix U € RP*P containing signals. If ¥
or Y, is not positive definite, we add a small diagonal matrix ¢/, to them, where
01 = | min{Amin(21), Amin(22) }| + 0.05. Note that the matrix U determines the number
and magnitude of signals in the alternative hypothesis. In our simulation study, the
following two different scenarios for generating U are considered:

1. (Higr: Rare signals) To demonstrate a situation where only few signals exist, we
randomly select five entries in the lower triangular part of U and generate their
values from Unif(0, ¢) with

¥ €{0.5,0.8,1.5,3,6,15}.
2. (Hyipm: Many signals) To demonstrate a situation where a lot of signals exist, we
generate u = (uy, ..., u,)7 from u; "% Unif(0, ) for
¥ € {0.2,0.3,0.5,0.7,1,1.5}.

For this “many signals” setting, we set U = uu”l that leads to p(p + 1)/2 signals
in U (except upper triangular part). Note that relatively smaller signals are used
compared to “rare signals” setting, due to the larger number of signals.

Note that in the above, 1 is the magnitude of signals. Furthermore, we consider the
following two settings for Xi:
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1. (Sparse ¥7) To demonstrate a situation where ¥ is sparse, we randomly choose
5% of entries in the lower triangular part of A; = (d1 ;) and set their value to
01,55 = 0.5. The rest of entries in A; are set to 0. To make it positive definite, we
set A = Ay +0I,, where § = [Apin(A1)] + 0.05. Finally, we set ¥ = DY2ADY/?,
where D = diag(d;) and d; vrd Unif(0.5,2.5). This setting corresponds to Model
3 in Cai et al. (2013).

2. (Dense ¥;) To demonstrate a situation where ¥, is dense, we set ¥; = OAO,
where O = diag(w;), w; "~ Unif(1,5), A = (5;;) and 6;; = (—1)"+i0.4li=il""""
This setting corresponds to Model 4 in Cai et al. (2013).

Similar to the previous two-sample mean case, the words “rare” and “many” describe
how many nonzeros are in Yo — 31 € RP*P, thus they are related to signals. On the
other hand, the words “sparse” and “dense” describe how many nonzeros are in the
covariance matrix of the first group, 31, regardless of the number of signals.

In each setting and hypothesis, we generate 500 simulated data. Recall that the
mxPBF for two-sample covariance test naively treats each pair, the ith and jth variables,
as independent of other p — 2 variables, thus the above sparse and dense ¥; settings
violate the assumption of the mxPBF.

For the proposed mxPBF for two-sample covariance test, as described in Section 4.1,
we use ag = boi; = bo1,ij = bo2,i; = 0.01 for all 1 <4 # j < p, and the hyperparameter
« is chosen by the FPR-based method.

For comparison, we consider the tests proposed by Schott (2007), Li and Chen (2012)
and Cai et al. (2013), which will be denoted as Sch, LC and CLX, respectively. Note that
Sch and LC are />-type tests, while mxPBF and CLX are maximum-type tests. Because
the unbiased version of the test in Li and Chen (2012) is computationally expensive, we
use the biased version as suggested by Li and Chen (2012). Similar to the simulation
study for two-sample mean test, ROC curves are drawn to demonstrate performance of
each test.

Figure 3 shows ROC curves based on 500 simulated data sets for each hypothesis,
Hy : ¥ = %5 and Hig : X1 # Yo, with p = 100. When 3; is sparse and signals are
moderate (¢» > 0.8), the maximum-type tests work better than the ¢>-type tests as
expected. The performance of the fo-type tests are slowly improved as 1) gets larger.
Similar phenomena are observed in the dense ¥; setting, but in this case, the f>-type
tests do not work well even when there are large signals () = 15). Overall, we find that
the mxPBF shows better performance than CLX in terms of the AUC.

Figure 4 shows ROC curves based on 500 simulated data sets for each hypothesis,
Hy: Y1 =35 and Hypy : 31 # 3o, with p = 100. As expected, the {o-type tests slightly
work better than the maximum-type tests when 3, is sparse and ¥ > 0.5. Note that
the performance of the maximum-type tests are also rapidly improved as the signal 1
gets larger. Somewhat surprisingly, when ¥; is dense and signals are moderate (¢ > 1),
the maximum-type tests outperform the fo-type tests. We suspect that it is likely that
the conditions for deriving the null distribution of Sch and LC are violated in the dense
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Figure 3: ROC curves for the two-sample covariance tests based on 500 simulated data
sets for each hypothesis, Hy and H;g, with p = 100. The mxPBF, CLX, LC and Sch
represent the test proposed in this paper, Cai et al. (2013), Li and Chen (2012) and
Schott (2007), respectively. The dots show the results with Cy, = 10 for the mxPBF.
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¥ setting. Schott (2007) and Li and Chen (2012) assumed that lim,_, tr(X%)/p =
i € (0,00) for i = 1,...,8 and tr(X%) = o{tr(X?)?}, respectively, to derive the null
distribution. In our settings, we find that tr(3%)/p and tr(%*)/tr(%2?)? are much larger
in the dense X; setting than in the sparse ¥; setting. This partially supports our
conjecture, although more rigorous investigation might be needed to determine the
exact cause.

The dots in Figures 3 and 4 show the results for the mxPBF with C},, = 10 and the
FPR-based chosen . The mxPBF with this default choice seems to work well if there
is a reasonable amount of signals.

Lastly, we note that the experiment for p = 300 showed similar phenomena whose re-
sults including ROC curves and descriptions are deferred to the Supplementary material
due to lack of space.

4.4 Real data analysis

In this section, we apply the proposed two-sample mean and covariance tests to two real
datasets, small round blue cell tumors (SRBCT) dataset and prostate cancer dataset,
respectively. For both datasets, the sample sizes are quite small compared to the number
of variables. Thus, based on this numerical study, we would like to illustrate the practical
performance of mxPBF-based tests in “small n large p” situations.

We first apply two-sample mean tests to the SRBCT dataset. The SRBCT dataset
is available in the R package plsgenomics. This is a gene expression data having 83
samples with 2308 genes (p = 2308) from the microarray experiments in (Khan et al.,
2001). Among 83 samples, we focus on 11 cases of Burkitt lymphoma (BL) (n; = 11)
and 18 cases of neuroblastoma (NB) (ne = 18). Our main interest is to test equality
of mean vectors of the gene expressions between BL and NB tumors. We apply the
mxPBF, CLX.AT, SD and BS to test equality of mean vectors. Note that CLX.AT is
used because the lack of prior information about the sparsity of the covariance matrix.
For this dataset, the value of the mxPBF is greater than 108, and p-values of CLX.AT,
SD and BS are less than 107 '°. Therefore, all the tests reject the null hypothesis,
Hy : py = pe, if we use the default choices, threshold Ci, = 10 for the mxPBF and
significance level 0.05 for the frequentist tests.

The prostate cancer dataset is available in the R package SIS. This dataset contains
12600 gene expressions from 52 patients with prostate tumors (n; = 52) and 50 patients
with normal prostate (ne = 50). As suggested by Cai et al. (2013), 5000 genes (p = 5000)
with the largest absolute values of the t statistics are selected. Data were centered prior
to analysis. In this dataset, we would like to test equality of covariance matrices of the
gene expressions between tumor and normal samples. We apply the mxPBF, CLX, LC
and Sch to test equality of covariance matrices. For this dataset, the value of the mxPBF
is greater than 1032, and p-values of CLX, LC and Sch are less than 0.0058, 10~'° and
10715, respectively. Therefore, all the tests reject the null hypothesis, Hy : 31 = 2o,
if we use the default choices, threshold Ciy, = 10 for the mxPBF and significance level
0.05 for the frequentist tests.
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5 Discussion

In this paper, we propose a Bayesian two-sample mean test and a Bayesian two-sample
covariance test in high-dimensional settings based on the idea of the maximum pairwise
Bayes factor (Lee et al., 2021). These tests are not only computationally scalable but also
enjoy Bayes factor consistency under relatively weak or similar conditions compared to
existing tests. The proposed methods can be applied to change point detection for mean
vectors or covariance matrices, which is indeed one of our ongoing works. Note that from
the first data point, using only a subset of data within a certain window, a two-sample
test can be sequentially conducted to detect change points. Due to consistency of the
proposed mxPBF-based two-sample tests, it is expected that the resulting change point
detection procedures can consistently detect and estimate change points.

As pointed out by a referee, the proposed tests can be applied when there are two
independent datasets. Note that the proposed priors for the two-sample mean and co-
variance tests are data-dependent. Thus, if we have two independent datasets, the first
dataset can be used to train the prior, while the second dataset can be used in the
likelihood. In that case, the explicit forms of the resulting mxPBFs will be changed ac-
cordingly, but we can still proceed with the tests based on them. It might be worthwhile
to investigate whether the consistency results in Sections 2 and 3 are still valid in this
context, possibly with some additional assumptions.

Supplementary Material

Supplementary Material for “Bayesian Optimal Two-Sample Tests for High-Dimensional
Gaussian Populations” (DOIL: 10.1214/23-BA1373SUPP; .pdf).
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