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Despite advances in utilizing physiological sensors and machine learning (ML) algorithms, accurately and
consistently monitoring heat strain levels of field workers on job sites remains a challenge not fully addressed by
previous research. Existing frameworks often fail to adapt to the diverse physiology of workers and their varied
working conditions, leading to concerns about stability, reliability, and accuracy. To address these limitations, a
worker-centered heat strain monitoring framework was introduced, leveraging physiological data from wearable
biosensors for a more accurate and consistent estimation of heat strain risks. A high-fidelity virtual reality (VR)
environment was developed to simulate heat-vulnerable occupations for quality data collection. Building on this
foundation, EnsmTrBoost, a physiological sensing framework integrating ensemble learning and domain adap-
tation, was developed. This framework exhibited a remarkable prediction accuracy exceeding 93%. This paper
advances heat strain monitoring and supports the development of early warning systems for heat-related fa-

talities at work sites.

1. Introduction

Numerous workers in field-oriented industries, such as construction,
agriculture, forestry, and fishing, struggle with serious work-related
injuries and health problems [1-3]. One of the critical health issues in
this context is workers’ exposure to heat stress, which can be associated
with the prolonged hours of intensive physical field operations in the
high ambient temperature [4-6]. Heat stress can abruptly raise the core
body temperature above a safe threshold, shut down the temperature-
regulating system, and adversely affect workers’ overall safety, health,
and productivity, leading to heat-related illness and fatalities [7-10].
The long-term consequence of heat stress also includes a myriad of
chronic health problems, such as cardiovascular complications [11-14],
or kidney diseases [15,16], as well as respiratory disorders [8,17].
Further, heat stress can negatively affect brain activities, such as
cognition [18] and concentration [9]. Notably, in field-oriented in-
dustries, particularly construction, agriculture, forestry, and fishing,
workers are more vulnerable to heat stress [7]. In 2018, the Bureau of
Labor Statistics reported that 9262 workers were diagnosed with heat
related illness [19]. Regrettably, owing to anticipated climate changes
and the detrimental impacts of global warming, along with more
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frequent and intense heatwaves, it is expected that these assertions will
see a rise in the coming years [20].

Current practices for preventing traumatic heat-related illnesses and
fatalities mainly rely on monitoring of environmental conditions of the
workplace [1,21-23]. Such techniques attempt to evaluate the likeli-
hood of heat stress exposure based on environmental parameters such as
temperature, humidity, wind velocity, and cloud cover [24]. Since these
methods extrapolate environmental parameters to estimate the likeli-
hood of heat stress exposure universally for all workers with a singular
value, they fail to consider individual differences in personal charac-
teristics [25]. Another common technique for estimating the workers’
likelihood of exposure to heat stress is the use of perception-based self-
assessment techniques, such as the Heat Strain Score index (HSSI; [26]).
Such methods are concerned with the human thermo-perception or how
individuals perceive heat [26-28]. In this regard, implementing these
perception-based self-assessment techniques continuously in the field
can be challenging due to their inherently intrusive nature [29,30].
These techniques require workers to actively engage in self-assessment
and provide feedback on their thermal comfort or discomfort. Such
involvement can disrupt the workflow of workers, potentially causing
interruptions or distractions from the primary tasks. Furthermore,
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several proactive strategies such as development of work-rest schedules
[31,32], and the use of cooling vests [33-35] are also being adopted to
prevent heat-related illness and fatalities in the construction industry.
Work-rest schedules are designed to limit heat exposure by alternating
work and rest periods according to the physiological and metrological
parameters, thereby reducing the duration of exposure to extreme
temperatures [31,32]. While creating work-rest schedules for workers
helps manage the amount of heat stress exposure by providing regular
breaks and reducing heat stress exposure during peak times, they alone
may not be sufficient due to the fluctuating environmental conditions
and diverse job demands at construction sites. Cooling vests, on the
other hand, provide direct cooling to the body, aiming to maintain core
temperature within safe limits during heat exposure [33-35]. While
effective in reducing core temperature, cooling vests cannot be worn for
prolonged periods of time due to their tendency to become cumbersome
and less effective as their cooling properties diminish over time [33]. In
this vein, the objective, personalized, and timely monitoring of heat
strain risks is necessary to guide the use of such interventions for optimal
worker safety.

Recently, few studies have examined the potential of physiological
responses to assess heat strain, a non-invasive, objective, and more ac-
curate approach to protecting workers from heat stress exposure
[28,36,37]. Several researchers have leveraged the non-invasive physi-
ological sensors in conjunction with prevalent machine learning (ML)
algorithms, to identify workers’ bodily responses to heat — heat strain —
based on their physiological signals [38-40]. While these investigations
presented the potential to identify the risk of heat strain among the
workers, their application for real-world safety application in the field is
associated with several challenges. Firstly, the current studies leverage
invasive techniques such as calorimetry, to elicit physiological responses
from the users [40]. The use of invasive techniques is bound to interfere
with the workers’ ongoing work and thus is infeasible to be applied in
the field for heat strain assessment. Secondly, the current studies use
limited physiological responses to predict the likelihood of heat strain
among the workers. For instance, Yi et al. [38] leveraged heart rate as a
physiological metric to evaluate heat strain in occupational settings.
While the use of heart rate allowed to effectively predict heat strain on
job sites, the reactions to a stimulus can be represented through
numerous physiological variations. Different individuals respond
differently to the same stressors; even the same worker can react
differently to similar stressors during multiple exposures. A specific
understanding of physiological responses (i.e. using only heart rate to
assess the risk of heat strain) is insufficient to provide an informative
assessment of risk of heat strain exposure on field settings. Thirdly, most
of the current studies account for the individual differences by solely
considering personal biometric parameters such as height, weight, age,
body mass index, etc. However, this reliance on static data does not
adequately address the real-time physiological changes experienced by
workers, thereby diminishing the effectiveness and relevance of the
predictive models for personalized risk assessments. Lastly, the tradi-
tional ML classifiers leveraged by the current studies in tandem with the
physiological signals, have difficulty in effectively decoding human
physiological signals with high accuracy and stability due to intra- and
inter-subject variability [41,42]. This variability challenges the foun-
dational assumptions of traditional ML algorithms, which expect
consistent distributions between training and test data. The shift in data
distribution due to individual differences often leads to models that
cannot consistently or accurately translate real-time physiological sig-
nals into actionable insights regarding heat strain [43].

To bridge these gaps, this study aims to develop an enhanced worker-
centered heat strain monitoring framework for consistently and accu-
rately estimating the likelihood of heat strain among the field workers
using the multimodal physiological data collected from non-invasive
wearable biosensors. In this regard, a high-fidelity immersive virtual
reality (VR)-based environment was developed to simulate the common
physically demanding tasks in heat-vulnerable occupations. More
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specifically, a VR-based environment with a tangible user interface was
developed to offer life-like experiences in a risk-free setting. The
developed high-fidelity VR environments closely replicated the physical
and sensory aspects of the actual workplace. This level of realism is vital
because it ensures that the physiological responses of workers in the
virtual environment closely mirror what they would experience in the
real world [44]. To that end, the developed environment offered a vir-
tual testbed for collecting high volumes of multimodal physiological
signals, which include EDA, PPG, ST, as well as respiratory signals. This
multimodal approach is vital for capturing the complex and individu-
alized physiological responses of workers, addressing the limitations of
previous studies that relied on limited physiological signals or static
biometric data. Then, the collected multimodal physiological signals
were used to train a physiological-sensing framework, EnsmTrBoost,
which integrates ensemble learning and domain adaptation to accu-
rately identify workers’ heat strain from captured physiological signals
with variability issues. Ensemble learning combines predictions from
multiple ML classifiers, thereby reducing the likelihood of overfitting to
specific data characteristics and increasing the overall accuracy. Domain
adaptation, on the other hand, allows the framework to generalize better
across different individuals and environmental conditions, a crucial
aspect in the dynamic and varied real-world job site scenarios. This
integration is a key differentiator from current heat strain prediction
frameworks, contributing to a more robust and accurate prediction
model. By being designed to work with multimodal physiological signals
and their inherent variabilities, the EnsmTrBoost framework can make
more accurate predictions by inferring physiological signals with vari-
ability issues.

2. Research background
2.1. Al-driven physiological sensing-based heat strain assessment

Extreme heat triggers physiological responses that are indicative of
clinical syndromes arising from the body’s inefficiency in dissipating
heat. Physical fatigue, high perspiration, elevated body temperature,
increased heart rate, and severe blood pressure reduction can be linked
to a noticeable decrease in bodily fluid during heat stress exposure
[45,46]. In such a case, the physiological symptoms manifest as exces-
sive perspiration, increased heartbeat, and reduced blood volume [47].
Based on these clinical symptoms of heat stress, several physiological
responses such as EDA [48], which measures skin’s electrical changes
related to sweat production, PPG [49], which tracks blood volume
changes due to heart activity, and ST [50], which monitors skin tem-
perature, have been studied. If interpreted correctly, these physiological
signals can become proper indicators of the worker’s heat-strain
vulnerability [8,51-54]. In the study by Yi et al. [38], heart rate was
utilized as a physiological metric to evaluate heat strain in occupational
settings. The study introduced a conventional multilayer perceptron
model for an early-warning system to detect heat strain. This system
used Artificial Neural Networks (ANN), to estimate workers’ Rate of
Perceived Exertion (RPE). Additionally, a contingent process was
implemented to integrate the heart rate data with the estimated RPE,
enabling the timely issuance of heat strain warnings to workers. How-
ever, the study’s limitation lies in its sole reliance on heart rate as the
metric for assessing heat strain at job sites. Given that responses to heat
stress can manifest through a range of physiological changes, under-
standing heat strain merely through heart rate data may not yield a fully
comprehensive assessment of the risks associated with exposure in the
field. Further, a prominent constraint associated with traditional
multilayer perceptron model lies in their inherent “black box” charac-
teristic, which can yield predictions seemingly at odds with established
domain expertise [55]. In another study, Chan et al. [40] developed a
multiple linear model (MLR) to predict worker’s heat strain based on the
diverse physiological, work-related, environmental, and personal pa-
rameters. While the study presented potential to identify the risk of heat
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strain among the workers, the study leverages invasive calorimetry
sensors to elicit workers physiological responses, which includes, oxy-
gen consumption, minute ventilation, respiratory exchange ratio,
metabolic equivalent, energy expenditure, and heart rate during their
ongoing work [3]. The use of invasive techniques is bound to interfere
with the workers’ ongoing work and thus is infeasible for real-world
application. In another study, Shakerian et al. [39] proposed an Al-
driven physiological sensing-based framework to evaluate workers’
heat strain continuously. In the developed process, the researchers
leveraged off-the-shelf wearable sensing devices to capture EDA, PPG,
and ST signals and concurrently decoded the captured signals through
several prevalent ML algorithms for assessing workers’ heat strain in the
job site [39]. While the investigation established an Al-driven physio-
logical sensing-based heat strain assessment framework to prevent heat-
related illnesses by identifying workers’ heat strain, the data collection
of physiological readings from the human subjects for developing the
heat strain assessment framework occurred in a lab-controlled envi-
ronment with hypothetical task scenarios. However, the lack of realism
in task scenarios is certain to impact the human subjects’ behavior and
affect the physiological readings [44,56,57]. In this vein, the frame-
work’s ability to provide accurate results and predictions may be
compromised, given its reliance on data collected under conditions that
do not faithfully replicate real-world circumstances. To that end, there is
a critical need to collect a high volume of physiological data from
workers under realistic working conditions to develop robust predictive
models of heat strain.

Likewise, to ensure the efficiency and accuracy of physiological
sensing-based data-driven framework, a fundamental requirement is to
accurately decode physiological signals into meaningful information.
Towards that end, several studies (including the study by [39], of
developing an Al-driven heat strain assessment framework) leveraged
prevalent ML classifiers, including, ANN, Support Vector Machines
(SVM), k-Nearest Neighbor (kNN), random forest (RF), etc. as decoders
in physiologically based data-driven models for objectively discerning
different levels of workers’ physiological states [39,58-62]. In this re-
gard, the accuracy of data-driven models heavily relies on the classifi-
cation accuracy of the ML classifier. However, such ML classifiers have
difficulty in effectively decoding human physiological signals with high
accuracy and stability due to intra- and inter-subject variability [41,42].
The intra-subject variability refers to the variation in distribution of the
elicited physiological signal over time due to its non-stationary nature
[41]. Likewise, the inter-subject variations refer to the variation in
distribution among signals elicited from different subjects due to the
inherent individual differences in anatomy and physiology [63]. Taken
together, the variability issues in physiological signals violate the
foundations of the traditional ML algorithm [42,64,65]. More specif-
ically, the training data on which the ML classifier is trained, and test
data, on which the ML classifier is consequently applied should have the
same distribution. However, the intra- and inter-subject variability
causes a shift in the distribution of test data from that of the training
data. In this regard, the ML classifiers leveraged in the previous studies
for developing heat strain assessment framework are unable to decode
workers’ real-time physiological signals consistently and accurately into
meaningful information for workers’ heat strain. Such decoding prob-
lems are bound to impede the accuracy of heat strain assessment in the
field.

2.2. Potential of domain adaptation for addressing variability issues in
physiological sensing-based data-driven models

In physiological sensing-based data-driven models, domain adapta-
tion can improve the performance and generalization of the models by
reducing the variability in the data and making the model more robust to
changes in the data. In the context of this study, “domain” refers to
diverse workers and conditions under which they operate, encompass-
ing factors like individual differences (age and body mass index),
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different field works, and varying working environments. These factors
shape an individual’s unique physiological response to heat stress,
thereby constituting different “domains”. Domain adaptation involves
using a model trained on one dataset (the “source domain”) and
adapting it to work on a different dataset (the “target domain™) [66].
Currently, three major approaches to achieve domain adaptation are
widely explored, which include: (a) incorporating domain specific in-
formation [67]; (b) adversarial training [68]; and (c) transfer learning
[69].

The first method to achieve domain adaptation is by incorporating
domain-specific information, such as demographic details, medical
history, or task-specific information. This approach can allow physio-
logical sensing-based data-driven models to be more attuned to the
nuances of physiological data, thereby improving the model’s perfor-
mance in the target domain. However, the addition of domain-specific
information can inadvertently introduce or amplify biases present in
the data, potentially leading to misdiagnoses [70]. Specifically, if the
incorporated information is not fully representative, the model may
perform poorly on underrepresented groups [70]. Furthermore, adding
more information increases the model’s complexity, which can lead to
overfitting, especially if the additional data is not carefully curated and
relevant [71]. Likewise, the incorporation of domain-specific informa-
tion, such as demographic details and medical history, to achieve
domain adaptation in physiological sensing-based data-driven models is
bound to raise concerns about data privacy.

The second method of achieving domain adaptation is through
adversarial training [72]. Adversarial training uses a loss function for a
model to learn the domain-invariant features of the data by training a
domain discriminator in parallel with the main model and using it to
distinguish between the source and target domains [68,73]. Adversarial
training can thus impart robustness to data-driven models based on
physiological sensing against intra- and inter-subject variability by
learning domain-invariant features. However, physiological data often
contains complex, non-linear patterns [74], and adversarial training
might struggle to learn the complex relationships between the source
and target domains, potentially leading to suboptimal performance
[75]. Specifically, the training process can be unstable, particularly with
complex physiological data, leading to difficulties in model conver-
gence. Furthermore, adversarial training requires a large amount of
labeled data from the target domain [76], especially challenging when
dealing with physiological data, where collecting large amounts of
labeled datasets is difficult.

As aforementioned, both approaches to achieving domain adapta-
tion—incorporating domain-specific information and adversarial train-
ing—face certain limitations. In contrast, the third method, transfer
learning can be an effective method for addressing variability issues in
physiological sensing-based datadriven data models. In transfer
learning, a model trained in one domain is fine-tuned for a new domain
[69]. For instance, a model initially trained on a physiological dataset
with a specific statistical distribution can be fine-tuned on another
dataset with varying statistical distributions. By adapting the model to
the unique characteristics of the new domain, transfer learning tech-
niques can manage variability issues, improving the performance and
generalization of data-driven models, and enhancing their robustness to
data variations [72]. Transfer learning involves fine-tuning a pre-trained
model on a smaller, target dataset. Consequently, the model is less likely
to overfit the specificities of the target dataset compared to one trained
from scratch and incorporating domain-specific information. Moreover,
transfer learning entails a more stable and straightforward fine-tuning
process [66], a significant advantage when dealing with complex
physiological signal data. Additionally, transfer learning generally re-
quires fewer labeled examples from the target domain to be effective
[77]. More specifically, transfer learning enables the model the model to
leverage knowledge from a source domain, which can be useful to
improve the model performance in a new domain, even if the labeled
data is not available. In summary, transfer learning can significantly
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improve generalization to new individuals and environments and
address data variability issues. This is particularly crucial in physio-
logical sensing-based data-driven models, where data can be highly
variable due to individual and environmental differences.

3. Research methodology

The research methodology is mainly orchestrated through two major
key modules. In the first module, an interactive, immersive virtual
testbed was generated for a realistic simulation of heat-vulnerable field
occupation in a risk-free setting. The developed immersive environment
offered a virtual testbed for collecting EDA, PPG, ST, and respiratory
signals and consisted of two steps: 1) immersive virtual environment and
scenario development, in which a common field task (logging task) with
a chainsaw was simulated; and 2) tangible user interface development,
in which an actual chainsaw was integrated with the simulated
immersive scenario to provide a life-like fieldwork experience. In the
second module, a physiological-sensing framework, EnsmTrBoost, was
developed to identify workers’ heat strain from collected physiological
signals with variability issues. Notably, the developed network archi-
tecture featured two steps: 1) the ensemble learning step, in which the
collected physiological signals were processed to remove artifacts,
extract informative features, and generate an initial ensemble classifier;
and 2) the domain adaptation step, in which the transfer learning
technique is employed to calibrate the initial ensemble classifier,
enabling the classifier to decode physiological signals whose statistical
distribution differed from the data used to train and generate the initial
ensemble classifier, and accurately identify the workers’ heat strain.
Fig. 1 provides an overview of the research methodology. Detailed ex-
planations of the various steps within this methodology are elaborated
upon in the subsequent subsections.

3.1. Virtual testbed for realistic simulation of heat-vulnerable field
occupation

3.1.1. Immersive environment and scenario development

In the first module of the developed framework, a high-fidelity vir-
tual testbed was developed to simulate common physically demanding
tasks in heat-vulnerable occupations to provide a high-quality physio-
logical dataset from workers under realistic working conditions. To that
end, an immersive virtual environment was leveraged to simulate
common physically demanding tasks (logging task) that field workers
may experience on the job site. Logging task was specifically chosen due
to its significant relevance to timber construction, which constitutes
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Immersive Environment
Development

Tangible Interface
Development

Motion
Tracker

Physical
Chainsaw

B. EnsmTrBoost Framework for Heat Strain Assessment

Ensemble Learning Domain Adaptation
,,,,,,,, = e s e
| Artifact I - R ALy ' Domain ! Fine-Tuned
} Removal } ‘3 ." e sise iy } Adaptation } Classifier
Se, 5 I b; A
: | Classifier, Classifiery| || i+ N
*_If ! ~ E_n} . - = K. /°
1 F S o
} EFeatu{e } a o | } K (‘ 2 | } F N\
xtraction 5 1 : |
PO e e || ey
I Autoencoder- . | P A v T ! * %/ | Heatstrain levels
| e e e/ Med
(et ¥ Ensemble Classifier [ —— g

Fig. 1. Research methodology.
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about 92% of the U.S. residential construction sector [78], and its
embodiment of the intense work experienced across various heat-
vulnerable field occupations. This simulation involved the design and
development of a user-centered, simulated workspace to safely examine
different field-oriented tasks. Therefore, an outdoor workspace was
simulated and rendered in VR using the Unity game engine, as shown in
Fig. 2-A. The creation of various components within the scene was done
using commercially available 3D modeling tools (i.e., Blender) as well as
game engine built-in functions. In addition, the simulation incorporated
various 3D elements obtained from the Unity Asset Store. These com-
ponents were treated as Game Objects within the Unity Editor, facili-
tating the inclusion of collision meshes, scripts, and physical properties
to different elements. The game engine also provided the capability to
enhance the scene with realistic textures, sounds, and lighting effects.
Furthermore, a virtual representation of a chainsaw was integrated into
the scene to serve as the primary tool for interaction within the designed
scenario. To enhance the realism of the physical logging tasks, the
simulation integrated haptic feedback to replicate the resistance and
vibration felt during logging, using the virtual chainsaw as the primary
tool for interaction within the virtual setting. Furthermore, different
components of the virtual workspace, such as the terrain, tools, and
equipment, were combined to create a more immersive user experience.
To enhance the user’s sense of presence and spatial awareness in the
scene, several soundtracks related to different situations (e.g., idle
working of tools, cutting woods) were added to different Game Objects
that can be triggered in certain conditions. Additionally, spatial audio
techniques were employed to simulate the ambient sounds of the work
environment and noises of a logging site, such as the roar of chainsaws
and noise generated from cutting the wood, further immersing the user
in the environment. This auditory experience, coupled with tactile
feedback, considers the resistance, vibration, and noise typical to log-
ging tasks. The representative nature of simulated task ensures the study
addresses a broad spectrum of field workers susceptible to heat stress,
enhancing its applicability and relevance. In addition to the immersive
environment, a tangible user interface was developed for user interac-
tion within the developed scenario. More details about the interface are
elaborated in the following section.

3.1.2. Tangible Interface development

Considering the physical demand of the selected field-oriented task,
an actual chainsaw (without the chain and powered off) was integrated
with the simulated immersive scenario through a tangible user interface.
The tangible interface setup provides both visual and kinesthetic feed-
back that enhances the realism of the simulation, allowing users to
experience its weight and resistance mimicking the handling of an
operational tool. As shown in Fig. 2-B, a motion-tracking sensor (i.e.,
Vive tracker) was attached to the physical chainsaw that is synchro-
nously rendered in the virtual environment. The motion-tracking sensor
of choice features an IMU sensor that can roughly calculate the location
of the device. The selected VR system (i.e., HTC Vive Pro) also included
two laser emitters that can compensate for any errors made by IMU
sensors using the variations in response times of the photodiodes on the
tracker. The position and orientation of the virtual chainsaw in the
virtual setting matched the corresponding ones of the physical chainsaw
in the real world, which is essential for accurate replication of physical
interactions within the VR environment. Additional vibration feedback
was programmed to simulate the interaction between the chainsaw and
the wood, thereby mimicking the operational vibrations typical to real-
world scenarios. The provided visual and force feedback enabled the
users to intuitively interact with the chainsaw and feel its weight,
resistance, and vibration throughout the task performance.

To simulate the cutting effect, a mesh slicing technique was applied
in the Unity game engine. More specifically, a script based on the
collision detection between the cutting tool (i.e., chainsaw) and an ob-
ject (i.e., wooden log) was developed in this study. The mesh slicing
technique, implemented through Unity game engine scripts, simulated
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Fig. 2. Development of virtual testbed: (A) Immersive scenario development; (B) Tangible interface development; and (C) Realistic simulation of heat-vulnerable

field occupation.

the cutting effect, offering a realistic tactile response that varied by
wood density, in tandem with the real-world physical feedback. The
cutting starts with the intersection of the chainsaw with the mesh tri-
angles of the object. To that end, an invisible plane was attached to the
cutting tool which hit the other object. Once the cut happened, the mesh
triangles that are not intersected were divided into two groups and
copied into one of the resulting objects from the cut. For intersected
triangles, the plane divided all intersected edges into two groups, each
on one side of the plane. As a result, three new triangles (one triangle
with an original vertex and two new vertices and two triangles with two
original vertices and a new vertex) were generated from each intersected
triangle. Furthermore, since the newly generated meshes were hollow at
the cutting point, new triangles were created from new vertices and the
average position of all new vertices (center) and added to both resulting
objects. The cutting could be done multiple times on an object, allowing
the user to repeat the task for extended periods of time. This process
integrated the digital work environment with the physical tools to create
an immersive testbed where the risk of using actual tools can be miti-
gated. Fig. 2-C represents the generated simulations of the virtual

testbed for collecting EDA, PPG, ST, and respiratory signals.

3.2. EnsmTrBoost framework for heat strain assessment

To enhance the performance of machine learning (ML) classifiers in
identifying workers’ heat strain from captured physiological signals
(EDA, PPG, ST, and respiratory signals) with variability issues, the au-
thors developed a physiological sensing framework, EnsmTrBoost. The
developed framework was featured in two steps, presented schemati-
cally in Fig. 3. The first step, the ensemble learning step, was developed
to train an ensemble ML classifier to generate an initial estimation of
workers’ heat strain from physiological signals. In this step, the physi-
ological signals were first processed to remove signal noises and
accordingly extract informative features. Then, the extracted features
were used to train and generate an initial ensemble ML classifier for
preliminary identification of workers’ heat strain. The second step of
EnsmTrBoost, the domain adaptation step, was developed to employ the
transfer learning technique to calibrate the initial ensemble ML classi-
fier, enabling the classifier to decode physiological signals whose
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Fig. 3. Overview of the developed EnsmTrBoost framework: (A) Step 1: Ensemble learning; and (B) Step 2: Domain adaptation.
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statistical distribution differed from the data used to train and generate
the classifier (due to individual differences). In the developed EnsmTr-
Boost, the ensemble algorithm was leveraged to improve the perfor-
mance of the ML-based classifier in decoding physiological signals with
inter-subject variability issues [79,80]. The transfer learning technique
was implemented to enable the ML-based classifier to resolve the intra-
subject variability issues in physiological signals, as demonstrated in
[41,65]. Using these two steps, the developed EnsmTrBoost can generate
an ensemble ML classifier to enhance the performance in identifying
workers’ heat strain from their physiological signals with variability
issues. The EnsmTrBoost framework specifically accounts for individual
differences by calibrating the ML classifier to recognize and adapt to the
physiological variations among workers, ensuring personalized and ac-
curate assessments of heat strain. The details of each step will be pre-
sented in the following subsections. The pseudo-code of the
EnsmTrBoost paired with the developed EnsmTrBoost framework is
shown in Algorithm 1. Furthermore, to generate the ensemble classifier
using the EnsmTrBoost framework, the dataset used in the first step of
EnsmTrBoost is denoted as Tsme, Where all data for each category of
physiological signals (EDA, PPG, ST, or respiratory signal) have the same
statistical distribution. x; (i = {n+1,...,n+m}) indicates a data point
in Tsame. Tayr represents the dataset used in the second step, in which the
distribution of the data is different from the data in Tsgme. x; (i = {1, ...
,n} ) represents a data point in Tg. The acquisition of datasets Tsqme and
T4 will be introduced in Section 4.

3.2.1. Step 1 of the EnsmTrBoost framework — Preprocessing and ensemble
learning step towards the development of the initial ensemble ML classifier

3.2.1.1. Noise removal. The physiological signals (i.e., EDA, PPG, ST,
and respiratory signals) collected from the wearable biosensor can be
contaminated by various types of noise in field settings. These noises
include the electrode noises caused by contact between electrodes and
skin [81], the motion artifacts caused by a myriad of manual activities
performed by the workers [82], electromagnetic noises caused by the
ambient electromagnetic fields of the applied biosensors [39], and the
thermal noises and electrosurgical noises [83]. Accordingly, the pres-
ence of noises will adversely affect the quality of signal collections and
the following interpretations of the signals using ML-based classifiers
[82,84,85]. To reduce these signal noises and thus improve the perfor-
mance of the ML-based classifier in identifying workers’ heat strain, the
authors implemented several noise-removal techniques, substantiated
by the previous investigations [58-62,86]. For EDA signals, a lowpass
filter with a 1.5 Hz cutoff frequency was leveraged to target the typical
low-frequency range of EDA [87]. The chosen frequency for noise
removal has been documented for its success in eliminating artifacts in
EDA signals [58-62,86]. ST signals were processed using a high pass
filter with a 0.05 Hz cutoff frequency to eliminate low-frequency arti-
facts, a technique validated in previous studies [58-62,86]. Addition-
ally, PPG signals, which typically range from 0.5 to 5 Hz PPG [49], was
leveraged with a bandpass filter of corresponding cutoff frequencies.
Likewise, additional techniques, including double median filtering and
adaptive filtering techniques (i.e., Fourier Linear Combiner), were
employed to remove motion artifacts from PPG signals. Such methods
have been validated by previous research for significantly improving
signal quality and stability [88-90]. For the respiratory signal, informed
by the previous investigation, the authors applied an adaptive filter with
a 0.16-1 Hz bandpass filter to remove noises, including motion artifacts,
electrosurgical noise, and electrode noise [83]. Further, to remove the
motion artifacts in the signals, sparse recovery method was utilized [91].
The efficacy of this sparse recovery method in enhancing signal quality
has been demonstrated in prior studies [86,91].
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3.2.1.2. Feature extraction. Once physiological signals have been
denoised, the authors leveraged an autoencoder network to extract
informative features from these signals to train an ML-based heat strain
identification model [92-94]. In contrast to conventional feature
extraction methods utilized in authors’ previous studies [95,96], this
autoencoder approach can (1) automatically extract features to train
ML-based classifiers without requiring researchers to manually extract
features; and (2) reduce the computational resources of the feature
extraction [97]. Structurally, the autoencoder applied in this study was
comprised of an encoder and a decoder — the encoder was used to extract
features from the input signals, and the decoder was designed to eval-
uate the feature extraction performance of the encoder. The encoder of
the autoencoder consisted of a three-layer 1-dimensional (1D) con-
volutional neural network (CNN). The stride of each 1D-CNN layer was
set to 2; the activation function of each layer was LeakyReLU. The kernel
size for each of the three layers was 16 x 1, 8 x 1, and 4 x 1, respec-
tively. The kernel number corresponding to each layer was 32, 64, and
128, respectively. The structure of the decoder was comprised of three
deconvolutional neural network layers. Like the encoder, for each
deconvolutional layer, the stride size was 2; the activation function was
LeakyReLU. In addition, the kernel size of each deconvolutional layer
was 4x 1, 8x 1, and 16 x 1, respectively. The corresponding kernel
numbers were 128, 64, and 32, respectively. Relying on this structure,
the applied autoencoder was trained, and the output of the encoder of
the trained autoencoder was regarded as the features to train the ML-
based classifiers. Details of training the autoencoder (objective func-
tion, hyperparameters) can be found in the authors’ previous research
[971.

3.2.1.3. Initial ensemble classifier. For each captured physiological
signal in the dataset Tsqme — EDA, PPG, ST, or respiratory signal in Tsgme —
once its features were extracted through the above autoencoder
network, the features were first fed into a single ML classifier for heat
strain identification of workers. As shown in Algorithm 1, C;, Cs, Cs3, and
C4 represent the single classifier for the EDA, PPG, ST, and respiratory
signals, respectively. Notably, in this study, the single classifier was
selected from the following traditional ML classifiers, including kNN,
SVM, SVM with Gaussian kernel, SVM with Polynomial kernel, Logistic
Regression, Quadratic Discriminant Analysis (QDA), and MLP Neural
Network. For a specific kind of physiological signal (EDA or PPG or ST or
respiratory signal), the classifier (among these traditional ML classifiers)
with the optimal performance in identifying the heat strain of workers
was selected as the corresponding single classifier. After obtaining all
single classifiers (C;), the authors applied the ensemble learning algo-
rithm to combine these classifiers to generate an ensemble classifier. The
steps of generating the initial ensemble classifier were shown in the first
four lines of the pseudo-code of the EnsmTrBoost framework (see Al-
gorithm 1). As shown in lines 2 and 3, for each selected single classifier,
Cs;s € {1,2, 3,4}, the developed EnsmTrBoost first generated the cor-
responding ensemble weight, wy;s € {1,2,3,4}. Line 3 of Algorithm 1
also showed these ensemble weights — wy, wo, w3, w4 — were normalized
before being applied to the corresponding single ML classifier. Then,
based on the ensemble weights (ws;s € {1,2,3,4}), an initial ensemble
classifier was generated from the single classifiers (Cs;s € {1,2,3,4})
using the equation shown in line 4 of Algorithm 1. As demonstrated in
[79,98,99], this integration can reduce the bias or prediction variance of
the single ML classifier and produce a robust classifier with low-variance
prediction capability to identify heat strain across workers, thereby
allowing the classifier to decode physiological signals with inter-subject
variability issues.
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Algorithm 1.

Ensemble for transfer learning.
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Inputs: 1). The dataset Teompine combined with two labeled datasets Tg;rr and Tggme- 2)- A set of pre-trained
single classifiers Cs; s € {1,2,3,4}. 3). The maximum number of outer loop iteration M.4). The maximum

number of inner loop iteration N.
Initialize: 1). the initial ensemble weight vector w?= = {w;, w5, ...,
cach data point x; in dataset T,ompine: £€=1 = {t1,t2, -..s tpam -

Ws }; 2). the initial weight vector of

1. Forp=12,..,M (Outer Loop)
2. I Call pre-trained single classifier, {Cy,Cy, ..., Cs—4}.
3. = Normalize ensemble weight vector for weak classifiers: wP = wP /(Yi_, ws)
4 § Obtain ensemble classifier (ensemble rule):

= 4

]

‘ Ensemble Classifier (EC) = z w! - Cs

: s=1
5.0 For k=1,2,..., N (Inner Loop)
6. i Call ensemble classifier, providing it the training set Tiompine- Train ensemble

: classifier by T;ompine. Then, get back a prediction hy, of ensemble classifier for each

: data point x; in Teompine-
7.0 § Calculate the error of hb in Teompine

1 N

| S o Z - normy (hy (x) — c(x)

E ':] k= Y gk

; 5
8. i g Set user-defined dnmam adaptatmn parameters®” f.
9. i & Update weight vector t* of each datapoint in Teompine:

: normy op 2( (i) —c(x;) . .

:‘ e _ ) B (o ) i<i<n @ Tusp)

5 ¢y “normi or (i) -<(x) ) nA1<i<n+m (inTome)
10. ¢ End — Update dataset T¢ompine, and fix it in the outer loop.
1. Apply ensemble classifier (EC) to predict dataset Tompine - Prediction loss of the classifier:

[ntm|
1
= Z e, ) = eI
Teompinel

12. § Loss allocation for each single classmcr {C1,Cy, ..., Csoy )

' 0, if h(C,x) = c(x)

, P = L’

C s .

1 number of misclassified C; + & otherwise
13. Optimize ensemble weights for st" classifier by FPGM method®™: w! = w? — a,VIZ (W)
14. Update ensemble weights for all single classifier:

wPtl = [w/,s = 1,2,3,4]

15. End — Update ensemble weights wP*?

of the ensemble classifier.

" All initial values will be set to 1.
2* As stated in Dai et al.’s study, f; =

1et

3* Fast proximal gradient method (FPGM). Besides, 0< w? < 1; Y wP =1

3.2.2. Step 2 of the EnsmTrBoost framework — Transfer learning for fine-
tuning the ensemble classifier to accurately decode physiological signals with
subject variability issues

Once the initial ensemble classifier was obtained, the next step of the
EnsmTrBoost was to endow the classifier with the capability of decoding
the physiological signals with intra-subject variability issues. To this end,
the authors applied the domain adaptation technique, transfer learning, to
update the initial ensemble classifier. The applied transfer learning rule is
shown in lines 5 to 10 of Algorithm 1. For each transfer learning iteration,
the initial ensemble classifier was employed to classify all data points x; in
Tame and Ty datasets. Asmentioned, x; (i = {n+1,...,n +m} ) indicates
a data point belongs to Tsu,. used to train and generate the initial
ensemble classifier; x; (i = {1,...,n} ) indicates a data point in T4y whose
statistical distribution is different from the data point in Tsgye due to the
variability issues. The classification error, ¢, was calculated by using the
equation shown in line 7 of Algorithm 1- where h (x;) represents the label
(worker’s heat strain) identified by the ensemble classifier, c(x;) is the true
label of the data point x;, and tf indicates the weight of the difference
between c(x;) and hy(x;), initially set to 1. After calculating the classifi-
cation error ¢ (0 < ¢ < 0.5), ¢, was leveraged to generate a domain-
adaptation parameter S, = 1oe

was used to update the

weight (£), as presented in line 9 of Algorithm 1. Then, t* was used to
multiply by the corresponding data point x;. In this manner, the weights of
the misclassified data points (x;;i = {1, ...,n}) in T4y could be increased
by /i,‘(h ) —el) |, Conversely, the weights of the misclassified data points
(x;;i = {n+1,...,n+m}) in Ty could be decreased by /},Lh‘(x‘)fdx")‘.
After N iterations of transfer learning (N is the user-defined parameter),
the weights of the misclassified data points in Ty would be larger than

those of the misclassified data points in Tsgme. Subsequently, the mis-
classified data points in T4 and their weights would be integrated into
Tsame to generate an updated dataset, Teompine- From the ensemble classi-
fier’s perspective, T.mpinecould train the classifier to focus more on
learning from the data points with larger weights [64,65,80]. In other
words, using T,ompine, the ensemble classifier can learn more from data
points that have different statistical distributions than the data used to
train and generate it in the first step (Section 3.2.1). As such, the
robustness of the ensemble classifier in identifying data points with shifts
in the statistical distribution can be enhanced. In addition, the above-
mentioned domain adaptation process to obtain T,ympire is shown in Fig. 4.

After obtaining the updated dataset T,ompine, this dataset was applied to
optimize the initial ensemble classifier by fine-tuning the initial ensemble
weights, w; (i € {1,2,3,4}). Lines 11 to 15 of Algorithm 1 illustrate the
fine-tuning process. As expressed in line 11, the updated dataset was
employed to allow the initial ensemble classifier featured with the initial
ensemble weights (w1, wa, w3, wy4) to calculate the overall classification
loss, L. Based on each data point in T,mpine, this loss function leveraged
normy distance to measure the difference between the identification result
generated by the ensemble classifier and the ground truth of the data.
Subsequently, the overall loss, denoted as L, was allocated to each single
classifier (Cj;i € {1,2,3,4}) of the ensemble classifier, based on the per-
formance of each classifier in classifying the datapoint in Teompine. This
allocation mechanism is highlighted in line 12 of Algorithm 1. To elabo-
rate further, in cases where a datapoint is misclassified, the corresponding
loss is uniformly distributed among the single classifiers that inaccurately
classify such datapoint (in line 12, the parameter § was used to prevent the
denominator from becoming zero). Conversely, single classifiers that
accurately classify the datapoint are exempt from being allocated the loss
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Fig. 4. Illustration of the domain adaptation process.

related to such datapoint. According to the loss assigned to each single
classifier, the fast proximal gradient method (FPGM) was applied to
optimize the ensemble weight of every single classifier (line 13). More
details of the FPGM optimization method can be found in [100]. The
optimized weights — w}, w,, Wi, w), — were regarded as the new ensemble
weights to update the ensemble classifier (lines 14 and 15). Notably, after
obtaining the updated ensemble classifier WP*! = [w},s =1,2,3,4];p+
1 stands for the new iteration), the EnsmTrBoost framework returned to
line 2 of Algorithm 1 and started a new iteration. For a new iteration, the
initial weights of the ensemble classifier were the ensemble weights w],
w,, w5, w, updated from the previous iteration and normalized using the

equation shown in line 3. Furthermore, the iteration will be repeated until
each ensemble weight of the ensemble classifier converges to a constant
value and the overall loss of the ensemble classifier no longer changes. The
ensemble classifier generated from the final iteration is expected to have
enhanced performance in decoding the physiological signals (EDA, PPG,
ST, and respiratory signals) with intra- and inter-subject variability issues.
The performance of the above EnsmTrBoost framework will be examined
in the next section.

4. Performance assessment of EnsmTrBoost framework

In order to assess the effectiveness of the developed worker-centered
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Fig. 5. Schematic diagram of experimental study.
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heat strain monitoring framework, an experiment was devised and
implemented within a controlled environmental chamber. This experi-
ment comprised two distinct steps. The first step was designed to collect
the workers’ physiological data during a physically demanding task
(forestry task) in the immersive VR setting under three heat stress
exposure conditions. Concurrently, Kullback-Leibler (KL) divergence
[101,102] was utilized to assess the similarity or dissimilarity in sta-
tistical distribution within the collected datasets. Based on the KL-
divergence score, the original dataset was divided into datapoints with
a particular statistical distribution (Tseme), and dataset with a different
statistical distribution than that of Tsme(Tdiff). The obtained dataset
Tsame and Tqyr were leveraged to train the developed heat strain moni-
toring framework. Likewise, the second step of the case study setup was
to collect the test dataset to evaluate the performance of the EnsmTr-
Boost framework. Fig. 5 illustrates the schematic diagram of the
experimental study.

4.1. Step 1: Collecting training dataset to generate the ensemble classifier

4.1.1. Subjects and device information

Sixteen able-bodied subjects (mean age: 25; SD of age: 2.6; mean
weight: 190 1b.; SD of weight: 27 1b.; mean height: 5’ 11”; SD of height:
1.7") with proper experience of field occupation were recruited to
participate in the experiments. Before the experiments, all the subjects
were provided with informed consent forms explaining the purpose of
this study, a comprehensive explanation of the data collection process,
confidentiality of the data, and subjects’ rights. Prior to the experiments,
the authors ensured that participants had no medical history that might
impact their performance in the immersive virtual environment within a
controlled environmental chamber. Additionally, subjects were
instructed to be adequately hydrated before the commencement of the
experimental trial.

After the informed consent forms were signed, subjects were asked to
wear a wristband-type wearable sensor (E4 Empatica™) and a chest-
strap-type wearable device (bioPLUX™ Inductive Respiration Sensor).
While the EDA, PPG, and ST signals show promise in accurately
deducing and monitoring workers’ heat strain, it is important to note
that the body’s response to different stimuli is not solely confined to
these indicators. When an individual is exposed to heat stress conditions,
the body employs thermoregulation as a protective mechanism, facili-
tating heat dissipation [103]. In order to uphold its proper functioning,
the body necessitates the maintenance of a core temperature of 37 °C,
ideally within a range of +1 °C [104]. To maintain a balanced body
temperature, which hinges on the exchange of heat between the body
and its surroundings, adjustments in breathing patterns can lead to heat
loss [105]. Such respiratory patterns can be monitored through respi-
ration sensors. To that end, this study attempts to incorporate respira-
tory signals along with the EDA, PPG, and ST signals in the developed
framework. Physiological responses are multifaceted and different
workers may exhibit unique response patterns even under similar
environmental conditions. The use of a multimodal physiological data
method is crucial for capturing individual differences in physiological
responses, ensuring personalized and accurate prediction of heat strain
risks.

The wristband-type wearable sensor was equipped with a PPG
sensor, an EDA sensor, and an infrared thermopile sensor (for skin
temperature), collecting physiological signals at frequencies of 64, 4,
and 4 Hz, respectively. Likewise, the chest-strap-type wearable device
included an inductive-type respiration sensor and triaxial accelerometer
to collect the respiratory signals with the frequency of 100 Hz. For
further analysis, EDA and ST signals were up-sampled to 32 Hz, whereas
PPG and respiratory signals were down-sampled to 32 Hz. Additionally,
participants were provided with an HMD VR headset (HTC Vive Pro Eye)
and motion tracking sensors (Vive Trackers and Leap Motion) alongside
the physiological sensors.
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4.1.2. Data acquisition

After the setup of wearable physiological sensors and the VR system,
participants were tasked with performing the logging exercise within the
immersive testbed. This took place in a controlled environmental
chamber under three distinct climatic conditions. To start, participants
were given a brief period to familiarize themselves with the simulated
immersive environment, acquainting themselves with features like the
interaction mechanism and the task at hand. Once participants felt
ready, they were then instructed to commence the logging task within
the virtual testbed, all while still within the controlled environmental
chamber. The logging tasks consist of subjects cutting lumber using a
chainsaw. To emulate the physically demanding nature of the selected
field-oriented task, subjects were required to emulate the cutting-a-
lumber task through an actual chainsaw (without the chain and pow-
ered off), which was integrated with the virtual testbed through a
tangible user interface. Participants were tasked with performing the
logging exercise under three distinct conditions, which were controlled
by varying levels of ambient temperature and humidity.

To mitigate selection bias and account for any potential trial-order
effects, subjects were grouped in sets of three, and each set was
assigned a unique sequence of climatic conditions (resulting in six
distinct sequences for three conditions). Environmental parameters such
as humidity and ambient temperature were regulated within a climate-
controlled chamber room to ensure consistency across data collection.

As previously mentioned, the three different climatic conditions
were emulated by regulating both the temperature and humidity levels
within the chamber room. According to OSHA guidelines for heat stress,
three distinct climatic conditions were simulated by adjusting the tem-
perature and humidity of the chamber room to 84.2 °F and 40% for low,
87.8 °F and 45% for medium, and 89.6 °F and 55% for high heat stress,
respectively [25]. All experimental trials were conducted in a chamber
room. For each climatic condition, subjects were asked to perform the
logging tasks for 10 min with 10 min break in between. The duration of
the tasks across the climatic conditions was chosen based on the capa-
bility to induce heat strain within a safe and controlled timeframe.
Research indicates that the short exposures to high temperature and
humidity also can significantly increase heart rate and core body tem-
perature, cumulatively leading to heat strain and dehydration risks
[106-110]. To that end, the duration of the experimental tasks was
carefully formulated to collect the necessary physiological data while
minimizing the health risks to participants. Additionally, a medical
consultant with extensive expertise in human physiology was present
throughout the experimental setup. The consultant confirmed that the
task duration was sufficient to elicit measurable physiological responses
indicative of medium and high heat strain without jeopardizing partic-
ipant well-being. To ensure that the experimental duration could induce
different heat strain levels, a reliable heat strain assessment technique
called the Heat-Strain Score Index (HSSI) questionnaire [26] was used.
HSSI evaluates the heat strain score index, providing a classification of
the subjects’ perceived heat strain. This classification includes low heat
stress exposure (HSSI <13.5), medium heat stress exposure (13.6 < HSSI
<18), and high heat stress exposure (18 < HSSI). After each trial (and
during the break in between), subjects were asked to fill out the HSSI
questionnaire to indicate their perceived heat strain level for the task.
The responses from the questionnaire consistently indicated that sub-
jects experienced medium to high levels of heat strain. To that end, the
responses corroborated the intended effects of the experimental setup,
which was designed to expose subjects to different heat strain in-
tensities, ranging from low to high. Throughout the tasks, the subjects’
wearable biosensors continuously recorded all physiological data,
including PPG, EDA, skin temperature (ST), and respiratory signals. This
data was subsequently uploaded to a cloud server for further analysis.

4.1.3. Data labeling
Throughout all the sessions, the physiological data collected were
categorized based on three distinct climatic conditions, each designed to
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Table 1
Overview of participants’ collected data and the labeled data.
Subject Temperature (Humidity) HSSI score’ Data Size” Label® Subject Temperature (Humidity) HSSI score’ Data Size” Label®
84.2 °F (40%) 12.6 76,800 L 84.2 °F (40%) 13.1 76,800 L
1 87.8 °F (45%) 17.4 76,800 M 9 87.8 °F (45%) 17.5 76,800 M
89.6 °F (55%) 20.1 76,800 H 89.6 °F (55%) 20.8 76,800 H
84.2 °F (40%) 111 76,800 L 84.2 °F (40%) 12.2 76,800 L
2 87.8 °F (45%) 16.8 76,800 M 10 87.8 °F (45%) 16.4 76,800 M
89.6 °F (55%) 22.2 76,800 H 89.6 °F (55%) 22.7 76,800 H
84.2 °F (40%) 13.2 76,800 L 84.2 °F (40%) 12.9 76,800 L
3 87.8 °F (45%) 18.2 76,800 Omit 11 87.8 °F (45%) 17.2 76,800 M
89.6 °F (55%) 21.7 76,800 H 89.6 °F (55%) 21.8 76,800 H
84.2 °F (40%) 12.8 76,800 L 84.2 °F (40%) 11.7 76,800 L
4 87.8 °F (45%) 15.9 76,800 M 12 87.8 °F (45%) 16.3 76,800 M
89.6 °F (55%) 21.9 76,800 H 89.6 °F (55%) 22.4 76,800 H
84.2 °F (40%) 13.4 76,800 L 84.2 °F (40%) 12.5 76,800 L
5 87.8 °F (45%) 17.2 76,800 M 13 87.8 °F (45%) 17.3 76,800 M
89.6 °F (55%) 19.9 76,800 H 89.6 °F (55%) 21.9 76,800 H
84.2 °F (40%) 12.8 76,800 L 84.2 °F (40%) 13.4 76,800 L
6 87.8 °F (45%) 16.8 76,800 M 14 87.8 °F (45%) 17.7 76,800 M
89.6 °F (55%) 22.7 76,800 H 89.6 °F (55%) 21.6 76,800 H
84.2 °F (40%) 12.3 76,800 L 84.2 °F (40%) 13.1 76,800 L
7 87.8 °F (45%) 15.9 76,800 M 15 87.8 °F (45%) 16.7 76,800 M
89.6 °F (55%) 23.1 76,800 H 89.6 °F (55%) 20.9 76,800 H
84.2 °F (40%) 119 76,800 L 84.2 °F (40%) 12.9 76,800 L
8 87.8 °F (45%) 15.4 76,800 M 16 87.8 °F (45%) 17.4 76,800 M
89.6 °F (55%) 21.6 76,800 H 89.6 °F (55%) 20.6 76,800 H

1 HSSI score label: (HSSI <13.5): low heat strain; (13.6 > HSSI >18): medium heat strain; (18 < HSSI): high heat strain.

2 Data Size: [32 datapoints/s]: 19,200 datapoints for each physiological signal.
3 L: low heat strain; M: medium heat strain; H: high heat strain.

represent varying levels of heat stress exposure (low, medium, and
high). To ensure accuracy, HSSI [26] was used in post-processing phase
to identify and rectify any potential mislabeling of datasets.

After each trial, subjects were asked to fill out the HSSI questionnaire
to indicate their perceived heat strain level for the task. Each previously
labeled dataset underwent a thorough examination to ensure consistent
results. This additional verification step significantly enhanced the ac-
curacy of the labeling process. Any dataset that did not yield similar
outcomes was omitted from analysis. Table 1 provides an overview of
the data size, HSSI scores, and final labels for the 16 subjects. The au-
thors applied the KL divergence to quantitatively evaluate the dissimi-
larity between the collected datasets, considering their respective
statistical distributions. For this purpose, probability distributions for
each physiological signal under each label were computed based on
mean, variance, and higher-order moments. Simultaneously, KL diver-
gence was employed to compare the resulting probability distributions,
leading to the classification of the dataset into two distinct classes; one
with a particular statistical distribution (Tsqme) and another with dis-
similar statistical distributions compared t0 Tsame (Taiff)-

4.2. Step 2: Collecting test dataset to examine the EnsmTrBoost
framework

Eight able-bodied subjects with no experience of field occupation
were recruited to participate in the second step. Each subject was
equipped with the same set of equipment, including a wristband-type
wearable sensor, chest-strap-type wearable device, HMD VR headset,

Table 2
Heat stress classification accuracy (testing) for single classifiers.
EDA PPG ST Respiration

kNN (k = 3) 54.9% 51.9% 67.3% 66.9%
Logistic Regression 68.1% 67.5%* 67.7% 73.5%
SVM (linear kernel) 60.6% 60.1% 63.8% 71.9%
SVM with Gaussian 70.3%* 66.9% 73.1%* 75.6%
SVM with polynomial 66.7% 63.2% 68.4% 72.2%
QDA 65.4% 57.6% 68.4% 71.7%
MLP 70.1% 67.0% 72.2% 80.2%*

10

and motion tracking sensors (Vive Trackers and Leap Motion). Subjects
were instructed to perform the same logging task within a developed
immersive testbed in a controlled environmental chamber. This task was
carried out under three distinct climatic conditions, as in the first step.
However, unlike the previous step, the subjects were only required to
perform the logging tasks for 5 min, with a 5-min break in between.
Throughout the tasks, the wearable biosensors continuously recorded all
physiological data, which was subsequently uploaded to a cloud server.
Additionally, the collected physiological data from all the sessions were
categorized based on three different climatic conditions, specifically
designed to induce low, medium, and high levels of heat stress. To
ensure the varying levels of climatic conditions could induce different
heat strain levels, the subjects were asked to complete the HSSI ques-
tionnaire after each trial. This questionnaire allowed the participants to
indicate their perceived level of heat strain during the task. The results
of the questionnaire suggested that the subjects experienced medium,
and high levels of heat strain, validating the effectiveness of the exper-
imental design in simulating different levels of heat strain.

5. Results

The authors applied the developed EnsmTrBoost framework to the
data collected from the subjects. Tsqme Was used in the first step of the
EnsmTrBoost to generate the ensemble classifier. Since the training
dataset has three labels, low, medium, and high heat stress, the baseline
accuracy of each classifier was 33.3%. Correspondingly, the perfor-
mance of the trained ML classifier was evaluated with the collected test
dataset. Table 2 demonstrates the accuracy of the ML classifier in esti-
mating the likelihood of workers’ heat strain levels for each physiolog-
ical signal trained using the five-folder cross-validation technique. As
depicted in Table 2, SVM with Gaussian emerges as the leading classifier
for EDA signal in predicting the likelihood of heat strain level with an
accuracy of 70.3%. Likewise, Logistic Regression has the best accuracy
of 67.5% for predicting the likelihood of heat strain from a PPG signal.
Similarly, SVM with Gaussian is the top classifier for ST signal in pre-
dicting the likelihood of heat strain level with an accuracy of 73.1%.
Furthermore, MLP has the best accuracy of 80.2% for predicting the
likelihood of heat strain from respiration signals.
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Fig. 6. Results of the experimental setup: (A) Ensemble classifier (Egnq) performance; and (B) Updated weights of selected single classifiers over training iterations.
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For each category of the physiological signals, the authors selected
the optimal single classifier for each signal to generate the initial
ensemble classifier (Ej;q) by following the procedure mentioned in
Section 3.2. Using the ensemble rule, these single classifiers were used to
generate Ej;q. Consequently, the Ejyq was trained to develop an
ensemble classifier (Efnq) using the Tyyr. The performance of Eg,q was
evaluated using the test dataset. Fig. 6-A shows the training and testing
performance of the Ep,y. The classification accuracy of the Ep,q is
93.2%, and the testing accuracy of the Egpq is 91.7%. Fig. 6-A also shows
the learning graph curves (training versus testing loss) where the red
lines represent training loss, and the orange lines represent the testing
loss. Training loss is an important indicator for monitoring the training
of the Efpq. The training was considered complete once the disparity
between the training losses of two successive training epochs fell below
the predefined threshold (i.e., 0.01). Every 30 iterations, the training
loss and testing loss were tested and visualized to determine the stability
of the training process. As seen in Fig. 6-A, the training loss and testing
loss have decreased in the training process, whereas the testing loss is
higher than the training loss. Moreover, the testing losses are in good
agreement with their training losses, which means that the Efyq fits the
training dataset closely without overfitting. Further, the authors have
also reported the ensemble weights of the selected single classifiers.
Fig. 6-B illustrates the updated weights of the single classifier over the
training iterations.

The authors also demonstrated the performance of EnsmTrBoost in
calibrating the initial ensemble classifier to decode the physiological
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signals with different statistical distributions. Fig. 7-A visualizes the
decision boundary of E;yq. Likewise, Fig. 7-B demonstrates the statis-
tical distribution of Tg which statistical distribution differed from the
Tseme- More specifically, the data points collected in three pre-
determined environment conditions and the corresponding statistical
distribution of Ty is represented in Fig. 7-B. Notably, these statistical
distributions were depicted by leveraging Principal Component Analysis
(PCA) to project the data into a two-dimensional space. A significant
difference in distribution can be seen between the datasets in Fig. 7-A
and Fig. 7-B caused by variability issues in the elicited physiological
signals, as corroborated by KL divergence. As such, the Ej;;4 trained on
data with a particular statistical distribution cannot accurately decode
the dataset with a different statistical distribution. Following the pro-
cedure mentioned in Section 3.2, the Ej;q Was trained to develop Efng.
Fig. 7-C visualizes the decision boundary of Ef,q. The decision boundary
is calibrated to match the statistical distribution of the Ty by employing
EnsmTrBoost framework. As shown in Fig. 7-C, the Eg,q has high po-
tential in accurately identifying workers’ heat strain from captured
physiological signals with variability issues.

To assess the consistency in the performance of EnsmTrBoost for the
dataset with different statistical distributions, the authors leveraged
traditional ML algorithms alongside EnsmTrBoost to Tgys. The selected
ML algorithms included SVM with Gaussian, Logistic Regression, and
MLP, due to their effective performance for specific physiological sig-
nals, as demonstrated in Table 2. The authors evaluated the consistency
by comparing the mean and standard deviation (SD) of the prediction
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accuracy from the leveraged algorithms across the Ty for each test
subject. SVM with Gaussian achieved a testing accuracy of 78.6% =+
4.71%. Logistic Regression demonstrated a testing accuracy of 77.3% +
6.29%. MLP achieved a testing accuracy of 84.3% =+ 4.3%. In this vein,
compared to the traditional ML approaches, EnsmTrBoost with a testing
accuracy of 91.7% =+ 1.43% lead to consistent performance across
datasets with different statistical distributions.

6. Discussion

This paper presents an enhanced worker-centered heat strain moni-
toring framework that utilizes physiological signals obtained from
wearable biosensors to reliably and precisely estimate the likelihood of
heat strain among field workers. Firstly, a high-fidelity immersive vir-
tual reality environment with a tangible user interface was developed to
stimulate life-like experiences of a common physically demanding task
in heat-vulnerable occupations and collect physiological signals, which
included EDA, PPG, ST, and respiratory signals. The developed virtual
environment provided a safe and controlled environment for reducing
the risk of injury and allowing for the collection of a large amount of
data. Furthermore, the integration of a tangible interface (with an actual
chainsaw) in the virtual environment provided a life-like experience for
the participants, making the collected data more representative of real-
world conditions. In sum, the developed simulated experience in a risk-
free setting provided a better avenue in eliciting the life-like human
subjects’ behavior and the corresponding physiological signals, which
facilitated the development of a robust framework for accurate heat
strain assessment. Notably, the developed approach holds promise for
future studies that involve developing Al-driven models for monitoring
and assessing human health in extreme environments.

Secondly, a physiological-sensing framework, EnsmTrBoost, was
developed to identify workers’ heat strain from collected physiological
signals. The framework successfully non-intrusively captured EDA, PPG,
ST, and respiratory signals from the human subject, enabling the prompt

Training-to-Testing Data Ratio = 9:1
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Classification Accuracy (%)
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estimation of their heat stress exposure with an accuracy of 93.2%. This
advancement is particularly significant when considered in the context
of previous research where physiological sensors were coupled with
prevalent ML algorithms to identify heat strain based on workers’
physiological signals [38-40]. Notably, Chan et al. [40] developed an
MLR to predict worker’s heat strain with a mean absolute percent value
(MAPE) of 5.6%, but its reliance on invasive calorimetry, which disrupts
ongoing work, limits real-world applicability. Additionally, MLR often
struggles to accurately predict the complex interplay of personal, envi-
ronmental, and work-related factors [111]. Similarly, Yi et al. utilized
ANN to estimate worker’s RPE with a low MAPE [38], and concurrently,
integrated the estimation with heart rate data to issue early heat strain
alerts. However, RPE is a subjective measure, and relying solely on heart
rate to predict workers’” RPE may not fully capture the varied physio-
logical responses to heat stress. Further, Shakerian et al. [39] leveraged
off-the-shelf wearable sensing devices to capture physiological signals
and used traditional ML algorithm to predict the risk of heat strain with
92% accuracy [41]. The traditional ML algorithms have difficulty in
objectively discerning physiological signals due to intra- and inter-
subject variability [41,42]. Such variability issues fundamentally chal-
lenge the traditional ML algorithms’ assumptions and necessitate a
uniform distribution between training and test data —an aspect often
overlooked in previous studies [60,112-117]. Contrary to the limita-
tions in these state-of-the-art heat strain models, the EnsmTrBoost
framework designed to enhance the performance of ML classifiers in
identifying workers’ heat strain from the multimodal physiological
signals with variability issue, exhibited a testing accuracy of over 90%.
Upon closer examination, the EnsmTrBoost with a low SD of 0.0143 had
consistent performance across the dataset with different statistical dis-
tribution, as compared with the traditional classifiers. By integrating
ensemble learning and domain adaptation, EnsmTrBoost not only im-
proves the performance and generalization of data-driven models but
also becomes more robust to variations in the data. Furthermore, its
design, which accommodates multimodal physiological signals and their
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inherent variabilities, allows us to make more accurate predictions by
effectively inferring physiological signals with variability issues. This
key advantage enables the framework to accurately predict the likeli-
hood of heat strain in new individuals under real-world job site
conditions.

To further examine the efficiency of the developed framework in
identifying workers’ heat strain from collected physiological signals
with variability issues, the authors compared the classification accuracy
of the developed EnsmTrBoost with other prevalent transfer learning
approaches, namely Adaboost, TrAdaBoost, and TaskTrAdaBoost under
four distinct scenarios, each time by dividing the physiological data
collected from the subjects into the different ratio of training data and
testing data. The ratio of training data and testing data were 9:1, 8.5:1.5,
8:2, and 7:3, respectively. Fig. 8 shows the competitive performance of
the developed framework over the state-of-the-art transfer learning
approaches.

As seen, the EnsmTrBoost framework had the highest classification
accuracy in the scenarios with the 9:1, 8.5:1.5, and 7:3 training-to-
testing data ratios. In the scenario where the ratio was 8:2, the perfor-
mance of TaskTrAdaBoost was slightly better than the EnsmTrBoost.
One plausible explanation for such competitive performance of
EnsmTrBoost is the capability of the developed framework to adapt the
statistical properties of the data to the properties of the data with
different statistical distribution through inner loop domain adaptation.
The physiological signals collected from different individuals or
different environments can have different distributions, making it more
challenging for a model trained on one domain to generalize to another.
In this vein, the EnsmTrBoost framework can robustly handle distribu-
tional differences by updating the model parameters to better fit the
target domain data and achieve better performance. As shown in Fig. 8,
AdaBoost had the lowest accuracy among different transfer learning
approaches in all scenarios. This might be because AdaBoost is more
focused on modifying the decision boundary rather than the distribution
itself, which cannot effectively address the distribution shift issues,
subsequently having less accurate prediction results.

The developed framework is expected to promote a deeper under-
standing of human thermoregulation and assist in preventing heat stress
in field workers. The developed approach provides a systematic and
continuous assessment of heat stress exposure, allowing for timely
recognition and prevention of occupational health and safety risks. By
detecting workers’ heat strain in a timely manner, appropriate preven-
tive measures can be implemented to avoid the undesirable conse-
quences of heat stress, ultimately enhancing workplace safety. While the
scope of this study was limited to estimating workers’ heat strain from
EDA, PPG, ST, and respiratory signals with variability issues, the
framework can also be leveraged for other non-stationary physiological
signals to monitor diverse physiological parameters of field workers
accurately and consistently. For instance, the developed framework can
be leveraged to accurately estimate muscular fatigue from electromyo-
gram (EMG) signals, cognitive performance, vigilance, and alertness
from electroencephalogram (EEG) signals, and overexertion from elec-
trocardiogram (ECG) signals. In this context, the introduction of a
domain-adaptation-based approach capable of addressing variability
concerns in physiological signals holds the potential for enhancing
physiological-sensing-based health monitoring across a spectrum of
sectors, including sports, military, mining, agriculture, and firefighting.

While the results of this study hold significant promise for the cre-
ation of a sturdy heat strain monitoring system for field workers, it is
crucial to acknowledge certain limitations that could be explored in
forthcoming research endeavors. First, the study used commercially
available off-the-shelf wearable biosensors to estimate the likelihood of
heat strain. While wearable biosensors endow for objective, noninva-
sive, and continuous monitoring of heat strain among the field workers,
the accessibility, ease of use, and cost involved with the sensor are
bound to limit its ubiquitous implementation on the field. The body’s
response to various stimuli is reflected as several physiological
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alterations, which cannot be measured through a single commercially
available wearable sensor. A wearable sensor that captures the
contributory biosignals is currently unavailable. Future research can
develop and leverage a wearable sensing system for accurate and
noninvasive measurement of workers’ diverse contributory physiolog-
ical responses to stressors on the field. Second, the study only used four
physiological signals (EDA, PPG, ST, and respiratory signals) to estimate
heat strain. It would be interesting to include other factors such as hy-
dration level, acclimation status, and individual differences to assess
heat strain comprehensively. Third, the developed virtual environment
does not consider the effects of powder in logging tasks, which can also
exacerbate workers’ heat strain. Future research could explore safe and
practical methods to incorporate the effect of powder in the virtual
environment, aiming to enhance the realism of logging tasks using
advanced immersive technologies or alternative simulation strategies. In
future research, the authors recommend examining the robustness of
EnsmTrBoost model with a larger sample size for longer tasks duration
in varying environmental conditions with diverse field tasks. Further,
the developed framework can be validated in the naturalistic field for
continuous heat strain monitoring and proactive safety interventions.
The predicted results can be sent to the worker as a safety intervention to
prompt the worker to rest, self-pace or stop physical activity, and
replenish body nutrients using dietary supplements, such as electrolyte
tablets. The implementation of such a proactive safety intervention
mechanism will ultimately serve to enhance the safety and overall well-
being of field workers.

7. Conclusion

This paper presented and examined an enhanced worker-centered
heat strain monitoring framework for accurately and consistently esti-
mating the likelihood of heat strain among field workers based on their
physiological signals. To achieve this, a high-fidelity immersive virtual
reality environment with a tangible user interface was developed to
stimulate life-like experiences of a common physically demanding task
in heat-vulnerable occupations and collect physiological signals,
including EDA, PPG, ST, and respiratory signals. A physiological-sensing
framework, EnsmTrBoost, was developed to identify workers’ heat
strain from the collected physiological signals, particularly concerning
the variability issues that often arise in real-world settings. The
EnsmTrBoost framework employed ensemble learning and transfer
learning techniques to improve the performance and generalization of
the data-driven models, making them more robust to variations in the
physiological data. The investigation revealed that EnsmTrBoost could
promptly estimate the likelihood of heat strain with an accuracy of
93.2%. The developed heat strain assessment framework is expected to
promote a deeper understanding of human thermoregulation and assist
in preventing heat stress in field workers. Swift detection of workers’
heat strain allows for timely implementation of preventive measures,
averting the adverse effects of heat stress and thereby augmenting
workplace safety. As time progresses, the implementation of this safety
monitoring system has the potential to greatly improve the safety and
overall health of field workers, especially those working in extremely
hot weather conditions. The encouraging outcomes of this study hold
significant promise for the development of a robust heat strain moni-
toring system for field workers. Nevertheless, it is important to
acknowledge certain limitations that could be addressed in future
research endeavors. For example, this study was conducted with a
relatively small sample size, comprising individuals with limited field-
work experience. Subsequent investigations could benefit from recruit-
ing a larger and more diverse pool of subjects, ideally with extensive
prior experience in fieldwork, to offer a more comprehensive assessment
of the developed framework’s performance. Likewise, future research
can be conducted to evaluate the performance of the developed system
in naturalistic field conditions. Moreover, future studies may explore the
potential impact of employing a more precise and continuous heat stress
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assessment method, such as utilizing ingestible pills for monitoring core
body temperature. This can lead to further refinement and accuracy in
heat strain evaluation.
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