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Visual stimuli are known to vary in their perceived duration. Some visual
stimuli are also known to linger for longer in memory. Yet, whether these
two features of visual processing are linked is unknown. Despite early

assumptions that time is an extracted or higher-order feature of perception,
more recent work over the past two decades has demonstrated that timing
may be instantiated within sensory modality circuits. A primary location

for many of these studies is the visual system, where duration-sensitive
responses have been demonstrated. Furthermore, visual stimulus features
have been observed to shift perceived duration. These findings suggest

that visual circuits mediate or construct perceived time. Here we present

evidence across a series of experiments that perceived time is affected by the
image properties of scene size, clutter and memorability. More specifically,
we observe that scene size and memorability dilate time, whereas clutter
contractsit. Furthermore, the durations of more memorable images are also

perceived more precisely. Conversely, the longer the perceived duration of
animage, the more memorable it is. To explain these findings, we applied
arecurrent convolutional neural network model of the ventral visual
system, in whichimages are progressively processed over time. We find

that more memorable images are processed faster, and that thisincrease in
processing speed predicts both the lengthening and the increased precision
of perceived durations. These findings provide evidence for alink between
image features, time perception and memory that can be further explored
with models of visual processing.

Timeisanintrinsic feature of sensory perception. Indeed, all sensory
processes must unfold over time. Yet, ‘time’ in itself is a rarely stud-
ied feature of perceptual processing. That is, how do we perceive its
passage, and how does its passage influence the processing of other
features? This presents both a missing aspect of our models of neu-
ral functioning and an opportunity for future research: how is time
instantiated within sensory processing hierarchies? Early research
on the study of time focused on amodal properties of its percep-
tion; that s, the study of interval timing instead focused on time as
a higher-order property of perception and cognition'. We focus our
experiments here on the visual system, an area of strong interest for
time perception®.

Within psychology, the dominant model for studying time has
been scalar expectancy theory?, later expanded with the attentional
gate model of time®. Both models assume a pacemaker-accumulator
framework, in which clock-unit ‘ticks’ are accumulated until a given
threshold. Critically, these models assume time as anamodal process,
with no presumed differences across sensory modalities. Yet, despite
the supportofscalarexpectancy theory and the attentional gate model
for describing a variety of behavioural features of timing in humans
and animals, work conducted throughout the 2000s and 2010s began
toreveal perceptual biases that could not be explained by these mod-
els. Specifically, the sensory properties of timed stimuli altered their
perceived duration. Early work in this regard demonstrated that the
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Fig.1|Scene information shifts perceived time. a, Schematic for the temporal
categorization task. On agiven trial (i), the participants viewed a fixation point
followed by animage for one of six possible durations between 300 and 900 ms.
After theimage disappeared, the participants were required to classify the image
duration as ‘long’ or ‘short’ as quickly yet as accurately as possible, after which the
next trial (i + 1) began immediately. b, Scene size was varied across six levels and
was observed to dilate perceived time, such that participants were more likely to
categorize larger-scene-size images as ‘long’. Example psychometric functions
are presented for two participants from Experiments 1 (top) and 2 (bottom).

¢, Scene clutter was also varied across six levels and was observed to contract
perceived time, such that participants were less likely to categorize more
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cluttered images as ‘long’. Example psychometric curves from two participants
are again presented for Experiments 1(top) and 2 (bottom). The curves were

fit using the psignifit v.4.0 toolbox and are presented here for visualization
purposes only (see Supplementary Fig.1for average curves across participants).
d, Average proportion of ‘long’ responses for scene size (top) and scene clutter
(bottom) levels for both Experiments1(n=52) and 2 (n =50). Dashed lines
represent alinear trend fit to the mean data. The data are presented as means +
within-participant standard errors in the shaded regions. Note that the images
shown here are not those used in the actual study, which cannot be shown due
to potential copyright; see Methods for links to the actual images. Photos from
Pexels.com.

general magnitude of a stimulus influenced time in a linear manner:
stimuli with ‘larger’ magnitudes, such as size, brightness, loudness,
number, numerosity and speed, led to ‘longer’ perceived intervals
(thatis, time dilation®). A possible explanation for time dilation effects
is that these stimuli drew more attention as a consequence of their
magnitude®, yet this explanation lacks validity in the attentional gate
model, which predicts that such magnitudes would act asa distraction
away fromtime and so should lead to opposite distortions (thatis, time
contraction). Explanations for these findings included a generalized
‘magnitude’ systemin the brain’, with time being just one aspect, and
a basic ‘energy-readout’ model in which stimuli that elicited more
activity led to longer intervals®. Yet, further studies revealed find-
ings inconsistent with these accounts, in which time was dilated by
other features, such as a visual stimulus’s colour, flicker rate or spatial
frequency, all of which were non-monotonic™°. Furthermore, stimuli
of lower magnitude could be perceived as longer if the context of an
experiment was changed". Inter-modal effects also existed, such that
visual stimuli were generally perceived as briefer than auditory stimuli
of the same duration'. ‘Higher-order’ visual stimuli also dilated time,
including body motion (that is, upright human point-light walkers
are perceived to last longer than inverted or scrambled walkers"),
emotional content (that is, emotional faces and frightening images
arelonger than neutral faces and images'*) and scenes (that is, images
of scenes are perceived as longer than scrambled scenes”). For these
latter stimuli, animportant distinctionis thatitis their specific content,
not their complexity, that dilates time; indeed, white noise patterns of
differing complexity fail to have any impact on perceived duration®.
Within sensory processing regimes, evidence has been found
to support a visual representation of time. Neurons in area V1 mod-
ulate their firing rates in expectation of a temporally predictable
stimulus''®, a finding observed in both humans and rodents>”. Fur-
thermore, the repetition of visual stimuli for the same duration can
induce adaptation-level effectsin their perceived duration®, an effect
linked to changes in visual cortex activation across the processing

hierarchy”*. Indeed, even auditory stimuli implying distinct object
categories can evoke anticipatory activity in extrastriate regions®.
Linking these findings to the time dilation effects described above, this
suggests a hierarchy of time dilation effects across the visual cortex.
Thatis, a variety of features from low to high level have been found to
influence perceived duration. Yet, the majority of time dilation effects
have involved lower levels of the hierarchy, manipulating simple fea-
tures such as size, contrast and colour. Furthermore, many of these
effects have favoured stimulus manipulations selective to the dorsal
visual stream. Yet, stimuli putatively driven by the ventral stream can
alsodilate time*, which may be driven by their semantic content rather
than low-level sensory features'*. However, previous research using
high-level visual images™*** did not account for semantic properties.

One critical aspect of time dilation effects is that the dominant
explanation for them is secondary in nature. That is, time dilation is
theresult of visual processing rather than a part tobe incorporatedin
models of vision”. The alternative explanation is that sensory timing
can be flexibly adapted to behaviourally relevant experience, such that
stimuli that engender greater priority are processed quicker or more
efficiently. One way of testing this possibility is to explore the timing
of higher-level visual features that are ecologically relevant, including
action, movement and memory.

Results

Perceived time is differentially influenced by scene size and
clutter

To begin, we tested an initial group of human participants (n=52)
on a temporal categorization task (Fig. 1a), in which they were pre-
sented with images for a set of six possible durations on a given trial
(log-spaced, between300 and 900 ms) (Experiment 1). The participants
were required to classify each presented image as ‘long’ or ‘short’ via
abutton-press as quickly yet as accurately as possible. We gave the
participants no instructions regarding the images themselves, ask-
ingthemonly to attend to the durations they were presented. For this
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Fig. 2| Memorability dilates perceived time. a-c, The participants (n = 28)

were presented with stimuli drawn from the LaMem dataset that varied by

their memorability ratings and were divided into a set of seven bins from low

(7) to high (1). In atemporal categorization task (Experiment 3), participants
were more likely to categorize images with higher memorability scores into the
‘long’ duration category. a displays psychometric functions from an example
participant (see Supplementary Fig. 2 for average functions), whereas b displays
average BPs across the seven memorability bins. Additionally, participants were
more precise at categorizing the durations of images with higher memorability
ratings, as evidenced by reduced CV values (c).d,e, In atemporal reproduction

0.9

2 3 3 5

Memorability bin Memorability bin
task (Experiment4), participants (n = 21) reproduced longer durations after

having encoded higher memorability images; the data from an example
participant are shownin d, while e displays the average reproduced duration
across memorability bins. f, Measurement noise as derived from a Bayesian
observer model fit to participant responses, in which noise is additionally shown
to be reduced for higher-memorability images. The data are presented as means
+within-participant standard errors; the yellow lines represent a simple linear
fit. Note that the images shown here are not those used in the actual study, which
cannot be shown due to potential copyright; see Methods for links to the actual
images. Photos from Pexels.com.
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experiment, the images we used were drawn from the Size/Clutter
database built and described by Park et al.** (Methods). These images
representaseries of scenes with normed responses across participants
forratings of scene size or clutter. Forexample, ascene with a small size
but high clutter may be a full pantry, whereas a scene with a large size
butlow clutter may be an empty warehouse. The scenes were presented
across six levels of size and clutter, for a total of 36 possible combina-
tions (Fig. 1b). The data were analysed via a generalized linear mixed
model (GLMM) approach in which the scene size and clutter levels,
along with presented duration, were fixed effects and participant was
arandom effect. We observed an effect of both scene size and clutter,
such that models with these terms outperformed models without them
(scenesize: x%, =99.37,P<0.001; clutter: y%, = 5.94, P=0.015). The effects
worked in opposite directions: larger scene size led participants to cat-
egorize stimulias ‘long’ more often (8= 0.055; 95% confidence interval
(CI),0.044-0.065), whereas more clutter led them to categorize stimuli
as ‘short’ more often (8 =-0.044; 95% CI, -0.079 to —0.008) (Fig. 1b).
Additionally, we observed aninteraction between presented duration
and clutter (Y%, =4.772,P=0.029). Notably, the slope of this interaction
was positive (8 =0.067;95% Cl,0.006-0.127), such that the slope of the
psychometric function was higher for larger levels of clutter®; thus,
despite the bias to classify the duration of more cluttered images as
‘short’, participants were more precisein their classifications. No such
interaction was observed for scene size.

The results of the first experiment thus showed that scene size
and clutter could push perceived durationin two separate directions.
We note that this finding goes against a simple attentional explana-
tion, unless one were to suggest amore complicated explanation that
scene sizes draw more attention than scene clutter, which decreases
attention with greater clutter. Likewise, a simple magnitude-based
effect cannot explain these findings, as both scene size and clutter
are larger magnitudes. To further validate these effects, we collected

areplication dataset in a new group of participants (n = 50; Experi-
ment 2). As an additional control, the images presented were set to
greyscale and normalized for luminance (Methods), to ensure that
theresults were not due to low-level differences in the intensity of the
image. Once again, we observed a significant effect of including both
scenesize (y*,=9.497, P=0.002) and clutter (y*,= 8.6, P=0.003) inour
model, with larger scene size pushing stimuli to be classified as ‘long’
more often (8 =0.017; 95% CI, 0.005-0.028) and more clutter push-
ing stimuli to be classified as ‘short’ more often (5 =-0.018; 95% ClI,
-0.029t0-0.006). However,amodel including aninteraction between
duration and clutter did not significantly improve the fit (x*, = 0.047,
P=0.826), thus failing to replicate the effect of clutter on precision.
Between experiments, we noted a tendency for participants to clas-
sify stimuli as ‘long’ more often in Experiment 1 than in Experiment
2 (Fig. 1d); however, a combined analysis of both datasets found no
effect of adding experimental group to the model (%, = 2.13, P= 0.144).

Memorability lengthens perceived time

The results of the first two experiments demonstrated that seman-
tic details of scenes can shift perceived time in different directions,
depending on the type of information conveyed. These findings could
not be explained by simple magnitude or attention-based theories,
or by differences in low-level features of the images. So, why do these
images affect time in different ways? We return to this questionin the
Discussion but note that the richness of scene images provides anum-
ber of distinct cues, many of which are perceived immediately. Beyond
features such assize or clutter, an additional feature of imagesis their
intrinsic memorability, or the probability that they will be recalled
later*>**. Numerous studies have investigated features that give rise
to memorability, noting that it is a unique property of images that
operates independent of attention®. One possibility, then, is that
memorability affects perceived time**. To explore this possibility, we
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conductedathird experiment on anew set of participants, inwhich the
participants categorized the duration of images that varied according
to their memorability ratings (Experiment 3). We used seven log-spaced
durations between 300 and 900 ms for this experiment, providing
better characterization of the psychometric function. Theimages were
uniformly drawn from the Large-Scale Image Memorability dataset
(LaMem; Methods), a large collection of images tested for recogni-
tionaccuracy. We sampled images across all memorability scores and
divided theminto seven equally spaced bins from high (1) to low (7) in
memorability ratings (Fig. 2a).

Psychometric functions were constructed for the response pro-
portions for each tested duration, from which the bisection point (BP),
defined as the duration at which participants were equally likely to clas-
sify theinterval as ‘long’ or ‘short’,and the coefficient of variation (CV),
defined as halfthe difference between the upper and lower thresholds
divided by the BP, were calculated (Methods). These measures were cal-
culated toretrieve anindividual measure of bias (the BP) and precision
(CV). Accordingly, the BP reflects the subjective ‘middle’ duration of
thedistribution, such that alower BP value reflects agreater tendency
to classify stimuli as ‘long’, whereas the CV reflects the normalized
steepness of the psychometric function, such that alower CVindicates
aclearer division whenjudging stimuli. A repeated-measures analysis
of variance of BP values found a significant effect of memorability
(Fe150 = 3.467, P=0.003, partial eta-squared (1) = 0.122), which was
observed to besignificantly linear in nature such that participants were
more likely to classify intervals as ‘long’ for more memorable images
(two-tailed t;5, = 3.827, P< 0.001) (Fig. 2a,b). Surprisingly, for the CV,
wealso detected asignificant effect of memorability (F3 ;359790 = 2.653,
P=0.041, 7, = 0.093) that was also significantly linear in nature, such
that more memorableimages were also classified with better precision
(two-tailed t;5, =2.643, P=0.009) (Fig. 2¢).

Perceived time increases memorability

The results of Experiment 3 demonstrated that more memorable
images are perceived both as longer than less memorable ones and
more precisely. Thatis, anintrinsic aspect of these images that allows
themtobebetterrecalledis alsoresponsible for dilating the duration
thatthey are presented for. Yet, this relationshipis correlational, and so
the directionality of the effect is unknown (Fig. 3a). To pose the question
clearly: do these images last longer because they are more memora-
ble, or are they more memorable because they last longer? Previous
research has shown that the duration for which animage is objectively
presented increases the likelihood that it will be remembered® ¥, yet
whether asubjectively longerimage is thus recalled better is not known.
Evidence of such arelationship would differ from a magnitude-based
explanation; for example, larger stimuli are commonly perceived as
lasting longer, but presenting a stimulus for a longer duration does
not make it appear larger.

To test this hypothesis, we had anew set of participants performa
temporal reproduction task (Experiment 4) using the same memorabil-
ityimages from Experiment 3 (Fig. 3a). Inthis task, the participants were
presented withimages from the memorability image set for arange of
seven linearly spaced intervals between 500 and 1,000 ms and then
required toreproduce thatinterval by pressing and holding aresponse
key for the same interval. We chose a reproduction task here for two
reasons: (1) toreplicate the findings of Experiment 3 but in a different
taskand (2) to obtaina continuous, rather than categorical, estimate of
perceived duration. The result of this initial task replicated the findings
of Experiment 3; alinear mixed model (LMM) of reproduced durations
was significantly improved by adding the memorability score of the
image (F, 3500 = 9.697, P= 0.002), with higher memorability scores asso-
ciated withlonger duration estimates (8 = 0.029; 95% Cl, 0.011-0.048).
As an additional measure, we decomposed reproduced duration esti-
mates with aBayesian observer model, in which the measurements of
durations on each trial are conceived as draws from a noisy Gaussian

distribution that scales with the interval duration. These estimates
arethen combined optimally with a uniform prior distribution of pre-
sented durations to form a posterior estimate, which is then further
corrupted by motor production noise in the reproduction phase® ™.,
Fitting this model to single-trial responses yields an estimate of both
the measurement and production noise widths. We observed that the
measurement noise decreased for images from higher memorability
bins (F3 5046847 = 2611, P=0.045, n*, = 0.127; Greenhouse-Geiser cor-
rected) in a linear manner (two-tailed ¢, =2.163, P= 0.033), while no
effect was found for production noise (F, 7,5 g9 820 = 0.465, P=0.791).
Thus, a similar effect of memorability on the CV of Experiment 3 was
observed for the measurement error of Experiment 4.

Following the reproduction tasks, all participants returned a day
later for asecond session, in which they were presented with a surprise
memory test (Fig. 3a). In this phase, the participants were presented
with the same 196 images from the previous day, along with a new set
of 196 image foils drawn from the same memorability bins as the first
set. The participants were presented with each image and asked to
judge whether they had seen it on the previous day. A GLMM analysis
ofaccuracy scoresin this task for eachimage replicated the well-known
effect of memorability (% = 684.966, P< 0.001), with higher memora-
bility scores associated with a greater probability of recall (8=4.977;
95% Cl, 4.567-5.386). Crucially, the inclusion of average reproduced
duration from the previous day’s session also improved model fit
(x*,=4.43, P=0.035), with longer reproduced durations associated
withgreater recall (8= 0.635;95% CI, 0.049-1.221). This model also out-
performed one with only reproduced duration (x* = 684.97,P < 0.001).
We note that the intervals used represented the average across all
objectively presented durations for eachimage (Methods). Aninterac-
tion between memorability and reproduced duration did not signifi-
cantly improve the fit and so was not warranted (y =2.31, P=0.129)
(Fig. 3¢). Inspection of predicted model fits additionally yielded an
unexpected finding: while longer duration estimates were associated
with better recall, those participants who overall reproduced longer
durations were less likely to recall images in general. This finding, an
example of Simpson’s paradox, was evident when removing participant
as arandom effect, which thus changed the 8 estimate for duration
from a positive value to a negative one (8 =-0.543; 95% Cl, —0.827 to
—-0259). One possible explanation for this effect is that participants
who reproduced longer durations overall were attending less to the
images and more to the passage of time. Indeed, greater attention to
time typically leads to both longer estimates and more precise ones*.
Insupport of this, we observed a significant between-participant cor-
relation between average reproduced duration length and average
precision, as indexed by the CV (Spearman’s p, —0.6234; P=0.0031),
such that participants who reproduced longer intervals also repro-
duced them more precisely. It is therefore possible that participants
who were more effectively able toignore theimages, and soreproduce
longer duration estimates, were thus less effective at encoding the
images intomemory, an effect that future work will need to investigate
further; nonetheless, these same participants were still affected by
the intrinsic memorability of those images, such that more memo-
rable ones and those reproduced as relatively longer were relatively
better remembered.

Asanalternative analysis, we median-splitindividual participant
reproduced durations for each memorability bininto relatively ‘short’
and ‘long’ durations and then examined the probability of recalling an
image for eachbinand duration length (Fig. 3d). Inaddition to a signifi-
cant effect of memorability bin (Fy 50 = 111.347, P< 0.001, 7, = 0.848),
we observed asignificant effect of reproduced duration fromthe previ-
ousday (F 5= 9.875,P=0.005, n*, = 331), with no interaction between
thetwo (F, 1,0 =1.737,P=0.118). Across memorability bins, longer repro-
duced durations within participants and within memorability bins were
associated with significantly improved recall (two-tailed ¢,; = 3.142,
P=0.005,Cohen’s D =0.686).
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Fig. 3 | Perceived duration affects memorability. a, Proposed bidirectional
relationship between memorability and perceived duration, such that greater
memorability of stimuli lengthens their perceived durations, but longer
durations alsoincrease the likelihood of remembering a stimulus. To test this,
participants (n = 21) performed a time reproduction task with memorability
stimuliand then performed a surprise memory test ona subsequent day in which
they recalled stimuli from the previous day. b, Regression estimates for single
participants and the group average (black line) between the memorability of
presented images and recall performance, demonstrating greater probability

of recall for more memorable images. ¢, Regression estimates for average
reproduced duration estimates for individual images and recall performance,
demonstrating greater probability of recall for longer reproduced durations. The
individual data points represent single-trial responses for each participant.d,

Less memorable
P

Aseparate analysis, in which recall accuracy on the memory test was median-
split by the reproduced duration on the previous day, for each participant, into
shortand long duration groups. Recall was higher within participants and within
each memorability bin when the reproduced duration was longer. The dataare
presented as means + within-participant standard errors in the shaded regions.
Theright panel displays a raincloud plot of the change in recall, collapsed across
memorability bins. In the box plots, the centre line indicates the median, the box
edgesindicate the interquartile range and the whiskers extend to the maximum
and minimum; the distributions represent kernel density estimates. Note that the
images shown here are not those used in the actual study, which cannot be shown
due to potential copyright; see Methods for links to the actual images. Photos
from Pexels.com.

Neural network modelling

How canwe explain the effect of memorability on time? We assert that
appeals to other perceptual phenomena such as attention or mag-
nitude are insufficient to explain this link. Memorability drawson a

variety of details that give rise to its effect”’; furthermore, memorable
images existindependent of attentional effects****, and one would not
judge that a more memorable image is higher along an axis of magni-
tude such as size or quantity. To explain these findings, we turned to
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Fig. 4 |Neural network modelling of memorability and time. a, Schematic
layers used for an rCNN, BLnet. Images are fed and processed across the network
inafeedforward manner but with lateral recurrent steps for each layer, such that
theinput to each layer is refined at successive steps. At the final layer, a softmax
readout provides classification probabilities for each time step (eight time

steps are used). For each readout, Shannon entropy is calculated, resulting in
atime series of entropy values, which are then fit with a simple, two-parameter
power curve. b, The memorability images used in Experiments 3 and 4 were fed
into BLnet, from which entropy values were averaged across each memorability
bin, thus revealing that images with higher memorabilities exhibited faster
reductionsin entropy. Setting a threshold on these entropy values allowed

us to construct a psychometric function for categorizing time intervals (for

Memorability bin

Memorability bin
Less memorable

B ———

arbitrary time steps) as short or long. The dashed line represents the entropy
threshold after fitting the model to human participant choices. ¢, The resulting
psychometric functions for the entropy threshold and for each memorability
bin. The psychometric data recapitulated both the time dilation effect for more
memorableimages and the increase in precision. d, The left panel displays the
average value of the A parameter from the simple power curve model; low values
represent faster rates of decrease in entropy. The middle and right panels display
the average reaction time data from Experiment 3 and the surprise memory

test portion of Experiment 4, both of which exhibit faster reaction times for
more memorable images. The data are presented as means + within-participant
standard errors.

computational models of vision. In particular, convolutional neural
network (CNN) models have been a major tool for vision research-
ers to measure links between activation ‘layers’ and corresponding
components of the ventral visual stream***. Indeed, CNNs and other
model developments (that is, ResNets) have been quite successful at

estimating memorability and linking it to particularimage features at
avariety of levels of the hierarchy***, But CNNs as a base model can-
not provide astrong explanation for our findings, as these models do
notoperate over time. A recent advance in CNN models, however, isto
addfeedback connections within and between layers, thus generating
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recurrent CNN models (rCNN). In these models, the outputs of indi-
vidual layers canbe ‘unrolled’ across successive time steps asrecurrent,
feedforward and feedback connections®. This process thus provides
atimescale by which aninput canbe successively processed. We note,
however, that the step distancein this caseis arbitrary; thatis, one can
appealto conductiondelays between layers, but without neural datato
corroborate the difference between ‘engineering’ time and ‘biological’
time, this is irrelevant™.

Toinvestigate how computational models of vision might explain
our findings, we turned to an rCNN model known as BLnet (Bottom-Up
Lateral Network), containing seven layers and recurrent connections
within each layer. We chose this network because it provides a built-in
series of time steps (eight) for processing animage, inwhichareadout
is provided with each time step, but more importantly because the
output of this network has been shown to correlate with human reac-
tion times for image classification®*" as well as rapid object recogni-
tion®2. Thisis achieved by extracting the softmax readout at each of the
eight time steps and then calculating the entropy of each readout. As
the model will converge on a set of image categories over others with
repeated recurrent steps, the entropy of the softmax distribution will
decrease with successive time steps (Fig. 4a). By selecting a threshold
for entropy, one can infer the model’s ‘reaction time’ to a particular
stimulus.

To begin, we fed the 196 images presented to the participants in
Experiments 3 and 4 into BLnet and calculated the entropy across the
eight time steps. These responses were then binned by their memo-
rability ratings. As in previous studies, we observed that the entropy
decreased across time steps. Notably, we found that the rate of decrease
couldbe modelled withasimple power curve model (Methods), which
fit the data extremely well (mean R*= 0.99). We also observed that
memorability affected the rate of this decrease, such that entropy for
more memorable images decreased at a faster rate than that for less
memorable ones (time step x memorability interaction: F, o, =4.487,
P=0.035) (Fig. 4b), which was captured well by a linear effect of the A
parameter of the simple power curve model (two-tailed ¢,,, = 2.887,
P=0.004) (Fig. 4d). An interpretation of this finding is that images
that are more memorable are processed faster thanthose that areless
memorable**, with the network converging on a set of categorizations
more consistently over time. In support of this notion, we returned to
theresults of Experiment 3 (temporal categorization) and the surprise
memory test of Experiment 4 and analysed reaction time as afunction
of memorability bin (Fig. 4d). For both experiments, we observed faster
reaction times when responding to stimuli from higher memorability
bins (Experiment 3: F, ,, = 2.851, P=0.011, 1, = 0.096; Experiment 4:
F120=4.634, P<0.001, n*,=0.188). Both results are somewhat sur-
prising; for temporal categorization, one might expect more memo-
rable images to take longer to respond to, as the participants were
notrequired to process anything about the images butinstead had to
render a judgement on their duration. For the surprise memory test,
the participants were not givenany instruction to speed their responses
but nonetheless responded quicker for progressively more memorable
stimuli. One possibility, then, is that longer perceived durations are the
result of this faster speed with which the network operates on more
memorable images. To determine whether this was the case, we set
an entropy threshold; for each time step and each image, an entropy
value above this threshold would categorize the stimulus as ‘short’, and
avaluebelowit would categorize the stimulus as ‘long’. The average pro-
portion of ‘long’ responses was then calculated for each memorability
bin, thus providing seven psychometric functions, which werefitin the
same manner as Experiment 3 (Methods). We then fit these functions
tothesubject databy finding the entropy threshold that provided the
best match for both the bias and precision effects we observed.

Theresults of the above analysis revealed that the model recapitu-
lated both of the observed effectsin humans, with higher-memorability
images having agreater probability of being categorized as ‘long’ and

Full LaMem (58,740 images)
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Fig. 5| Density scatter plot of memorability scores against the simple power
curve model 4 parameter for allimages in the LaMem dataset. A significant
relationship was observed similar to the sample images used in Experiments 3
and 4, with more memorable images characterized by a faster rate of entropy
decrease. Hexagon colors reflect the density of data points at that location. The
ellipses represent three axes along which images could be sampled with differing
predictions for perceived memorability or time. The blue ellipse indicates those
predicted toincrease in memorability but with no change in perceived duration
(the entropy decrease is approximately the same for allimages). The red ellipse
indicates those predicted to increase in both memorability and perceived
duration. The orange ellipse indicates images that all have the same memorability
score (0.5), but with progressively faster decreases in entropy and so longer
predicted durations. See Methods for links to allimages and their associated
scores.

also asteeper—more precise—psychometric function (Fig. 4c). To the
former effect, longer perceived durations were a direct result of the
faster speed with whichthe network converged onasolution, suchthat
the entropy threshold was hit earlier in time. To the latter effect, the
increase in precision was also due to the speed at which the network
converged, such that a smaller proportion of the range of possible
entropy values for a more memorable image overlapped with the
entropy threshold (see Supplementary Figs. 3 and 4 for simulations),
an observation that we note is similar to accumulator-based models
of time perception®.

To extend the results of our analysis of memorability, we applied
our rCNN analysisto the entire corpus of the LaMem dataset, compris-
ing 58,740 images. We again calculated entropy time courses and fit
them with our simple power curve model, from which the A parameter
wasextracted. We observed asignificant correlation between therate
of entropy decrease and image memorability in the same direction
as for our sample of 196 images (Spearman’s p, —0.1134; P < 0.001);
we note that the noise ceiling within-dataset rank correlation is 0.77
(ref. 32). Closer examination of the scatter plot of the relationship
revealed that entropy decreases varied widely across images of differ-
entmemorabilities (Fig. 5). Assuming that the rate of entropy decrease
predicts time dilation, one can make predictions regarding which
stimuli in the LaMem dataset will lengthen duration estimates and
which will not (Fig. 5). Qualitative examination of some of these images
reveals that those predicted to increase memorability, but not time,
exhibitlittle variationin contentand notably lack discernible objects. In
contrast, those that dilate time, but with no difference inmemorability,
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appear to contain more low-level feature differences. We provide these
datato the wider community for further examination and to test their
predictions (see ‘Data availability’).

Discussion

The results of the preceding experiments demonstrate that
higher-order semantic features of scenes can shape perceived time.
These featuresinclude aspects of scenes relevant for navigation, includ-
ingscene clutter andsize, aswell asthe intrinsic feature ofimage memo-
rability. Furthermore, the results show that this effect is bidirectional:
changes in perceived time have relevance to the perception of those
stimuli themselves, such that subjectively longer perceived intervals
are more likely to be recalled. These effects point to a series of loci
alongthe ventral visual stream for compressing and dilating subjective
time. Combined with our application of amodel of the visual system,
these effects suggest that the changesin perceived time are the result
of processing efficiency for those natural images, which occurs as a
result of recurrent feedback connections within visual circuits.

Scene features and perceived time

The first two experiments demonstrated opposite directions of the
effects of the image scene qualities of size and clutter on perceived
time, such that the former dilates and the latter compresses perceived
time. These findings stand in opposition to anumber of explanations
for time dilation phenomena. For example, magnitude accounts would
predict that both scene size and clutter should produce time dilation
effects.Indeed, the perception of clutter is akin to that of numerosity,
where time dilation effects have been observedinresponse to large dot
arrays>. Likewise, appeals to increases in arousal, attention or neural
response to the stimuliwould all suggest that both scene size and clutter
should increase perceived duration’. The most similar finding to the
present one is a brief report noting that paintings of increasing com-
plexity, defined using low-level features such as edges and contrast, also
lead to time compression?’; yet this study presented images for very
long intervals (-30-60 s), whereas the present study employed very
brief durations all less than one second. One possibility may relate to
the stability of these images across the visual hierarchy. Indeed, while
scene clutter is known to peak earlier in the decodability of neural
responses than scene size, it has also been shown that increases in
clutterimpair object recognition®*, which may relate to how consistent
these representations are in visual responses®***°, Recent work has
also shown that increases in the objective time of presented images
lead to more stable representations, rather than extended firing rates,
in higher-level parts of the ventral stream?.

Asecond possibility for explaining the size/clutter effects relates
to their action affordance. That is, the clutter and size of a scene are
bothrelevant features for navigation and movement*®, and recent work
has shown that humans extract information about a presented scene
in a way that supports their movement through that space”. Indeed,
prior work has also demonstrated differentiated neural representa-
tions for scenes depending on whether the objects presented in that
scene are reachable or not®. Increases in the size of a scene would
suggest a longer necessary path to traverse the space presented, and
previous work has shown that larger presented distances dilate per-
ceived time®. Similarly, a more cluttered scene would suggest more
difficulty in reaching one’s goal. One possibility, then, is that scenes
were judged in terms of path length, with cluttered scenes implying
alonger length; this explanation would support a magnitude-based
explanation for both scene size and clutter, yet it suggests that both
local and global image features are integrated at distinct levels for
influencing perceived duration. In relation to the memorability find-
ings of the present study, we note that scene clutter has been linked
to lower memorability®>*>. However, we do not suggest that the size/
clutter effects are driven solely by memorability, althoughiitis possible
that memorability played arole.

Memorability and perceived time

The last two experiments demonstrated that the memorability of
a scene dilates the perceived duration for which it was presented.
Likewise, increases in the perceived duration of a scene increase its
memorability. These findings go beyond a simple unidirectional expla-
nation, in which the perceptual feature affects its perceived duration
asaby-product of its processing. Indeed, memorability hasbeen dem-
onstrated as a perceptual feature of a stimulus related to processing
in higher regions of the ventral stream such as the inferotemporal
cortex****, Similar to our findings, recent work has shown that increas-
ingeither the objective or subjective size of animage also increasesiits
memorability®*®. These findings are suggested to relate to the size
and spread of activation resulting from larger images on the surface
of striate and extrastriate regions®. Longer objective durations are
also known to increase the memorability of an image>?. Yet, in our
findings, we also observed that the durations of more memorable
images were perceived with greater precision. That is, the duration of
amore memorableimage was perceived both aslonger and with more
consistency from trial to trial. This second finding sets memorability
effects apart from other time dilation effects, which commonly do not
change precision, but also points to differences in the stability of the
neural representation.

The finding that memorability and time both affect one another
suggests asingle underlying factor driving both effects. Yet, more gen-
erally, why should time dilation effects occur at all? Until now, the domi-
nant framework has asserted that time dilation results fromincreases
inattention or population neuronal responses. Either case reliesona
more-is-more connection, where increases in attention or firing rate
lead tolonger perceived durations. Crucially, thereis a directional link
to this framework, where time dilation is a consequence of increased
neuronal firing, rather than a cause. The result is that time dilation is
an epiphenomenon operating downstream from neuronal computa-
tions for stimulus coding®. However, an alternative framework that we
propose hereis that time dilation effects may instead serve a purpose
for the visual system. Under this new framework, we propose that
time in the brain serves as an information seeking strategy’. This new
framework connectsto the recent notion of priority codingin the visual
system®®, wherein stimuliare processed according to the priority they
engender (for example, threatening, emotional, rewarding or appeti-
tive). Yet, under the priority coding framework, the processing of visual
stimuliis limited by aninformation bottleneck thatis time-limited (that
is, only so muchinformation canbe processed at once®). To surmount
this, we suggest that the information bottleneck can be dynamically
changed to accommodate higher-priority stimuli. In this way, time is
dilated or compressed toincrease the amount of information that can
beprocessedinany giveninstance, and sotimeis not epiphenomenal
but central to population coding. We note that versions of an adaptive
temporal window have been proposed before (for example, refs. 70,71)
but not comprehensively explored across the visual hierarchy.

The notion of changes in information processing related to time
has other experimental evidence to support it. For example, humans
are able to adjust the rate of evidence accumulation to the rate of
stimulus presentations in a dynamic environment’. Likewise, recent
work has shown that humans can vary the encoding speed of visual
items in working memory, depending on the duration at which items
are presented’. These findings provide further support to the notion
that time is a controllable feature of visual processing. In support of
this, our application of an rCNN model provides an avenue by which
time dilation effects may occur. In this model, the responses at each
layer are fed both forward to subsequent layers and laterally back to
themselves. This process, in which a CNN is ‘unrolled’ in time, allows
for image processing to occur across multiple time steps®>’, which
are meant to mimic the feedforward ‘sweep’ of the visual hierarchy
as well as recurrent connections**”. Critically, for image processing,
thisallows image representations to be refined over time as the model
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converges onaset of solutions (that is, the probability distribution of
object identities). Here we observed that more memorable images
were processed faster across successive time steps in the rCNN, such
that the probability distribution converged earlier in time. By applying
athreshold to the time series and using this to mimic the decision pro-
cessina categorization task, we found that the model could replicate
both the time dilation and precision effects observed in behaviour
for memorability. Time dilation thus results from a faster speed of
the network rather than an increase in neural firing; likewise, faster
speeds are associated with less variability, and so this leads to greater
precision for categorizing time intervals. This finding mirrors recent
neural recordings in non-human primates, as well as modelling with
RNNs, demonstrating that perceived durationis the result of changes
in the speed of neural trajectories through state space’’®. However,
whether time dilation effectsin general are aneffect of changesin speed
inneural trajectoriesis unknown and would need to be tested in biologi-
cal networks. In our case, the change in speed is the result of changes
in processing across layers of the ventral stream rather than within
any givenregion, afinding that will need to be tested experimentally.

Yet, the question remains: why should more memorableimages be
associated with afaster speed in the network? The question gets at the
heart of what makes animage memorable to begin with, on which con-
siderable work has been done®**”, finding that memorability results
from both low- and high-level features®®®'. Here, the behavioural and
network findings support the notion of anincrease in processing effi-
ciency for memorable images®. One possible driver of this efficiency
may relate to object properties within theseimages, asrecent work has
shownthatimage memorability is partially determined by the typicality
of objects contained within them?®, Notably, the rCNN model here was
originally trained for object classification. One possibility, then, is that
model speed (and memorability) is determined by how similar objects
in the presented image are to the categories on which it was trained;
likewise, speed effects will also depend on the images on which the
model hasbeentrained®. The creationand curation of more complex
memorability datasets with ground-truth categories thus allow us to
test for this possibility®®.

Conclusion

Theresults of the experiments outlined here provide evidence for a link
between the perception of time and the semantic features of scenes.
Furthermore, theyindicate abidirectional effect between memorability
and perceived duration. These results point to a framework in which
time dilation is both the result and the cause of priority coding in the
visual system, which is verified by computational modelling of the
ventral visual stream. We suggest that a large variety of visual stimuli
may be used to explore timing responses across different levels of the
hierarchy, including those associated with reachable objects, animacy,
sizes, textures, metamers and formes, all of which can provide insight
into the location of time dilation effects across the visual system.

Methods

Participants

Atotal of 170 participants (59% female, 25% male and 16% not declared)
took part in the four experiments described in this study. No partici-
pants participated in more than one experiment. All participants were
drawn from the undergraduate pool of George Mason University and
took part for course credit. All experiments were conducted at George
Mason University, with all protocols approved by the Institutional
Review Board (IRB approval no. 1867674-1). All participants provided
informed consent for participating. Experiments 1-3 were run online
during the COVID-19 pandemic, whereas Experiment 4 was run in
person after pandemic protocols had been eased for data collection.
All participants were right-handed and neurologically healthy with
normal or corrected-to-normal vision. Experiment 1included 52 partici-
pants (meanage, 20.5;s.d.,5.6), Experiment 2 included 50 participants

(meanage, 21;s.d., 4.8), Experiment 3 included 48 participants (mean
age, 20.3; s.d., 2.5) and Experiment 4 included 21 participants (mean
age, 21.2;s.d.,3.66). All experiments were programmed using Psychopy
(version2020 and above) in the Python programming language (www.
psychopy.org). The online experiments were conducted using the
Pavlovia platform (www.pavlovia.org). The in-person experiments
were conducted in a testing room with stimuli presented on a100 Hz
Dell Gaming Monitor and responses collected on a Corsair MX Gam-
ing Keyboard with a 1,000 Hz polling rate. For all experiments, the
participants were not informed of the nature of the images they were
presented, and they were not given any instructions related to their
processing; rather, the participants were only told to attend to the dura-
tionfor which theimages were presented, regardless of their content.

Experiments 1and 2: temporal categorization of scene size
and clutter

Procedure. All participants performed a visual temporal categoriza-
tion task (also referred to as a time bisection task) with sub-second
stimuli. The stimuli consisted of images drawn from the Size/Clutter
database of ref. 30, which is available at https://konklab.fas.harvard.
edu/#. Atotal of 252images were chosen from across the dataset, which
spans six levels of size and clutter based on participant ratings. For
Experiment 1, we used the images as provided from the Size/Clutter
database; for Experiment 2, all images were processed via the SHINE
toolbox®, in which the images were turned to greyscale and normal-
ized for luminance. At the start of each trial, the participants were
presented with afixation point that appeared at the centre of the screen
for 500 ms, and then a visual stimulus wasimmediately presented. The
stimulus order was randomized for each trial, and images appeared for
one of six logarithmically spaced time intervals ranging from 300 to
900 ms. Logarithmic spacing allows for more supra-geometric spread
when visualizing the data®. Accordingly, each image was presented
once for each of the six possible durations, leading to a total of 1,512
trials in a given session. A break was implemented every 168 trials,
which participants could end by pressing a response key. The image
size was set to (0.5)’times the height of the monitor, following recom-
mendations for presenting stimuli for online experiments to account
for differing screen sizes across participants. Onagiven trial, the par-
ticipants were tasked with judging whether the stimulus presented
was ‘short’ or ‘long’ on the basis of their subjective threshold of the
durations. They were directed to respond as quickly and accurately
as possible using the ‘s’ key for ‘short” and the ‘I’ key for ‘long’. There
was no response screen following the stimulus; the participants were
simply instructed to answer as soon as the image disappeared. They
did not receive feedback during this task, and the next trial began
upon their response.

Analysis. Participant responses were entered ina GLMM, with stimulus
duration and the magnitude of the size or clutter of eachimage as fixed
effects and participant as arandom effect®. We chose a GLMM analysis
due to the large number of factors and levels, which resulted in only
seven trials for each duration, size and clutter combination, lower than
recommended for accurate fitting of a psychometric function without
significant bias®**°. Trials were filtered on the basis of reaction times; we
set limits for trialwise reaction times to be above 100 ms and below1s.
We chose this threshold, rather thanadistributional one, to reflect the
potentially wider range of reaction times resulting from collecting data
online. For the GLMM analysis, model comparisons were carried out via
chi-squared tests of model complexity. Fixed effects were measured
using likelihood ratio tests.

Experiment 3: temporal categorization of memorability
images

Procedure. All participants performed the temporal categorization
task as described for Experiment 1, but with a different set of images.
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Specifically, we drew a set of images from the LaMem dataset (http://
memorability.csail.mit.edu/index.html). This dataset contains 58,740
images fromanumber of distinct sources, each with a corresponding
memorability score, reflecting the probability that the image will be
recalled later®’. Twenty-eightimages were randomly sampled fromeach
of seven equally spaced memorability bins, or ranges of memorability
scores (Abin = 0.10390; Bin1,1-0.89610; Bin 2, 0.89610-0.79220; Bin
3,0.79220-0.68831; Bin 4, 0.68831-0.58441; Bin 5, 0.58441-0.48051;
Bin 6,0.48051-0.37662; Bin 7,0.37662-0.27273). Within each bin, there
was uniform spacing among the scores, ensuring an overall spread
acrossthe selected images. The memorability scores were taken from
the second training step provided in the LaMem files. This resulted
in 196 visual stimuli split among seven different ranges of memora-
bilities. Additionally, we included here seven possible durations, again
log-spaced between 300 and 900 ms; this was done to allow for bet-
ter characterization of the psychometric function for use with the
fitting routines described below. The combination of seven different
memorability ranges and seven possible durations created a total of 42
possible conditions across 196 trials. Every image was seen at all seven
durations, resulting in a total of 1,372 trials, which were divided into
seven blocks to allow the participants a break. Each block was about
6 minutes, making the full experiment ~45 minutes.

Analysis. For this experiment, we had a sufficient number of trials
per condition (28 trials per duration in each memorability bin) for
characterizing a psychometric function. By doing so, this allowed
us to calculate measures of bias and precision individually for each
participant. Psychometric functions for each memorability bin were
fit using psignifit v.4.0 (ref. 90). All data were fit using a right-tailed
Gumbeldistribution to account for the log-spaced nature of the tested
intervals, from which the BP and CV were calculated. The BP was deter-
mined as the 0.5 point on the curve for categorizing stimuli as long,
whereasthe CV was defined as half the difference between the 0.75and
0.25 points on the function divided by the BP". As an additional step,
we removed any participant with a BP value that exceeded the tested
intervalsinthe stimulus set (lessthan 300 or greater than 900 ms) or a
CVgreater than 0.5. Using this conservative threshold, 20 participants
were removed from the analysis.

Experiment 4: temporal reproduction and recall of
memorability images

Procedure. Experiment 4 took place on two separate but subsequent
days.Inthefirst part, the participants performed a duration reproduc-
tion task, in which they were shown an image and asked to press and
hold abutton for the same duration for which the image was shown®~.
The same 196 images from the Experiment 3 were used for thistask. The
imageswere each presented for one of seven possible durations linearly
spaced from 500t01,000 mssuch thateach duration was represented
four times in eachbin. Onagiventrial, the participants were first shown
afixation cross for 500 ms, then shown the image for its specified dura-
tionand then asked to reproduce the duration by pressing and holding
aresponse key to match the presented duration. While holding the
button down, the participants were shown an unfilled white square of
the same size as the images as an aid for reproducing the duration. All
196 image reproduction events shown to a participant represented one
block, and each participant was asked to complete six blocks of dura-
tion trials, with breaks in between, to finish the first part of the study.
Prior to completing six blocks of duration trials, the participants were
asked to complete three practice trials, whichwere equivalent to a typi-
cal durationreproduction trial, but with awhite unfilled square of the
same size as theimages. After each practice trial, the participants were
shown the numerical duration that they reproduced, and the target
duration. When they were finished with three practice trials, they were
asked tocomplete the normal trials. Each block of 196 trials took about
10 minutes, resulting in a total experiment time of about 60 minutes.

The second part was conducted in the same room, using the same
monitor and keyboard configuration as the first task. Here, the par-
ticipants performed a surprise memory recall task, in which they were
shownimages and asked whether those images had been showninthe
duration reproduction task. The participants were not informed that
they would perform the memory recall task at the outset of the first
session. All196 images from the reproduction task were included in the
memorability task, with an additional set of 196 images (foils) selected
evenly from the seven memorability score bins in the same way as the
first set. All 392 images were shuffled, and each image was flashed on
screen for one second; the participants were then given a choice to
pressthe‘y’key onthekeyboard to indicate that they had been shown
theimage in the reproduction task, or the ‘n’ key to indicate that they
had not.

Analysis. For the temporal reproduction task, the reproduced dura-
tions were filtered by removing all trials more than three standard
deviations from the mean for each participant. To examine the link
between memorability and reproduced duration, and because each
participant was shown the same 196 images for each of the seven pos-
sible durations, we averaged the reproduced duration for each possible
image. AnLMM analysis was then run on these reproduced times, with
the memorability score for eachimage as afixed effect and participant
asarandomeffect. In contrast, to examine thelink between reproduced
duration and memorability, we performed a GLMM analysis of the
binary accuracy scores for each image with the memorability score
for that image and the average reproduced duration as fixed effects
and participant as arandom effect. We also included the slope of the
memorability effect by participant as arandom effect, to account for
inter-participant differencesin memorability; model comparison dem-
onstrated that the variable slope model significantly outperformeda
model with only arandom effect of participant (y’(1) = 8.866, P= 0.011).
Anadditional examination of the variance inflation factor (VIF), ameas-
ure of multicollinearity, revealed a VIF 0of 1.0006, below the commonly
used threshold of VIF = 5 for indicating concerns®.

As an additional analysis, we applied a Bayesian observer-actor
model to the datafrom the temporal reproduction task***'. This model,
based on the work of Jazayeri and colleagues®®**’ and available at https://
jazlab.org/resources/, conceives of performance onatime reproduc-
tion task as arising from an initial sensory measurement of the pre-
sented interval, modelled as a Gaussian distribution that scales with
thesize of the presentedinterval and thatisintegrated with a uniform
prior distribution set to the range of presented intervals to form a
posterior distribution of theinterval estimate, whichis then corrupted
by production noise, also modelled as a Gaussian distribution. Model
parameters for the measurement and production widths were fit using
MATLAB v.2023a’s (https://www.mathworks.com) fminsearch func-
tion for the reproduced durations for each of the seven memorability
bins. Model fits were repeated ten times using a fitting maximum of
3,000 iterations; inspection of the fitted parameters indicated good
convergence of the results.

Neural network modelling

Toinvestigate the link between our memorability findings and compu-
tational models of vision, we implemented an artificial neural network
modelling framework, in which acomparison between behaviour and
network responses could be compared®. For the computational model,
we employed anrCNN of the visual system. This model, termed ‘BLnet’,
was designed to mimic recurrent processing within the ventral visual
stream, in which individual layers project back onto themselves®°.
Critically, this framework entails ‘unrolling’ the model in time, such
that withsubsequent time stepsin the model, layer-specificactivity is
fed back onto itself via lateral input. Thus, a single time step refers to
asingle ‘sweep’ of the model. We note that the length of the time step
hereisarbitrary; indeed, the model produces identical results whether
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the time steps are explicitly or implicitly encoded. Rather, the model
relies on a difference in the stage at which layer-specific outputs are
sent viabottom-up and lateral connections®.

Our choice of BLnet in this case was motivated by the demon-
stration that rCNN models provide a better match to the sequential
and time-varying nature of information flow across the ventral visual
stream, as well as demonstrations that the BLnet architecture can
reliably predict human reaction times and accuracy in response to
visual stimuli*®*2. CNNs by themselves have no access to temporal
duration; by adding recurrent time steps, even arbitrary ones, rCNNs
can provide outputs that vary as afunction of time step. Here we used
the BLnet code as provided at https://github.com/cjspoerer/rcnn-sat;
the BLnet model was trained on object recognition using the ImageNet
and Ecoset” databases across eight time steps. At the readout layer, the
model provides classification output in the form of a softmax prob-
ability distribution. Crucially, this distribution is provided for each
ofthe time stepsin the BLnet model and therefore provides a window
into how image classificationis refined over time. More specifically, the
softmax distribution converges on a set of image classifications over
time, maximizing their probability while minimizing the probability of
other categories. To quantify this, we calculated the Shannon entropy
ofthe softmax distribution at each time step, as donein previous work.
The resulting entropy by time response thus quantifies the degree of
certainty inthe classification over time. By setting aresponse threshold
on these entropy values, we can predict human responses.

Inthe present study, we fed all 196 images from the memorability
experiments into BLnet and calculated the resulting entropy of the
eight time steps for each one. We then compared entropy values across
the seven memorability bins to examine differencesin model certainty
by memorability. To compare with human performance, we used the
model output to set an entropy threshold for classifying images into
duration categories. Specifically, we set an arbitrary threshold and
categorized all images as ‘long’ if the entropy value fell below that
threshold and ‘short’ if it fell above it. This process was repeated at
each of the eight time steps, after which the average proportion of
‘long’ responses was calculated for each time step. To match model
performance to human responses, we repeated this process across
arange of entropy scores spanning the largest to smallest entropy
values in the dataset. For each threshold, as a first step, we calculated
the average proportion of ‘long’ responses across all time steps for
each of the seven memorability bins; a psychometric function was
then fit to these data using the same method as described for the
bisection data of Experiment 3, from which the BP was extracted. A
linear regression of the BP values across memorability bins was then
fit and the slope extracted; this step was designed to mimic the bias
effect observed in behavioural data. Accordingly, a positive slope in
the linear regression would indicate that the average proportion of
‘long’ responses decreased with higher memorability bins (recall that
higher binsindicate lower memorability scores). Asasecond step, we
calculated the slope of a linear regression of the CV values extracted
from those same psychometric functions; this step was designed to
mimic the precision effect observed in the behavioural data. Here, a
positive slope would indicate that the CVs of the psychometric func-
tions decrease with higher memorability bins. From these two values,
we found the single entropy threshold with the lowest slope value
for each effect.

As an additional measure to quantify the rate of decrease in
entropy values (£) across time steps (T), we fit the data with a simple
power curve model

Er=AxTP+C
where thefirst parameter A determines the rate of decrease in entropy

values and the parameters Band Creflect additional constants for the
fitted curve, but were not analyzed here; more negative values indicate

afaster rate of decline. These values were calculated for all 196 images
inour sample, and the resulting values were compared across memo-
rability bins via arepeated-measures analysis of variance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allbehavioural datafor these experiments, as well as the rCNN results
and memorability images used, are available at https://doi.org/
10.17605/0SF.I0/FX3N2 (ref. 96).

Code availability
Allrelevant toolboxes and code repositories are cited in the text. The
codeisavailable at https://doi.org/10.17605/0OSF.I0/FX3N2 (ref. 96).
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All behavioral data, rCNN output, and memorability images used are available at (https://osf.io/fx3n2/). The Size/Clutter dataset images are available at (https://
konklab.fas.harvard.edu/#). The LaMem dataset images are available at (http://memorability.csail.mit.edu/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Data were collected with no specific design towards sex and gender, which additionally were not experimental covariates.

Reporting on race, ethnicity, or Race, ethnicity, or other socially relevant groupings were not used in this study
other socially relevant

groupings

Population characteristics Subjects were recruited from the undergraduate pool of students at GMU, ranging in age from 18-35 years old. All subjects
were right-handed.

Recruitment All subjects were recruited at GMU via an online system (SONA systems) for undergraduates to get credit for participating in
research through Psychology courses.

Ethics oversight The GMU Institutional Review Board approved this study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences X] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The study is quantitative. We collected behavioral responses from 170 subjects across four experiments. All subjects viewed scene
images on a screen and ewre asked to provide estimates of time (exps 1-4) or memory (exp 4)

Research sample Data were randomly collected from the GMU undergraduate pool via the SONA recruiting system, which provides course credit to
Psychology students taking classes through the department. Sample sizes were chosen on the basis of previous studies. Gender
makeup was (59% female, 25% male, 16% not declared). Experiment 1 included 52 subjects (mean age = 20.5, SD = 5.6), Experiment
2 included 50 subjects (mean age = 21, SD = 4.8), Experiment 3 included 48 subjects (mean age = 20.3, SD = 2.5), and Experiment 4
included 21 subjects (mean age = 21.2, SD = 3.66). The rationale for this sample is that it is representative of undergraduates at GMU
and commonly tested in Psychology experiments.

Sampling strategy Data were sampled randomly. All experimental conditions were within-subject, so there was no stratifying of our sample into
separate groups. The sample size was determined on the basis of previous experiments by our lab and other groups studying time
perception effects in humans.

Data collection Experiments 1-3 were conducted using the Pavlovia platform, and so each subject performed the task on their personal computer or
workstation. Experiment 4 was conducted in person using a PC with a 1000Hz gaming keyboard and a 120Hz gaming monitor. No
one was present for Experiment 4 except the participant and the researcher, who was not blind to the research design and

hypothesis.
Timing Experiments 1-3 were conducted in Spring of 2021. Experiment 4 was conducted in Fall of 2022 and Spring of 2023.
Data exclusions For Experiment 3, we excluded subjects with a bisection point outside the range of tested intervals, or a CV of above 0.5. This was

done to ensure that the data in Experiment 3 were accurate; a total of 20 subjects were removed using these criteria. For
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Experiments 1, and 2, where single-trial data were analyzed, we excluded trials with reaction times that were below 100ms or above
1s. For Experiment 4, where again single trial data were modeled, we removed trials with reproduced estimates more than 3
standard deviations from the single-subject mean.

Non-participation No subjects were removed for non-participation

Randomization Subjects were not allocated in separate experimental groups. Each subject only participated in a single experiment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IXI |:| ChlIP-seq
Eukaryotic cell lines IXI |:| Flow cytometry
Palaeontology and archaeology IXI |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXX XXX X s
OoooooQ

Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication VDVgs?c:/lZJlé”gﬁ)'/ authentication-procedures for-each seed stock tised-ornovel-genotype generated. Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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