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Memorability shapes perceived time  
(and vice versa)

Alex C. Ma    , Ayana D. Cameron & Martin Wiener     

Visual stimuli are known to vary in their perceived duration. Some visual 
stimuli are also known to linger for longer in memory. Yet, whether these 
two features of visual processing are linked is unknown. Despite early 
assumptions that time is an extracted or higher-order feature of perception, 
more recent work over the past two decades has demonstrated that timing 
may be instantiated within sensory modality circuits. A primary location 
for many of these studies is the visual system, where duration-sensitive 
responses have been demonstrated. Furthermore, visual stimulus features 
have been observed to shift perceived duration. These findings suggest 
that visual circuits mediate or construct perceived time. Here we present 
evidence across a series of experiments that perceived time is affected by the 
image properties of scene size, clutter and memorability. More specifically, 
we observe that scene size and memorability dilate time, whereas clutter 
contracts it. Furthermore, the durations of more memorable images are also 
perceived more precisely. Conversely, the longer the perceived duration of 
an image, the more memorable it is. To explain these findings, we applied 
a recurrent convolutional neural network model of the ventral visual 
system, in which images are progressively processed over time. We find 
that more memorable images are processed faster, and that this increase in 
processing speed predicts both the lengthening and the increased precision 
of perceived durations. These findings provide evidence for a link between 
image features, time perception and memory that can be further explored 
with models of visual processing.

Time is an intrinsic feature of sensory perception. Indeed, all sensory 
processes must unfold over time. Yet, ‘time’ in itself is a rarely stud-
ied feature of perceptual processing. That is, how do we perceive its 
passage, and how does its passage influence the processing of other 
features? This presents both a missing aspect of our models of neu-
ral functioning and an opportunity for future research: how is time 
instantiated within sensory processing hierarchies? Early research 
on the study of time focused on amodal properties of its percep-
tion; that is, the study of interval timing instead focused on time as 
a higher-order property of perception and cognition1. We focus our 
experiments here on the visual system, an area of strong interest for  
time perception2.

Within psychology, the dominant model for studying time has 
been scalar expectancy theory3, later expanded with the attentional 
gate model of time4. Both models assume a pacemaker-accumulator 
framework, in which clock-unit ‘ticks’ are accumulated until a given 
threshold. Critically, these models assume time as an amodal process, 
with no presumed differences across sensory modalities. Yet, despite 
the support of scalar expectancy theory and the attentional gate model 
for describing a variety of behavioural features of timing in humans 
and animals, work conducted throughout the 2000s and 2010s began 
to reveal perceptual biases that could not be explained by these mod-
els. Specifically, the sensory properties of timed stimuli altered their 
perceived duration. Early work in this regard demonstrated that the 
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hierarchy21–23. Indeed, even auditory stimuli implying distinct object 
categories can evoke anticipatory activity in extrastriate regions24. 
Linking these findings to the time dilation effects described above, this 
suggests a hierarchy of time dilation effects across the visual cortex. 
That is, a variety of features from low to high level have been found to 
influence perceived duration. Yet, the majority of time dilation effects 
have involved lower levels of the hierarchy, manipulating simple fea-
tures such as size, contrast and colour. Furthermore, many of these 
effects have favoured stimulus manipulations selective to the dorsal 
visual stream. Yet, stimuli putatively driven by the ventral stream can 
also dilate time25, which may be driven by their semantic content rather 
than low-level sensory features15,26. However, previous research using 
high-level visual images15,27,28 did not account for semantic properties.

One critical aspect of time dilation effects is that the dominant 
explanation for them is secondary in nature. That is, time dilation is 
the result of visual processing rather than a part to be incorporated in 
models of vision29. The alternative explanation is that sensory timing 
can be flexibly adapted to behaviourally relevant experience, such that 
stimuli that engender greater priority are processed quicker or more 
efficiently. One way of testing this possibility is to explore the timing 
of higher-level visual features that are ecologically relevant, including 
action, movement and memory.

Results
Perceived time is differentially influenced by scene size and 
clutter
To begin, we tested an initial group of human participants (n = 52) 
on a temporal categorization task (Fig. 1a), in which they were pre-
sented with images for a set of six possible durations on a given trial 
(log-spaced, between 300 and 900 ms) (Experiment 1). The participants 
were required to classify each presented image as ‘long’ or ‘short’ via 
a button-press as quickly yet as accurately as possible. We gave the 
participants no instructions regarding the images themselves, ask-
ing them only to attend to the durations they were presented. For this 

general magnitude of a stimulus influenced time in a linear manner: 
stimuli with ‘larger’ magnitudes, such as size, brightness, loudness, 
number, numerosity and speed, led to ‘longer’ perceived intervals 
(that is, time dilation5). A possible explanation for time dilation effects 
is that these stimuli drew more attention as a consequence of their 
magnitude6, yet this explanation lacks validity in the attentional gate 
model, which predicts that such magnitudes would act as a distraction 
away from time and so should lead to opposite distortions (that is, time 
contraction). Explanations for these findings included a generalized 
‘magnitude’ system in the brain7, with time being just one aspect, and 
a basic ‘energy-readout’ model in which stimuli that elicited more 
activity led to longer intervals8. Yet, further studies revealed find-
ings inconsistent with these accounts, in which time was dilated by 
other features, such as a visual stimulus’s colour, flicker rate or spatial 
frequency, all of which were non-monotonic9,10. Furthermore, stimuli 
of lower magnitude could be perceived as longer if the context of an 
experiment was changed11. Inter-modal effects also existed, such that 
visual stimuli were generally perceived as briefer than auditory stimuli 
of the same duration12. ‘Higher-order’ visual stimuli also dilated time, 
including body motion (that is, upright human point-light walkers 
are perceived to last longer than inverted or scrambled walkers13), 
emotional content (that is, emotional faces and frightening images 
are longer than neutral faces and images14) and scenes (that is, images 
of scenes are perceived as longer than scrambled scenes15). For these 
latter stimuli, an important distinction is that it is their specific content, 
not their complexity, that dilates time; indeed, white noise patterns of 
differing complexity fail to have any impact on perceived duration16.

Within sensory processing regimes, evidence has been found 
to support a visual representation of time. Neurons in area V1 mod-
ulate their firing rates in expectation of a temporally predictable 
stimulus17,18, a finding observed in both humans and rodents2,19. Fur-
thermore, the repetition of visual stimuli for the same duration can 
induce adaptation-level effects in their perceived duration20, an effect 
linked to changes in visual cortex activation across the processing 
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Fig. 1 | Scene information shifts perceived time. a, Schematic for the temporal 
categorization task. On a given trial (i), the participants viewed a fixation point 
followed by an image for one of six possible durations between 300 and 900 ms. 
After the image disappeared, the participants were required to classify the image 
duration as ‘long’ or ‘short’ as quickly yet as accurately as possible, after which the 
next trial (i + 1) began immediately. b, Scene size was varied across six levels and 
was observed to dilate perceived time, such that participants were more likely to 
categorize larger-scene-size images as ‘long’. Example psychometric functions 
are presented for two participants from Experiments 1 (top) and 2 (bottom). 
c, Scene clutter was also varied across six levels and was observed to contract 
perceived time, such that participants were less likely to categorize more 

cluttered images as ‘long’. Example psychometric curves from two participants 
are again presented for Experiments 1 (top) and 2 (bottom). The curves were 
fit using the psignifit v.4.0 toolbox and are presented here for visualization 
purposes only (see Supplementary Fig. 1 for average curves across participants). 
d, Average proportion of ‘long’ responses for scene size (top) and scene clutter 
(bottom) levels for both Experiments 1 (n = 52) and 2 (n = 50). Dashed lines 
represent a linear trend fit to the mean data. The data are presented as means ± 
within-participant standard errors in the shaded regions. Note that the images 
shown here are not those used in the actual study, which cannot be shown due 
to potential copyright; see Methods for links to the actual images. Photos from 
Pexels.com.
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experiment, the images we used were drawn from the Size/Clutter 
database built and described by Park et al.30 (Methods). These images 
represent a series of scenes with normed responses across participants 
for ratings of scene size or clutter. For example, a scene with a small size 
but high clutter may be a full pantry, whereas a scene with a large size 
but low clutter may be an empty warehouse. The scenes were presented 
across six levels of size and clutter, for a total of 36 possible combina-
tions (Fig. 1b). The data were analysed via a generalized linear mixed 
model (GLMM) approach in which the scene size and clutter levels, 
along with presented duration, were fixed effects and participant was 
a random effect. We observed an effect of both scene size and clutter, 
such that models with these terms outperformed models without them 
(scene size: χ2

1 = 99.37, P < 0.001; clutter: χ2
1 = 5.94, P = 0.015). The effects 

worked in opposite directions: larger scene size led participants to cat-
egorize stimuli as ‘long’ more often (β = 0.055; 95% confidence interval 
(CI), 0.044–0.065), whereas more clutter led them to categorize stimuli 
as ‘short’ more often (β = −0.044; 95% CI, −0.079 to −0.008) (Fig. 1b). 
Additionally, we observed an interaction between presented duration 
and clutter (χ2

1 = 4.772, P = 0.029). Notably, the slope of this interaction 
was positive (β = 0.067; 95% CI, 0.006–0.127), such that the slope of the 
psychometric function was higher for larger levels of clutter31; thus, 
despite the bias to classify the duration of more cluttered images as 
‘short’, participants were more precise in their classifications. No such 
interaction was observed for scene size.

The results of the first experiment thus showed that scene size 
and clutter could push perceived duration in two separate directions. 
We note that this finding goes against a simple attentional explana-
tion, unless one were to suggest a more complicated explanation that 
scene sizes draw more attention than scene clutter, which decreases 
attention with greater clutter. Likewise, a simple magnitude-based 
effect cannot explain these findings, as both scene size and clutter 
are larger magnitudes. To further validate these effects, we collected 

a replication dataset in a new group of participants (n = 50; Experi-
ment 2). As an additional control, the images presented were set to 
greyscale and normalized for luminance (Methods), to ensure that 
the results were not due to low-level differences in the intensity of the 
image. Once again, we observed a significant effect of including both 
scene size (χ2

1 = 9.497, P = 0.002) and clutter (χ2
1 = 8.6, P = 0.003) in our 

model, with larger scene size pushing stimuli to be classified as ‘long’ 
more often (β = 0.017; 95% CI, 0.005–0.028) and more clutter push-
ing stimuli to be classified as ‘short’ more often (β = −0.018; 95% CI, 
−0.029 to −0.006). However, a model including an interaction between 
duration and clutter did not significantly improve the fit (χ2

1 = 0.047, 
P = 0.826), thus failing to replicate the effect of clutter on precision. 
Between experiments, we noted a tendency for participants to clas-
sify stimuli as ‘long’ more often in Experiment 1 than in Experiment 
2 (Fig. 1d); however, a combined analysis of both datasets found no 
effect of adding experimental group to the model (χ2

1 = 2.13, P = 0.144).

Memorability lengthens perceived time
The results of the first two experiments demonstrated that seman-
tic details of scenes can shift perceived time in different directions, 
depending on the type of information conveyed. These findings could 
not be explained by simple magnitude or attention-based theories, 
or by differences in low-level features of the images. So, why do these 
images affect time in different ways? We return to this question in the 
Discussion but note that the richness of scene images provides a num-
ber of distinct cues, many of which are perceived immediately. Beyond 
features such as size or clutter, an additional feature of images is their 
intrinsic memorability, or the probability that they will be recalled 
later32,33. Numerous studies have investigated features that give rise 
to memorability, noting that it is a unique property of images that 
operates independent of attention33. One possibility, then, is that 
memorability affects perceived time34. To explore this possibility, we 

Fig. 2 | Memorability dilates perceived time. a–c, The participants (n = 28) 
were presented with stimuli drawn from the LaMem dataset that varied by 
their memorability ratings and were divided into a set of seven bins from low 
(7) to high (1). In a temporal categorization task (Experiment 3), participants 
were more likely to categorize images with higher memorability scores into the 
‘long’ duration category. a displays psychometric functions from an example 
participant (see Supplementary Fig. 2 for average functions), whereas b displays 
average BPs across the seven memorability bins. Additionally, participants were 
more precise at categorizing the durations of images with higher memorability 
ratings, as evidenced by reduced CV values (c). d,e, In a temporal reproduction 

task (Experiment 4), participants (n = 21) reproduced longer durations after 
having encoded higher memorability images; the data from an example 
participant are shown in d, while e displays the average reproduced duration 
across memorability bins. f, Measurement noise as derived from a Bayesian 
observer model fit to participant responses, in which noise is additionally shown 
to be reduced for higher-memorability images. The data are presented as means 
± within-participant standard errors; the yellow lines represent a simple linear 
fit. Note that the images shown here are not those used in the actual study, which 
cannot be shown due to potential copyright; see Methods for links to the actual 
images. Photos from Pexels.com.
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conducted a third experiment on a new set of participants, in which the 
participants categorized the duration of images that varied according 
to their memorability ratings (Experiment 3). We used seven log-spaced 
durations between 300 and 900 ms for this experiment, providing 
better characterization of the psychometric function. The images were 
uniformly drawn from the Large-Scale Image Memorability dataset 
(LaMem; Methods), a large collection of images tested for recogni-
tion accuracy. We sampled images across all memorability scores and 
divided them into seven equally spaced bins from high (1) to low (7) in 
memorability ratings (Fig. 2a).

Psychometric functions were constructed for the response pro-
portions for each tested duration, from which the bisection point (BP), 
defined as the duration at which participants were equally likely to clas-
sify the interval as ‘long’ or ‘short’, and the coefficient of variation (CV), 
defined as half the difference between the upper and lower thresholds 
divided by the BP, were calculated (Methods). These measures were cal-
culated to retrieve an individual measure of bias (the BP) and precision 
(CV). Accordingly, the BP reflects the subjective ‘middle’ duration of 
the distribution, such that a lower BP value reflects a greater tendency 
to classify stimuli as ‘long’, whereas the CV reflects the normalized 
steepness of the psychometric function, such that a lower CV indicates 
a clearer division when judging stimuli. A repeated-measures analysis 
of variance of BP values found a significant effect of memorability 
(F6,150 = 3.467, P = 0.003, partial eta-squared (η2

p) = 0.122), which was 
observed to be significantly linear in nature such that participants were 
more likely to classify intervals as ‘long’ for more memorable images 
(two-tailed t150 = 3.827, P < 0.001) (Fig. 2a,b). Surprisingly, for the CV, 
we also detected a significant effect of memorability (F3.738,97.99 = 2.653, 
P = 0.041, η2

p = 0.093) that was also significantly linear in nature, such 
that more memorable images were also classified with better precision 
(two-tailed t156 = 2.643, P = 0.009) (Fig. 2c).

Perceived time increases memorability
The results of Experiment 3 demonstrated that more memorable 
images are perceived both as longer than less memorable ones and 
more precisely. That is, an intrinsic aspect of these images that allows 
them to be better recalled is also responsible for dilating the duration 
that they are presented for. Yet, this relationship is correlational, and so 
the directionality of the effect is unknown (Fig. 3a). To pose the question 
clearly: do these images last longer because they are more memora-
ble, or are they more memorable because they last longer? Previous 
research has shown that the duration for which an image is objectively 
presented increases the likelihood that it will be remembered35–37, yet 
whether a subjectively longer image is thus recalled better is not known. 
Evidence of such a relationship would differ from a magnitude-based 
explanation; for example, larger stimuli are commonly perceived as 
lasting longer, but presenting a stimulus for a longer duration does 
not make it appear larger.

To test this hypothesis, we had a new set of participants perform a 
temporal reproduction task (Experiment 4) using the same memorabil-
ity images from Experiment 3 (Fig. 3a). In this task, the participants were 
presented with images from the memorability image set for a range of 
seven linearly spaced intervals between 500 and 1,000 ms and then 
required to reproduce that interval by pressing and holding a response 
key for the same interval. We chose a reproduction task here for two 
reasons: (1) to replicate the findings of Experiment 3 but in a different 
task and (2) to obtain a continuous, rather than categorical, estimate of 
perceived duration. The result of this initial task replicated the findings 
of Experiment 3; a linear mixed model (LMM) of reproduced durations 
was significantly improved by adding the memorability score of the 
image (F1,3509 = 9.697, P = 0.002), with higher memorability scores asso-
ciated with longer duration estimates (β = 0.029; 95% CI, 0.011–0.048). 
As an additional measure, we decomposed reproduced duration esti-
mates with a Bayesian observer model, in which the measurements of 
durations on each trial are conceived as draws from a noisy Gaussian 

distribution that scales with the interval duration. These estimates 
are then combined optimally with a uniform prior distribution of pre-
sented durations to form a posterior estimate, which is then further 
corrupted by motor production noise in the reproduction phase38–41. 
Fitting this model to single-trial responses yields an estimate of both 
the measurement and production noise widths. We observed that the 
measurement noise decreased for images from higher memorability 
bins (F3.804,68.476 = 2.611, P = 0.045, η2

p = 0.127; Greenhouse–Geiser cor-
rected) in a linear manner (two-tailed t108 = 2.163, P = 0.033), while no 
effect was found for production noise (F4.728, 89.829 = 0.465, P = 0.791). 
Thus, a similar effect of memorability on the CV of Experiment 3 was 
observed for the measurement error of Experiment 4.

Following the reproduction tasks, all participants returned a day 
later for a second session, in which they were presented with a surprise 
memory test (Fig. 3a). In this phase, the participants were presented 
with the same 196 images from the previous day, along with a new set 
of 196 image foils drawn from the same memorability bins as the first 
set. The participants were presented with each image and asked to 
judge whether they had seen it on the previous day. A GLMM analysis 
of accuracy scores in this task for each image replicated the well-known 
effect of memorability (χ2

1 = 684.966, P < 0.001), with higher memora-
bility scores associated with a greater probability of recall (β = 4.977; 
95% CI, 4.567–5.386). Crucially, the inclusion of average reproduced 
duration from the previous day’s session also improved model fit 
(χ2

1 = 4.43, P = 0.035), with longer reproduced durations associated 
with greater recall (β = 0.635; 95% CI, 0.049–1.221). This model also out-
performed one with only reproduced duration (χ2

1 = 684.97, P < 0.001). 
We note that the intervals used represented the average across all 
objectively presented durations for each image (Methods). An interac-
tion between memorability and reproduced duration did not signifi-
cantly improve the fit and so was not warranted (χ2

1 = 2.31, P = 0.129) 
(Fig. 3c). Inspection of predicted model fits additionally yielded an 
unexpected finding: while longer duration estimates were associated 
with better recall, those participants who overall reproduced longer 
durations were less likely to recall images in general. This finding, an 
example of Simpson’s paradox, was evident when removing participant 
as a random effect, which thus changed the β estimate for duration 
from a positive value to a negative one (β = −0.543; 95% CI, −0.827 to 
−0259). One possible explanation for this effect is that participants 
who reproduced longer durations overall were attending less to the 
images and more to the passage of time. Indeed, greater attention to 
time typically leads to both longer estimates and more precise ones42. 
In support of this, we observed a significant between-participant cor-
relation between average reproduced duration length and average 
precision, as indexed by the CV (Spearman’s ρ, −0.6234; P = 0.0031), 
such that participants who reproduced longer intervals also repro-
duced them more precisely. It is therefore possible that participants 
who were more effectively able to ignore the images, and so reproduce 
longer duration estimates, were thus less effective at encoding the 
images into memory, an effect that future work will need to investigate 
further; nonetheless, these same participants were still affected by 
the intrinsic memorability of those images, such that more memo-
rable ones and those reproduced as relatively longer were relatively  
better remembered.

As an alternative analysis, we median-split individual participant 
reproduced durations for each memorability bin into relatively ‘short’ 
and ‘long’ durations and then examined the probability of recalling an 
image for each bin and duration length (Fig. 3d). In addition to a signifi-
cant effect of memorability bin (F6,120 = 111.347, P < 0.001, η2

p = 0.848), 
we observed a significant effect of reproduced duration from the previ-
ous day (F1,20 = 9.875, P = 0.005, η2

p = 331), with no interaction between 
the two (F6,120 = 1.737, P = 0.118). Across memorability bins, longer repro-
duced durations within participants and within memorability bins were 
associated with significantly improved recall (two-tailed t17 = 3.142, 
P = 0.005, Cohen’s D = 0.686).
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Neural network modelling
How can we explain the effect of memorability on time? We assert that 
appeals to other perceptual phenomena such as attention or mag-
nitude are insufficient to explain this link. Memorability draws on a 

variety of details that give rise to its effect43; furthermore, memorable 
images exist independent of attentional effects44,45, and one would not 
judge that a more memorable image is higher along an axis of magni-
tude such as size or quantity. To explain these findings, we turned to 
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Fig. 3 | Perceived duration affects memorability. a, Proposed bidirectional 
relationship between memorability and perceived duration, such that greater 
memorability of stimuli lengthens their perceived durations, but longer 
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presented images and recall performance, demonstrating greater probability 
of recall for more memorable images. c, Regression estimates for average 
reproduced duration estimates for individual images and recall performance, 
demonstrating greater probability of recall for longer reproduced durations. The 
individual data points represent single-trial responses for each participant. d, 

A separate analysis, in which recall accuracy on the memory test was median-
split by the reproduced duration on the previous day, for each participant, into 
short and long duration groups. Recall was higher within participants and within 
each memorability bin when the reproduced duration was longer. The data are 
presented as means ± within-participant standard errors in the shaded regions. 
The right panel displays a raincloud plot of the change in recall, collapsed across 
memorability bins. In the box plots, the centre line indicates the median, the box 
edges indicate the interquartile range and the whiskers extend to the maximum 
and minimum; the distributions represent kernel density estimates. Note that the 
images shown here are not those used in the actual study, which cannot be shown 
due to potential copyright; see Methods for links to the actual images. Photos 
from Pexels.com.
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computational models of vision. In particular, convolutional neural 
network (CNN) models have been a major tool for vision research-
ers to measure links between activation ‘layers’ and corresponding 
components of the ventral visual stream46,47. Indeed, CNNs and other 
model developments (that is, ResNets) have been quite successful at 

estimating memorability and linking it to particular image features at 
a variety of levels of the hierarchy32,48. But CNNs as a base model can-
not provide a strong explanation for our findings, as these models do 
not operate over time. A recent advance in CNN models, however, is to 
add feedback connections within and between layers, thus generating 
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steps are used). For each readout, Shannon entropy is calculated, resulting in 
a time series of entropy values, which are then fit with a simple, two-parameter 
power curve. b, The memorability images used in Experiments 3 and 4 were fed 
into BLnet, from which entropy values were averaged across each memorability 
bin, thus revealing that images with higher memorabilities exhibited faster 
reductions in entropy. Setting a threshold on these entropy values allowed 
us to construct a psychometric function for categorizing time intervals (for 

arbitrary time steps) as short or long. The dashed line represents the entropy 
threshold after fitting the model to human participant choices. c, The resulting 
psychometric functions for the entropy threshold and for each memorability 
bin. The psychometric data recapitulated both the time dilation effect for more 
memorable images and the increase in precision. d, The left panel displays the 
average value of the A parameter from the simple power curve model; low values 
represent faster rates of decrease in entropy. The middle and right panels display 
the average reaction time data from Experiment 3 and the surprise memory 
test portion of Experiment 4, both of which exhibit faster reaction times for 
more memorable images. The data are presented as means ± within-participant 
standard errors.
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recurrent CNN models (rCNN). In these models, the outputs of indi-
vidual layers can be ‘unrolled’ across successive time steps as recurrent, 
feedforward and feedback connections49. This process thus provides 
a timescale by which an input can be successively processed. We note, 
however, that the step distance in this case is arbitrary; that is, one can 
appeal to conduction delays between layers, but without neural data to 
corroborate the difference between ‘engineering’ time and ‘biological’ 
time, this is irrelevant50.

To investigate how computational models of vision might explain 
our findings, we turned to an rCNN model known as BLnet (Bottom-Up 
Lateral Network), containing seven layers and recurrent connections 
within each layer. We chose this network because it provides a built-in 
series of time steps (eight) for processing an image, in which a readout 
is provided with each time step, but more importantly because the 
output of this network has been shown to correlate with human reac-
tion times for image classification50,51 as well as rapid object recogni-
tion52. This is achieved by extracting the softmax readout at each of the 
eight time steps and then calculating the entropy of each readout. As 
the model will converge on a set of image categories over others with 
repeated recurrent steps, the entropy of the softmax distribution will 
decrease with successive time steps (Fig. 4a). By selecting a threshold 
for entropy, one can infer the model’s ‘reaction time’ to a particular 
stimulus.

To begin, we fed the 196 images presented to the participants in 
Experiments 3 and 4 into BLnet and calculated the entropy across the 
eight time steps. These responses were then binned by their memo-
rability ratings. As in previous studies, we observed that the entropy 
decreased across time steps. Notably, we found that the rate of decrease 
could be modelled with a simple power curve model (Methods), which 
fit the data extremely well (mean R2 = 0.99). We also observed that 
memorability affected the rate of this decrease, such that entropy for 
more memorable images decreased at a faster rate than that for less 
memorable ones (time step × memorability interaction: F1,194 = 4.487, 
P = 0.035) (Fig. 4b), which was captured well by a linear effect of the A 
parameter of the simple power curve model (two-tailed t162 = 2.887, 
P = 0.004) (Fig. 4d). An interpretation of this finding is that images 
that are more memorable are processed faster than those that are less 
memorable44, with the network converging on a set of categorizations 
more consistently over time. In support of this notion, we returned to 
the results of Experiment 3 (temporal categorization) and the surprise 
memory test of Experiment 4 and analysed reaction time as a function 
of memorability bin (Fig. 4d). For both experiments, we observed faster 
reaction times when responding to stimuli from higher memorability 
bins (Experiment 3: F6,162 = 2.851, P = 0.011, η2

p = 0.096; Experiment 4: 
F6,120 = 4.634, P < 0.001, η2

p = 0.188). Both results are somewhat sur-
prising; for temporal categorization, one might expect more memo-
rable images to take longer to respond to, as the participants were 
not required to process anything about the images but instead had to 
render a judgement on their duration. For the surprise memory test, 
the participants were not given any instruction to speed their responses 
but nonetheless responded quicker for progressively more memorable 
stimuli. One possibility, then, is that longer perceived durations are the 
result of this faster speed with which the network operates on more 
memorable images. To determine whether this was the case, we set 
an entropy threshold; for each time step and each image, an entropy 
value above this threshold would categorize the stimulus as ‘short’, and 
a value below it would categorize the stimulus as ‘long’. The average pro-
portion of ‘long’ responses was then calculated for each memorability 
bin, thus providing seven psychometric functions, which were fit in the 
same manner as Experiment 3 (Methods). We then fit these functions 
to the subject data by finding the entropy threshold that provided the 
best match for both the bias and precision effects we observed.

The results of the above analysis revealed that the model recapitu-
lated both of the observed effects in humans, with higher-memorability 
images having a greater probability of being categorized as ‘long’ and 

also a steeper—more precise—psychometric function (Fig. 4c). To the 
former effect, longer perceived durations were a direct result of the 
faster speed with which the network converged on a solution, such that 
the entropy threshold was hit earlier in time. To the latter effect, the 
increase in precision was also due to the speed at which the network 
converged, such that a smaller proportion of the range of possible 
entropy values for a more memorable image overlapped with the 
entropy threshold (see Supplementary Figs. 3 and 4 for simulations), 
an observation that we note is similar to accumulator-based models 
of time perception12.

To extend the results of our analysis of memorability, we applied 
our rCNN analysis to the entire corpus of the LaMem dataset, compris-
ing 58,740 images. We again calculated entropy time courses and fit 
them with our simple power curve model, from which the A parameter 
was extracted. We observed a significant correlation between the rate 
of entropy decrease and image memorability in the same direction 
as for our sample of 196 images (Spearman’s ρ, −0.1134; P < 0.001); 
we note that the noise ceiling within-dataset rank correlation is 0.77  
(ref. 32). Closer examination of the scatter plot of the relationship 
revealed that entropy decreases varied widely across images of differ-
ent memorabilities (Fig. 5). Assuming that the rate of entropy decrease 
predicts time dilation, one can make predictions regarding which 
stimuli in the LaMem dataset will lengthen duration estimates and 
which will not (Fig. 5). Qualitative examination of some of these images 
reveals that those predicted to increase memorability, but not time, 
exhibit little variation in content and notably lack discernible objects. In 
contrast, those that dilate time, but with no difference in memorability, 
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relationship was observed similar to the sample images used in Experiments 3 
and 4, with more memorable images characterized by a faster rate of entropy 
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appear to contain more low-level feature differences. We provide these 
data to the wider community for further examination and to test their 
predictions (see ‘Data availability’).

Discussion
The results of the preceding experiments demonstrate that 
higher-order semantic features of scenes can shape perceived time. 
These features include aspects of scenes relevant for navigation, includ-
ing scene clutter and size, as well as the intrinsic feature of image memo-
rability. Furthermore, the results show that this effect is bidirectional: 
changes in perceived time have relevance to the perception of those 
stimuli themselves, such that subjectively longer perceived intervals 
are more likely to be recalled. These effects point to a series of loci 
along the ventral visual stream for compressing and dilating subjective 
time. Combined with our application of a model of the visual system, 
these effects suggest that the changes in perceived time are the result 
of processing efficiency for those natural images, which occurs as a 
result of recurrent feedback connections within visual circuits.

Scene features and perceived time
The first two experiments demonstrated opposite directions of the 
effects of the image scene qualities of size and clutter on perceived 
time, such that the former dilates and the latter compresses perceived 
time. These findings stand in opposition to a number of explanations 
for time dilation phenomena. For example, magnitude accounts would 
predict that both scene size and clutter should produce time dilation 
effects. Indeed, the perception of clutter is akin to that of numerosity, 
where time dilation effects have been observed in response to large dot 
arrays53. Likewise, appeals to increases in arousal, attention or neural 
response to the stimuli would all suggest that both scene size and clutter 
should increase perceived duration5. The most similar finding to the 
present one is a brief report noting that paintings of increasing com-
plexity, defined using low-level features such as edges and contrast, also 
lead to time compression27; yet this study presented images for very 
long intervals (~30–60 s), whereas the present study employed very 
brief durations all less than one second. One possibility may relate to 
the stability of these images across the visual hierarchy. Indeed, while 
scene clutter is known to peak earlier in the decodability of neural 
responses than scene size, it has also been shown that increases in 
clutter impair object recognition54, which may relate to how consistent 
these representations are in visual responses30,55,56. Recent work has 
also shown that increases in the objective time of presented images 
lead to more stable representations, rather than extended firing rates, 
in higher-level parts of the ventral stream57.

A second possibility for explaining the size/clutter effects relates 
to their action affordance. That is, the clutter and size of a scene are 
both relevant features for navigation and movement58, and recent work 
has shown that humans extract information about a presented scene 
in a way that supports their movement through that space59. Indeed, 
prior work has also demonstrated differentiated neural representa-
tions for scenes depending on whether the objects presented in that 
scene are reachable or not60. Increases in the size of a scene would 
suggest a longer necessary path to traverse the space presented, and 
previous work has shown that larger presented distances dilate per-
ceived time61. Similarly, a more cluttered scene would suggest more 
difficulty in reaching one’s goal. One possibility, then, is that scenes 
were judged in terms of path length, with cluttered scenes implying 
a longer length; this explanation would support a magnitude-based 
explanation for both scene size and clutter, yet it suggests that both 
local and global image features are integrated at distinct levels for 
influencing perceived duration. In relation to the memorability find-
ings of the present study, we note that scene clutter has been linked 
to lower memorability62,63. However, we do not suggest that the size/
clutter effects are driven solely by memorability, although it is possible 
that memorability played a role.

Memorability and perceived time
The last two experiments demonstrated that the memorability of 
a scene dilates the perceived duration for which it was presented. 
Likewise, increases in the perceived duration of a scene increase its 
memorability. These findings go beyond a simple unidirectional expla-
nation, in which the perceptual feature affects its perceived duration 
as a by-product of its processing. Indeed, memorability has been dem-
onstrated as a perceptual feature of a stimulus related to processing 
in higher regions of the ventral stream such as the inferotemporal  
cortex33,64. Similar to our findings, recent work has shown that increas-
ing either the objective or subjective size of an image also increases its 
memorability65,66. These findings are suggested to relate to the size 
and spread of activation resulting from larger images on the surface 
of striate and extrastriate regions67. Longer objective durations are 
also known to increase the memorability of an image35–37. Yet, in our 
findings, we also observed that the durations of more memorable 
images were perceived with greater precision. That is, the duration of 
a more memorable image was perceived both as longer and with more 
consistency from trial to trial. This second finding sets memorability 
effects apart from other time dilation effects, which commonly do not 
change precision, but also points to differences in the stability of the 
neural representation.

The finding that memorability and time both affect one another 
suggests a single underlying factor driving both effects. Yet, more gen-
erally, why should time dilation effects occur at all? Until now, the domi-
nant framework has asserted that time dilation results from increases 
in attention or population neuronal responses. Either case relies on a 
more-is-more connection, where increases in attention or firing rate 
lead to longer perceived durations. Crucially, there is a directional link 
to this framework, where time dilation is a consequence of increased 
neuronal firing, rather than a cause. The result is that time dilation is 
an epiphenomenon operating downstream from neuronal computa-
tions for stimulus coding21. However, an alternative framework that we 
propose here is that time dilation effects may instead serve a purpose 
for the visual system. Under this new framework, we propose that 
time in the brain serves as an information seeking strategy5. This new 
framework connects to the recent notion of priority coding in the visual 
system68, wherein stimuli are processed according to the priority they 
engender (for example, threatening, emotional, rewarding or appeti-
tive). Yet, under the priority coding framework, the processing of visual 
stimuli is limited by an information bottleneck that is time-limited (that 
is, only so much information can be processed at once69). To surmount 
this, we suggest that the information bottleneck can be dynamically 
changed to accommodate higher-priority stimuli. In this way, time is 
dilated or compressed to increase the amount of information that can 
be processed in any given instance, and so time is not epiphenomenal 
but central to population coding. We note that versions of an adaptive 
temporal window have been proposed before (for example, refs. 70,71) 
but not comprehensively explored across the visual hierarchy.

The notion of changes in information processing related to time 
has other experimental evidence to support it. For example, humans 
are able to adjust the rate of evidence accumulation to the rate of 
stimulus presentations in a dynamic environment72. Likewise, recent 
work has shown that humans can vary the encoding speed of visual 
items in working memory, depending on the duration at which items 
are presented73. These findings provide further support to the notion 
that time is a controllable feature of visual processing. In support of 
this, our application of an rCNN model provides an avenue by which 
time dilation effects may occur. In this model, the responses at each 
layer are fed both forward to subsequent layers and laterally back to 
themselves. This process, in which a CNN is ‘unrolled’ in time, allows 
for image processing to occur across multiple time steps50,74, which 
are meant to mimic the feedforward ‘sweep’ of the visual hierarchy 
as well as recurrent connections49,75. Critically, for image processing, 
this allows image representations to be refined over time as the model 
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converges on a set of solutions (that is, the probability distribution of 
object identities). Here we observed that more memorable images 
were processed faster across successive time steps in the rCNN, such 
that the probability distribution converged earlier in time. By applying 
a threshold to the time series and using this to mimic the decision pro-
cess in a categorization task, we found that the model could replicate 
both the time dilation and precision effects observed in behaviour 
for memorability. Time dilation thus results from a faster speed of 
the network rather than an increase in neural firing; likewise, faster 
speeds are associated with less variability, and so this leads to greater 
precision for categorizing time intervals. This finding mirrors recent 
neural recordings in non-human primates, as well as modelling with 
RNNs, demonstrating that perceived duration is the result of changes 
in the speed of neural trajectories through state space76–78. However, 
whether time dilation effects in general are an effect of changes in speed 
in neural trajectories is unknown and would need to be tested in biologi-
cal networks. In our case, the change in speed is the result of changes 
in processing across layers of the ventral stream rather than within 
any given region, a finding that will need to be tested experimentally.

Yet, the question remains: why should more memorable images be 
associated with a faster speed in the network? The question gets at the 
heart of what makes an image memorable to begin with, on which con-
siderable work has been done33,43,79, finding that memorability results 
from both low- and high-level features80,81. Here, the behavioural and 
network findings support the notion of an increase in processing effi-
ciency for memorable images82. One possible driver of this efficiency 
may relate to object properties within these images, as recent work has 
shown that image memorability is partially determined by the typicality 
of objects contained within them83. Notably, the rCNN model here was 
originally trained for object classification. One possibility, then, is that 
model speed (and memorability) is determined by how similar objects 
in the presented image are to the categories on which it was trained; 
likewise, speed effects will also depend on the images on which the 
model has been trained84. The creation and curation of more complex 
memorability datasets with ground-truth categories thus allow us to 
test for this possibility83,85.

Conclusion
The results of the experiments outlined here provide evidence for a link 
between the perception of time and the semantic features of scenes. 
Furthermore, they indicate a bidirectional effect between memorability 
and perceived duration. These results point to a framework in which 
time dilation is both the result and the cause of priority coding in the 
visual system, which is verified by computational modelling of the 
ventral visual stream. We suggest that a large variety of visual stimuli 
may be used to explore timing responses across different levels of the 
hierarchy, including those associated with reachable objects, animacy, 
sizes, textures, metamers and forms, all of which can provide insight 
into the location of time dilation effects across the visual system.

Methods
Participants
A total of 170 participants (59% female, 25% male and 16% not declared) 
took part in the four experiments described in this study. No partici-
pants participated in more than one experiment. All participants were 
drawn from the undergraduate pool of George Mason University and 
took part for course credit. All experiments were conducted at George 
Mason University, with all protocols approved by the Institutional 
Review Board (IRB approval no. 1867674-1). All participants provided 
informed consent for participating. Experiments 1–3 were run online 
during the COVID-19 pandemic, whereas Experiment 4 was run in 
person after pandemic protocols had been eased for data collection. 
All participants were right-handed and neurologically healthy with 
normal or corrected-to-normal vision. Experiment 1 included 52 partici-
pants (mean age, 20.5; s.d., 5.6), Experiment 2 included 50 participants  

(mean age, 21; s.d., 4.8), Experiment 3 included 48 participants (mean 
age, 20.3; s.d., 2.5) and Experiment 4 included 21 participants (mean 
age, 21.2; s.d., 3.66). All experiments were programmed using Psychopy 
(version 2020 and above) in the Python programming language (www.
psychopy.org). The online experiments were conducted using the 
Pavlovia platform (www.pavlovia.org). The in-person experiments 
were conducted in a testing room with stimuli presented on a 100 Hz 
Dell Gaming Monitor and responses collected on a Corsair MX Gam-
ing Keyboard with a 1,000 Hz polling rate. For all experiments, the 
participants were not informed of the nature of the images they were 
presented, and they were not given any instructions related to their 
processing; rather, the participants were only told to attend to the dura-
tion for which the images were presented, regardless of their content.

Experiments 1 and 2: temporal categorization of scene size 
and clutter
Procedure. All participants performed a visual temporal categoriza-
tion task (also referred to as a time bisection task) with sub-second 
stimuli. The stimuli consisted of images drawn from the Size/Clutter 
database of ref. 30, which is available at https://konklab.fas.harvard.
edu/#. A total of 252 images were chosen from across the dataset, which 
spans six levels of size and clutter based on participant ratings. For 
Experiment 1, we used the images as provided from the Size/Clutter 
database; for Experiment 2, all images were processed via the SHINE 
toolbox86, in which the images were turned to greyscale and normal-
ized for luminance. At the start of each trial, the participants were 
presented with a fixation point that appeared at the centre of the screen 
for 500 ms, and then a visual stimulus was immediately presented. The 
stimulus order was randomized for each trial, and images appeared for 
one of six logarithmically spaced time intervals ranging from 300 to 
900 ms. Logarithmic spacing allows for more supra-geometric spread 
when visualizing the data87. Accordingly, each image was presented 
once for each of the six possible durations, leading to a total of 1,512 
trials in a given session. A break was implemented every 168 trials, 
which participants could end by pressing a response key. The image 
size was set to (0.5)2 times the height of the monitor, following recom-
mendations for presenting stimuli for online experiments to account 
for differing screen sizes across participants. On a given trial, the par-
ticipants were tasked with judging whether the stimulus presented 
was ‘short’ or ‘long’ on the basis of their subjective threshold of the 
durations. They were directed to respond as quickly and accurately 
as possible using the ‘s’ key for ‘short’ and the ‘l’ key for ‘long’. There 
was no response screen following the stimulus; the participants were 
simply instructed to answer as soon as the image disappeared. They 
did not receive feedback during this task, and the next trial began  
upon their response.

Analysis. Participant responses were entered in a GLMM, with stimulus 
duration and the magnitude of the size or clutter of each image as fixed 
effects and participant as a random effect31. We chose a GLMM analysis 
due to the large number of factors and levels, which resulted in only 
seven trials for each duration, size and clutter combination, lower than 
recommended for accurate fitting of a psychometric function without 
significant bias88,89. Trials were filtered on the basis of reaction times; we 
set limits for trialwise reaction times to be above 100 ms and below 1 s. 
We chose this threshold, rather than a distributional one, to reflect the 
potentially wider range of reaction times resulting from collecting data 
online. For the GLMM analysis, model comparisons were carried out via 
chi-squared tests of model complexity. Fixed effects were measured 
using likelihood ratio tests.

Experiment 3: temporal categorization of memorability 
images
Procedure. All participants performed the temporal categorization 
task as described for Experiment 1, but with a different set of images. 
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Specifically, we drew a set of images from the LaMem dataset (http://
memorability.csail.mit.edu/index.html). This dataset contains 58,740 
images from a number of distinct sources, each with a corresponding 
memorability score, reflecting the probability that the image will be 
recalled later32. Twenty-eight images were randomly sampled from each 
of seven equally spaced memorability bins, or ranges of memorability 
scores (Δbin ≈ 0.10390; Bin 1, 1–0.89610; Bin 2, 0.89610–0.79220; Bin 
3, 0.79220–0.68831; Bin 4, 0.68831–0.58441; Bin 5, 0.58441–0.48051; 
Bin 6, 0.48051–0.37662; Bin 7, 0.37662–0.27273). Within each bin, there 
was uniform spacing among the scores, ensuring an overall spread 
across the selected images. The memorability scores were taken from 
the second training step provided in the LaMem files. This resulted 
in 196 visual stimuli split among seven different ranges of memora-
bilities. Additionally, we included here seven possible durations, again 
log-spaced between 300 and 900 ms; this was done to allow for bet-
ter characterization of the psychometric function for use with the 
fitting routines described below. The combination of seven different 
memorability ranges and seven possible durations created a total of 42 
possible conditions across 196 trials. Every image was seen at all seven 
durations, resulting in a total of 1,372 trials, which were divided into 
seven blocks to allow the participants a break. Each block was about  
6 minutes, making the full experiment ~45 minutes.

Analysis. For this experiment, we had a sufficient number of trials 
per condition (28 trials per duration in each memorability bin) for 
characterizing a psychometric function. By doing so, this allowed 
us to calculate measures of bias and precision individually for each 
participant. Psychometric functions for each memorability bin were 
fit using psignifit v.4.0 (ref. 90). All data were fit using a right-tailed 
Gumbel distribution to account for the log-spaced nature of the tested 
intervals, from which the BP and CV were calculated. The BP was deter-
mined as the 0.5 point on the curve for categorizing stimuli as long, 
whereas the CV was defined as half the difference between the 0.75 and 
0.25 points on the function divided by the BP91. As an additional step, 
we removed any participant with a BP value that exceeded the tested 
intervals in the stimulus set (less than 300 or greater than 900 ms) or a 
CV greater than 0.5. Using this conservative threshold, 20 participants 
were removed from the analysis.

Experiment 4: temporal reproduction and recall of 
memorability images
Procedure. Experiment 4 took place on two separate but subsequent 
days. In the first part, the participants performed a duration reproduc-
tion task, in which they were shown an image and asked to press and 
hold a button for the same duration for which the image was shown92. 
The same 196 images from the Experiment 3 were used for this task. The 
images were each presented for one of seven possible durations linearly 
spaced from 500 to 1,000 ms such that each duration was represented 
four times in each bin. On a given trial, the participants were first shown 
a fixation cross for 500 ms, then shown the image for its specified dura-
tion and then asked to reproduce the duration by pressing and holding 
a response key to match the presented duration. While holding the 
button down, the participants were shown an unfilled white square of 
the same size as the images as an aid for reproducing the duration. All 
196 image reproduction events shown to a participant represented one 
block, and each participant was asked to complete six blocks of dura-
tion trials, with breaks in between, to finish the first part of the study. 
Prior to completing six blocks of duration trials, the participants were 
asked to complete three practice trials, which were equivalent to a typi-
cal duration reproduction trial, but with a white unfilled square of the 
same size as the images. After each practice trial, the participants were 
shown the numerical duration that they reproduced, and the target 
duration. When they were finished with three practice trials, they were 
asked to complete the normal trials. Each block of 196 trials took about 
10 minutes, resulting in a total experiment time of about 60 minutes.

The second part was conducted in the same room, using the same 
monitor and keyboard configuration as the first task. Here, the par-
ticipants performed a surprise memory recall task, in which they were 
shown images and asked whether those images had been shown in the 
duration reproduction task. The participants were not informed that 
they would perform the memory recall task at the outset of the first 
session. All 196 images from the reproduction task were included in the 
memorability task, with an additional set of 196 images (foils) selected 
evenly from the seven memorability score bins in the same way as the 
first set. All 392 images were shuffled, and each image was flashed on 
screen for one second; the participants were then given a choice to 
press the ‘y’ key on the keyboard to indicate that they had been shown 
the image in the reproduction task, or the ‘n’ key to indicate that they 
had not.

Analysis. For the temporal reproduction task, the reproduced dura-
tions were filtered by removing all trials more than three standard 
deviations from the mean for each participant. To examine the link 
between memorability and reproduced duration, and because each 
participant was shown the same 196 images for each of the seven pos-
sible durations, we averaged the reproduced duration for each possible 
image. An LMM analysis was then run on these reproduced times, with 
the memorability score for each image as a fixed effect and participant 
as a random effect. In contrast, to examine the link between reproduced 
duration and memorability, we performed a GLMM analysis of the 
binary accuracy scores for each image with the memorability score 
for that image and the average reproduced duration as fixed effects 
and participant as a random effect. We also included the slope of the 
memorability effect by participant as a random effect, to account for 
inter-participant differences in memorability; model comparison dem-
onstrated that the variable slope model significantly outperformed a 
model with only a random effect of participant (χ2(1) = 8.866, P = 0.011). 
An additional examination of the variance inflation factor (VIF), a meas-
ure of multicollinearity, revealed a VIF of 1.0006, below the commonly 
used threshold of VIF = 5 for indicating concerns93.

As an additional analysis, we applied a Bayesian observer–actor 
model to the data from the temporal reproduction task40,41. This model, 
based on the work of Jazayeri and colleagues38,39 and available at https://
jazlab.org/resources/, conceives of performance on a time reproduc-
tion task as arising from an initial sensory measurement of the pre-
sented interval, modelled as a Gaussian distribution that scales with 
the size of the presented interval and that is integrated with a uniform 
prior distribution set to the range of presented intervals to form a 
posterior distribution of the interval estimate, which is then corrupted 
by production noise, also modelled as a Gaussian distribution. Model 
parameters for the measurement and production widths were fit using 
MATLAB v.2023a’s (https://www.mathworks.com) fminsearch func-
tion for the reproduced durations for each of the seven memorability 
bins. Model fits were repeated ten times using a fitting maximum of 
3,000 iterations; inspection of the fitted parameters indicated good 
convergence of the results.

Neural network modelling
To investigate the link between our memorability findings and compu-
tational models of vision, we implemented an artificial neural network 
modelling framework, in which a comparison between behaviour and 
network responses could be compared94. For the computational model, 
we employed an rCNN of the visual system. This model, termed ‘BLnet’, 
was designed to mimic recurrent processing within the ventral visual 
stream, in which individual layers project back onto themselves50. 
Critically, this framework entails ‘unrolling’ the model in time, such 
that with subsequent time steps in the model, layer-specific activity is 
fed back onto itself via lateral input. Thus, a single time step refers to 
a single ‘sweep’ of the model. We note that the length of the time step 
here is arbitrary; indeed, the model produces identical results whether 
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the time steps are explicitly or implicitly encoded. Rather, the model 
relies on a difference in the stage at which layer-specific outputs are 
sent via bottom-up and lateral connections49.

Our choice of BLnet in this case was motivated by the demon-
stration that rCNN models provide a better match to the sequential 
and time-varying nature of information flow across the ventral visual 
stream, as well as demonstrations that the BLnet architecture can 
reliably predict human reaction times and accuracy in response to 
visual stimuli50,52. CNNs by themselves have no access to temporal 
duration; by adding recurrent time steps, even arbitrary ones, rCNNs 
can provide outputs that vary as a function of time step. Here we used 
the BLnet code as provided at https://github.com/cjspoerer/rcnn-sat; 
the BLnet model was trained on object recognition using the ImageNet 
and Ecoset95 databases across eight time steps. At the readout layer, the 
model provides classification output in the form of a softmax prob-
ability distribution. Crucially, this distribution is provided for each 
of the time steps in the BLnet model and therefore provides a window 
into how image classification is refined over time. More specifically, the 
softmax distribution converges on a set of image classifications over 
time, maximizing their probability while minimizing the probability of 
other categories. To quantify this, we calculated the Shannon entropy 
of the softmax distribution at each time step, as done in previous work. 
The resulting entropy by time response thus quantifies the degree of 
certainty in the classification over time. By setting a response threshold 
on these entropy values, we can predict human responses.

In the present study, we fed all 196 images from the memorability 
experiments into BLnet and calculated the resulting entropy of the 
eight time steps for each one. We then compared entropy values across 
the seven memorability bins to examine differences in model certainty 
by memorability. To compare with human performance, we used the 
model output to set an entropy threshold for classifying images into 
duration categories. Specifically, we set an arbitrary threshold and 
categorized all images as ‘long’ if the entropy value fell below that 
threshold and ‘short’ if it fell above it. This process was repeated at 
each of the eight time steps, after which the average proportion of 
‘long’ responses was calculated for each time step. To match model 
performance to human responses, we repeated this process across 
a range of entropy scores spanning the largest to smallest entropy 
values in the dataset. For each threshold, as a first step, we calculated 
the average proportion of ‘long’ responses across all time steps for 
each of the seven memorability bins; a psychometric function was 
then fit to these data using the same method as described for the 
bisection data of Experiment 3, from which the BP was extracted. A 
linear regression of the BP values across memorability bins was then 
fit and the slope extracted; this step was designed to mimic the bias 
effect observed in behavioural data. Accordingly, a positive slope in 
the linear regression would indicate that the average proportion of 
‘long’ responses decreased with higher memorability bins (recall that 
higher bins indicate lower memorability scores). As a second step, we 
calculated the slope of a linear regression of the CV values extracted 
from those same psychometric functions; this step was designed to 
mimic the precision effect observed in the behavioural data. Here, a 
positive slope would indicate that the CVs of the psychometric func-
tions decrease with higher memorability bins. From these two values, 
we found the single entropy threshold with the lowest slope value  
for each effect.

As an additional measure to quantify the rate of decrease in 
entropy values (E) across time steps (T), we fit the data with a simple 
power curve model

ET = A × TB + C

where the first parameter A determines the rate of decrease in entropy 
values and the parameters B and C reflect additional constants for the 
fitted curve, but were not analyzed here; more negative values indicate 

a faster rate of decline. These values were calculated for all 196 images 
in our sample, and the resulting values were compared across memo-
rability bins via a repeated-measures analysis of variance.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All behavioural data for these experiments, as well as the rCNN results 
and memorability images used, are available at https://doi.org/ 
10.17605/OSF.IO/FX3N2 (ref. 96).

Code availability
All relevant toolboxes and code repositories are cited in the text. The 
code is available at https://doi.org/10.17605/OSF.IO/FX3N2 (ref. 96).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All data were collected using Psychopy version 2020 and above.  Experiments 1-3 were collected using the online platform Pavlovia due to the 
Covid-19 pandemic, whereas Experiment 4 was conducted in person after restrictions had been lifted.

Data analysis Behavioral data were processed using Matlab (2019b and above).  Processing of images was conducted using the SHINE toolbox for Matlab 
(http://www.mapageweb.umontreal.ca/gosselif/shine/).  Psychometric functions were fit using psignifit version 4.0 in Matlab (https://
github.com/wichmann-lab/psignifit).  Bayesian observer-actor models were fit using the Late Bayesian Inference model code (https://
jazlab.org/resources/).  All statistical analyses were conducted using JASP version 0.15 and above.  rCNN processing was conducted in a 
Python 3.6 environment using BLnet (https://github.com/cjspoerer/rcnn-sat); code for implementing this can be found at (https://osf.io/
fx3n2/) 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All behavioral data, rCNN output, and memorability images used are available at (https://osf.io/fx3n2/).  The Size/Clutter dataset images are available at (https://
konklab.fas.harvard.edu/#).  The LaMem dataset images are available at (http://memorability.csail.mit.edu/).  

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Data were collected with no specific design towards sex and gender, which additionally were not experimental covariates.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Race, ethnicity, or other socially relevant groupings were not used in this study

Population characteristics Subjects were recruited from the undergraduate pool of students at GMU, ranging in age from 18-35 years old.  All subjects 
were right-handed.

Recruitment All subjects were recruited at GMU via an online system (SONA systems) for undergraduates to get credit for participating in 
research through Psychology courses.

Ethics oversight The GMU Institutional Review Board approved this study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study is quantitative.  We collected behavioral responses from 170 subjects across four experiments.  All subjects viewed scene 
images on a screen and ewre asked to provide estimates of time (exps 1-4) or memory (exp 4)

Research sample Data were randomly collected from the GMU undergraduate pool via the SONA recruiting system, which provides course credit to 
Psychology students taking classes through the department.  Sample sizes were chosen on the basis of previous studies.  Gender 
makeup was (59% female, 25% male, 16% not declared).   Experiment 1 included 52 subjects (mean age = 20.5, SD = 5.6), Experiment 
2 included 50 subjects (mean age = 21, SD = 4.8), Experiment 3 included 48 subjects (mean age = 20.3, SD = 2.5), and Experiment 4 
included 21 subjects (mean age = 21.2, SD = 3.66).  The rationale for this sample is that it is representative of undergraduates at GMU 
and commonly tested in Psychology experiments.

Sampling strategy Data were sampled randomly.  All experimental conditions were within-subject, so there was no stratifying of our sample into 
separate groups.  The sample size was determined on the basis of previous experiments by our lab and other groups studying time 
perception effects in humans.

Data collection Experiments 1-3 were conducted using the Pavlovia platform, and so each subject performed the task on their personal computer or 
workstation.  Experiment 4 was conducted in person using a PC with a 1000Hz gaming keyboard and a 120Hz gaming monitor.  No 
one was present for Experiment 4 except the participant and the researcher, who was not blind to the research design and 
hypothesis.

Timing Experiments 1-3 were conducted in Spring of 2021.  Experiment 4 was conducted in Fall of 2022 and Spring of 2023.

Data exclusions For Experiment 3, we excluded subjects with a bisection point outside the range of tested intervals, or a CV of above 0.5.  This was 
done to ensure that the data in Experiment 3 were accurate; a total of 20 subjects were removed using these criteria.  For 
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Experiments 1, and 2, where single-trial data were analyzed, we excluded trials with reaction times that were below 100ms or above 
1s.  For Experiment 4, where again single trial data were modeled, we removed trials with reproduced estimates more than 3 
standard deviations from the single-subject mean.  

Non-participation No subjects were removed for non-participation

Randomization Subjects were not allocated in separate experimental groups.  Each subject only participated in a single experiment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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