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A B S T R A C T 

We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax 

and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer , and the latter 
was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a 
mass measurement of the lens object, revealing a low-mass (0 . 14 ± 0 . 05 M ⊙) M dwarf at the bulge distance (7 . 6 ± 1 . 0 kpc). 
The source binary consists of a late F-type subgiant and a K-type dwarf of ∼ 1 . 2 and ∼ 0 . 9M ⊙, respectively, and the orbital 
period is 70 ± 10 d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity 

of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare 
phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the 
same method can be used to identify isolated dark lenses. 

Key words: gravitational lensing: micro – methods: data analysis – binaries: general. 

1  I N T RO D U C T I O N  

The microlensing effect (Einstein 1936 ; Paczynski 1986 ) is able 
to measure the mass of faint or even dark objects (or stellar 
systems) independent from their flux (e.g. Gould 1992 ). So far, the 
microlensing technique has been used to determine the masses of 
dozens of isolated objects, including brown dwarfs (e.g. Gould et al. 
2009 ; Zhu et al. 2016 ; Shv artzv ald et al. 2019 ), low-mass stars (e.g. 
Chung et al. 2017 ; Zhu et al. 2017b ; Shin et al. 2018 ; Zang et al. 

⋆ E-mails: weizhu@mail.tsinghua.edu.cn (WZ); hzc22@mails.tsinghua. 
edu.cn (ZH) 
† The Spitzer Team. 
‡ The OGLE Collaboration. 
§ MOA Collaboration. 

2020a , b ), and stellar remnants (Lam et al. 2022 ; Mr ́oz, Udalski & 

Gould 2022 ; Sahu et al. 2022 ), as well as another dozens of planetary 
systems (e.g. Gaudi et al. 2008 ; Bennett et al. 2015 ). 

Out of thousands of microlensing events that are disco v ered per 
year, only a small fraction of them allow one to determine the lens 
mass directly. This is because, in order to directly determine the lens 
mass, one needs to measure at least two out of three parameters, 
namely the angular Einstein radius, the microlensing parallax, and 
the lens flux (e.g. Yee 2015 ). The angular Einstein radius measures 
the characteristic angular size of the microlensing phenomenon and 
is given by 

θE ≡
√ 

κM L πrel . (1) 

Here, κ ≡ 4 G/ ( c 2 AU) ≈ 8 . 14 mas M 
−1 
⊙ is a constant, M L is the lens 

mass, and πrel ≡ AU ( D 
−1 
L − D 

−1 
S ) is the lens–source relative parallax 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
3
3
/2

/1
9
9
1
/7

7
2
9
2
7
2
 b

y
 H

a
rv

a
rd

 L
ib

ra
ry

 u
s
e
r o

n
 1

3
 S

e
p
te

m
b
e
r 2

0
2
4



1992 Z. Hu et al. 

MNRAS 533, 1991–2004 (2024) 

Figure 1. An illustration of the satellite parallax method and the xallarap effect in the microlensing phenomenon. Distances and physical sizes are not to scale. 
The microlensing source is a binary system, with the yellow circle indicating the primary star (i.e. primary source) and the brown circle indicating the secondary 
star (i.e. secondary source). The centre of light, namely the photocentre, of the source system is indicated by the orange circle. On the observer plane, Spitzer 

was in an Earth-trailing orbit and observed the same source simultaneously as the ground-based observatories. 

(Gould 2000 ). The distances to the source and to the lens are D S and 
D L , respectively. The microlensing parallax measures the relative 
parallactic motion scaled to the angular Einstein radius (Gould 1992 ) 

πE ≡
πrel 

θE 
. (2) 

The lens flux measures the observed flux of the lens at the given 
distance. With a stellar mass–luminosity relation and a giv en e xtinc- 
tion model, the lens flux measurement provides a relation between 
the lens mass and lens distance, similar to the other two quantities 
(e.g. Bennett et al. 2015 ). For faint or dark lenses, the lens flux is 
usually not detectable, and thus the only option towards a direct mass 
measurement is through the combination of angular Einstein radius 
and the microlensing parallax. 

Although the microlensing parallax can be measured through the 
orbital motion of Earth around the Sun (Gould 1992 ), such an annual 
parallax effect only applies to microlensing events with relatively 
long time-scales (e.g. Mao et al. 2002 ; Poindexter et al. 2005 ; 
Wyrzykowski et al. 2016 ). The parameter πE of an event could also 
be measured with at least two well-separated ( ∼ AU ) observatories 
(Refsdal 1966 ; Gould 1994b ). Between 2014 and 2019, Spitzer was 
used to observe more than five hundred microlensing events, and 
so far nearly a hundred of them with parallax solutions have been 
published (e.g. Calchi Novati et al. 2015a ; Zhu et al. 2017a ). 

Several methods are available to measure the Einstein radius, but 
each has its own limitations. Observing the lens and source separately 
several years after the event could obtain the lens–source relative 
motion µrel , and then θE is given by θE = t E µrel , where t E is the 
Einstein crossing time (e.g. Alcock et al. 2001 ; Bennett et al. 2015 ; 
Gould 2022 ). The angular Einstein radius can also be determined 
through the finite source effect, which appears when the source 
is close to or even crosses the caustic of the lens object/system 

(Nemiroff & Wickramasinghe 1994 ; Witt & Mao 1994 ; Gould 
1994a ), but in the case of single-lens events, the chance is low to 
have the finite source effect, except for extremely low-mass lenses 
such as free-floating planets (e.g. Mr ́oz et al. 2018 ; Gould et al. 2022 ). 
The astrometric microlensing has also been proposed (Hog, No viko v 
& Polnarev 1995 ), and recently realized (Lam et al. 2022 ; Sahu et al. 
2022 ), as a method to directly measure θE during the course of the 
microlensing event. Additionally, interferometric observations may 
be able to directly resolve the multiple microlensing images and thus 
determine θE (Delplancke, G ́orski & Richichi 2001 ; Dong et al. 2019 ; 
Cassan et al. 2022 ). These latter two methods have not been applied 
widely because they require high precisions and/or lucky observing 
conditions. 

When the source is in a binary system, its orbital motion around the 
centre of mass may lead to changes in the relative positions among 
the microlensing objects, which also revises the light curve (Griest 
& Hu 1992 ). This so-called microlensing xallarap effect can also be 
used to measure the angular Einstein radius (Han & Gould 1997 ). 
Specifically, the xallarap parameter, ξE , is related to θE via 

ξE ≡
a S 

D S θE 
= 

a S 

ˆ r E 
. (3) 

Here, a S is the semimajor axis of the motion of the source star (or the 
photocentre of the source binary) around the barycentre of the source 
binary system, and ˆ r E is the projected Einstein radius in the source 
plane. Once ξE and a S are measured, the xallarap effect provides 
another way to measure θE . 

Given the abundance of stellar binaries (e.g. Duch ̂ ene & Kraus 
2013 ), a substantial fraction of events might have been affected by 
the xallarap effect. Poindexter et al. ( 2005 ) searched for the xallarap 
effect in 22 microlensing events with relatively long ( t E � 70 d) 
time-scales and found that about 23 per cent of them might have 
been strongly affected by the xallarap effect, although the fraction 
may be reduced once the shorter but more abundant events are taken 
into account. The impact of xallarap effect has also been regularly 
investigated in microlensing events that contain potentially planetary 
signals (e.g. Furusawa et al. 2013 ; Miyazaki et al. 2020 ; Rota et al. 
2021 ; Satoh et al. 2023 ; Ryu et al. 2024 ; Yang et al. 2024 ). 

In this work, we present the analysis of the microlensing event 
OGLE-2015-BLG-0845. This event shows both xallarap and parallax 
effects, as illustrated in Fig. 1 , which allow us to determine directly 
the lens mass and distance. The observations of OGLE-2015-BLG- 
0845 are presented in Section 2 , the detailed modellings of the event 
are given in Section 3 , and the physical properties of the lens and 
source are given in Section 4 . A brief discussion of the results is 
given in Section 5 . 

2  OBSERVATIO NS  

The microlensing event OGLE-2015-BLG-0845 was first identified 
by the fourth phase of Optical Gravitation Lensing Experiment, i.e., 
OGLE-IV, collaboration on UT 15:51, 2015 April 28. With equato- 
rial coordinates (RA , Dec . ) 2000 = (18 h 04 m 21 . s 29 , −31 ◦34 ′ 50 . ′′ 0) and 
Galactic coordinates ( l, b) 2000 = ( −0 . ◦25 , −4 . ◦82), this event was 
located inside the field BLG514 of OGLE-IV surv e y and receiv ed 
three observations per day from the 1.3 m Warsaw Telescope at 
the Las Campanas Observatory in Chile (Udalski 2003 ; Udalski, 
Szyma ́nski & Szyma ́nski 2015a ). The OGLE observations were 
mostly taken in the I band, but V band observations were also taken 
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at the cadence of a few days in order to provide colour information 
of the microlensing source. The OGLE data were reduced using the 
software developed by Wozniak ( 2000 ) and Udalski ( 2003 ), which 
was based on the difference image analysis (DIA) technique of Alard 
& Lupton ( 1998 ). 

This event was observed by the Spitzer Space Telescope as part 
of the 2015 microlensing campaign (Yee et al. 2015 ; Udalski et al. 
2015b ; Zhu et al. 2017a ). It was selected for Spitzer observations 
on 2015 June 8, as a ‘secret event’ and then announced as a Spitzer 

target on 2015 June 12. We refer to Yee et al. ( 2015 ) for the details 
of the observing protocol of the Spitzer microlensing programme. 
The Spitzer observations started on the same date and stopped on 
2015 July 19, when the event moved out of the visibility window 

of Spitzer . There were in total 148 observations taken by Spitzer . 
All Spitzer observations were reduced by the customized software 
specifically for the microlensing programme (Calchi Novati et al. 
2015b ). 

Event OGLE-2015-BLG-0845 was also observed by the Mi- 
crolensing Observations in Astrophysics (MOA; Bond et al. 2001 ; 
Sako et al. 2008 ). It is called MOA-2015-BLG-277 in the MOA data 
base. Follo w-up observ ations from v arious small telescopes were 
also taken for the purpose of detecting planetary signals. Because of 
the unknown systematics and/or the relatively short time baseline, the 
MOA data and the follow-up data are not included in the modelling 
of the subtle signals such as the parallax and xallarap signals, as is 
commonly done in the modelling of other microlensing events (e.g. 
Mr ́oz et al. 2022 ). In the case of OGLE-2015-BLG-0845, because 
there are about twice as many observations from MOA as from 

OGLE, the more informative OGLE data would be substantially 
downweighted if one were to include the MOA data in the modelling. 
We have nevertheless included the MOA data in the single source 
binary lens (2L1S) and binary source without xallarap effect (1L2L 

static) modellings, given that the potential signals from such models 
are relatively short-time-scale (see Appendix A and Appendix B ). 

3  M O D E L L I N G  

The light curve of OGLE-2015-BLG-0845 was first modelled using 
the standard Paczynski ( 1986 ) curve 

f ( t) = f s A ( u [ t]) + f b , (4) 

with the single-lens point-source, or 1L1S, 1 microlensing magnifi- 
cation given by 

A ( u ) = 
u 

2 + 2 

u 
√ 

u 2 + 4 
. (5) 

Here, f s and f b , are the flux of the source star and the flux of the 
blending object, respectively. The quantity, u ( t), is the separation 
normalized to θE between the lens and the source at a given epoch t . 
For the standard Paczynski ( 1986 ) curve, 

u ( t) = 

√ 

τ 2 + β2 , (6) 

with 

τ ( t ) ≡ t − t 0 

t E 
, β( t ) ≡ u 0 . (7) 

1 This notation follows the convention that is commonly used in the microlens- 
ing literature. The numbers in front of ‘L’ and ‘S’ indicates the numbers 
of objects in the lens and the source systems, respectively, that directly 
participate in the microlensing phenomenon in a detectable way. In other 
words, with ‘1L’ (or ‘1S’) it does not necessarily mean that the source (or 
lens) object is physically single. 

Figure 2. OGLE-IV data of OGLE-2015-BLG-0845 and the best-fitting 
1L1S standard and annual parallax models. The top panel displays the OGLE 

I - and V -band data in black and yellow points, respectively. The best-fitting 
standard model and the parallax model are denoted by the grey dashed and 
the black solid curv es, respectiv ely. The middle panel illustrates the residuals 
of the data and the parallax model with respect to the standard model. The 
bottom panel shows the cumulative 	χ2 ≡ χ2 

STD − χ2 
Anu . PRLX between the 

standard and parallax models as a function of time. Although the best-fitting 
parallax model impro v ed the model χ2 by > 100 o v er the standard 1L1S 
model, there remain long-term variations in the residuals that cannot be well 
fit. 

Here, t 0 is the time when the projected separation between the lens 
and the source reaches the minimum, u 0 is this minimum separation, 
and t E is the Einstein crossing time. 

The standard Paczynski ( 1986 ) curve cannot fit the light curve of 
OGLE-2015-BLG-0845 very well, as shown in Fig. 2 . While these 
deviations could be modelled by the annual parallax effect reasonably 
well, it was soon recognized that the parallax parameters from the 
annual parallax effect did not match those from the satellite parallax 
effect (Section 3.1 ). This led to the inclusion of additional effects, 
including the xallarap effect (Section 3.2 ). The binary lens, as well 
as the static binary source model, was also considered, although it 
could not fit the data as well as the xallarap model (see Appendix A 

and Appendix B ). 
In all the modellings, we have made use of the EMCEE package 

(F oreman-Macke y et al. 2013 ) to e x ecute a Markov chain Monte 
Carlo (MCMC) analysis. The number of w alk ers and burn-in steps 
have been adjusted so as to make sure the chain has converged. 

The colour constraint, which has been frequently used to infer the 
source flux in Spitzer band based on the known source flux values in 
the ground-based bandpasses (e.g. Yee et al. 2015 ; Calchi Novati et al. 
2015b ), is not used in the present event. The colour–colour relation 
is usually constructed based on field stars of similar colours, so its 
applicability to binary stars is questionable. One may in principle 
derive two separate colour–colour relations for the two components 
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of the source binary, but this is difficult to implement as the source 
binary is not well-constrained by the ground-based data alone (see 
Section 3.3 ). Instead of such statistical test as the colour constraint, 
we will use more direct tests to verify the validity of the Spitzer data. 

3.1 The tension between 1L1S annual and space-based parallax 

model 

The accelerated motion of the Earth can lead to a distortion on 
the light curve, known as the annual parallax effect (e.g. Gould 
1992 ; Alcock et al. 1995 ). This distortion adds displacement to the 
rectilinear motion (equation 7) of the Paczynski ( 1986 ) model 

( δτp , δβp ) = ( πE · 	 s , πE × 	 s ) . (8) 

Here, 	 s is the offset of the Earth-to-Sun vector in AU (Gould 
2004 ).The microlensing parallax vector is defined as 

πE = 
πrel 

θE 

µrel 

µrel 
. (9) 

Here, 	 µrel is the relative proper motion between the lens and source, 
respectively (Gould 2000 ). 

The microlensing parallax can also be measured through simul- 
taneous observations of the same event from at least two well- 
separated observatories/satellites (Refsdal 1966 ; Gould 1994b ; Zhu 
et al. 2017b ). The two observatories – namely Spitzer and Earth in 
the present case – obtain light curves that are different in both the 
event peak time t 0 and the impact parameter u 0 . Making use of the 
known projected separation between the two observatories on the 
celestial plane, D ⊥ , the parallax vector πE can be estimated as 

πE ≈
AU 

D ⊥ 
( τsat − τ⊕, βsat − β⊕) . (10) 

Here, the subscripts ‘ sat ’ and ‘ ⊕’ represent the quantities of the 
satellite and Earth, respectively. 

The two approaches should yield consistent parallax parameters, 
provided that the deviation from the standard Paczynski ( 1986 ) 
model is indeed due to the annual parallax effect. As shown in 
Fig. 3 , for OGLE-2015-BLG-0845, the constraints on microlensing 
parallax from fitting OGLE data alone significantly differ from the 
constraints from the joint fitting of OGLE and Spitzer data, no matter 
which of the four degenerate solutions is considered. Therefore, other 
explanations are required to explain the deviation in the light curve 
from the standard Paczynski ( 1986 ) model. 

3.2 1L1S xallarap + parallax model 

The xallarap effect is the reflection of the orbital motion of the source 
star/system on the light curve, as is shown in Fig. 1 . Whenever 
the xallarap effect is invoked, it almost al w ays assumes that the 
microlensing source is a binary (or higher multiple). By including 
only one bright source in the xallarap modelling, we have assumed 
that the source binary is unresolved or that the secondary component 
is very faint/dark, which will be checked at the end of this section. 2 In 
either case, the ‘source’ here refers to the photocentre of the binary 
system rather than any single star. For simplicity, the orbit of the 
source is assumed to be circular, and the impact of an elliptical orbit 
is discussed in the section 5.1 . 

The xallarap effect introduces five new parameters, 
( P ξ , A ξ , B ξ , F ξ , G ξ ). Here, P ξ is the orbital period of the 

2 In microlensing, a binary source being unresolved means that ξE ≪ θE and 
ξE ≪ u 0 . 

Figure 3. The tension between πE as derived by fitting OGLE-only data and 
joint fitting OGLE and Spitzer data of the microlensing event OGLE-2015- 
BLG-0845. The 1 σ regions are shown as dark solid ellipses, while the 2 σ
regions are shown as lighter dashed ellipses. For space-based parallax, all 
four degenerate solutions are shown while for annual parallax, only the u 0 + 

solution is shown. The u 0 − solution for the OGLE-only fitting is not shown 
because the πE value is close to the positive solutions, which does not change 
the tension. 

source binary, and the other four parameters are variants of the 
classical Thiele–Innes elements that are widely used in astrometry 
 

 
 
 

 
 
 

A ξ = ξE ( cos φξ cos ( −θξ ) − sin φξ sin ( −θξ ) cos i ξ ) 
B ξ = ξE ( cos φξ sin ( −θξ ) + sin φξ cos ( −θξ ) cos i ξ ) 
F ξ = ξE ( − sin φξ cos ( −θξ ) − cos φξ sin ( −θξ ) cos i ξ ) 
G ξ = ξE ( − sin φξ sin ( −θξ ) + cos φξ cos ( −θξ ) cos i ξ ) . 

(11) 

Here, i ξ is the orbital inclination, φξ is the phase of the source 
relative to the ascending node at the reference epoch t ref , and θξ

measures the ascending node relative to the lens–source relative 
trajectory projected on to the source plane. The amplitude of the 
xallarap motion, ξE , is the semimajor axis of the binary motion scaled 
to the projected Einstein ring radius, as is defined in equation ( 3 ). 

The xallarap effect leads to displacement in the lens–source 
relative trajectory by the amounts 
(

δτx 

δβx 

)

= 

(

A ξ F ξ

B ξ G ξ

)

· 	 S . (12) 

F ollowing the conv ention in the modelling of the parallax effect 
(Gould 2004 ), we have introduced 	 S to measure the displacement 
between the actual position of the source under binary motion and 
an imaginary source under linear motion 

	 S = ( t − t ref ) v ref − [ S ( t) − S ( t ref )] . (13) 

The binary motion of the source, S ( t), is given by the circular motion 
starting from a zero phase with an amplitude of unity, and the velocity 
vector, v ref , is the instantaneous velocity of the source relative to the 
centre of mass of the source binary at reference epoch t ref . 

The distorted lens–source relative trajectory in the presence of 
both parallax and xallarap effects can be described as 
{

τ = τstd + δτp + δτx 

β = βstd + δβp + δβx 
, (14) 

where τstd and βstd describe the trajectory in the standard Paczynski 
( 1986 ) model. 
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Figure 4. OGLE I and V band light curves (left panels) and Spitzer 3.6 µm light curve (right panels) of the microlensing event OGLE-2015-BLG-0845. In 
each panel, the best-fitting 1L1S parallax model, 1L1S parallax + xallarap model, and the 1L2S parallax + xallarap model are shown as dashed grey line, 
dash–dotted line, and solid line, respectively. The OGLE V -band data have been aligned to the OGLE I -band data based on the best-fitting flux parameters, and 
the Spitzer flux values are shown in logarithmic scale (quasi-magnitudes). The top panels show the observed data and the best-fitting models, and the middle 
panels show the residuals of data and the other models relative to the 1L1S parallax model. In the lower panels, we show the cumulative 	χ2 distribution of the 
other two models relative to the 1L1S parallax model. 

The best-fitting 1L1S xallarap + parallax model is shown in Fig. 4 , 
and the best-fitting parameters and the associated uncertainties are 
given in Table 1 . The amplitude of the xallarap parameter, ξE , derived 
from the xallarap model, is also provided in the same table. Note that 
in this deri v ation we have ignored the non-uniform prior introduced 
by the Thiele–Innes parametrization of the xallarap model, and we 
have confirmed that the values would only be marginally revised if a 
non-uniform prior were imposed. 

The 1L1S xallarap + parallax model significantly better describes 
the light curve by 	χ2 ≃ 340, with respect to the 1L1S parallax 
model and remo v es the tension in parallax constraints between annual 
and space-based parallax-only models. Ho we ver, from Table 1 , we 
can see that the ξE is comparable to the amplitude of u 0 . The 
secondary source, which is fainter and presumably less massive, is 
expected to experience a binary motion with a larger amplitude and 
thus produce non-negligible features in the light curve. Therefore, 
it is reasonable to introduce the secondary source as a luminous 
component in the microlensing event. 

3.3 1L2S xallarap + parallax model 

In order to add a luminous secondary source, at least two new 

parameters are introduced into the modelling: the mass ratio and 
the wavelength-dependent flux ratio of the secondary source to the 
primary source, denoted as q ξ and q f, λ, respectively. Note that the flux 
ratio parameter is different for different filters. For this modelling, we 
have included the I -band and V -band data of the OGLE-IV survey 
and the Spitzer data, so three flux ratio parameters are included. 

The microlensing magnification from this 1L2S model is given by 

A 2 s , λ( u 1 , u 2 ) = 
A ( u 1 ) + q f, λA ( u 2 ) 

1 + q f, λ
. (15) 

Here, u 1 ( u 2 ) is the projected separation between the lens and the 
primary (secondary) source. The position of the primary source is 
determined in the same way as in Section 3.2 . For the secondary 
source, its positional offset relative to the rectilinear motion is given 
by 

	 S 2 = ( t − t ref ) v ref, 1 + S 1 ( t ref ) −
1 

q ξ
S 1 ( t) . (16) 

Here, the subscripts 1 and 2 denote the primary and secondary source, 
respectively. Similar to that for the primary source (equation 13 ), the 
first two terms transform the trajectory from the barycentric frame to 
the frame centred on the primary source. The last term calculates the 
orbit of the secondary source, which is 1 /q ξ times larger than that of 
the primary source and on the opposite side of the barycentre. The 
parallax effect is included in the same way as in the 1L1S case. 

As shown in Fig. 4 and further detailed in Table 1 , the best- 
fitting 1L2S xallarap + parallax model provides a better match 
to the data by 	χ2 ≃ 50, with Spitzer data contributing the ma- 
jority of this impro v ement. Although this makes the 1L2S model 
suspicious at first sight, particularly given that some fraction of 
the Spitzer data is known to contain systematics (e.g. Zhu et al. 
2017a ; Koshimoto & Bennett 2020 ), there are several pieces of 
evidence suggesting that the best-fitting 1L2S solution is plausible. 
First, the 1L2S solution is inevitable according to the best-fitting 
1L1S solution, as has been explained in Section 3.2 . Second, the 
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Figure 5. The flux variations of the two source components, S1 and S2, 
in the 1L2S model. The red and blue curves show the pure flux curve of 
the S1 and S2, respectively, and the black curve shows the combined result. 
For illustration purposes, only the ( + , + ) solution is shown, and the flux 
variations of S2 have been amplified by a factor of 7. The inset shows the 
trajectories of the two sources with respect to the lens object. The two sources 
mo v e from the left to the right. 

redder secondary source, as inferred from the binary flux ratios in 
different bandpasses, is consistent with the estimated binary mass 
ratio directly inferred from the light curve fitting, where more details 
are described in Section 4.1 , so this binary solution is astrophysically 
plausible. 

Some of the derived parameters in the 1L2S solution appear 
different from those in the 1L1S solution. In particular, the orbital 
period of the source binary, P ξ , changes from ∼ 40 d to 60–80 d, and 
the xallarap parameter, ξE , changes from ∼ 0 . 06 to ∼ 0 . 2. The change 
in ξE is due to the different definitions of this parameter in the two 
models. In the 1L1S model, ξE is defined by the motion of the centre 
of light (i.e. photocentre) relative to the centre of mass of the binary, 
whereas in the 1L2S model the same parameter refers to the motion 
of the primary source relative to the centre of mass of the binary. The 
photocentre is closer to the barycentre than the primary source by a 
factor of ( q ξ − q f ) / ( q ξ + q ξq f ). Using the values in Table 1 , we find 
this factor to be ∼ 0 . 4. Together with the statistical uncertainties, this 
can basically explain the change of ξE . The change in the binary orbit 
period is related to the morphology of the xallarap signal. As shown 
in the left panel of Fig. 4 , the xallarap signal appears to be w ave-lik e 
once the standard 1L1S model is subtracted. This w ave-lik e feature 
can be approximated by the summation of two lower frequency (thus 
longer period) terms, as illustrated in Fig. 5 . That figure shows the 
flux variations in the lensing process while the contributions from 

the two source stars are shown separately. Here, the flux variations 
are given by 

	F 1 = 
f s 

1 + q f 
( A 1 − 1) , 	F 2 = 

q f f s 

1 + q f 
( A 2 − 1) , (17) 

for S1 and S2, respectively. 
Table 1 provides the best-fitting parameters of the four degenerate 

solutions, originating from the four-fold parallax de generac y. These 
solutions have comparable values of χ2 and generally consistent 
values of xallarap parameters. In particular, the source binary is 
constrained to be nearly edge-on, which is a preferred configuration 

Figure 6. The change of 	χ2 versus P ξ of the four degenerate solutions. 
The χ2 

min is the best-fitting χ2 of each solution, and the corresponding period 
is shown as the red solid line. The grey dashed line indicates the 1 yr period. 

if one is to verify the 1L2S solution with RV observations (see 
Section 5.2 ). 

The abo v e xallarap solutions are identified through a free search 
in the whole parameter space. To ensure that we have not missed any 
degenerate solutions, a grid search in the orbital period of the source 
binary has been performed. In total 39 period values evenly spaced 
in logarithmic scale from 7 to 700 d are selected, for each chosen 
period, we fix P ξ to the grid value and the parallax parameters to 
the globally best-fitting values and search for the optimal parameter 
set that minimizes the model χ2 via MCMC. The results are shown 
in Fig. 6 for all four solutions. Within the period range that was 
searched, we find no other solution that can fit the joint OGLE 

+ Spitzer data equally well ( 	χ2 ≤ 100). Therefore, the solutions 
presented in Table 1 are the only viable xallarap solutions of OGLE- 
2015-BLG-0845. 

4  PHY SICA L  INTERPRE TATION  

4.1 Sour ce pr operties 

The angular Einstein radius can be determined by combining the 
xallarap amplitude, ξE , and the semimajor axis of the primary source, 
a S 

θE = 
a S 

D S ξE 
, (18) 

and a S is related to the mass of the source binary via Kepler’s third 
law 

a S 

AU 
= 

q ξ

(1 + q ξ ) 2 / 3 

(

M S1 

M ⊙

)1 / 3 (
P ξ

yr 

)2 / 3 

. (19) 

Here, M S1 is the mass of the primary. The values of these masses 
are key in determining θE , as the xallarap amplitude and the source 
binary period are both measured in the xallarap modelling. 

The mass of the source binary is estimated via the isochrone fitting. 
To perform this, we first derive the intrinsic colour and magnitude 
of both sources, following the general method of Yoo et al. ( 2004 ). 
We first obtain the observed colours and magnitudes of both sources 
through a linear regression based on the 1L2S modelling of OGLE- 
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Figure 7. CMD for the 2 arcmin × 2 arcmin square centred on OGLE-2015- 
BLG-0845. The best-fitting centroid of the red clump is shown as the red 
dot. The position of the S1 and S2 from solution ( −, −) are also marked 
on the figure. The blending is not shown, because it is not well constrained 
and generally consistent with zero. The relative positions of other degenerate 
solutions are the same as shown in Fig. 9 . 

2015-BLG-0845. This yields 

( V − I , I ) S1 = (1 . 46 ± 0 . 05 , 18 . 67 ± 0 . 13) (20) 

for the primary source and 

( V − I , I ) S2 = (1 . 5 ± 0 . 4 , 20 . 9 ± 0 . 5) (21) 

for the secondary source. The abo v e values are derived from the 
( −, −) solution, i.e. the minimum χ2 solution, but the difference 
among the four degenerate solutions in these numbers is statistically 
negligible. 

The centroid of the red clumps is determined to be 

( V − I , I ) RC = (1 . 972 ± 0 . 012 , 15 . 82 ± 0 . 07) (22) 

following the method of Nataf et al. ( 2013 ). We show the position of 
the red clumps centre as well as the S1, S2 from the ( −, −) solution 
in Fig. 7 . At the location of OGLE-2015-BLG-0845, the intrinsic 

colour and dereddened magnitude of the red clump are 

( V − I , I ) RC , 0 = (1 . 06 ± 0 . 06 , 14 . 46 ± 0 . 04) , (23) 

adapted from Nataf et al. ( 2013 ) and Bensby et al. ( 2013 ), respec- 
tively. The reddening and extinction are therefore determined to be 

( E S ( V − I ) , A S ( I )) = (0 . 91 ± 0 . 06 , 1 . 37 ± 0 . 08) . (24) 

Together with the observed colours and magnitudes of both sources 
(equations 20 and 21 ) and by assuming the source is at D S = 8 . 2 ±
1 . 4 kpc, we determine the intrinsic colour and absolute magnitude of 
both sources to be 

( V − I , M I ) S1 , 0 = (0 . 55 ± 0 . 08 , 2 . 7 ± 0 . 3) (25) 

and 

( V − I , M I ) S2 , 0 = (0 . 5 ± 0 . 4 , 5 . 0 ± 0 . 6) (26) 

respectiv ely. F or completeness, we have included in Table 2 the 
measured and derived properties of the source binary for all four 
degenerate solutions. 

The masses of the source stars are estimated based on their posi- 
tions on the colour–magnitude diagram (CMD) with the ISOCHRONES 

package (Morton 2015 ). This package adopts the MIST (Dotter 
2016 ) isochrone and computes the log-likelihood of five model 
parameters, namely the equi v alent e volutionary phase of both stars, 
the metallicity, age, and distance of the source system. Given 
the limited observational constraints, informative priors have been 
adopted. Specifically, the stellar metallicity is assumed to follow the 
observed distribution of the bulge microlensing stars from Bensby 
et al. ( 2017 ), and the distance is limited to the range 6.2–10.2 kpc. 
The posterior distribution is sampled by EMCEE (F oreman-Macke y 
et al. 2013 ). The resulting constraints on the stellar masses are shown 
as the black contours in Fig. 8 . For illustration purposes, we have 
shown four typical isochrones with different ages and metallicities 
that match the positions of the source stars, especially S1, in 
Fig. 9 . These isochrones are selected in the following way. First, 
four representative metallicity values, ( −1 . 0 , −0 . 5 , 0 . 0 , 0 . 25), are 
selected based on the prior metallicity distribution function (Bensby 
et al. 2017 ). Then we determined the age of each isochrone so that 
it could match the colour and magnitude of S1 well. This process 
yields an age range from 2.0 to 7.9 Gyr, and older ages al w ays 
correspond to lower values of metallicity, which is also consistent 
with the observed age–metallicity trend of bulge stars (Bensby et al. 
2017 ). 

The mass estimates from isochrone fitting also provide us with 
a way to verify the light curve modelling results. Fig. 8 illustrates 
the masses of binary sources and the mass ratio constraints from 

Table 2. Physical properties of the source binary and lens object of OGLE-2015-BLG-0845. 

Parameters ( + , + ) ( + , −) ( −, + ) ( −, −) 

( V − I ) S1 , 0 (mag) 0 . 55 ± 0 . 08 0 . 55 ± 0 . 07 0 . 54 ± 0 . 07 0 . 55 ± 0 . 08 
M I , S1 (mag) 2 . 6 ± 0 . 3 2 . 6 ± 0 . 3 2 . 8 ± 0 . 3 2 . 7 ± 0 . 3 
( V − I ) S2 , 0 (mag) 0 . 4 ± 0 . 4 0 . 4 ± 0 . 4 0 . 5 ± 0 . 3 0 . 5 ± 0 . 4 
M I , S2 (mag) 4 . 8 ± 0 . 6 5 . 1 ± 0 . 7 4 . 7 ± 0 . 5 5 . 0 ± 0 . 6 
M S1 (M ⊙) 1 . 22 ± 0 . 18 1 . 23 ± 0 . 18 1 . 20 ± 0 . 18 1 . 20 ± 0 . 18 
M S2 (M ⊙) 0 . 91 ± 0 . 12 0 . 88 ± 0 . 13 0 . 9 ± 0 . 11 0 . 87 ± 0 . 12 
a S (au) 0 . 190 ± 0 . 014 0 . 189 ± 0 . 014 0 . 181 ± 0 . 015 0 . 177 ± 0 . 017 

θE (mas) 0 . 10 + 0 . 03 
−0 . 02 0 . 091 + 0 . 022 

−0 . 017 0 . 11 + 0 . 03 
−0 . 02 0 . 11 + 0 . 03 

−0 . 02 

µrel , geo (mas yr −1 ) 0 . 84 + 0 . 21 
−0 . 16 0 . 78 + 0 . 18 

−0 . 15 0 . 93 + 0 . 25 
−0 . 19 0 . 90 + 0 . 25 

−0 . 19 

M L 0 . 15 + 0 . 02 
−0 . 02 0 . 09 + 0 . 01 

−0 . 01 0 . 13 + 0 . 02 
−0 . 02 0 . 19 + 0 . 03 

−0 . 03 

D L (kpc) 7 . 68 + 0 . 06 
−0 . 06 7 . 54 + 0 . 07 

−0 . 07 7 . 46 + 0 . 10 
−0 . 11 7 . 72 + 0 . 06 

−0 . 08 
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Figure 8. Comparison between the binary mass from the isochrone fitting 
and the mass ratio q from light curve fitting. The red line represents the q = 1 
line. The stellar masses determined by isochrone fitting are shown in black 
contours, with the solid and dashed contours showing the 1 σ and 2 σ regions. 
The light blue shadow regions mark the mass ratio 90 per cent upper limit of 
each degenerate model. 

light curve modelling (Table 1 ) for all four degenerate solutions. 
The isochrone masses generally fall within the 1 σ region of the 
mass ratio constraint, suggesting that these two sets of estimates are 
broadly consistent. Given a binary consisting of ∼ 1 . 2 and ∼ 0 . 9 M ⊙
stars, the flux ratio in Spitzer 3 . 6 µm band is around 0.4. This is in 
agreement with the flux ratio constraints for the ( −, + ) and ( −, −) 
solutions and slightly disfa v ours (by < 3 σ ) the ( + , + ) and ( + , −) 
solutions. 

With the mass estimates of source binary stars, the semimajor axis 
of the source S1 is determined to be 0.4–0.5 au, according to Kepler’s 
third law. Together with the amplitude of the xallarap parameter, 
which is measured from the light curve modelling, we find the angular 
Einstein radius to be 

θE = 0 . 125 
( a S 

0 . 2 au 

)

(

D S 

8 kpc 

)−1 (
ξE 

0 . 2 

)−1 

mas . (27) 

The exact values and uncertainties of these parameters are included 
in Table 2 for all four de generate solutions. F or OGLE-2015-BLG- 
0845 we use D S = 8 . 2 ± 1 . 4 kpc, which is the distance and the radial 
extension of the bulge at the given Galactic direction (Nataf et al. 
2013 ). 

4.2 Mass and distance of the lens 

Given the constraints on both θE and πE , we now proceed to constrain 
the mass and distance of the lens object. The mass is given by 

M L = 
θE 

κπE 
≈ 0 . 15 

(

θE 

0 . 125 mas 

)

( πE 

0 . 1 

)−1 
M ⊙. (28) 

Figure 9. The colour–magnitude diagram (CMD) of the four solutions with 1L2S xallarap + parallax model for OGLE-2015-BLG-0845 as well as the 
isochrones. The four solutions are shown in different markers, i.e. the circle, square, pentagon, and diamond stand for solutions ( + , + ), ( + , −), ( −, + ), and 
( −, −), respectively. 
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Figure 10. The constraints on the lens mass and distance for OGLE-2015- 
BLG-0845, from πE , θE , and lens flux f b . The four degenerate solutions, 
( + , + ), ( + , −), ( −, + ), and ( −, −), are shown in different panels. The black 
solid line in each panel is the upper limit from the lens flux. The coloured solid 
line and dashed line with a shaded region around them are the constraints 
from πE and θE , respectively. 

Similarly, the lens–source relative parallax is given by 

πrel = πE θE = 0 . 0125 

(

θE 

0 . 125 mas 

)

( πE 

0 . 1 

)

mas . (29) 

This value corresponds to a typical bulge lens. Adopting a source 
distance of D S = 8 . 2 kpc, we find the lens distance to be D L ≈
7 . 4 kpc. Therefore, the lens object of OGLE-2015-BLG-0845 is 
a low-mass M dwarf located in the bulge. The exact values and 
associated uncertainties of the derived mass and distance for all four 
degenerate solutions are also included in Table 2 . 

Fig. 10 illustrates the constraints on the mass and distance of 
the lens object for the four degenerate solutions. In addition to the 
constraints from the angular Einstein radius and the microlensing 
parallax, we have also shown the upper limit from lens flux. This 
limit is derived by taking the 90 per cent upper limit on the I -band 
blending flux and assuming it is due entirely to the lens object. 
We have adopted the stellar mass–magnitude relations of Pecaut, 
Mamajek & Bubar ( 2012 ) and Pecaut & Mamajek ( 2013 ) and the 
extinction relation of Bennett et al. ( 2020 ), 

A L = (1 − exp ( −D L /τdust )) / (1 − exp ( −D S /τdust )) A S . (30) 

Here, τdust = 0 . 1 kpc / sin ( | b| ) is the scale length of the dust towards 
the Galactic bulge, with b the Galactic latitude of the source system. 
For all four solutions, the lens mass and distance, derived from the 
parallax and angular Einstein radius measurements, are well within 
the allowed region by the lens flux upper limit. 

5  DISCUSSION  

5.1 Impact of the eccentricity 

In the 1L2S model with the xallarap effect, we have assumed a 
circular orbit for the source binary. Ho we ver, observ ations have 

shown that binaries with eccentric orbits are fairly common (e.g. 
Duch ̂ ene & Kraus 2013 ). In the period range of 10–1000 d, which 
is rele v ant for xallarap detection, about half of the binaries have 
eccentricities abo v e ∼0.3 (Raghavan et al. 2010 ). Therefore, it is 
necessary to address the impact of eccentric orbits on the derived 
source and lens properties. 

We adopt an eccentric orbit 1L2S model to fit the data. Together 
with the orbital eccentricity e, the argument of periapsis ω is also 
introduced to describe the eccentric motion. To a v oid o v erfit of the 
weak signal, we fix the orbital eccentricity to values in the range 
0.1–0.8 and search the other parameters to minimize the model χ2 . 
Compared to the circular model, the best χ2 values of the eccentric 
orbits are only marginally impro v ed. At e = 0 . 3, the impro v ement 
is 	χ2 ≈ 5. More eccentric ( e � 0 . 4) orbits have even worse χ2 

values, and such orbits are disfa v oured a priori at an orbital period 
of ∼ 100 d. 

With the introduction of eccentric orbits, model parameters that 
are rele v ant to the physical properties of the source and lens 
objects are not changed substantially. The changes in the flux 
ratios in different bands and in the mass ratio are all within the 
uncertainties of the corresponding parameters given in Table 1 . 
With the increasing eccentricity, the xallarap parameter and the 
orbital period of the source binary may both increase by up to 
30–50 per cent, but because these two parameters have opposite 
effects on the angular Einstein radius, this latter parameter is not 
changed as much. In the end, the mass and distance of the lens 
object are only changed by � 20 per cent , which is small compared 
to the difference between different degenerate solutions. It does not 
change the conclusion that the lens is a low-mass M dwarf in the 
Bulge. 

The inclination remains nearly unchanged with e ≤ 0 . 3, but may 
reach up to 128 ◦ at e = 0 . 8. This has some implications for the RV 

observations of the source binary, which will be discussed in the next 
section. 

5.2 Source binary confirmation 

With a baseline magnitude of I ≈ 18 . 5 and a blending fraction that is 
low ( � 0 . 1) and consistent with zero (Table 1 ), the source binary of 
OGLE-2015-BLG-0845 is potentially accessible by spectroscopic 
observations from the ground. Such observations can not only 
confirm but also further refine the derived properties of the source 
binary (and thus the lens object). 

We observed the source with the MagE spectrograph (Marshall 
et al. 2008 ) on the 6.5 m Magellan Baade Telescope at Las Campanas 
Observatory on 2023 July 2. Three exposures, each with 20 min, 
were taken, and the resulting spectrum has a signal-to-noise ratio 
(S/N) per resolution of about fiv e. Giv en the flux ratio of ∼ 0 . 15, we 
expect to see only a single component in the spectra. We compared 
the observed spectrum with synthetic spectra generated with the 
Model Atmospheres with a Radiative and Convective Scheme, i.e., 
MARCS (Gustafsson et al. 2008 ), and a radiative transfer code 
TURBOSPECTRUM (Plez 2012 ) integrated together by ISPEC (Blanco- 
Cuaresma 2019 ). The observed spectrum can be fitted with the 
spectra of late F-type subgiants and dwarfs reasonably well, while it 
disfa v ours the early F-type as well as the typical G-type stars. This 
is in agreement with the CMD fitting result. The observed spectrum, 
as well as the best-fitting stellar model near the H α and Ca triplet, 
are shown in Fig. 11 . 

Future spectroscopic observations are able to measure the RV 

variations of the source binary (e.g. Ryu et al. 2024 ). Given the 
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Figure 11. The observed MagE spectrum as well as the best-fitting stellar model. The MagE observation and best-fitting model are shown in blue and orange 
solid lines, respectively. 

inferred parameters, the RV semi-amplitude is 

K = 28 km s −1 sin i ξ√ 
1 − e 2 

(

M S2 

0 . 9 M ⊙

)(

M S1 + M S2 

2 . 1 M ⊙

)−2 / 3 (
P ξ

75 d 

)−1 / 3 

. (31) 

This is large enough for ground-based 10-m telescopes to achieve 
on a late F-type star. These RV observations will be able to directly 
measure the orbital eccentricity, which is currently not constrained 
in the model (Section 5.1 ). The combination of RV and xallarap can 
provide useful constraints on the angular Einstein radius, as has long 
been pointed out by Han & Gould ( 1997 ). 

As explained in Section 3.3 , the 1L2S model is fa v oured mostly 
by the Spitzer data. It has been argued that the Spitzer data might 
suffer from systematics at some level (e.g. Zhu et al. 2017a ; 
Koshimoto & Bennett 2020 ), so the verification of the binary 
source via the RV method also provides an opportunity to fur- 
ther investigate the issues in the Spitzer data in this particular 
event. 

5.3 The detectability of the xallarap effect 

As demonstrated by the event OGLE-2015-BLG-0845, the xallarap 
effect can provide additional information regarding the θE parameter 
and thus has the capability to determine θE by utilizing RV mea- 
surement or isochrone fitting. Therefore, one wonders how often the 
xallarap effect appears and is detectable. In particular, under what 
conditions can the xallarap effect be distinguished from the annual 
parallax effect? 

To answer the abo v e question, we perform the following simplified 
simulations. We adopt the surv e y strate gy and performance of 
Karolinski & Zhu ( 2020 ) and set the t 0 is at the centre of an 
observing season. The values of t E and u 0 were uniformly sampled 
in the ranges 10–150 d and 0.1–1.0, respectively, which roughly 
follow the observed distribution of Mr ́oz et al. ( 2019 ). The angular 
Einstein radius is assumed to be 0.55 mas, corresponding to an 
M-dwarf lens located at 4 kpc. The source binary consists of a 
primary star of mass 1 M ⊙ and a mass ratio of 0.3. This mass ratio 
corresponds to a luminosity ratio of � 1 per cent , sufficiently small 
that we can disregard the light of the secondary source in the light 
curve modelling. The orbital period of the source binary is sampled 
from a log-flat distribution between 0.5 and 10 times t E , and the 
orientation of the binary orbit and positions of the source stars 
are randomized. For each of the simulated light curves, We have 
performed both parallax and xallarap modellings, and the xallarap 
signal is considered to be detected if the best-fitting 	χ2 between 
parallax and xallarap models is > 50. 

Figure 12. The change of the xallarap effect detection efficiency with regard 
to p ξ /t E ratio when u 0 = 0 . 1. The solid line, dashed line, and dash–dotted 
line represent the total detection efficiency, as well as the detection efficiency 
when t E is 150 or 20 d, respectively. 

The detection efficiency of the xallarap effect is shown in Fig. 12 
as a function of the binary orbital period. Source binaries with 
orbital periods P � 2 t E are more likely to be detected, as their 
xallarap signals are difficult to be confused with annual parallax 
signals. Giv en the fix ed sampling cadence, the detection efficiency 
therefore drops for shorter time-scale events, resulting in an o v erall 
frequency of around 1 per cent once the binary period distribution 
is taken into account. This fraction increases for higher cadence 
surv e ys and events with longer time-scales. If we take roughly the 
same t E distribution with the events in Poindexter et al. ( 2005 ), 
the detectability of the xallarap effect would be about 18 per cent, 
consistent with the result of Poindexter et al. ( 2005 ) that about 
23 per cent of the events with t E � 70 d are affected by xallarap 
effect. Because such long time-scale events are of particular interest 
in the search for dark lenses (e.g. Lam et al. 2020 ), the impact of the 
xallarap effect and its usage in the lens mass determination should 
be e v aluated seriously. 
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AP PENDIX  A :  BINARY  L E N S  

INTERPR ETATIO N  

An additional companion to the lens object may also lead to 
distortions in the microlensing light curve (Mao & Paczynski 1991 ; 
Gould & Loeb 1992 ). As long as the source star stays relatively 
away from the caustics of the binary lens, such distortions are not 
prominent features and may resemble those produced by the xallarap 
effect (e.g. Rota et al. 2021 ; Yang et al. 2024 ). We therefore carry 
out 2L1S modelling including the lens orbital motion to make sure 
the detected signal is indeed caused by the xallarap effect. 

In this 2L1S modelling, we have included the MOA data as well 
based on the arguments in Section 2 . To describe the 2L1S model, six 
new parameters are introduced in addition to the 1L1S parameters, 
including four standard parameters ( ρ, α, s , and q) and two that 
describe the linearized lens orbital motion (d α/ d t and d s/ d t). Here, 
ρ represents the angular size of the source normalized to the angular 
Einstein radius, α is the angle between the source trajectory and the 
binary axis, and s and q are the projected separation and mass ratio 
between the two lens components, respectively. The orbital motion 
of the lens system is included in order to have a fair comparison 
with the binary source model with the xallarap ef fect. Follo wing a 
thorough grid search and refined MCMC sampling of the posterior 
distribution, we only identify one binary lens solution that matches 
the observed data the best. This best-fitting 2L1S model is shown 
in Fig. A1 , and the parameter values are given in Table A1 for the 
purpose of completeness. As shown in Fig. A1 , the best-fitting 2L1S 

model is not able to explain the deviations in the ground-based data 
fully, and it is worse than the 1L2S xallarap model by 	χ2 of ∼ 230. 
Here, the 1L2S xallarap model is the same as given in Table 1 , and 
we have introduced a flux ratio in the MOA band to fit the MOA data. 
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Figure A1. The comparison between the 2L1S model and the 1L2S xallarap + parallax model. The figure description is similar to that of Fig. 4 . In the figure, 
we present both the original MOA data without error bars and the MOA data binned into daily cadence, which are denoted as green dots and circles with error 
bars, respectively. The inset in the upper panel shows the trajectory of the source as well as the caustic curve of the binary lens and the position of the lens. 

Table A1. Parameters of the best-fitting 2L1S solution for OGLE-2015- 
BLG-0845. 

Parameters ( + , + ) 

t 0 (HJD ′ ) 7199 . 6348 ± 0 . 0087 
u 0 0 . 0547 ± 0 . 0010 
t E (d) 40 . 5 ± 0 . 5 
πE , N −0 . 0030 ± 0 . 0003 
πE , E 0 . 0797 ± 0 . 0011 
ρ 0 . 008 ± 0 . 003 
α ( deg ) 7 ± 52 
s 0 . 641 ± 0 . 010 
q 0 . 0058 ± 0 . 0003 
d α/ d t (deg yr −1 ) −88 ± 8 
d s/ d t (yr −1 ) 0 . 44 ± 0 . 08 
Blend Fractioni 0 . 089 ± 0 . 016 
χ2 /dof 3095.11/2923 

Note. HJD ′ = HJD-2450000. 

Gi ven the relati vely large 	χ2 value, we therefore exclude the binary 
lens model as a plausible solution for OGLE-2015-BLG-0845. 

APPENDIX  B:  STATIC  BINARY  S O U R C E  

INTERPRETATION  

In Table B1 , we present the best-fitting binary source solution without 
orbital motion (i.e. 1L2S static) here for completeness. In the 1L2S 

static model, the position of the secondary source is given by t 0 , 2 
and u 0 , 2 , which are the time of closest approach and the impact 
parameter of the secondary source, respectively (e.g. Hwang et al. 

Table B1. Parameters of best-fitting 1L2S static solution for OGLE-2015- 
BLG-0845. 

Parameters ( + , −) 

t 0 , 1 (HJD ′ ) 7199 . 376 ± 0 . 006 
u 0 , 1 0 . 0666 ± 0 . 0007 
t E (d) 31 . 8 ± 0 . 3 
πE , N −0 . 0968 ± 0 . 0010 
πE , E 0 . 1129 ± 0 . 0010 
t 0 , 2 (HJD ′ ) 7207 . 6 ± 0 . 4 
u 0 , 2 0 . 230 ± 0 . 013 
q f, OGLE 0 . 137 ± 0 . 011 
q f, OGLE , V 0 . 106 ± 0 . 023 
q f, MOA 0 . 137 ± 0 . 011 
q f, Spitzer 0 . 037 ± 0 . 007 
Blend fraction −0 . 265 ± 0 . 017 
χ2 /dof 3104.71/2921 

Note. HJD ′ = HJD-2450000. 

2013 ). Similar to the 1L2S xallarap model, the flux ratios between 
the two sources in individual bandpasses are also required. 

The comparison between the best-fitting 1L2S static solution and 
the best 1L2S xallarap solution is shown in Fig. B1 , with the latter 
one the same as in Appendix A . Similar to the origin of the four- 
fold parallax de generac y, there e xist multiple de generate solutions 
for the 1L2S xallarap explanation, and here we select the one with 
the smallest model χ2 . As shown in Fig. B1 , even this best-fitting 
1L2S static solution is worse than the best 1L2S xallarap solution 
by 	χ2 > 230, and it fails to explain the general behaviour of the 
light curve between 7160 < HJD 

′ < 7195. Therefore, the 1L2S static 
model is excluded. 
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Figure B1. The comparison between the 1L2S static and the 1L2S xallarap model. The figure description is similar to that of Fig. A1 . 
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