n o .
et Efficient and Effective Neural Networks

for Automatic Test Pattern Generation

Lizi Zhang
University of Wisconsin-Madison
Madison, Wisconsin, USA
Izhang697@wisc.edu

Abstract

Automatic Test Pattern Generation (ATPG) algorithms such as FAN
and PODEM heavily rely on a backtracing step to explore the search
space. Conventional implementations often use a single metric such
as a testability measure to guide backtracing. Recently, Neural Net-
work (NN) models were proposed which combine multiple metrics
to make a better backtrace decision. This paper identifies two fun-
damental, unresolved issues for effective and efficient use of NNs
for ATPG: (1) portability of the NN model across different levels of a
combinational circuit; (2) significant runtime overhead when using
the NN model in backtrace decisions of each gate. To address these
issues, a hybrid approach is proposed which builds and applies the
NN model to only selected levels of the circuit. Guidelines to select
the level and to train circuits are also discussed in this context.
Also, a lookup technique is proposed to reuse the results of prior
inferences at each gate to further accelerate the runtime.
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1 Introduction

Automatic Test Pattern Generation (ATPG) is an NP-hard problem
[10]. Most recent ATPG algorithms are extensions of PODEM [2, 11]
which search the space of assignments to Primary Inputs (PIs), or
the flipflop content (if adopted for sequential circuits) to reach
a reasonable solution quickly. The search space in PODEM-like
algorithms is modeled as a decision tree with nodes representing a
subset (or worst-case all) of the PIs. The decision tree is determined
when trying to find a feasible assignment to activate a fault site
and propagating the fault effect to a primary output (PO).
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Figure 1: Two possible decision trees for test pattern gener-
ation for a stuck-at-0 (SA0) fault. Each tree corresponds to
a different backtracing path based on fanin selection at the
output gate. Neural networks help pick the best fanin.

A fundamental issue impacting the runtime of PODEM-like algo-
rithms is a backtracing step to build a path from an internal signal
line (such as the fault site) to a PIL It requires making backtrace
decisions at individual gates to select the “most promising” fanin.
Each backtrace path identifies a PI and its assignment, hence the
order of backtrace paths impacts the order the PIs are listed in the
decision tree. They also impact the number of backtracks before the
algorithm can terminate, hence the tree size. A backtrack (different
from a backtrace) occurs whenever an infeasible PI assignment is
found and requires expanding the tree to explore new directions in
the circuit. Figure 1(a) shows an example circuit. Two decision trees
are shown in (b) corresponding to different backtrace paths based
on fanin selection at the output gate. In the left one, no backtracks
happen by selecting signal E which assigns B = 0. However, in the
right tree, signal L is initially selected which causes a backtrack.
The above example shows that the core part impacting the runtime
of a PODEM-like algorithm is correctly identifying the fanin to
backtrace at a single gate to avoid backtrack when reaching the PL

Different heuristic metrics may be used to make a backtracing
decision, e.g., selecting the fanin with the best testability measure
such as COP [1], SCOAP [7], and CAMELOT [12]. Recently, a neural
network (NN) model was used to combine different metrics such
as testability measure and information about the gate type as input
features, with the goal to improve backtracing at a gate [14-16].
The NN model was integrated with PODEM to make inference
calls to the NN for each backtrace decision. The runtime benefits
were when the number of backtracks was significantly reduced to
compensate for the overhead of inferences. Later on, unsupervised
learning techniques were proposed [16, 17] which first applied
Principal Component Analaysis (PCA) to deal with correlated input
features. The top two principal components were used as input
features to create a smaller NN model. Overhead was associated
due to performing PCA before each inference. Moreover, PCA was
not compatible with the ‘one-hot’ format needed to communicate
the gate type information. As a result, the one-hot gate type vector
which carried important information for making a backtracing
decision was dropped as a feature in the unsupervised approaches.
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In this paper, besides the above-listed areas of improvement,
we identify two fundamental issues to make NN-guided backtracing
effective and efficient for ATPG. These two are: (1) portability of
a NN model across different levels of a combinational circuit; (2)
significant runtime overhead of NN inference calls at each gate
throughout the course of the algorithm. First, we show there exists
significant variations in the values of some input features (i.e.,
testability measures) based on the level of a gate in the circuit. We
show building a single NN model across all levels cannot improve
ATPG due to this variation. There is also no runtime advantage to
use NN when the level is small or large. We then propose a hybrid
approach to train and apply the NN model at only select levels of
the circuit. We propose guidelines on how a level can be selected.
We also introduce metrics to decide which circuits may be selected
to extract data for training purposes. We also propose a lookup
technique to speed up the runtime of NN-guided backtracing at each
gate. This is based our observation that majority of the inferences
at each gate are already-computed values which can be reused.
Overall, the summary of our contributions are listed below:

o We identify fundamental issues with NNs to make the back-
tracing step of ATPG efficient and effective.

e We propose hybrid use of NN at select levels, and discuss
effective selection of training data to address the issues.

e We also show a significant amount of NN computations can
be reused at a gate which allows skipping many inferences.

e Our NN model is flexible in receiving different types of input
features such as gate type information in the one-hot format.

In our experiments, we integrate our ideas with the FAN algorithm
implemented by the open source ATALANTA tool [3]. We show
significant improvements in the number of backtracks, with same
or better fault coverage and/or ATPG effectiveness, compared to
[3] and a NN-guided backtracing using supervised learning.

2 Related Work

One of the earliest ATPG algorithms is Roth’s D-Algorithm [4]
which defines the D algebra. It is a complete algorithm with the
search space size of 2V where N is number of all signal nodes in the
circuits. Later, PODEM [11] improved it by searching assignments
for only the PI nodes. It decreased the size of search space to 2*F!
and incorporated use of heuristic measures to guide its backtracing.
Next, FAN [2] was proposed which compared to PODEM, it detected
conflicts much faster and reduced the cost of backtracks.

Early work since 90s showed attempts to learn from data to
improve ATPG. The work SOCRATES [9] used static and dynamic
learning to accelerate ATPG. The works [6, 8] were among the first
to use information from previously detected faults by introducing
an E-frontier. The first explicit application of NNs in ATPG was
[18] which used a bi-directional binary NN.

Recent works have used NNs to improve backtracing in PODEM
[14-17] by effectively combining multiple heuristic metrics [5, 13].
Both supervised learning [14, 15] and unsupervised learning [16, 17]
were applied. The work [14] used a two-layer NN with a single
output to combine multiple heuristic metrics including gate type,
circuit level, COP controllability and observability. The NN model
was called for any (not-yet implied) fanin of a gate, for each gate on
a backtraced path. The output of the NN represented probability of
successful backtrace if a particular fanin of a gate was selected. The
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Figure 2: Statistics of SCOAP Combinational Controllability 0
(CC0) as a function of the Shortest Distance to the PIs (SDPI).

fanin with highest probability was selected for backtracing. The
NN model was called for every fanin of a gate in every backtraced
path in the circuit. Training data was collected from different levels
of a circuit in a mixed fashion.

3 Effective Neural Network-Guided Backtracing

3.1 Our Observations

The NN-based backtracing techniques described earlier suffer from
a number of challenges which we have identified and listed below:

Variations in signal line features in the same circuit: Signal
line features such as SCOAP testability and COP are important
inputs to the NN model. However, they can significantly vary as
a function of distance to PIs with some features not having any
guaranteed range. For example, combinational controllability (CCO
and CC1) are much smaller when a line is close to the PIs (i.e., more
controllable) and greater near the POs. This means the knowledge
derived from data near the PIs cannot be directly transferred to
circuit lines near POs. Figure 2 shows an example of the ranges of
CCo0 as a function of Shortest Distance to any PI (SDPI) for two
circuits. As can be seen, for the same circuit, there is significant
variation in the values of CCO0. Training a NN by directly using
these values across all levels won’t be effective.

Variations in signal line features across circuits: The previous
issue also exists from one circuit to another even when considering
the same circuit level. This is primarily due to the distinct charac-
teristics exhibited by individual circuits. For example, as seen in
Figure 2, for SDPI=10, the highest CCO0 is about 150 in ¢2670 while
it is about 100 in ¢3540. We note the variation seen at the same
level across different circuits is significantly lower than variations
across different levels even in the same circuit.

Not all signal lines can benefit from NN models: Cost of a
backtrack is low for a line which connects to a small number of PIs
(i.e., close to the PIs). The search space for these lines is so small that
even considering an exhaustive approach, the cost is still lower than
the cost of computing the output of a simple NN model. Moreover,
the lines near PIs have very similar feature values, e.g., similar
distances to Pls, controllability measures. The high resemblance of
data make it hard for NNs to learn and be useful in such scenarios.
For the lines near PO, there is not much benefit to use NN to decide
backtrace at a gate because they have a huge search space and all
fanins of a gate are likely to lead to a successful backtrace. Using
NN-guided backtracing is not beneficial in these cases.
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Figure 3: Single-layer NN used for integration with ATPG.

3.2 Proposed Techniques

To develop an ATPG algorithm which effectively uses neural net-
works, it is important to acknowledge that while sophisticated NN
models can result in better performances, they may not be worth
the runtime overhead of additional inferences.

Based on the presented observations, in this work, a single
hidden-layer NN model is found to be most effective for ATPG.
Shown in Figure 3, the model consists of input features, a hidden
layer, and an output neuron. The input features are denoted as
X € R% and the hidden layer neurons are A € Rdz, where d; is
the number of input features and dz is the number of neurons in
the hidden layer. The output Y is a real value between 0 and 1.
The output works as a measurement of how likely this line may
backtrace successfully. The forward propagation is expressed as:

A=f(WX +by) (1)
Y = f(W, A+ b) ()

where W; € R4%% and W, e R%X! are the weight matrices,
and b; € R%, b, € R are the biases, f is the activation function
implemented as the sigmoid function.

3.2.1  Hybrid Implementation and Acceleration. In our hybrid imple-
mentation, the NN model is trained on data generated for specific
levels and is only applied to the same corresponding levels of a cir-
cuit. For the remaining levels, the default metrics in the ATPG tool
are used to decide the fanin during a backtrace. This addresses the
issues discussed earlier: Since the model is trained on and applied
to the same level, the features are always comparable to each other.

Figure 4 shows how a circuit level may be identified for hybrid
implementation. The plot shows average percentage reduction in
number of backtracks and in runtime as a function of circuit level
(SDPI). This is compared to a non-hybrid version of ATPG when NN
is not used at all. For each SDPI, a separate NN was trained using
circuit data for only that level. The trained NN is only used for that
level. As can be seen SDPI=6 results in the most reduction in runtime
which is used in our experiments. At this level the backtrace can
always benefit from the NN model such that the computation cost
of NN is quiet often smaller than the cost of backtracks.

To further accelerate NN-guided backtracing, we observed that
some circuit lines may be backtraced many times during the course
of the algorithm (as the PI assignments change or due to signal
implications). Therefore, a lookup table is established to record the
NN model outputs for these lines to avoid redundant computations.

MLCAD ’24, September 9-11, 2024, Salt Lake City, UT, USA

Ave. % Reduction
(4]

%BacktrackReduction
%Runtime Reduction

6 7 8
SDPI

Figure 4: Average reduction in backtrack and in runtime as a
function of circuit level (SDPI). We observe SDPI=6 results
in the most overall reduction in runtime.

3.2.2 Input Features and Normalization. In this work, we adopt a
broad range of input features for NN training. Whenever possible,
data corresponding to a feature is normalized to ensure the gradient
descent is much more stable and converges faster. Our considered
input features are listed below:

e Shortest and Longest Distance to the PIs denoted by SDPI
and LDPI, respectively. The LDPI feature is normalized to
[0,1] for all gates with same SDPI, as explained earlier.

e SCOAP controllability measures, i.e., Combinational Control-

lability 0/1 (CCO and CC1), which represent the difficulty of

setting a line to 0 or 1, respectively. These measures contain
valuable information in the paths containing the considered
lines to the PIs. The SCOAP contrallability measures are also
normalized between [0,1] for all gates with the same SDPL

COP controllability for a line is the probability of the line

being 1 if the PIs are uniformly and randomly set to 0 or 1.

This feature provides another approximation of how hard it

is to observe a specific signal on a line. They are already in

the [0,1] range so normalization is not needed.

Encoded gate type. The gate type that connects to a line

has a great impact on the backtracing process because it

may directly impact the values that should be taken by the
inputs. A gate type is encoded as one-hot vector. For example,

“AND” gate is encoded as 0000001 and “OR” gate is encoded

as 0000010. In our work, we consider 7 gate types.

Example: Consider the circuit in Figure 1. The features correspond-
ing to line L are (LDPI, SDPL, CC0, CC1, COP) = (2, 1, 4, 2, 0.625).
The gate type is “NAND”, hence the one-hot vector 0100000.

Data Collection Process: To generate training data, a default ATPG
algorithm (e.g., ATALANTA tool [3] in this work) was applied to
several circuits. Both successful and failed backtracing instances
were recorded. Meanwhile, the features of lines were also recorded
during backtracing. When backtracing is completed (which could
be either successful or fail), the same label is assigned to all lines on
the same backtracing path. Specifically, if the backtracing results in
PI assignment without any conflicts, it is considered successful and
the related lines are labeled ‘1°. Otherwise, it is a fail and backtrack
is needed so all lines on the backtracing path are labeled ‘0’.

It is very possible that a line may be recorded many times during
the course of the ATPG algorithm run. The frequency of the labels
for the same line represents the likelihood of successful backtracing
if this line is chosen.
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Example: Consider line O in the same example circuit. Table below
shows the generated data (prior to normalization) for a successful
backtrace to detect stuck-at-0 fault at this line.

Line COP LDPI SDPI CCo0 CC1 Type Label

O 0.902 3 1 7 2 0100000 1
L 0.625 2 4 2 0100000 1
J 0.750 1 1 3 2 0100000 1
F 0.500 0 0 1 1 0100000 1
B 0.500 0 0 1 1 0100000 1

3.3 Circuit Selection for Training

In practice, given a collection of circuits, a subset should be selected
for training with the rest to be used for testing. To decide which
circuits are suitable for training, the number of samples and the
ratio between positively and negatively -labeled data are important.
Positive and negative samples have 1 and 0 labels, respectively.
If the number of training data points is small, the model will not
function properly. Also, if the training data is highly imbalanced
(as far as ratio of positive to negative samples), the model tends to
have great bias. Table below shows data statistics that are collected
from different circuits during the ATPG process.

Signal Lines with SDPI=6
Circuit | #Samples #Pos #Neg Ratio #Samples/Ratio
¢1908 318 242 76 3.18 99.87
c1355 259 208 51 4.08 63.50
c2670 366 256 110 2.33 157.27
€3540 191 152 39 3.90 49.01
¢5315 269 258 11 23.45 11.47
c6288 84 62 22 2.82 29.81
€7552 907 786 121 6.50 139.63

For each circuit, columns 2, 3, 4, 5 correspond to number of
samples, positive samples, negative samples, and ratio of larger
to smaller samples. The smallest value that the ratio can take is
1 when the number of positive and negative samples are equal
to each other. This is ideal for training to have equal number of
positive and negative samples. Column 6 reports total number of
samples divided by the ratio in column 5. Column 6 may be used
as a metric to decide if a circuit is a good candidate to select for
training the NN. The higher number indicates a better candidate
due to higher number of samples and/or sample ratio closer to the
minimum (equal positive and negative samples). In this work, we
used data from ¢1908 and c2670 for NN training. These two had
the highest value in column 6 (except ¢7552 which we reserved for
testing due to its larger size).

3.4 NN Design for Better Training

The main design decision for the NN is number of neurons in the
hidden layer. We decide this number by looking at how the training
error is impacted. As shown in Figure 5(a), models trained tend to
have lower training error as the number of neurons in the hidden
layer increases. But the improvement becomes trivial when the
number of neurons is beyond 60, accompanied by an increase in
the inference time. Therefore, in this work, the NN is designed to
have a hidden layer with 60 neurons.
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Figure 5: Training error as function of (a) number of neurons
in the hidden layer and (b) number of training epochs

In the figure, the training error is measured using the Binary
Cross Entropy (BCE) which is defined as follows:

loss(X,y) = [y - log(f (X)) + (1 —y) - log(1 - f(X))]

where X is the input feature, y is the label and f(X) is model output.

Figure 5(b) shows the training error as a function of number of
epochs. We set the number of epochs to 30000 to achieve the best
training quality. Since we apply a pre-trained model, this number
is not considered a significant overhead in runtime.

4 Simulation Results

To show the impact of our NN-guided ATPG, we compared the
following approaches in our experiments.

1. FAN: We used the open-source ATALANATA [3] tool which
implements FAN using LDPI (Longest Distance to any PI) as
heuristic measure for fanin selection during backtracing.

2. NN-Hybrid: This is the hybrid NN-guided approach pro-
posed in this work. Specifically, we implemented a hybrid
version using FAN as the base with the changes discussed
in Section 3: The NN model was applied only to lines with
SDPI=6. The model was designed and trained as presented
in Section 3.4. For the remaining lines, we used the default
SCOAP controllability measures for backtracing.

3. NN-All: This approach similar to NN-Hybrid, except that
the ML model is applied on all circuit lines. The main differ-
ence compared to NN-All is that the NN model was trained
using data extracted across all levels. This approach is es-
sentially our best effort implementation of [14, 15] based on
available information. We note, all configuration setup is
same between NN-All and NN-Hybrid approaches.

The following metrics were used for evaluation:

e Fault coverage defined as percentage of detected faults
compared to total number of faults.

o ATPG effectiveness defined as number of detected faults
and number of faults identified as untestable divided by to-
tal number of faults. Untestable faults (a.k.a redundant) are
typically a small percentage of total number of faults in prac-
tice but may take a significant portion of the ATPG runtime
because they often require building a complete decision tree
(exhausting all test patterns) to conclude a fault is untestable.

e Number of backtracks reported both as absolute and as a
percentage improvement relative to the FAN case.

e Runtime reported in seconds.
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Table 1: Comparison for the ‘all-faults case’ when stuck at 0/1 faults are injected on all lines. Parameter K is the backtrack limit.

K=1000 K=10000 K=25000
FAN NN-All  NN-Hyb FAN NN-All  NN-Hyb FAN NN-All NN-Hyb
c1908 FaultCov. 99.52 99.52 99.52 99.52 99.52 99.52 99.52 99.52 99.52
ATPG-Eff. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
#BTracks 1124 1037 550 4818 1037 550 4818 1037 550
%BTracks 0.00 7.74 51.07 0.00 78.48 88.58 0.00 78.48 88.58
Runtime 0.08 0.05 0.03 0.25 0.05 0.03 0.23 0.05 0.02
€2670 FaultCov. 95.74 95.74 95.74 95.74 95.74 95.74 95.74 95.74 95.74
ATPG-Eff. 99.02 99.02 99.02 99.16 99.16 99.16 99.16 99.16 99.31
#BTracks 31643 32743 31648 266551 273924 252629 611551 618924 518561
%BTracks 0.00 -3.48 -0.02 0.00 -2.77 5.22 0.00 -1.21 15.21
Runtime 0.58 0.60 0.62 4.32 4.43 4.28 9.03 9.63 7.40
3540 FaultCov. 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00
ATPG-EfT. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
#BTracks 181 232 176 181 232 176 181 232 176
%BTracks 0.00 -28.18 2.76 0.00 -28.18 2.76 0.00 -28.18 2.76
Runtime 0.10 0.12 0.10 0.10 0.10 0.12 0.08 0.13 0.12
c5315 FaultCov. 98.90 98.84 98.90 98.90 98.84 98.90 98.90 98.84 98.90
ATPG-Eff. 100.00 99.94 100.00 100.00 99.94 100.00 100.00 99.94 100.00
#BTracks 116 3235 87 116 30235 87 116 75235 87
%BTracks 0.00 -2688.79 25.00 0.00 -25964.66 25.00 0.00 -64757.76 25.00
Runtime 0.20 0.25 0.15 0.15 0.92 0.17 0.17 2.05 0.18
c6288 FaultCov. 99.38 99.17 99.56 99.41 99.41 99.56 99.41 99.41 99.56
ATPG-Eff. 99.82 99.61 100.00 99.85 99.85 100.00 99.85 99.85 100.00
#BTracks 15563 40835 6405 122384 197953 40774 302384 452212 85774
%BTracks 0.00 -162.39 58.84 0.00 -61.75 66.68 0.00 -49.55 71.63
Runtime 0.58 1.23 0.38 4.10 4.87 1.58 10.00 10.65 3.27
c7552 FaultCov. 98.16 98.07 98.17 98.16 98.07 98.17 98.16 98.07 98.17
ATPG-Eff. 99.18 99.09 99.19 99.18 99.09 99.19 99.18 99.09 99.19
#BTracks 99330 112005 79508 990330 1102005 781508 2475330 2752005 1951508
%BTracks 0.00 -12.76 19.96 0.00 -11.28 21.09 0.00 -11.18 21.16
Runtime 2.58 3.25 2.15 26.28 29.02 16.57 60.50 73.55 40.08
Ave. Imp. #BTracks -481.31% 26.27% -4331.69% 34.89% -10794.90% 37.39%
Ave. Imp. Runtime -5.69% 21.75% -77.19% 26.27% -190.66% 26.89%
4.1 Comparison in the All-Faults Case e The NN-All approach has worse performance. (The number
Here, we consider the case when stuck-at-0 and stuck-at-1 faults of backtracks are only reduced in NN-All for ¢1908 compared
are injected on all lines of each circuit. The three approaches were to FAN.) Our NN-All is identical to NN-Hyb (so they are
applied on the two training circuits (c1908, c2670) and four testing optimized extensively and in the same way) except that the
circuits (3540, ¢5315, c6288, c7552), from the ISCASS85 suite, sim- neural network in NN-All is trained with data extracted
ilar to [14, 15]. The approaches were also compared for different across all levels.
backtrack limits (denoted by K). Test pattern generation procedure 4.2 Comparison for Hard-to-Detect Faults

terminates for each fault when the backtrack limit is reached. The
results are shown in Table 1. Average improvements in number of
backtracks and in runtime are reported for NN-All and NN-Hyb
relative to FAN. We make the following observations:

o In terms of number of backtracks, NN-Hyb on-average has
reduction of 26.27%, 34.89%, and 37.39% with increase in K.
Higher K allows more time to detect a fault which makes
NN-guided backtracing to have more improvement.

e Reduction in runtime is a direct consequence of reduction
in number of backtracks. On-average reduction in runtimes
are 21.75%, 26.27%, and 26.89% with increase in K.

o Fault coverage is always the same or even better (for c6288
and ¢7522) in NN-Hyb compared to the other approaches.

o ATPG effectiveness is always same or better. Specifically, for
¢6288, NN-Hyb achieves a fault coverge of 100% indicating
all detectable and redundant faults are identified.

In this experiment, we consider hard-to-detect (H2D) faults. To
identify these, we first ran FAN with a list of all possible stuck-
at-faults (0 and 1 stuck-at faults for each signal line). Next, FAN
generates a list of aborted faults which are the ones it was not able
to generate a test pattern with its default backtrack limit. These are
also known as aborted faults. They may be detectable if a higher
backtrack limit is given or they may be inherently untestable. In
this experiment, we only used the circuits which had more than
10 H2D faults (i.e., more than 10 aborted faults). We additionally
experiment with a higher backtrack limit (K=50000).

For each circuit, we report the number of H2D faults (aborted
faults generated by FAN with K=10). Next, after running each ap-
proach with a higher backtrack limit (K=25000 and 50000), we also
report the number of redundant and number of aborted faults. The
results are reported in Table 2. We make the following observations
from the table:
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Table 2: Comparison for hard-to-detect (H2D) faults

K=25000 K=50000
FAN NN-Hyb| FAN NN-Hyb
c2670 #H2D Faults 31 31 31 31
#Redu+#Abor 8+23 16+15 8+23  20+11
ATPG-Eff. 25.81 51.61 25.81 64.52
#BTracks 598971 517111 | 1173971 818979
Runtime 9.15 7.72 17.78 13.32
c6288 #H2D Faults 24 24 24 24
#Redu+#Abor 0+12 0+8 0+12 0+8
ATPG-Eff. 50.00 66.67 50.00 66.67
#BTracks 302344 253872 | 602344 503872
Runtime 9.98 3.83 20.03 7.85
c7552 #H2D Faults 68 68 68 68
#Redu+#Abor 6+62 6+62 6+62 6+62
ATPG-Eff. 8.82 8.82 8.82 8.82
#BTracks 1550170 1550546 13100170 3100546
Runtime 35.38 29.22 71.90 58.27
Ave. Imp. ATPG-Eff 44.43% 61.11%
Ave. Imp. #BTracks 9.89% 15.52%
Ave. Imp. Runtime 31.55% 34.95%

o NN-Hyb performs significantly better than FAN as far as re-
solving the number of H2D faults. First, it performs better in
terms of detecting a higher number of redundant/untestable
faults. For example, in ¢2670 and for K=25000, out of 31 H2D
faults, the number of aborted faults were reduced from 23
(in FAN) to 15 (in NN-Hyb). The number of faults identified
as redundant/untestable was increased from 8 (in FAN) to
16 (in NN-Hyb). Therefore, NN-Hyb identified more faults
as redunant and finished with fewer aborted faults. This
behavior holds consistently and for both values of K.

e NN-Hyb has same or higher ATPG effectiveness for the same
value of K. This means NN-Hyb is able to detect same or
higher number of H2D faults (given that it identifies higher
faults as redundant and has fewer aborted faults).

e Finally, in terms of runtime and number of backtracks, NN-
Hyb is significantly better. For example, the average improve-
ment in runtime over FAN is 31.55%and 34.95% for K=25000
and 50000, respectively. The average improvements in ATPG
effectiveness were 44.43% and 61.11% with increase in K.

Note, in ¢7552, 62 of the H2D faults remain aborted for both FAN
and NN-Hyb. Further experiments (even with backtrack limit of 10
million) suggest that these faults are highly unlikely to be detected.
However, there is significant reduction in runtime in NN-Hyb com-
pared to FAN for each K.

4.3 TImpact of the Lookup Approach on Runtime

In our last experiment, we disable the lookup-based acceleration
in NN-Hyb and compare the runtime with the case when it is
enabled. The results are reported in Table 3. Recall, the lookup-
based acceleration records NN inferences for each signal and only
computes inferences if they have not been computed before. As can
be seen, on average 30.33% improvement in runtime can be achieved.
The dynamically-generated lookup table effectively eliminates the
need for forward propagation computations of the NN model in the
test pattern generation process, greatly reducing the computational
efforts.

Zhang et al.

Table 3: Runtime of NN-Hyb with and without acceleration

NN-Hyb (K=10000)
w/o lookup  w/ lookup (%Impr.)
c1908 0.067 0.033 (51%)
c2670 13.350 4.283 (68%)
3540 0.117 0.117 (0%)
c5315 0.200 0.167 (17%)
6288 1.867 1.583 (15%)
c7552 23.867 16.567 (31%)
Ave. Imp. 30.33%

5 Conclusions

In this work we identified the issues with existing NN-guided ATPG
algorithms. We proposed a hybrid procedure for applying NN to
select circuit levels, with guidelines for level selection, and training
of the NN. We also proposed a lookup technique to reuse the existing
computations in a NN for higher speedups. Our simulation results
conducted for two cases of “all circuit faults” and “hard-to-detect
faults” demonstrated the effectiveness of our procedure in reducing
the number of backtracks, with same or better ATPG metrics.
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For (2) and (3), please compile (using the make command) from

A.1 Abstract the NN-Hyb and NN-All directories, respectively.

This project proposes a hybrid approach for Automatic Test Pattern
Generation (ATPG) by integrating machine learning with the FAN
algorithm. It includes implementations of two approaches, namely,
NN-Hyb and NN-All. These two apply neural network models at
selective and at all circuit levels, respectively. Project files support
the paper by providing the source code, circuit files, and scripts
needed to reproduce key results, including comparisons for “all fault
case”, and “hard-to-detect faults”. Comparison of runtime with and
without a proposed acceleration scheme is also included. Minimal
requirements include a C++ compiler and shell script execution
capabilities.

A.5 Experiment workflow

We recommend using the provided scripts to reproduce the results,
which can be easily executed by the command bash [path to
script]. The scripts in the “script” directory generate the results
reported in Tables I, I, and III:

(1) All Faults Case (TableI): Al1Fault_FAN.sh,Al1Fault_NN-All.sh,
Al1Fault_NN-Hyb.sh. Table I reports fault coverage, ATPG effec-
tiveness, number of backtracks and runtime. These quantities are
reported by our program for NN-All and NN-Hyb.

For FAN’s results, the tool does not directly report ATPG ef-
fectiveness. Compute it using this formula: (#redundant_faults +
#detected_faults)/#total_faults.

(2) Hard-to-Detect Faults (Table IT): H2D_FAN. sh, H2D_NN-Hyb. sh.
The results show the performances of FAN approach and NN-Hyb
approach on Hard-to-Detect faults with default backtracking limits
25,000 and 50,000.

(3) Acceleration with Lookup Approach (Table III ):
Acceleration_NN-Hyb.sh. This script generates results for NN-
Hyb with and without acceleration.

A.2 Artifact check-list (meta-information)

Algorithm: A novel Neural Network guided ATPG algorithm
Program: Linux 5.15.153.1

Compilation: g++ 11.4.0.

Data set: ISCAS85 Benchmark circuits

Binary: A binary file is provided.

Model: NN-networks used in our paper are integrated in the source
code.

Runtime environment: Ubuntu 22.04.2 LTS.

Metrics: Fault Coverage, ATPG Effectiveness, number of backtracks
and runtime

Output: Numerical results in Tables I, IT and III

How much time is needed to prepare workflow (approxi-

A.6 Evaluation and expected results

For scripts given in Section A.5 (excluding FAN) should print out
results of following format:

mately)?: 1 hour FHRI ISR ISR IS HIIHIIFIIFHIFHAK ”xx xx"xx * Ak K
A . . Name of the circuit : "c2670
e How much time is needed to complete experiments (approxi- .
mately)?: 30 minutes Fault coverage : 0.000 %

Total number of backtrackings : 517111

o Publicly available?: Yes.

e Code licenses (if publicly available)?:: MIT license ATPG Effectiveness : 51.613 %

o Workflow framework used?: No, but scripts are provided. Total time : 7.550 Secs
L]

Archived (provide DOI)?: 10.5061/dryad.mOcfxppem The results, except for total time, should closely match our report.

The variation in total time is typically less than 10%.
A.3 Description

A.3.1  How to access. All necessary source code, circuit files, and A7 Experlment customization

scripts to reproduce key results are available on the GitHub page:
https://github.com/1zzh97/NN-for- ATPG. Clone the repository and
follow the instructions in the README file.

Once compiled, use the command from each directory. Users are
allowed to apply our approach to a customized dataset with different
parameters by using command line

cd ./NN_Hyb # directory for desired approach

A.3.2  Hardware dependencies. Standard computers without any /atalanta -Options [path to circuit file]

specific hardware dependencies. . o
P P The options needed to generate similar results of the paper are

listed below:

-w: Disable lookup table (enabled otherwise if -w not specified)

-b n: Maximum number of backtracking (default: -b 10)

-f fn: Faults are read from the file fn. This options is only used
to generate the results in Table II in the paper. Otherwise, if a fault
file is not specified, the input is assumed to be all possible faults.

A.3.3  Software dependencies. C++ compiler and shell script execu-
tion capabilities.

A.4 Installation

In the paper we have compared the following 3 approaches:

(1) FAN: base approach for ATPG used for comparison.

(2) NN-Hyb: our approach based on applying neural network
(NN) model during backtrace at select circuit levels during ATPG.

(3) NN-AIll: alternative approach using our NN model, but at all
levels of the circuit.

A.8 Methodology

Submission, reviewing and badging methodology:
e https://www.acm.org/publications/policies/artifact-review-and-
badging-current
e http://cTuning.org/ae/submission-20201122.html
e https://github.com/ml-eda/artifact-evaluation/

To get an executable for (1), please download source code from
https://github.com/hsluoyz/Atalanta and compile. (We did not in-
clude it because it is already published by another group.)
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