
E�icient and E�ective Neural Networks

for Automatic Test Pa�ern Generation

Lizi Zhang
University of Wisconsin-Madison

Madison, Wisconsin, USA
lzhang697@wisc.edu

Azadeh Davoodi
University of Wisconsin-Madison

Madison, USA
adavoodi@wisc.edu

Abstract

Automatic Test Pattern Generation (ATPG) algorithms such as FAN

and PODEM heavily rely on a backtracing step to explore the search

space. Conventional implementations often use a single metric such

as a testability measure to guide backtracing. Recently, Neural Net-

work (NN) models were proposed which combine multiple metrics

to make a better backtrace decision. This paper identi�es two fun-

damental, unresolved issues for e�ective and e�cient use of NNs

for ATPG: (1) portability of the NNmodel across di�erent levels of a

combinational circuit; (2) signi�cant runtime overhead when using

the NN model in backtrace decisions of each gate. To address these

issues, a hybrid approach is proposed which builds and applies the

NN model to only selected levels of the circuit. Guidelines to select

the level and to train circuits are also discussed in this context.

Also, a lookup technique is proposed to reuse the results of prior

inferences at each gate to further accelerate the runtime.

CCS Concepts

• Hardware → Test-pattern generation and fault simulation.

Keywords

Automatic Test Pattern Generation, Machine Learning, Backtracing

ACM Reference Format:

Lizi Zhang and Azadeh Davoodi. 2024. E�cient and E�ective Neural Net-

works for Automatic Test Pattern Generation. In 2024 ACM/IEEE Interna-

tional Symposium on Machine Learning for CAD (MLCAD ’24), September

9–11, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3670474.3685939

1 Introduction

Automatic Test Pattern Generation (ATPG) is an NP-hard problem

[10]. Most recent ATPG algorithms are extensions of PODEM [2, 11]

which search the space of assignments to Primary Inputs (PIs), or

the �ip�op content (if adopted for sequential circuits) to reach

a reasonable solution quickly. The search space in PODEM-like

algorithms is modeled as a decision tree with nodes representing a

subset (or worst-case all) of the PIs. The decision tree is determined

when trying to �nd a feasible assignment to activate a fault site

and propagating the fault e�ect to a primary output (PO).

This work is licensed under a Creative Commons Attribution International 4.0
License.
MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0699-8/24/09
https://doi.org/10.1145/3670474.3685939

Figure 1: Two possible decision trees for test pattern gener-

ation for a stuck-at-0 (SA0) fault. Each tree corresponds to

a di�erent backtracing path based on fanin selection at the

output gate. Neural networks help pick the best fanin.

A fundamental issue impacting the runtime of PODEM-like algo-

rithms is a backtracing step to build a path from an internal signal

line (such as the fault site) to a PI. It requires making backtrace

decisions at individual gates to select the “most promising” fanin.

Each backtrace path identi�es a PI and its assignment, hence the

order of backtrace paths impacts the order the PIs are listed in the

decision tree. They also impact the number of backtracks before the

algorithm can terminate, hence the tree size. A backtrack (di�erent

from a backtrace) occurs whenever an infeasible PI assignment is

found and requires expanding the tree to explore new directions in

the circuit. Figure 1(a) shows an example circuit. Two decision trees

are shown in (b) corresponding to di�erent backtrace paths based

on fanin selection at the output gate. In the left one, no backtracks

happen by selecting signal E which assigns � = 0. However, in the

right tree, signal L is initially selected which causes a backtrack.

The above example shows that the core part impacting the runtime

of a PODEM-like algorithm is correctly identifying the fanin to

backtrace at a single gate to avoid backtrack when reaching the PI.

Di�erent heuristic metrics may be used to make a backtracing

decision, e.g., selecting the fanin with the best testability measure

such as COP [1], SCOAP [7], and CAMELOT [12]. Recently, a neural

network (NN) model was used to combine di�erent metrics such

as testability measure and information about the gate type as input

features, with the goal to improve backtracing at a gate [14–16].

The NN model was integrated with PODEM to make inference

calls to the NN for each backtrace decision. The runtime bene�ts

were when the number of backtracks was signi�cantly reduced to

compensate for the overhead of inferences. Later on, unsupervised

learning techniques were proposed [16, 17] which �rst applied

Principal Component Analaysis (PCA) to deal with correlated input

features. The top two principal components were used as input

features to create a smaller NN model. Overhead was associated

due to performing PCA before each inference. Moreover, PCA was

not compatible with the ‘one-hot’ format needed to communicate

the gate type information. As a result, the one-hot gate type vector

which carried important information for making a backtracing

decision was dropped as a feature in the unsupervised approaches.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0001-3737-4044
https://doi.org/10.1145/3670474.3685939
https://doi.org/10.1145/3670474.3685939
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3670474.3685939&domain=pdf&date_stamp=2024-09-09

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zhang et al.

In this paper, besides the above-listed areas of improvement,

we identify two fundamental issues to make NN-guided backtracing

e�ective and e�cient for ATPG. These two are: (1) portability of

a NN model across di�erent levels of a combinational circuit; (2)

signi�cant runtime overhead of NN inference calls at each gate

throughout the course of the algorithm. First, we show there exists

signi�cant variations in the values of some input features (i.e.,

testability measures) based on the level of a gate in the circuit. We

show building a single NN model across all levels cannot improve

ATPG due to this variation. There is also no runtime advantage to

use NN when the level is small or large. We then propose a hybrid

approach to train and apply the NN model at only select levels of

the circuit. We propose guidelines on how a level can be selected.

We also introduce metrics to decide which circuits may be selected

to extract data for training purposes. We also propose a lookup

technique to speed up the runtime of NN-guided backtracing at each

gate. This is based our observation that majority of the inferences

at each gate are already-computed values which can be reused.

Overall, the summary of our contributions are listed below:

• We identify fundamental issues with NNs to make the back-

tracing step of ATPG e�cient and e�ective.

• We propose hybrid use of NNs at select levels, and discuss

e�ective selection of training data to address the issues.

• We also show a signi�cant amount of NN computations can

be reused at a gate which allows skipping many inferences.

• Our NN model is �exible in receiving di�erent types of input

features such as gate type information in the one-hot format.

In our experiments, we integrate our ideas with the FAN algorithm

implemented by the open source ATALANTA tool [3]. We show

signi�cant improvements in the number of backtracks, with same

or better fault coverage and/or ATPG e�ectiveness, compared to

[3] and a NN-guided backtracing using supervised learning.

2 Related Work
One of the earliest ATPG algorithms is Roth’s D-Algorithm [4]

which de�nes the D algebra. It is a complete algorithm with the

search space size of 2# where N is number of all signal nodes in the

circuits. Later, PODEM [11] improved it by searching assignments

for only the PI nodes. It decreased the size of search space to 2
#%�

and incorporated use of heuristic measures to guide its backtracing.

Next, FAN [2] was proposed which compared to PODEM, it detected

con�icts much faster and reduced the cost of backtracks.

Early work since 90s showed attempts to learn from data to

improve ATPG. The work SOCRATES [9] used static and dynamic

learning to accelerate ATPG. The works [6, 8] were among the �rst

to use information from previously detected faults by introducing

an E-frontier. The �rst explicit application of NNs in ATPG was

[18] which used a bi-directional binary NN.

Recent works have used NNs to improve backtracing in PODEM

[14–17] by e�ectively combining multiple heuristic metrics [5, 13].

Both supervised learning [14, 15] and unsupervised learning [16, 17]

were applied. The work [14] used a two-layer NN with a single

output to combine multiple heuristic metrics including gate type,

circuit level, COP controllability and observability. The NN model

was called for any (not-yet implied) fanin of a gate, for each gate on

a backtraced path. The output of the NN represented probability of

successful backtrace if a particular fanin of a gate was selected. The

Figure 2: Statistics of SCOAPCombinational Controllability 0

(CC0) as a function of the Shortest Distance to the PIs (SDPI).

fanin with highest probability was selected for backtracing. The

NN model was called for every fanin of a gate in every backtraced

path in the circuit. Training data was collected from di�erent levels

of a circuit in a mixed fashion.

3 E�ective Neural Network-Guided Backtracing

3.1 Our Observations

The NN-based backtracing techniques described earlier su�er from

a number of challenges which we have identi�ed and listed below:

Variations in signal line features in the same circuit: Signal

line features such as SCOAP testability and COP are important

inputs to the NN model. However, they can signi�cantly vary as

a function of distance to PIs with some features not having any

guaranteed range. For example, combinational controllability (CC0

and CC1) are much smaller when a line is close to the PIs (i.e., more

controllable) and greater near the POs. This means the knowledge

derived from data near the PIs cannot be directly transferred to

circuit lines near POs. Figure 2 shows an example of the ranges of

CC0 as a function of Shortest Distance to any PI (SDPI) for two

circuits. As can be seen, for the same circuit, there is signi�cant

variation in the values of CC0. Training a NN by directly using

these values across all levels won’t be e�ective.

Variations in signal line features across circuits: The previous

issue also exists from one circuit to another even when considering

the same circuit level. This is primarily due to the distinct charac-

teristics exhibited by individual circuits. For example, as seen in

Figure 2, for SDPI=10, the highest CC0 is about 150 in c2670 while

it is about 100 in c3540. We note the variation seen at the same

level across di�erent circuits is signi�cantly lower than variations

across di�erent levels even in the same circuit.

Not all signal lines can bene�t from NN models: Cost of a

backtrack is low for a line which connects to a small number of PIs

(i.e., close to the PIs). The search space for these lines is so small that

even considering an exhaustive approach, the cost is still lower than

the cost of computing the output of a simple NN model. Moreover,

the lines near PIs have very similar feature values, e.g., similar

distances to PIs, controllability measures. The high resemblance of

data make it hard for NNs to learn and be useful in such scenarios.

For the lines near PO, there is not much bene�t to use NN to decide

backtrace at a gate because they have a huge search space and all

fanins of a gate are likely to lead to a successful backtrace. Using

NN-guided backtracing is not bene�cial in these cases.

E�icient and E�ective Neural Networks
for Automatic Test Pa�ern Generation MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Figure 3: Single-layer NN used for integration with ATPG.

3.2 Proposed Techniques

To develop an ATPG algorithm which e�ectively uses neural net-

works, it is important to acknowledge that while sophisticated NN

models can result in better performances, they may not be worth

the runtime overhead of additional inferences.

Based on the presented observations, in this work, a single

hidden-layer NN model is found to be most e�ective for ATPG.

Shown in Figure 3, the model consists of input features, a hidden

layer, and an output neuron. The input features are denoted as

- ∈ R
31 and the hidden layer neurons are � ∈ R

32 , where 31 is

the number of input features and 32 is the number of neurons in

the hidden layer. The output . is a real value between 0 and 1.

The output works as a measurement of how likely this line may

backtrace successfully. The forward propagation is expressed as:

� = 5 (, ⊤
1
- + 11) (1)

. = 5 (, ⊤
2
� + 12) (2)

where ,1 ∈ R
31×32 and ,2 ∈ R

32×1 are the weight matrices,

and 11 ∈ R
32 , 12 ∈ R are the biases, 5 is the activation function

implemented as the sigmoid function.

3.2.1 Hybrid Implementation and Acceleration. In our hybrid imple-

mentation, the NN model is trained on data generated for speci�c

levels and is only applied to the same corresponding levels of a cir-

cuit. For the remaining levels, the default metrics in the ATPG tool

are used to decide the fanin during a backtrace. This addresses the

issues discussed earlier: Since the model is trained on and applied

to the same level, the features are always comparable to each other.

Figure 4 shows how a circuit level may be identi�ed for hybrid

implementation. The plot shows average percentage reduction in

number of backtracks and in runtime as a function of circuit level

(SDPI). This is compared to a non-hybrid version of ATPGwhen NN

is not used at all. For each SDPI, a separate NN was trained using

circuit data for only that level. The trained NN is only used for that

level. As can be seen SDPI=6 results in themost reduction in runtime

which is used in our experiments. At this level the backtrace can

always bene�t from the NN model such that the computation cost

of NN is quiet often smaller than the cost of backtracks.

To further accelerate NN-guided backtracing, we observed that

some circuit lines may be backtraced many times during the course

of the algorithm (as the PI assignments change or due to signal

implications). Therefore, a lookup table is established to record the

NN model outputs for these lines to avoid redundant computations.

Figure 4: Average reduction in backtrack and in runtime as a

function of circuit level (SDPI). We observe SDPI=6 results

in the most overall reduction in runtime.

3.2.2 Input Features and Normalization. In this work, we adopt a

broad range of input features for NN training. Whenever possible,

data corresponding to a feature is normalized to ensure the gradient

descent is much more stable and converges faster. Our considered

input features are listed below:

• Shortest and Longest Distance to the PIs denoted by SDPI

and LDPI, respectively. The LDPI feature is normalized to

[0,1] for all gates with same SDPI, as explained earlier.

• SCOAP controllability measures, i.e., Combinational Control-

lability 0/1 (CC0 and CC1), which represent the di�culty of

setting a line to 0 or 1, respectively. These measures contain

valuable information in the paths containing the considered

lines to the PIs. The SCOAP contrallability measures are also

normalized between [0,1] for all gates with the same SDPI.

• COP controllability for a line is the probability of the line

being 1 if the PIs are uniformly and randomly set to 0 or 1.

This feature provides another approximation of how hard it

is to observe a speci�c signal on a line. They are already in

the [0,1] range so normalization is not needed.

• Encoded gate type. The gate type that connects to a line

has a great impact on the backtracing process because it

may directly impact the values that should be taken by the

inputs. A gate type is encoded as one-hot vector. For example,

“AND” gate is encoded as 0000001 and “OR” gate is encoded

as 0000010. In our work, we consider 7 gate types.

Example: Consider the circuit in Figure 1. The features correspond-

ing to line L are (LDPI, SDPI, CC0, CC1, COP) = (2, 1, 4, 2, 0.625).

The gate type is “NAND”, hence the one-hot vector 0100000.

Data Collection Process: To generate training data, a default ATPG

algorithm (e.g., ATALANTA tool [3] in this work) was applied to

several circuits. Both successful and failed backtracing instances

were recorded. Meanwhile, the features of lines were also recorded

during backtracing. When backtracing is completed (which could

be either successful or fail), the same label is assigned to all lines on

the same backtracing path. Speci�cally, if the backtracing results in

PI assignment without any con�icts, it is considered successful and

the related lines are labeled ‘1’. Otherwise, it is a fail and backtrack

is needed so all lines on the backtracing path are labeled ‘0’.

It is very possible that a line may be recorded many times during

the course of the ATPG algorithm run. The frequency of the labels

for the same line represents the likelihood of successful backtracing

if this line is chosen.

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zhang et al.

Example: Consider line O in the same example circuit. Table below

shows the generated data (prior to normalization) for a successful

backtrace to detect stuck-at-0 fault at this line.

Line COP LDPI SDPI CC0 CC1 Type Label

O 0.902 3 1 7 2 0100000 1

L 0.625 2 1 4 2 0100000 1

J 0.750 1 1 3 2 0100000 1

F 0.500 0 0 1 1 0100000 1

B 0.500 0 0 1 1 0100000 1

3.3 Circuit Selection for Training

In practice, given a collection of circuits, a subset should be selected

for training with the rest to be used for testing. To decide which

circuits are suitable for training, the number of samples and the

ratio between positively and negatively -labeled data are important.

Positive and negative samples have 1 and 0 labels, respectively.

If the number of training data points is small, the model will not

function properly. Also, if the training data is highly imbalanced

(as far as ratio of positive to negative samples), the model tends to

have great bias. Table below shows data statistics that are collected

from di�erent circuits during the ATPG process.

Signal Lines with SDPI=6

Circuit #Samples #Pos #Neg Ratio #Samples/Ratio

c1908 318 242 76 3.18 99.87

c1355 259 208 51 4.08 63.50

c2670 366 256 110 2.33 157.27

c3540 191 152 39 3.90 49.01

c5315 269 258 11 23.45 11.47

c6288 84 62 22 2.82 29.81

c7552 907 786 121 6.50 139.63

For each circuit, columns 2, 3, 4, 5 correspond to number of

samples, positive samples, negative samples, and ratio of larger

to smaller samples. The smallest value that the ratio can take is

1 when the number of positive and negative samples are equal

to each other. This is ideal for training to have equal number of

positive and negative samples. Column 6 reports total number of

samples divided by the ratio in column 5. Column 6 may be used

as a metric to decide if a circuit is a good candidate to select for

training the NN. The higher number indicates a better candidate

due to higher number of samples and/or sample ratio closer to the

minimum (equal positive and negative samples). In this work, we

used data from c1908 and c2670 for NN training. These two had

the highest value in column 6 (except c7552 which we reserved for

testing due to its larger size).

3.4 NN Design for Better Training

The main design decision for the NN is number of neurons in the

hidden layer. We decide this number by looking at how the training

error is impacted. As shown in Figure 5(a), models trained tend to

have lower training error as the number of neurons in the hidden

layer increases. But the improvement becomes trivial when the

number of neurons is beyond 60, accompanied by an increase in

the inference time. Therefore, in this work, the NN is designed to

have a hidden layer with 60 neurons.

(a) (b)

Figure 5: Training error as function of (a) number of neurons

in the hidden layer and (b) number of training epochs

In the �gure, the training error is measured using the Binary

Cross Entropy (BCE) which is de�ned as follows:

;>BB (-,~) = −[~ · ;>6(5 (-)) + (1 − ~) · ;>6(1 − 5 (-))]

where- is the input feature,~ is the label and 5 (-) is model output.

Figure 5(b) shows the training error as a function of number of

epochs. We set the number of epochs to 30000 to achieve the best

training quality. Since we apply a pre-trained model, this number

is not considered a signi�cant overhead in runtime.

4 Simulation Results

To show the impact of our NN-guided ATPG, we compared the

following approaches in our experiments.

1. FAN: We used the open-source ATALANATA [3] tool which

implements FAN using LDPI (Longest Distance to any PI) as

heuristic measure for fanin selection during backtracing.

2. NN-Hybrid: This is the hybrid NN-guided approach pro-

posed in this work. Speci�cally, we implemented a hybrid

version using FAN as the base with the changes discussed

in Section 3: The NN model was applied only to lines with

SDPI=6. The model was designed and trained as presented

in Section 3.4. For the remaining lines, we used the default

SCOAP controllability measures for backtracing.

3. NN-All: This approach similar to NN-Hybrid, except that

the ML model is applied on all circuit lines. The main di�er-

ence compared to NN-All is that the NN model was trained

using data extracted across all levels. This approach is es-

sentially our best e�ort implementation of [14, 15] based on

available information. We note, all con�guration setup is

same between NN-All and NN-Hybrid approaches.

The following metrics were used for evaluation:

• Fault coverage de�ned as percentage of detected faults

compared to total number of faults.

• ATPG e�ectiveness de�ned as number of detected faults

and number of faults identi�ed as untestable divided by to-

tal number of faults. Untestable faults (a.k.a redundant) are

typically a small percentage of total number of faults in prac-

tice but may take a signi�cant portion of the ATPG runtime

because they often require building a complete decision tree

(exhausting all test patterns) to conclude a fault is untestable.

• Number of backtracks reported both as absolute and as a

percentage improvement relative to the FAN case.

• Runtime reported in seconds.

E�icient and E�ective Neural Networks
for Automatic Test Pa�ern Generation MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

Table 1: Comparison for the ‘all-faults case’ when stuck at 0/1 faults are injected on all lines. Parameter K is the backtrack limit.

K=1000 K=10000 K=25000

FAN NN-All NN-Hyb FAN NN-All NN-Hyb FAN NN-All NN-Hyb

c1908 FaultCov. 99.52 99.52 99.52 99.52 99.52 99.52 99.52 99.52 99.52

ATPG-E�. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

#BTracks 1124 1037 550 4818 1037 550 4818 1037 550

%BTracks 0.00 7.74 51.07 0.00 78.48 88.58 0.00 78.48 88.58

Runtime 0.08 0.05 0.03 0.25 0.05 0.03 0.23 0.05 0.02

c2670 FaultCov. 95.74 95.74 95.74 95.74 95.74 95.74 95.74 95.74 95.74

ATPG-E�. 99.02 99.02 99.02 99.16 99.16 99.16 99.16 99.16 99.31

#BTracks 31643 32743 31648 266551 273924 252629 611551 618924 518561

%BTracks 0.00 -3.48 -0.02 0.00 -2.77 5.22 0.00 -1.21 15.21

Runtime 0.58 0.60 0.62 4.32 4.43 4.28 9.03 9.63 7.40

c3540 FaultCov. 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00

ATPG-E�. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

#BTracks 181 232 176 181 232 176 181 232 176

%BTracks 0.00 -28.18 2.76 0.00 -28.18 2.76 0.00 -28.18 2.76

Runtime 0.10 0.12 0.10 0.10 0.10 0.12 0.08 0.13 0.12

c5315 FaultCov. 98.90 98.84 98.90 98.90 98.84 98.90 98.90 98.84 98.90

ATPG-E�. 100.00 99.94 100.00 100.00 99.94 100.00 100.00 99.94 100.00

#BTracks 116 3235 87 116 30235 87 116 75235 87

%BTracks 0.00 -2688.79 25.00 0.00 -25964.66 25.00 0.00 -64757.76 25.00

Runtime 0.20 0.25 0.15 0.15 0.92 0.17 0.17 2.05 0.18

c6288 FaultCov. 99.38 99.17 99.56 99.41 99.41 99.56 99.41 99.41 99.56

ATPG-E�. 99.82 99.61 100.00 99.85 99.85 100.00 99.85 99.85 100.00

#BTracks 15563 40835 6405 122384 197953 40774 302384 452212 85774

%BTracks 0.00 -162.39 58.84 0.00 -61.75 66.68 0.00 -49.55 71.63

Runtime 0.58 1.23 0.38 4.10 4.87 1.58 10.00 10.65 3.27

c7552 FaultCov. 98.16 98.07 98.17 98.16 98.07 98.17 98.16 98.07 98.17

ATPG-E�. 99.18 99.09 99.19 99.18 99.09 99.19 99.18 99.09 99.19

#BTracks 99330 112005 79508 990330 1102005 781508 2475330 2752005 1951508

%BTracks 0.00 -12.76 19.96 0.00 -11.28 21.09 0.00 -11.18 21.16

Runtime 2.58 3.25 2.15 26.28 29.02 16.57 60.50 73.55 40.08

Ave. Imp. #BTracks -481.31% 26.27% -4331.69% 34.89% -10794.90% 37.39%

Ave. Imp. Runtime -5.69% 21.75% -77.19% 26.27% -190.66% 26.89%

4.1 Comparison in the All-Faults Case

Here, we consider the case when stuck-at-0 and stuck-at-1 faults

are injected on all lines of each circuit. The three approaches were

applied on the two training circuits (c1908, c2670) and four testing

circuits (c3540, c5315, c6288, c7552), from the ISCAS85 suite, sim-

ilar to [14, 15]. The approaches were also compared for di�erent

backtrack limits (denoted by K). Test pattern generation procedure

terminates for each fault when the backtrack limit is reached. The

results are shown in Table 1. Average improvements in number of

backtracks and in runtime are reported for NN-All and NN-Hyb

relative to FAN. We make the following observations:

• In terms of number of backtracks, NN-Hyb on-average has

reduction of 26.27%, 34.89%, and 37.39% with increase in K.

Higher K allows more time to detect a fault which makes

NN-guided backtracing to have more improvement.

• Reduction in runtime is a direct consequence of reduction

in number of backtracks. On-average reduction in runtimes

are 21.75%, 26.27%, and 26.89% with increase in K.

• Fault coverage is always the same or even better (for c6288

and c7522) in NN-Hyb compared to the other approaches.

• ATPG e�ectiveness is always same or better. Speci�cally, for

c6288, NN-Hyb achieves a fault coverge of 100% indicating

all detectable and redundant faults are identi�ed.

• The NN-All approach has worse performance. (The number

of backtracks are only reduced in NN-All for c1908 compared

to FAN.) Our NN-All is identical to NN-Hyb (so they are

optimized extensively and in the same way) except that the

neural network in NN-All is trained with data extracted

across all levels.

4.2 Comparison for Hard-to-Detect Faults

In this experiment, we consider hard-to-detect (H2D) faults. To

identify these, we �rst ran FAN with a list of all possible stuck-

at-faults (0 and 1 stuck-at faults for each signal line). Next, FAN

generates a list of aborted faults which are the ones it was not able

to generate a test pattern with its default backtrack limit. These are

also known as aborted faults. They may be detectable if a higher

backtrack limit is given or they may be inherently untestable. In

this experiment, we only used the circuits which had more than

10 H2D faults (i.e., more than 10 aborted faults). We additionally

experiment with a higher backtrack limit (K=50000).

For each circuit, we report the number of H2D faults (aborted

faults generated by FAN with K=10). Next, after running each ap-

proach with a higher backtrack limit (K=25000 and 50000), we also

report the number of redundant and number of aborted faults. The

results are reported in Table 2. We make the following observations

from the table:

MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA Zhang et al.

Table 2: Comparison for hard-to-detect (H2D) faults

K=25000 K=50000

FAN NN-Hyb FAN NN-Hyb

c2670 #H2D Faults 31 31 31 31

#Redu+#Abor 8+23 16+15 8+23 20+11

ATPG-E�. 25.81 51.61 25.81 64.52

#BTracks 598971 517111 1173971 818979

Runtime 9.15 7.72 17.78 13.32

c6288 #H2D Faults 24 24 24 24

#Redu+#Abor 0+12 0+8 0+12 0+8

ATPG-E�. 50.00 66.67 50.00 66.67

#BTracks 302344 253872 602344 503872

Runtime 9.98 3.83 20.03 7.85

c7552 #H2D Faults 68 68 68 68

#Redu+#Abor 6+62 6+62 6+62 6+62

ATPG-E�. 8.82 8.82 8.82 8.82

#BTracks 1550170 1550546 3100170 3100546

Runtime 35.38 29.22 71.90 58.27

Ave. Imp. ATPG-E� 44.43% 61.11%

Ave. Imp. #BTracks 9.89% 15.52%

Ave. Imp. Runtime 31.55% 34.95%

• NN-Hyb performs signi�cantly better than FAN as far as re-

solving the number of H2D faults. First, it performs better in

terms of detecting a higher number of redundant/untestable

faults. For example, in c2670 and for K=25000, out of 31 H2D

faults, the number of aborted faults were reduced from 23

(in FAN) to 15 (in NN-Hyb). The number of faults identi�ed

as redundant/untestable was increased from 8 (in FAN) to

16 (in NN-Hyb). Therefore, NN-Hyb identi�ed more faults

as redunant and �nished with fewer aborted faults. This

behavior holds consistently and for both values of K.

• NN-Hyb has same or higher ATPG e�ectiveness for the same

value of K. This means NN-Hyb is able to detect same or

higher number of H2D faults (given that it identi�es higher

faults as redundant and has fewer aborted faults).

• Finally, in terms of runtime and number of backtracks, NN-

Hyb is signi�cantly better. For example, the average improve-

ment in runtime over FAN is 31.55%and 34.95% for K=25000

and 50000, respectively. The average improvements in ATPG

e�ectiveness were 44.43% and 61.11% with increase in K.

Note, in c7552, 62 of the H2D faults remain aborted for both FAN

and NN-Hyb. Further experiments (even with backtrack limit of 10

million) suggest that these faults are highly unlikely to be detected.

However, there is signi�cant reduction in runtime in NN-Hyb com-

pared to FAN for each K.

4.3 Impact of the Lookup Approach on Runtime

In our last experiment, we disable the lookup-based acceleration

in NN-Hyb and compare the runtime with the case when it is

enabled. The results are reported in Table 3. Recall, the lookup-

based acceleration records NN inferences for each signal and only

computes inferences if they have not been computed before. As can

be seen, on average 30.33% improvement in runtime can be achieved.

The dynamically-generated lookup table e�ectively eliminates the

need for forward propagation computations of the NN model in the

test pattern generation process, greatly reducing the computational

e�orts.

Table 3: Runtime of NN-Hyb with and without acceleration

NN-Hyb (K=10000)

w/o lookup w/ lookup (%Impr.)

c1908 0.067 0.033 (51%)

c2670 13.350 4.283 (68%)

c3540 0.117 0.117 (0%)

c5315 0.200 0.167 (17%)

c6288 1.867 1.583 (15%)

c7552 23.867 16.567 (31%)

Ave. Imp. 30.33%

5 Conclusions
In this work we identi�ed the issues with existing NN-guided ATPG

algorithms. We proposed a hybrid procedure for applying NN to

select circuit levels, with guidelines for level selection, and training

of the NN.We also proposed a lookup technique to reuse the existing

computations in a NN for higher speedups. Our simulation results

conducted for two cases of “all circuit faults” and “hard-to-detect

faults” demonstrated the e�ectiveness of our procedure in reducing

the number of backtracks, with same or better ATPG metrics.

6 Acknowledgments
This work is supported by a grant fromNational Science Foundation

under Award No. 2322713.

References
[1] F. Brglez. 1984. On Testability Analysis of Combinational Circuits. IEEE Interna-

tional Symposium on Circuits and Systems (1984), 221–225.
[2] Fujiwara and Shimono. 1983. On the Acceleration of Test Generation Algorithms.

IEEE Trans. Comput. C-32, 12 (1983), 1137–1144.
[3] H. K. Lee and D. S. Ha. 1993. On the Generation of Test Patterns for Combinational

Circuits. Technical Report No. 12-93. Department of Electrical Engineering,
Virginia Polytechnic Institute and State University.

[4] J. P. Roth, W. G. Bouricius, and P. R. Schneider. 1967. Programmed Algorithms
to Compute Tests to Detect and Distinguish Between Failures in Logic Circuits.
IEEE Transactions on Electronic Computers EC-16, 5 (1967), 567–580.

[5] J. Patel and S. Patel. 1985. What Heuristics are Best for PODEM? First International
Workshop on VLSI Design (1985), 1–20.

[6] K. T. Cheng. 1991. On Removing Redundancy in Sequential Circuits. ACM/IEEE
Design Automation Conference (1991), 164–169.

[7] L. Goldstein. 1979. Controllability/Observability Analysis of Digital Circuits.
IEEE Transactions on Circuits and Systems 26, 9 (1979), 685–693.

[8] M. L. Bushnell and J. Giraldi. 1997. A Functional Decomposition Method for
Redundancy Identi�cation and Test Generation. Journal of Electronic Testing 10,
3 (1997), 175–195.

[9] M.H. Schulz and E. Auth. 1989. Improved Deterministic Test Pattern Generation
with Applications to Redundancy Identi�cation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 8, 7 (1989), 811–816.

[10] O. H. Ibarra and S. K. Sahni. 1975. Polynomially Complete Fault Detection
Problems. IEEE Trans. Comput. C-24, 3 (1975), 242–249.

[11] P. Goel. 1981. An Implicit Enumeration Algorithm to Generate Tests for Combi-
national Logic Circuits. IEEE Trans. Comput. C-30, 3 (1981), 215–222.

[12] R.G. Bennetts, C.M. Maunder, and G. D. Robinson. 1981. CAMELOT: a Computer-
Aided Measure for Logic Testability. IEE Proceedings E - Computers and Digital
Techniques 128, 5 (1981), 177–189.

[13] S. Patel and J. Patel. 1986. E�ectiveness of Heuristics Measures for Automatic Test
Pattern Generation. ACM/IEEE Design Automation Conference (1986), 547–552.

[14] S. Roy, S. K. Millican, and V. D. Agrawal. 2020. Machine Intelligence for E�cient
Test Pattern Generation. IEEE International Test Conference (2020), 1–5.

[15] S. Roy, S. K. Millican, and V. D. Agrawal. 2021. Training Neural Network for
Machine Intelligence in Automatic Test Pattern Generator. IEEE International
Conference on VLSI Design and International Conference on Embedded Systems
(2021), 316–321.

[16] S. Roy, S. K. Millican, and V. D. Agrawal. 2021. Unsupervised Learning in Test
Generation for Digital Integrated Circuits. IEEE European Test Symposium (2021),
1–4.

[17] S. Roy, S. K. Millican, and V. D. Agrawal. 2022. Multi-Heuristic Machine Intel-
ligence Guidance in Automatic Test Pattern Generation. IEEE Microelectronics
Design & Test Symposium (2022), 1–6.

[18] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell. 1991. Neural Models and
Algorithms for Digital Testing. Springer.

E�icient and E�ective Neural Networks
for Automatic Test Pa�ern Generation MLCAD ’24, September 9–11, 2024, Salt Lake City, UT, USA

A Artifact Appendix

A.1 Abstract

This project proposes a hybrid approach for Automatic Test Pattern

Generation (ATPG) by integrating machine learning with the FAN

algorithm. It includes implementations of two approaches, namely,

NN-Hyb and NN-All. These two apply neural network models at

selective and at all circuit levels, respectively. Project �les support

the paper by providing the source code, circuit �les, and scripts

needed to reproduce key results, including comparisons for “all fault

case”, and “hard-to-detect faults”. Comparison of runtime with and

without a proposed acceleration scheme is also included. Minimal

requirements include a C++ compiler and shell script execution

capabilities.

A.2 Artifact check-list (meta-information)
• Algorithm: A novel Neural Network guided ATPG algorithm

• Program: Linux 5.15.153.1

• Compilation: g++ 11.4.0.

• Data set: ISCAS85 Benchmark circuits

• Binary: A binary �le is provided.

• Model: NN-networks used in our paper are integrated in the source

code.

• Runtime environment: Ubuntu 22.04.2 LTS.

• Metrics: Fault Coverage, ATPG E�ectiveness, number of backtracks

and runtime

• Output: Numerical results in Tables I, II and III

• How much time is needed to prepare work�ow (approxi-

mately)?: 1 hour

• How much time is needed to complete experiments (approxi-

mately)?: 30 minutes

• Publicly available?: Yes.

• Code licenses (if publicly available)?:: MIT license

• Work�ow framework used?: No, but scripts are provided.

• Archived (provide DOI)?: 10.5061/dryad.m0cfxppcm

A.3 Description

A.3.1 How to access. All necessary source code, circuit �les, and

scripts to reproduce key results are available on the GitHub page:

https://github.com/lzzh97/NN-for-ATPG. Clone the repository and

follow the instructions in the README �le.

A.3.2 Hardware dependencies. Standard computers without any

speci�c hardware dependencies.

A.3.3 So�ware dependencies. C++ compiler and shell script execu-

tion capabilities.

A.4 Installation

In the paper we have compared the following 3 approaches:

(1) FAN: base approach for ATPG used for comparison.

(2) NN-Hyb: our approach based on applying neural network

(NN) model during backtrace at select circuit levels during ATPG.

(3) NN-All: alternative approach using our NN model, but at all

levels of the circuit.

To get an executable for (1), please download source code from

https://github.com/hsluoyz/Atalanta and compile. (We did not in-

clude it because it is already published by another group.)

For (2) and (3), please compile (using the make command) from

the NN-Hyb and NN-All directories, respectively.

A.5 Experiment work�ow

We recommend using the provided scripts to reproduce the results,

which can be easily executed by the command bash [path to

script]. The scripts in the “script” directory generate the results

reported in Tables I, II, and III:

(1)All Faults Case (Table I): AllFault_FAN.sh, AllFault_NN-All.sh,

AllFault_NN-Hyb.sh. Table I reports fault coverage, ATPG e�ec-

tiveness, number of backtracks and runtime. These quantities are

reported by our program for NN-All and NN-Hyb.

For FAN’s results, the tool does not directly report ATPG ef-

fectiveness. Compute it using this formula: (#redundant_faults +

#detected_faults)/#total_faults.

(2)Hard-to-Detect Faults (Table II): H2D_FAN.sh, H2D_NN-Hyb.sh.

The results show the performances of FAN approach and NN-Hyb

approach on Hard-to-Detect faults with default backtracking limits

25,000 and 50,000.

(3) Acceleration with Lookup Approach (Table III):

Acceleration_NN-Hyb.sh. This script generates results for NN-

Hyb with and without acceleration.

A.6 Evaluation and expected results

For scripts given in Section A.5 (excluding FAN) should print out

results of following format:

Name of the circuit : "c2670"

Fault coverage : 0.000 %

Total number of backtrackings : 517111

ATPG Effectiveness : 51.613 %

Total time : 7.550 Secs

The results, except for total time, should closely match our report.

The variation in total time is typically less than 10%.

A.7 Experiment customization

Once compiled, use the command from each directory. Users are

allowed to apply our approach to a customized dataset with di�erent

parameters by using command line

cd ./NN_Hyb # directory for desired approach

./atalanta -Options [path to circuit file]

The options needed to generate similar results of the paper are

listed below:

-w: Disable lookup table (enabled otherwise if -w not speci�ed)

-b n: Maximum number of backtracking (default: -b 10)

-f fn: Faults are read from the �le fn. This options is only used

to generate the results in Table II in the paper. Otherwise, if a fault

�le is not speci�ed, the input is assumed to be all possible faults.

A.8 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-

badging-current

• http://cTuning.org/ae/submission-20201122.html

• https://github.com/ml-eda/artifact-evaluation/

https://github.com/lzzh97/NN-for-ATPG
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
https://github.com/ml-eda/artifact-evaluation/

	Abstract
	1 Introduction
	2 Related Work
	3 Effective Neural Network-Guided Backtracing
	3.1 Our Observations
	3.2 Proposed Techniques
	3.3 Circuit Selection for Training
	3.4 NN Design for Better Training

	4 Simulation Results
	4.1 Comparison in the All-Faults Case
	4.2 Comparison for Hard-to-Detect Faults
	4.3 Impact of the Lookup Approach on Runtime

	5 Conclusions
	6 Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

