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A B S T R A C T   

In anticipation of the adoption of active back-support exoskeletons in the construction industry, the potential fall 
risks associated with these devices remain unclear. This study explores the unintended consequences stemming 
from exoskeleton usage, including the weight, bulkiness, and environmental factors that may contribute to fall 
risks. Specifically focusing on carpentry framing work, this study assesses the risk of falling while using an active 
back-support exoskeleton, employing foot plantar pressure distribution data captured with pressure insoles. A 
simulated framing task, comprising subtasks such as measuring, assembly, nailing, lifting, moving, and instal
lation, was conducted both with and without the use of the active back-support exoskeleton. Foot plantar 
pressure distribution data for all foot regions were processed, and five pressure metrics were extracted for sta
tistical analysis. Employing a combination of paired t-tests, ANOVA, and post-hoc tests, the findings reveal that 
the use of exoskeleton significantly increased the pressure metrics in at least one of the subtasks and foot regions, 
with an increase ranging from 7% to 51%. This suggests an elevated fall risk associated with using the device. 
Notably, the toe and heel regions are most sensitive to gait changes, while tasks involving movement, measuring, 
and assembly exhibit the highest fall risk. This study significantly contributes to the understanding of the pre
viously unrecognized fall risk implications associated with active back support exoskeletons in the construction 
industry. The results explain the relationship between the foot region and construction tasks during exoskeleton- 
use. The results would inform construction stakeholders, facilitating informed decision-making regarding the 
adoption of active back support exoskeleton for construction tasks. Furthermore, the study provides valuable 
insights for the design of exoskeletons tailored to meet the unique demands of the construction work.   

1. Introduction 

In the effort to combat the occurrence of work-related musculo
skeletal disorders (WMSDs) in the construction industry, exoskeletons 
have emerged as a potential solution. Exoskeletons aid in alleviating 
WMSDs by providing the necessary support to reduce the strain on the 
musculoskeletal systems [1,38]. Their potential has been demonstrated 
across various industries, particularly in the context of active and pas
sive back-support exoskeletons, which have been shown to lessen 
WMSDs by reducing muscle activation (Antwi-Afari et al. 2021; [21,53] 
and range of motion [36]. For example, Walter et al. [53] examined the 
biomechanical advantage of an active back-support exoskeleton (aBSE) 
in weightlifting tasks. The study showed a decrease in muscle activation 
by 8 % to 22 % when using the exoskeleton. Huysamen et al. [21] 
evaluated the effectiveness of an aBSE in manual material handling tasks 

by examining muscle activations, revealing reductions of 12 % to 15 % 
in muscle activity. Antwi-Afari et al. (2021) studied a passive back- 
support exoskeleton in repetitive lifting tasks within construction and 
found an 11 % minimum reduction in muscle activity in the back. 
Ogunseiju et al. [36] evaluated a postural-assist passive exoskeleton for 
manual material handling in construction and revealed a minimum 
reduction of 5 % in the range of motion during lifting task. However, 
there are unintended drawbacks associated with exoskeleton usage, 
such as discomfort in body parts [9], movement restrictions [39], 
thermal comfort [29], and catch and snag risks [25]. These issues can 
increase the mental workload of users, which could subsequently lead to 
reduced situational awareness, and thus indirectly increase the risk of 
fall [30]. Moreover, the weight of exoskeletons can shift the user’s 
center of gravity [15,22,41], resulting in imbalance and an increased 
risk of fall. Active back-support exoskeletons are particularly 
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challenging due to their heavier weight compared to passive ones 
[18,51], which may exacerbate fall hazards in construction environ
ments. According to the United States Bureau of Labor and Statistics 
(BLS 2020), fall-to-lower-level incidents occur at a rate of four times 
higher in the construction industry than in other industries. Falls in the 
construction industry have led to the disability of workers, and in severe 
cases, death [57]. 

Sensing technologies have been employed to assess fall risks and gait 
balancing across various industrial sectors. For example, Mehmood et al. 
[31] employed electromyography to capture and analyze lower leg 
muscles to evaluate fall risk in an elderly group. Haescher et al. (2018) 
utilized photoplethysmography data using a smart wearable wristwatch 
to assess and predict the risk of falling among older people. Annese and 
De Venuto [2] evaluated the risk of fall in a clinical environment by 
combining electroencephalogram sensor with other wearable sensors. 
Liu et al. [28] analyzed risk of falling among healthy and fall prone 
groups using inertia measurement unit. Nonetheless, research indicates 
that evaluating fall risk directly from foot plantar pressure measures 
exhibits a high sensitivity to changes in gait and balance [4,48]. Studies 
have assessed fall risks by assessing the foot plantar pressure distribution 
from force plates [33] and pressure insoles [4,55]. For example, Mickle 
et al. [33] assessed fall risk directly from all foot regions (i.e., heel, 
metatarsal, arch, and toe) using peak pressure and pressure–time inte
gral metrics extracted from foot plantar pressure. Antwi-Afari and Li [4] 
utilized foot plantar pressure distribution measures, such as peak pres
sure, pressure–time integral, and average pressure, obtained from 
pressure insoles to evaluate the fall risk in construction. Yan et al. [55] 
used similar metrics from pressure insoles to evaluate fall risk among 
older people. 

Despite the growing interest in the adoption of aBSE across various 
industry sectors, few studies have investigated fall risks when using the 
device for construction tasks. Considering the bulkiness and weight of 
aBSE, unintended consequences of using exoskeletons, and unstructured 
nature of construction sides, it is important to empirically evaluate the 
risk of falling while using aBSE for construction-related tasks. Therefore, 
this study aims to evaluate fall risks while using aBSE during carpentry 
framing work as a case study. This paper begins with an introduction of 
the study, followed by a background section to review relevant litera
ture. The next section discusses the methods adopted for this study, 
followed by the results section. The last sessions include the discussion 
and conclusion sections. This study contributes by revealing the fall risks 
associated with using aBSE for construction work, offering insights into 
the impact of construction tasks and foot regions on fall risk during the 
use of aBSE. 

2. Background 

2.1. Potential fall hazards associated with exoskeleton usage 

Exoskeletons have long been used in healthcare for rehabilitation 
and aiding mobility in individuals with physical challenges. More 
recently, they have been introduced in occupational settings to augment 
human musculoskeletal systems and reduce muscle strain. Exoskeletons 
provide support by supplying the torque to assist the body and can be 
categorized according to the body part they support, such as back, 
shoulder, or leg support [42]. They are also classified based on their 
source, either active (electrically powered) or passive (mechanically 
powered) [42]. 

Studies have shown that exoskeletons offer biomechanical benefits in 
reducing WMSDs by decreasing muscle strain (Antwi-Afari et al. 2021; 
[53], range of motion [43], and perceived discomfort [17]. For instance, 
Walter et al. [53] investigated the effect of aBSE during weight-lifting 
exercise and demonstrated a reduction of 5 % to 22 % in muscle activ
ity. Poliero et al. [43] assessed the effect of using aBSE for performing 
tasks that include carrying and lifting of load and revealed a reduction of 
10 % in the range of motion of the hip. Antwi-Afari et al. (2021) 

investigated a passive back-support exoskeleton during repetitive lifting 
tasks in construction and observed a minimum reduction of 11 % in back 
muscle activity. Gonsalves et al. [17] examined the suitability of a 
passive back-support exoskeleton for rebar construction work and 
showed a reduction in perceived discomfort in the back region. Despite 
the reported benefits, unintended consequences of exoskeletons, which 
could indirectly or directly lead to fall hazards have been identified 
[40,50]. According to Zhu et al. [58], one of the major consequences of 
using exoskeletons is increase in cognitive load of users, which could 
indirectly increase their perception of fall risks as a result of reduced 
situational awareness. High cognitive load refers to the states at which 
the brain is trying hard to process the available information to meet the 
demand of a task, and excess of this demand could lead to mental fatigue 
[30]. In addition, the use of exoskeleton can restrict movement [37], 
cause thermal discomfort [29], and impact anthropometric fit [52], 
which could increase fall hazards. For example, Gonsalves et al. [17] 
assessed the use of exoskeletons in construction rebar tasks and identi
fied increased pressure in the chest region due to exoskeleton use. 
Ogunseiju et al. [37] evaluated the suitability of exoskeletons in con
struction flooring work and revealed restriction in movement and 
interference with work during the use of the exoskeleton. Liu et al. [29] 
assessed the effect of thermal comfort on the use of exoskeletons in 
resting and lifting tasks across two different atmospheric temperatures, 
such as 26 and 10 degrees Celsius, representing hot and cold, respec
tively. The study revealed that the use of exoskeletons at high temper
atures increases the metabolic rate, sweating, and thermal sensation, 
which leads to thermal discomfort for the users. Upasani et al. [52] 
assessed the potential of exoskeletons in agriculture tasks that involve 
lifting heavy loads, operating hand tools, and climbing. The study 
revealed that 30 % of the participants are concerned about fall risk due 
to the anthropometric fit of the exoskeleton. 

Furthermore, researchers have unveiled some unintended conse
quences of using exoskeletons that could directly lead to fall hazards, 
such as the weight of the exoskeletons [15], uneven load distribution on 
the musculoskeletal system [41], and catch and snags [25]. For example, 
Fox et al. [15] conducted a comparative analysis of the potential of 
exoskeletons to improve manufacturing performances. Through reviews 
of existing studies, the study revealed the unintended consequences of 
added weight and misfit of exoskeletons which could lead to balancing 
problems, and as a result, an increase in fall risk. Picchiotti et al. [41] 
assessed the impact of exoskeleton on biomechanical loading of lumber 
spine in manual material handling tasks that involve lifting. The study 
revealed there is an unequal distribution of load across the body, which 
could also lead to imbalance of the body. Kim et al. [25] evaluated the 
potential of exoskeletons from the construction industry stakeholders’ 
perspectives. Given the bulkiness of exoskeletons, one of the major 
concerns of the stakeholders is the catch and snag risks, which could lead 
to an increase in the risk of falling while working at height. 

2.2. Assessment of fall risks 

Sensing technologies have been employed to evaluate fall hazards 
across various sectors [8,12,14]. Examples of such sensing technologies 
include motion capture systems [10], electromyography (EMG) [27,31], 
photoplethysmography (PPG) (Haescher et al. 2018), electroencepha
logram (EEG) [2], inertial measurement unit (IMU) [56], force plate 
[26], and pressure insoles [47]. However, researchers have shown that 
assessing fall risk directly from foot regions through metrics of foot 
plantar pressure displays high sensitivity to gait balancing changes [4]. 
Notable metrics, such as higher peak pressure, pressure–time integrals, 
pressure gradient, full width at half maximum, and average pressure, 
could disrupt balance and stability and lead to an increase in fall risk 
[33,55]. Force plates [23,32,33,35] and wearable pressure insole sen
sors [4,13]; Hapsari et al. 2014; [24,55] have been used to capture foot 
plantar pressure distributions for fall risk assessment. For instance, 
Mickle et al. [33] evaluated fall hazards among a group of older people, 
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classified into fallers and non-fallers, in a walking task. The foot plantar 
pressure distribution was captured for all foot regions using a force 
plate. The study shows that peak pressure and pressure–time integrals 
for the fallers are significantly higher than the non-fallers. Also, the heel, 
metatarsal, and toe regions of the foot show significantly higher peak 
pressure. Menz et al. [32] assessed the planter pressure distribution of 
callused and non-callused foot regions of elderly people while walking at 
selected speeds. The study computed the peak pressure across the foot 
regions and showed that people with calluses have a higher peak pres
sure, which shows they have balance impairments. Khalaf et al. [23] 
evaluated the plantar pressure alterations for balancing and stability in 
obese adults and a control group, which were classified according to the 
body mass index. The obese group shows higher peak pressure at the 
heel when compared to the control group, which indicates lesser 
postural stability that increases the risk of falling. Similarly, Neri et al. 
[35] investigated how the relationship between obesity and altered 
plantar pressure could lead to fall risk. The study compared obese, 
overweight, and normal weight groups while assessing the peak pressure 
of all the foot regions. The study shows that the obese group exerted the 
highest peak pressure in the midfoot and forefoot. 

Given the ease of use and mobility advantage of wearable pressure 
insole sensors over a force plate, Yan et al. [55] evaluate fall hazards in 
older individuals classified into low-risk and high-risk falls, using pres
sure insoles for a walking task. The foot plantar pressure distribution 
was captured for all the foot regions. The study assessed the peak 
pressure, pressure–time integral, full width at half maximum, average 
pressure, and pressure gradient. The study showed that the pressure 
gradient has the best performance, with the heel and midfoot showing 
higher pressure. Foot plantar pressure distribution was captured using 
pressure insoles for all foot regions. Peak pressure, pressure–time inte
gral, mean pressure, anterior/posterior center of pressure, and medial/ 
lateral center of pressure were computed. The results showed significant 
differences across the loss of balance event compared to the control 
experiment. Kim et al. [24] compared the foot plantar pressure distri
butions of the dominant and non-dominant sides of participants with a 
history of falling. The peak plantar pressure was extracted and compared 
for the two sides. The peak pressure showed no statistical significance 
comparing the two sides. Hapsari et al. (2014) assessed the stability of 
high-heel wearers by evaluating the plantar pressure distributions of the 
foot regions while wearing different heights such as 0 cm, 4 cm, 7 cm, 
and 10 cm. The study showed that as the heel height increased, the peak 
pressure shifted from the rearfoot and midfoot regions to the forefoot 
and toe regions, which affected the stability of the users. Choi et al. [13] 
evaluated the difference in the fall risk for three slip events, normal step, 
recovered, and slipped using foot plantar pressure data captured for all 
the foot regions. The study assessed the peak pressure and pressure–time 
integral, which were compared for all three events. The study revealed 
that the heel is the most sensitive part of the foot for detecting fall risk. In 
construction, Antwi-Afari and Li [4] examined fall risk among con
struction workers, focusing on loss of balance events such as slips, trips, 
unexpected step-downs, and twisted ankles. The authors also used 
pressure insoles to measure foot plantar pressure distribution across all 
foot regions. And computed metrics including peak pressure, pressur
e–time integral, mean pressure, anterior/posterior center of pressure, 
and medial/lateral center of pressure. The results showed significant 
differences across the loss of balance events when compared to the 
control experiment. 

3. Research gap 

Existing research has identified risks associated with the use of 
aBSEs; however, a significant research gap exists as limited studies have 
explored the potential implications of these exoskeletons on fall risks 
during construction-related tasks. Construction activities involve dy
namic motions and diverse postures, resulting in variable pressure levels 
across distinct foot regions. Studies have emphasized the critical role of 

pressure distribution on foot regions as a key indicator of fall risk 
[4,32,33]. Despite the importance of understanding the impact of con
struction tasks on foot regions, a dearth of research exists in this domain. 
To address this research gap, it becomes imperative to explore the im
plications of aBSEs on fall risks during construction-related tasks. The 
intricate nature of construction tasks necessitates an investigation into 
how the use of these exoskeletons influences the risk of falls among 
users. Recognizing the multifaceted nature of construction tasks, it is 
crucial to unravel the contribution of different subtasks to the overall 
risk of falls when using aBSEs. This delineation is essential for devel
oping targeted interventions and safety measures tailored to the specific 
challenges posed by various construction-related activities. 

Moreover, pressure insoles present an opportunity to quantify a 
range of fall risk metrics or measures. These include peak plantar pres
sure, pressure–time integral, mean pressure, maximum pressure 
gradient, and full width at half maximum, allowing for an understanding 
of the impact on different foot regions. Thus, the study aims to fill the 
existing research gap and contribute valuable insights that can inform 
the design, implementation, and improvement of aBSEs for use in the 
construction industry. This study addresses the limited understanding of 
the influence of aBSEs on fall risks during construction-related tasks, 
exploring the relationship between exoskeleton use, construction sub
tasks, and foot region pressures. The overarching goal is to enhance 
safety protocols and design considerations in the construction industry 
by providing evidence-based insights into mitigating fall risks associated 
with the adoption of aBSEs. 

4. Method 

This section describes the approach employed to address the afore
mentioned gaps. These includes the participants involved in the study, 
the experimental design and procedure, the instruments utilized in the 
study, the data collected, and the data processing and analysis proced
ure. An overview of the methodology is illustrated in Fig. 1. 

4.1. Participants 

Sixteen healthy males (age: 30 ± 4 years, height: 173 ± 5.5 cm, body 
weight: 72 ± 7.5 kg, and body mass index: 23.98 ± 1.9 kg/m2) without 
any history of musculoskeletal disorders in the past six months were 
recruited for this study. Although some participants had previous 
exposure to construction tasks, their encounters were limited to labo
ratory settings, and they did not have regular construction framing task. 
Every participant gave their informed consent before commencing the 
experiment. The number of participants was selected based on a priori 
sample size computation, which provides a minimum power of 80 % 
with an effect size (f) and alpha (α) of 0.25 and 0.05, respectively. This 
yields a sample size of 8 participants, which is the minimum required for 
this study. All computations were performed using G*Power 3.1.9.7. 
This study was conducted in accordance with the approval of the Vir
ginia Tech Institutional Regulatory Board (IRB: 19–796). 

4.2. Experimental design and procedure 

A carpentry framing task was repeatedly simulated under two 
experimental conditions, i.e., with-aBSE and without-aBSE. The framing 
task was carried out under six subtasks, such as measuring, assembly, 
nailing, lifting, moving, and installation, where foot planter pressure 
distributions were captured with wearable pressure insoles for four-foot 
regions (i.e., toe, metatarsal, arch, and heel) for the two legs. The in
dependent factors are the experimental conditions, subtasks, and foot 
regions, while the dependent variables represent five metrics obtained 
from the foot plantar pressure. The five metrics are peak pressure, 
pressure–time integral, full width at half maximum, average pressure, 
and maximum pressure gradient. The duration of each experimental 
condition did not exceed five minutes to reduce the effect of fatigue and 
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the participants were allowed to rest for 30 min after completing the first 
experimental condition before proceeding to the second condition 
(Antwi-Afari et al. 2021). Prior to the commencement of the simulated 
framing task, each participant was educated about the nature of the task, 
and a step-by-step process of the experiment was demonstrated to the 
participants. Also, the participants were introduced to the operation 
modes of the aBSE and instructed on how the device would be used for 
the experiment. The experiment commenced with the measuring sub
task, where the participants measure out the required timber log out of 
the log of planks provided for the experiment. As shown in Fig. 2, the 
required timber logs for the frame construction consists of four numbers 
of 1.8 m x 0.1 m x 0.025 m and two numbers of 1.2 m x 0.1 m x 0.025 m. 
This was followed by the assembly subtask, where the participants ar
ranged the measured timber log to form the frame as indicated in Fig. 2. 
The next subtasks include fastening the assembled frame together with a 
nail gun. The fastened frame weighed approximately 20 kg, which is 
within the maximum safe lifting weight as provided by the revised Na
tional Institute for Occupational Safety and Health lifting equation 
[46,54]. The next subtask involves lifting the frame, which is subse
quently moved manually to the upper floor via a staircase, where the 
final installation takes place. The experiment was recorded with a 
timestamp camera for ease of data sorting, according to the subtask, for 
analysis. 

4.3. Instruments and data collection 

4.3.1. Active back-support exoskeleton 
Cray X active back-support exoskeleton, manufactured by German 

bionic company, was used for this study. The exoskeleton consists of 

three major assistive strategies: lifting, bending, and walking, which can 
be regulated from 0 to 100 %. The device weighs approximately 7.5 kg. 
The exoskeleton is designed to be worn as a backpack with the help of 
straps shown in Fig. 3. The straps consist of chest, waist, shoulder, and 
thigh straps. The device is powered by a 40-Volt battery that could last 6 
to 8 h according to the manufacturer. 

Fig. 1. Methodology overview.  

Fig. 2. Simulated carpentry task using pressure insole: (a) without aBSE and (b) with aBSE.  

Fig. 3. Active back-support exoskeleton. ce: . 
Sour[16] 
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4.3.2. Pressure insoles 
Opengo wearable pressure insoles manufactured by Moticon were 

adopted in this study to capture foot plantar pressure distribution across 
the foot regions for the two legs. Each insole consists of 16 sensors 
distributed across the foot regions. Sensors 1–4, 5–8, 9–13, and 14–16 
capture the heel, the arch, the metatarsal, and the toe regions, respec
tively (Fig. 4) [11]. The pressure insole was adopted due to its capability 
to directly evaluate fall risk through gait changes as a result of exerted 
pressure distributed across the foot regions [33]. In this study, the 
metrics extracted from the foot plantar pressure distribution data across 
the foot regions to assess fall risk include peak plantar pressure, pres
sure–time integral, mean pressure, maximum pressure gradient, and full 
width at half maximum [4,55]. The peak plantar pressure represents the 
maximum pressure exerted by the participants on the ground at a 
particular point in time in each of the foot regions (Equation (1). The 
peak pressure (PP) was computed for each of the six subtasks. The 
pressure–time integral (PTI) represents the total pressure exerted by the 
participants on the ground over the period of time covered while per
forming each of the subtasks (Equation (2). The pressure–time integral 
was computed for each of the foot regions. The mean pressure (MP) is 
the average pressure exerted by participants on the ground over the 
duration of each subtask (Equation (3). The average pressure was 
computed for all the foot regions. The maximum pressure gradient 
(MaxPG) represents the highest rate of change of the plantar pressure 
across the foot regions of the participants over the period of each of the 
subtasks (Equation (4). The full width at half maximum (FWHM) rep
resents the width of the pressure curve on the foot at half of its maximum 
height. The distance between the spots on the curve that corresponds to 
half of the peak pressure value is used to compute FWHM (Equation (5). 
These metrics were computed using Eq. (1)–(5) below [4], Yan et al. 
[55]. 

PP = Maximum (Pi, ⋯⋯⋯PN) (1)  

MP =
1
N

∑n

i=0
Pi (2)  

PTI =
∑N

t=0
Pi X dt (3)  

MaxPG = max
t1 ≤ t ≤ t2

dP
dt

(4)  

FWHM = t2 − t1 (5) 

Where Pi represents the pressure value at i-th sensor. 
N represents the number of sensors. 
dt represents the time interval. 

t1 and t2 are the start and end times of the contact phase. 

4.3.3. Data processing and analysis 
Data processing begins with the cleaning of the foot plantar pressure 

captured data from the pressure insoles during the experiment. Ac
cording to Tandle et al. [49], physiological wearable sensors are sus
ceptible to artifacts, which could significantly distort the quality of the 
results. While some of the artifacts could be intrinsic, i.e., generated via 
body movements, there are also extrinsic artifacts, generated by the 
electromagnetic devices within the vicinity [7]. Using the timestamp 
video recorded during the experiment and the timestamp on the foot 
plantar pressure distribution data, the data was sorted according to the 
subtasks (i.e., measuring, assembly, nailing, lifting, moving, and 
installation) to prepare it for filtering. The sorted data was passed 
through 12th-order Butterworth low-pass filtering with an 8 Hz cutoff 
frequency to remove the artifacts [44] as shown in Figs. 5a to 5f, which 
represents examples of a participant’s data. The next step was to 
compute the fall risk metrics (i.e., peak pressure, pressure–time integral, 
full width at half maximum, average pressure, and maximum pressure 
gradient) using Equations 1 to 6 in accordance with each of the subtasks. 

Regarding the statistical analysis, firstly, Tukey’s range test was used 
to remove the outliers using the interquartile range to define the lower 
limit (Q1 − 1.5 * IQR) and upper limit (Q3 + 1.5 * IQR) [45]. Given the 
repeated nature of the experiment, the sphericity and normality as
sumptions of the data were examined using Mauchly and Shapiro-Wilk 
tests to determine the suitability of the statistical tools to be deployed 
to examine the significant differences. Having met the required as
sumptions, a 3-way repeated measures ANOVA was conducted to 
examine the statistical differences among the variables. Paired t-test was 
further conducted to examine the differences in each of the foot regions 
across all of the subtasks. Also, 1-way repeated measure ANOVA was 
adopted to understand the significant subtask and the foot region while 
using aBSE. The independent variables are the experimental conditions 
(without-aBSE and with-aBSE), the foot regions (toe, heel, metatarsal, 
and arch), and the subtasks, while the dependent variables are peak 
pressure, pressure–time integral, full width at half maximum, average 
pressure, and maximum pressure gradient. All results were presented 
using bar graphs and tables showing the statistical significance. Eta 
Squared (η2) and Cohen’s d were reported to estimate the effect sizes for 
the ANOVA and paired t-test, respectively. MATLAB 2023Ra has been 
adopted for the processing of data, while Microsoft Excel and JMP Pro 
17.0.0. have been employed in conducting statistical analysis. 

5. Results 

This section illustrates the results of the fall risk assessments for the 
experimental conditions in this study. The normality test results for both 
the Exo and Nexo conditions are shown in Tables 1 and 2, respectively. 
Table 3 indicates Greenhouse Geisser corrections (p < 0.05) for the 
sphericity of the datasets. Figs. 6 – 10 present the results of the analysis 
according to the following metrics: peak pressure, mean pressure, 
pressure–time integral, maximum pressure gradient, full width at half 
maximum, and minimum pressure gradient. ‘Nexo’ and ‘Exo’ are the 
results of these metrics for the without-aBSE and with-aBSE conditions 
respectively. 

5.1. Peak pressure 

Fig. 6 illustrates the results of the fall risk evaluation through the lens 
of the peak pressure. The 3-way repeated measure shows that the 
experimental conditions (without-aBSE and with-aBSE) are significant 
(F = 23.69, P = <0.00, η2 = 0.012), with a higher peak pressure 
observed while using the aBSE. A paired t-test further revealed the dif
ferences in the foot regions (heel, arch, metatarsal, and toe) by 
comparing the peak pressure of the two experimental conditions for 
each of the subtasks. In measuring subtask, all the peak pressures for the 

Fig. 4. Pressure insole sensors. . 
Source: [34] 
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foot regions are significantly (p < 0.05) higher while using the aBSE, 
such that the heel (t (15) = 3.22, P = 0.00, d = 0.81), arch (t (15) = 3.94, 
P = 0.00, d = 0.99), metatarsal (t (15) = 2.99, P = 0.00, d = 0.75), and 
toe (t (15) = 2.74, P = 0.00, d = 0.69) increased by 12.4 %, 15.6 %, 22.6 
%, and 12.1 %, respectively. In the assembly subtask, only the arch re
gion has a significant (t (15) = 1.80, P = 0.04, d = 0.45) higher peak 
pressure of 7.4 % in the with-aBSE condition. While performing the 
nailing subtask, the peak pressure was significantly (p < 0.05) higher in 
the regions of arch (t (15) = 3.65, P = 0.00, d = 0.91), metatarsal (t (15) 
= 2.56, P = 0.01, d = 0.64), and toe (t (15) = 1.89, P = 0.04, d = 0.47), 
with percentage increases of 11.4 %, 17.3 %, and 9.7 %, respectively. 
Only the heel region shows a significant (p < 0.05) increase in with-aBSE 
condition while performing lifting (t (15) = 3.09, P = 0.00, d = 0.77) and 
moving (t (15) = 4.54, P = 0.00, d = 1.14) subtasks with percentages of 
11.4 % and 14.2 %, respectively. In the installing subtask, the arch (t 
(15) = 2.34, P = 0.02, d = 0.59), metatarsal (t (15) = 3.76, P = 0.00, d =
0.94), and toe (t (15) = 2.06, P = 0.00, d = 0.69) have a significantly 
higher peak pressure of 18.8 %, 38.7 %, and 20.8 %, respectively, while 
using the aBSE. Significantly (p < 0.05), in the with-aBSE condition, the 
heel and toe are the foot regions with the highest peak pressure for 

moving (F = 40.05, P = <0.00, η2 = 0.68) and measuring (F = 28.42, P =
<0.00, η2 = 0.58), subtasks, while the heel was solely the highest for the 
remaining subtasks such as assembly (F = 54.86, P = <0.00, η2 = 0.60), 
nailing (F = 19.70, P = <0.00, η2 = 0.52), lifting (F = 35.26, P = <0.00, 
η2 = 0.61), and installation (F = 15.95, P = <0.00, η2 = 0.30). 
Comparing the peak pressure of all the subtasks while using the aBSE, 
the participants significantly (F = 3.84, P = 0.00, η2 = 0.053) experi
enced higher peak pressure during the moving subtask. 

For the interaction effects, the experimental conditions and the foot 
regions show no statistical significance (F = 0.54, P = 0.65, η2 = 0.000). 
While the experimental conditions and subtasks show statistical signif
icance (F = 2.35, P = <0.04, η2 = 0.005) for the interaction effect, the 
post-hoc test revealed a moving subtask, and the with-aBSE experi
mental condition shows the highest peak pressure. Similarly, the inter
action effect for the foot regions and subtasks shows statistical 
significance (F = 1.84, P = 0.03, η2 = 0.014), with the post-hoc test 
revealing the heel region and assembly subtask having the highest peak 
pressure. The last interaction effect, which consists of the experimental 
conditions, foot regions, and subtasks, shows no statistical significance 
(F = 0.74, P = 0.75, η2 = 0.056). 

Fig. 5a. Example of data processing for participant 1 across all foot regions for measuring subtask.  

Fig. 5b. Example of data processing for participant 1 across all foot regions for assembly subtask.  
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5.2. Mean pressure 

Fig. 6 denotes the outcomes of the evaluations of fall risk from the 
perspective of average pressure. Examining the experimental condi
tions’ main effect, there is no statistical difference (F = 0.55, P = 0.46, 
η2 = 0.006). However, a paired t-test further examines the differences in 
the mean pressure for each of the foot regions in each of the subtasks. For 
instance, there is no statistical difference (p > 0.05) in all the four-foot 
regions, i.e., heel (t (15) = 0.41, P = 0.34), arch (t (15) = 1.41, P = 0.08), 

metatarsal (t (15) = 1.36, P = 0.09), and toe (t (15) = 1.349, P = 0.10) 
while performing the measuring subtask. While performing the assem
bly task, only the toe region has a statistical difference (t (15) = 1.93, P 
= 0.04, d = 0.48) while using the aBSE with an increase of 14.2 %. In the 
nailing subtask, the arch (t (15) = 4.11, P = 0.00, d = 1.03) and meta
tarsal (t (15) = 2.06, P = 0.03, d = 0.52) regions have a significant (p <
0.05) higher mean pressure of 19.4 % and 17.1 %, respectively, while 
using the aBSE. For the lifting subtask, only the metatarsal has a sig
nificant (t (15) = 2.70, P = 0.00, d = 0.68) increment of 27.6 % in the 

Fig. 5c. Example of data processing for participant 1 across all foot regions for nailing subtask.  

Fig. 5d. Example of data processing for participant 1 across all foot regions for lifting subtask.  
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with-aBSE condition. A significant increase (t (15) = 4.14, P = 0.00, d =
1.04) of 16 % was experienced in the arch region while using the aBSE in 
the moving subtask. While performing the installation subtask, the use 
of aBSE significantly (p < 0.05) increases the metatarsal (t (15) = 4.03, 
P = 0.00, d = 1.01) and toe (t (15) = 2.53, P = 0.01, d = 0.63) regions by 
49 % and 20.4 %, respectively. Comparing the foot regions of each 
subtask while using the aBSE, the toe significantly (p > 0.05) has the 
highest mean pressure while performing assembly (F = 21.59, P =

<0.00, η2 = 0.43), nailing (F = 8.21, P = <0.00, η2 = 0.25), lifting (F =
8.17, P = <0.00, η2 = 0.28), and installation (F = 3.03, P = <0.00, η2 =

0.14) subtasks. The toe and heel have the highest (p > 0.05) mean 
pressure for measuring (F = 15.55, P = <0.00, η2 = 0.37) subtask, while 
moving (F = 2.63, P = 0.07, η2 = 0.11) subtask show no significance (p 
< 0.05). While using the aBSE, comparison of the mean pressure of all 
the subtasks shows no statistical significance (F = 0.63, P = 0.67, η2 =

0.06). 
Regarding the interaction effects, the experimental conditions and 

foot regions show no statistical significance (F = 0.27, P = 0.84, η2 =

0.000). Similarly, the interaction effect of the experimental conditions 
and subtasks shows no statistical significance (F = 0.18, P = 0.97, η2 =

0.000). In contrast, the interaction effects of the foot regions and sub
tasks indicate statistical significance (F = 2.88, P = <0.00, η2 = 0.028), 
with the post-hoc test indicating the toe region and assembly subtask 
having the highest average pressure. Lastly, there is no significance (F =
0.68, P = 0.80, η2 = 0.006) in the interaction effects of the experimental 
conditions, foot regions, and subtasks. 

5.3. Pressure-Time integral 

Fig. 7 illustrates the results of the pressure–time integral for the 
evaluation of fall risk in this study. The experimental condition’s main 
effect shows no statistical difference (F = 0.98P = 0.33, η2 = 0.003). 
However, the paired t-test results show significance in some instances 
when comparing the pressure–time integral for each foot region for all 
the subtasks. For instance, in the measuring, assembly, and nailing 
subtasks, none of the foot regions is significant in both experimental 
conditions for the three subtasks. In lifting subtask, only the metatarsal 
foot region has a significant (t (15) = 3.04, P = 0.00, d = 0.76) increase 
of 51 % while using the aBSE. In moving subtask, all four foot regions are 
significantly higher when using the aBSE by 50.2 %, 50.2 %, 37.7 %, and 

Fig. 5e. Example of data processing for participant 1 across all foot regions for moving subtask.  

Fig. 5f. Example of data processing for participant 1 across all foot regions for installation subtask.  

A. Okunola et al.                                                                                                                                                                                                                                



Advanced Engineering Informatics 62 (2024) 102626

9

27.1 % for the heel (t (15) = 2.41, P = 0.02, d = 0.61), arch (t (15) =
2.74, P = 0.00, d = 0.69), metatarsal (t (15) = 3.23, P = 0.00, d = 0.81), 
and toe (t (15) = 2.51, P = 0.01, d = 0.63) regions, respectively. While 
performing the installation subtask with aBSE, only the metatarsal (t 
(15) = 2.97, P = 0.00, d = 0.74 and toe (t (15) = 2.34, P = 0.02, d =

0.59) regions are significantly higher by 45.4 % and 46 %, respectively. 
The pressure–time integral was compared for all the subtasks; assembly 
and measuring subtasks had the highest significant (F = 64.62, P =

<0.00, η2 = 0.44) value. While using the aBSE, the toe foot region 
significantly (p < 0.05) has the highest pressure–time integral across all 
the subtasks i.e., measuring (F = 10.71, P = <0.00, η2 = 0.26), assembly 
(F = 19.30, P = <0.00, η2 = 0.25), nailing (F = 5.43, P = <0.00, η2 =

0.18), lifting (F = 28.42, P = <0.00, η2 = 0.16), moving (F = 10.37, P =
<0.00, η2 = 0.04), and installation (F = 3.69, P = 0.02, η2 = 0.09). 

Regarding the interaction effect, experimental conditions and foot 
regions display no significant (F = 0.05, P = 0.98, η2 = 0.000) interac
tion effects. Similarly, the experimental conditions and subtasks show no 
statistical difference (F = 1.27, P = 0.27, η2 = 0.003) as well. However, 
there is a significant (F = 9.63, P = <0.00, η2 = 0.071) interaction effect 
between the foot regions and subtasks, with the post-hoc test revealing 
the ‘toe region and assembly subtask’ and ‘toe region and measuring 
subtask’ having the highest pressure–time integral value. Lastly, there is 
no statistical difference (F = 0.26, P = 0.99, η2 = 0.002) in the inter
action effect of the experimental conditions, foot regions, and subtasks. 

Table 1 
Shapiro-Wilk test results for Exo condition (p-value > 0.05 indicates normality).  

Metrics Foot regions Measuring Assembly Nailing Lifting Moving Installation 
P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) 

Peak pressure Heel 0.30(0.87) 0.23(0.92) 0.60(0.95) 0.62(0.95) 0.95(0.98) 0.82(0.96) 
Arch 0.53(0.95 0.07(0.88) 0.88(0.96) 0.99(0.98) 0.62(0.95) 0.46(0.94) 
Metatarsal 0.72(0.96) 0.31(0.95) 0.18(0.91) 0.37(0.93) 0.46(0.94) 0.11(0.89) 
Toe 0.06(0.86) 0.19(0.91) 0.72(0.96) 0.12(0.89) 0.75(0.96) 0.34(0.92) 

Pressure-time integral Heel 0.69(0.96) 0.79(0.96) 0.22(0.92) 0.99(0.99) 0.44(0.94) 0.65(0.96 
Arch 0.99(0.99) 0.44(0.94) 0.13(0.91) 0.60(0.95) 0.25(0.93) 0.79(0.96) 
Metatarsal 0.07(0.88) 0.22(0.93) 0.35(0.93) 0.88(0.97) 0.27(0.93) 0.25(0.92) 
Toe 0.82(0.97) 0.33(0.94) 0.65(0.96) 0.62(0.96) 0.26(0.92) 0.21(0.92 

Max PG Heel 0.96(0.98) 0.29(0.93) 0.82(0.97) 0.75(0.96) 0.12(0.91) 0.83(0.97) 
Arch 0.62(0.95) 0.48(0.87) 0.97(0.98) 0.12(0.89) 0.18(0.88) 0.63(0.95) 
Metatarsal 0.93(0.97) 0.56(0.95) 0.22(0.92) 0.40(0.88) 0.33(0.94) 0.18(0.92) 
Toe 0.8(0.97) 0.64(0.92) 0.12(0.91) 0.30(0.88) 0.95(0.97) 0.45(0.94) 

Average pressure Heel 0.69(0.96) 0.93(0.97) 0.24(0.93) 0.15(0.91) 0.12(0.91) 0.84(0.97) 
Arch 0.95(0.98) 0.99(0.98) 0.42(0.94) 0.09(0.89) 0.06(0.87) 0.07(0.89) 
Metatarsal 0.33(0.93) 0.42(0.94) 0.22(0.92) 0.26(0.93) 0.47(0.94) 0.56(0.95) 
Toe 0.44(0.94) 0.79(0.97) 0.12(0.90) 0.28(0.93) 0.43(0.94) 0.1(0.90) 

FHWM Heel 0.89(0.97) 0.05(0.88) 0.41(0 l94) 0.19(0.92) 0.08(0.89) 0.97(0.98) 
Arch 0.68(0.96) 0.13(0.90) 0.13(0.91) 0.23(0.92) 0.16(0.92) 0.87(0.97) 
Metatarsal 0.95(0.98) 0.29(0.93) 0.13(0.91) 0.24(0.93) 0.06(0.89) 0.59(0.95) 
Toe 0.82(0.97) 0.13(0.89) 0.46(0.94) 0.18(0.92) 0.13(0.91) 0.72(0.96)  

Table 2 
Shapiro-Wilk test results for Nexo condition (p-value > 0.05 indicates normality).  

Metrics Foot regions Measuring Assembly Nailing Lifting Moving Installation 
P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) 

Peak pressure Heel 0.29(0.93) 0.41(0.94) 0.25(0.92) 0.64(0.96) 0.66(0.96) 0.48(0.94) 
Arch 0.19(0.29) 0.21(0.92 0.29(0.93) 0.68(0.96) 0.98(0.98) 0.09(0.89) 
Metatarsal 0.99(0.99) 0.73(0.96) 0.77(0.96) 0.41(0.94) 0.41(0.94) 0.29(0.92) 
Toe 0.37(0.94) 0.33(0.94 0.24(0.93) 0.13(0.90) 0.35(0.93) 0.67(0.95) 

Pressure-time integral Heel 0.99(0.98) 0.73(0.96) 0.91(0.97) 0.76(0.97) 0.21(0.93) 0.26(0.93) 
Arch 0.46(0.95) 0.77(0.96) 0.30(0.93) 0.76(0.95) 0.70(0.96) 0.22(0.93) 
Metatarsal 0.11(0.91) 0.40(0.94) 0.97(0.98) 0.48(0.95) 0.16(0.91) 0.14(0.89) 
Toe 0.10(0.91) 0.60(0.96 0.13(0.91) 0.54(0.95) 0.62(0.96) 0.17(0.92) 

MaxPG Heel 0.88(0.97) 0.80(0.97) 0.12(0.91) 0.97(0.79) 0.84(0.97) 0.79(0.97) 
Arch 0.41(0.94) 0.55(0.95) 0.83(0.97) 0.97(0.82) 0.07(0.89) 0.13(0.88) 
Metatarsal 0.44(0.94) 0.10(0.90) 0.09(0.89) 0.09(0.90) 0.07(0.90) 0.29(0.93) 
Toe 0.98(0.98) 0.86(0.97) 0.16(0.92) 0.61(0.95) 0.45(0.94) 0.06(0.89) 

Average pressure Heel 0.92(0.97) 0.83(0.97) 0.32(0.94) 0.53(0.95) 0.64(0.96) 0.14(0.91) 
Arch 0.89(0.97) 0.63(0.96) 0.99(0.99) 0.20(0.92) 0.76(0.96) 0.31(0.94) 
Metatarsal 0.80(0.97) 0.87(0.97) 0.60(0.96) 0.45(0.95) 0.42(0.95) 0.94(0.98) 
Toe 0.16(0.92) 0.27(0.93) 0.38(0.94) 0.19(0.92) 0.61(0.96) 0.52(0.95) 

FHWM Heel 0.67(0.96) 0.31(0.89) 0.25(0.92) 0.14(0.91) 0.11(0.91) 0.24(0.92) 
Arch 0.72(0.96) 0.31(0.89) 0.40(0.93) 0.10(0.90) 0.08(0.89) 0.21(0.91) 
Metatarsal 0.66(0.97) 0.06(0.88) 0.16(0.89) 0.05(0.88) 0.15(0.92) 0.09(0.89) 
Toe 0.89(0.97) 0.05(0.88) 0.05(0.88) 0.11(0.90) 0.88(0.97) 0.06(0.88)  

Table 3 
Greenhouse Geisser sphericity corrections (p-value < 0.05 indicates 
significance).  

Metrics Greenhouse- 
Geisser 

Df Mean Square F Significance 

Peak 
pressure  

0.59  4.13 1213.57  140.38  <0.001 

Pressure- 
time 
integral  

0.42  2.93 319709.51  17.71  <0.001 

MaxPG  0.49  3.44 417.85  84.12  <0.001 
Mean 

pressure  
0.42  2.94 113.29  61.88  <0.001 

FHWM  0.19  1.33 4,593,125,677  22.31  <0.001  
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5.4. Maximum pressure gradient (Max PG) 

Fig. 8 depicts the results of the maximum pressure gradient metric 
for evaluating fall risk. For the main effect of the experimental condi
tions, there is no statistical significance (F = 0.02, P = 0.88, η2 = 0.000). 

The use of a paired t-test to examine the difference in the maximum 
pressure gradient for each foot region for all the subtasks, however, 
revealed some statistical differences. For instance, in the measuring 
subtask, the use of the aBSE significantly (t (15) = -2.07, P = 0.03, d =
-0.52) increases the arch foot region by 9.9 %. In contrast, the without- 
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aBSE condition shows a higher significant (t (15) = -2.62, P = 0.01, d =
-0.66) difference of 4.2 % in the heel while performing assembly sub
task. In nailing subtask, the use of aBSE shows a significant (p < 0.05) 
increase of 8.7 % and 13.6 % in the regions of the arch (t (15) = 2.92, P 
= 0.00, d = 0.73) and metatarsal (t (15) = 2.28, P = 0.02, d = 0.57), 
respectively. While using the aBSE in lifting subtask, the metatarsal re
gion of the foot shows a significant (t (15) = -2.07, P = 0.03, d = -0.52) 
increase of 16.5 %. Moving subtask show no statistical significance, but 
the installation subtask revealed higher peak pressure at the metatarsal 
(t (15) = 2.77, P = 0.00, d = 0.69) and toe (t (15) = 3.15, P = 0.00, d =
0.79). While using the aBSE, comparing the maximum pressure gradient 
of all the subtasks shows that assembly and measuring subtasks have the 
highest (F = 7.58, P = <0.00, η2 = 0.07) value. For all the subtasks, 
similar to the pressure–time integral, the toe foot region has the highest 
significant (p < 0.05) maximum pressure gradient i.e., measuring (F =
20.67, P = <0.00, η2 = 0.47), assembly (F = 10.78, P = <0.00, η2 =

0.46), nailing (F = 10.72, P = <0.00, η2 = 0.25), lifting (F = 19.19, P =
<0.00, η2 = 0.26), moving (F = 32.99, P = <0.00, η2 = 0.36), and 
installation (F = 13.92, P = 0.02, η2 = 0.24). 

Regarding the interaction effects, the experimental conditions and 
foot regions show no statistical significance (F = 0.18, P = 0.90, η2 =

0.000). Similarly, the experimental conditions and subtask interaction 
effect show no statistical significance (F = 1.32, P = 0.25, η2 = 0.003). 
However, the foot regions and subtasks interaction effect show statisti
cal significance (F = 2.13, P = 0.00, η2 = 0.016), with the post-hoc test 
revealing the ‘toe region and assembly subtask’ and ‘toe region and 
moving subtask’ having the highest maximum pressure gradient value. 
The last interaction effect of experimental conditions, foot regions, and 
subtasks shows no statistical significance. 

5.5. Full width at half maximum (FWHM) 

The results of the full width at half maximum assessment of the fall 
risk of using aBSE for framing task are revealed in Fig. 8. The experi
mental conditions’ main effect shows no statistical significance (F =

0.28, P = 0.60, η2 = 0.000). The paired t-test comparing the FWHM of 
each foot region of all the subtasks, however, shows some significance. 
For example, measuring subtask for the without-aBSE condition shows 
that all the foot regions are significantly (p < 0.05) higher by 27.2 %, 
30.1 %, 29.6 %, and 28.5 % for the regions of heel (t (15) = -1.79, P =
0.04, d = -0.45), arch (t (15) = -2.11, P = 0.03, d = -0.53), metatarsal (t 
(15) = -1.96, P = 0.04, d = -0.49), and toe (t (15) = -1.92, P = 0.04, d =
-0.48), respectively. In contrast, in the moving subtask of the with-aBSE 
condition, all the foot regions i.e., heel (t (15) = 2.87, P = 0.00, d =
0.72), arch (t (15) = 2.78, P = 0.00, d = 0.70), metatarsal (t (15) = 3.35, 
P = 0.00, d = 0.84), and toe (t (15) = 2.29, P = 0.02, d = 0.57) are 
statistically (p < 0.05) higher by 28.4 %, 36.5 %, 32.6 %, and 31.6 %, 
respectively. There is no statistical significance in the remaining sub
tasks (assembly, nailing, lifting, and installation). Comparing all the 
subtasks while using aBSE shows that measuring and assembly subtasks 
show the highest (F = 166.17, P = <0.00, η2 = 0.68) FWHM. For all the 
subtasks, the metatarsal foot region has the highest significant (p <

0.05) maximum pressure gradient i.e., i.e., measuring (F = 111.61, P =
<0.00, η2 = 0.22), assembly (F = 204.46, P = <0.00, η2 = 0.27), nailing 
(F = 114.59, P = <0.00, η2 = 0.25), lifting (F = 75.70, P = <0.00, η2 =

0.22), moving (F = 101.44, P = <0.00, η2 = 0.22), and installation (F =
44.02, P = <0.00, η2 = 0.13). 

Regarding the interaction effects, the experimental conditions and 
foot regions show no statistical difference (F = 0.15, P = 0.93, η2 =

0.000). However, the interaction effect of experimental conditions and 
subtasks shows statistical difference (F = 9.37, P = <0.00, η2 = 0.015) 

Fig. 9. Maximum pressure gradient at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).  

Fig. 10. Full width at half maximum at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).  
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with the with-aBSE condition and measuring subtask having the highest 
value of FWHM. Similarly, the interaction effect of the foot regions and 
subtasks indicates a statistical significance (F = 3.95, P = <0.00, η2 =

0.019), with the metatarsal foot region and measuring subtask showing 
the highest value of FWHM. Lastly, the interaction effect of the experi
mental conditions, foot regions, and subtasks shows no statistical sig
nificance (F = 0.13, P = 1.00, η2 = 0.000). 

6. DISCUSSION 

Given the potential of aBSE to increase the risk of its users directly or 
indirectly, this study empirically evaluates the implication of using aBSE 
for construction framing task using foot plantar pressure distribution 
data captured with wearable pressure insoles. In this section, the out
comes of the fall risk metrics are discussed and are peak pressure, 
average pressure, pressure–time integral, maximum pressure gradient 
and full width at half maximum. 

6.1. Peak pressure 

The results from the fall risk assessments demonstrate significant 
variations in peak pressure across different foot regions and subtasks 
when comparing the conditions with and without the use of an aBSE. 
The use of aBSE significantly increases the peak pressure of users in at 
least one foot region across all subtasks, indicating a higher risk of fall. 
Given that peak pressure represents the highest-pressure value at each 
foot region, the comparison between the two conditions (with-aBSE and 
without-aBSE) demonstrates an unsafe situation when using the aBSE. 
This is particularly significant in the heel and arch regions, which 
exhibit higher pressures across multiple subtasks, as shown in Fig. 5a-f. 
While the arch region’s significance is somewhat surprising, the com
bination of heel and metatarsal pressure aligns with expectations given 
the postures assumed during subtasks (e.g., squatting, bending, and 
standing). The weight of the body is typically on either the metatarsal 
during squatting or the heel during standing and bending. This finding 
aligns with results from Mickle et al. [33], which also found significant 
peak pressure in the heel and metatarsal when comparing fallers and 
non-fallers. The moving subtask, which involves participants carrying a 
frame and moving across a staircase, exhibited the highest peak pres
sure. This is a reasonable result given the physical demands and dynamic 
nature of the task. Overall, the use of an exoskeleton substantially in
creases the risk of falls during construction framing work, particularly 
during dynamic and physically demanding tasks. 

6.2. Average pressure 

Although there were no significant differences in mean pressure 
across the four foot regions (i.e., heel, arch, metatarsal, and toe) during 
the measuring subtask, notable patterns emerged during other subtasks 
when using the aBSE. This finding is somewhat surprising given the 
squatting posture assumed during the measuring subtask, despite the 
additional weight of the device. It suggests that using the aBSE in a static 
position does not substantially increase fall risk. 

The average pressure represents the mean pressure exerted by par
ticipants across all foot regions. It reveals that one or more foot regions 
consistently indicated fall risk across all subtasks except the measuring 
subtask. As shown in Fig. 6, the toe, metatarsal, and arch regions showed 
significant differences, suggesting no impact on the heel region whether 
using aBSE or not. Similarly, Antwi-Afari and Li [4] also identified these 
areas as significant in their study on different loss of balance events. For 
example, the notable increase in mean pressure in the toe region during 
the assembly subtask (14.2 % increase, p = 0.04) suggests that aBSE use 
may affect stability in this region, potentially impacting workers’ bal
ance during tasks requiring precision. Additionally, the increased mean 
pressure in the arch and metatarsal regions during the nailing subtask 
(19.4 % and 17.1 % increases, respectively, p < 0.05) could pose a 

heightened risk of injury in these areas. This may lead to discomfort or 
fatigue over time, potentially compromising workers’ safety and effi
ciency. During the lifting subtask, the significant increase in metatarsal 
pressure (27.6 % increase, p = 0.00) underscores the impact of aBSE on 
this foot region, potentially leading to instability or difficulties in lifting 
heavy objects. Similarly, the rise in arch pressure during the moving 
subtask (16 % increase, p = 0.00) highlights the importance of foot re
gion support in tasks involving dynamic movements. Interaction effects 
between foot regions and subtasks, especially with the toe region 
showing the highest average pressure during assembly, nailing, lifting, 
and installation subtasks, suggest that these areas may need targeted 
ergonomic interventions and protective measures. 

6.3. Pressure-Time integral 

The pressure–time integral results illustrated in Fig. 7 demonstrate 
how the use of an aBSE influences fall risk across various subtasks and 
foot regions. The pressure–time integral represents the total pressure 
exerted by the participants over the period and the results show that 
moving subtask stands out as the only subtask with significant difference 
across all the foot regions. This indicates that the use of the aBSE brought 
significant changes in the participants’ gait stability while moving the 
frame across the staircase, potentially increasing the risk of falls during 
more dynamic and intense framing tasks. These results align with peak 
pressure results and indicate that aBSE use may elevate fall risk in 
construction tasks involving significant movement. One significant 
finding is the increased pressure–time integral across the foot regions 
and subtasks when using the aBSE. For example, the toe region exhibited 
the highest pressure–time integral across all subtasks when using the 
aBSE, likely due to the nature of tasks such as squatting, bending, and 
other dynamic movements. This finding highlights the potential need for 
targeted interventions to support these critical areas during specific 
tasks. The interaction effect analysis also provided interesting insights. 
While there were no significant interactions between experimental 
conditions and foot regions or between experimental conditions and 
subtasks, there was a significant interaction between foot regions and 
subtasks. The highest pressure–time integral values were observed in the 
toe region during the assembly and measuring subtasks. This suggests 
that specific foot regions and tasks could benefit from particular atten
tion to reduce fall risk. 

Comparisons to previous studies, such as Choi et al. [13], revealed 
contrasts in the analysis of different loss of balance events and foot re
gion pressures, further emphasizing the impact of specific tasks and 
equipment on fall risk. In particular, the repetitive body movements in 
measuring and assembly subtasks, combined with a higher pressur
e–time integral, indicate a greater risk of falling compared to other 
subtasks. 

6.4. Maximum pressure gradient 

The maximum pressure gradient represents the highest rate of 
change in the pressure across each of the foot regions and the results that 
there is at least a significant difference in the foot regions across the 
subtasks, except for moving. This indicates that the use of the aBSE 
substantially increases the risk of fall. While it was anticipated that the 
use of aBSE would affect the stability of the users while moving on a 
staircase with a 20 kg frame, surprisingly, the opposite is the case. The 
metatarsal foot region emerged as the most sensitive region to fall risk, 
as it is significant in three of the six subtasks. This result is in contrast 
with Yan et al. [55], where the arch and the heel were identified as the 
most sensitive regions for fall risk in elderly people during walking ex
ercises. Such discrepancies highlight the importance of considering 
different populations and tasks when examining fall risk. Similar to the 
pressure–time integral, measuring and assembly subtasks represent the 
subtasks with the highest fall risk. This highlights the importance of 
identifying tasks that are particularly vulnerable to fall risks. 
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Understanding the tasks that are vulnerable to the risk of fall could help 
the safety managers to understand the crew the device would safely 
work for on the construction site. 

6.5. Full width at half maximum (FWHM) 

Although the main effects of the experimental conditions were not 
statistically significant, the paired t-test of the full width at half 
maximum (FWHM) for each foot region in different subtasks provided a 
deeper understanding of how aBSE usage could affect construction 
workers. The analysis of FWHM results reveals significant changes in all 
four foot regions during both measuring and moving subtasks. However, 
intriguingly, these two sets of results contradict each other: the moving 
subtask suggests that the use of aBSE increases fall risk, while the 
measuring subtask indicates the opposite. Although these conflicting 
results are not mirrored in other metrics, the outcomes of the moving 
subtask, which involves manually transporting frames to upper floors 
via staircases, align with other metrics and support the notion that the 
use of aBSE escalates fall risk during dynamic and demanding tasks. The 
statistical significance of the moving subtask results echoes findings by 
Yan et al. [55], who observed significant differences in FWHM across all 
foot regions when comparing the gait patterns of two elderly individuals 
during walking tasks. This suggests potential parallels in the effects of 
movement and balance across different populations and contexts. For 
the without-aBSE condition, measuring subtask showed significantly 
higher FWHM in all foot regions (heel, arch, metatarsal, and toe), 
indicating a potential risk for loss of balance events and subsequent falls. 
This finding highlights the importance of focusing on the measuring 
subtask in construction work, as workers may be more susceptible to 
injuries in this subtask due to uneven pressure distribution on their feet. 
These findings highlight the importance of investigating and monitoring 
the impact of aBSEs on construction tasks, particularly measuring and 
assembly, which had the highest FWHM values and pressure-related 
metrics. Consequently, there is a pressing need for more comprehen
sive research to elucidate the relationships among various foot plantar 
metrics. 

6.6. Overall metrics 

Overall, across all the metrics, the use of aBSE significantly increases 
the risk of falling in at least one of the subtasks. This may be attributed to 
the features of the aBSE and the nature of the construction work. While 
using the aBSE, the toe and the heel foot regions are the most sensitive 
regions according to all the metrics, except FHWM where metatarsal was 
revealed as the highest. With moving, measuring, and assembly being 
the most sensitive subtasks, this was not surprising because of the pos
tures assumed including squatting and bending, which could isolate the 
pressure of the body in these foot regions. In response to the objective of 
this study, which is to evaluate fall risk while using aBSE in performing 
construction framing tasks, the results demonstrate that the use of aBSE 
could elevate fall risk, especially when the construction task is dynamic 
and demanding, as revealed by the results of all the computed metrics. 
Similar to Antwi-Afari et al. [3] and Yan et al. [55] where foot plantar 
pressure metrics have been employed to assess fall risk, this study 
demonstrates the efficacy of these metrics in assessing fall risk of using 
aBSE on construction sites. 

7. Contributions 

This study investigates the associated fall risk of using aBSE while 
performing construction framing tasks through the foot plantar pressure 
metrics of wearable pressure insoles. The study makes both theoretical 
and practical contributions in the following ways: 

8. Theoretical contributions 

This study makes several important theoretical contributions to 
construction safety research, particularly in the context of aBSEs and 
their impact on fall risk during construction work. By empirically 
evaluating foot plantar pressure distribution data, this study offers an 
understanding of how aBSE usage affects different foot regions and 
subtasks within construction framing work. These are described as fol
lows: Firstly, the findings regarding peak pressure variations across 
different foot regions and subtasks with and without aBSEs provide in
sights into the complex relationship between foot pressure distribution 
and fall risk. The significant variations observed, particularly in the heel 
and metatarsal regions, suggest that aBSEs could lead to unsafe condi
tions and elevate fall risk during construction tasks. Secondly, the study 
contributes to the understanding of mean pressure differences across 
foot regions during different construction tasks. The data highlights how 
aBSE use may affect stability and risk of injury, particularly in dynamic 
and demanding tasks, such as nailing, lifting, and moving. Moreover, the 
analysis of pressure–time integral and maximum pressure gradient of
fers new perspectives on how aBSEs influence fall risk across different 
subtasks and foot regions. These metrics reveal the nuanced impact of 
aBSE use on gait stability and foot pressure distribution, particularly in 
dynamic tasks such as moving. Finally, the study of the full width at half 
maximum (FWHM) provides theoretical insights into how aBSE usage 
can either increase or decrease fall risk depending on the specific sub
task. This duality highlights the complex relationship between aBSEs 
and fall risk in construction work. 

9. Practical contributions 

The practical contributions of this study are centered around 
improving construction safety practices and interventions for workers 
using aBSEs. The results offer insights that can guide the development of 
ergonomic interventions and protective measures for workers perform
ing construction tasks such as framing. The findings suggest that the toe 
and heel foot regions require special attention due to their sensitivity to 
increased pressure and fall risk when using aBSEs. Safety managers and 
ergonomists could use this information to implement interventions such 
as enhanced footwear support or training programs that focus on safe 
movements in these regions. Additionally, the identification of specific 
subtasks (e.g., measuring, moving, and assembly) that are particularly 
susceptible to fall risk provides guidance for safety protocols and aBSE 
usage. Workers and supervisors can benefit from this knowledge by 
adjusting work practices and using aBSEs more effectively during these 
tasks. Furthermore, the data on pressure–time integral and maximum 
pressure gradient highlights the need for ongoing monitoring and 
assessment of workers’ safety while using aBSEs. Safety managers can 
use these metrics to identify potential hazards and implement preven
tative measures to reduce fall risk during dynamic and physically 
demanding tasks. Lastly, the study emphasizes the importance of 
continued research and data collection on aBSE use in construction, 
which can lead to better safety standards and improved working con
ditions for construction workers. By integrating foot plantar pressure 
metrics into safety assessments, construction sites can benefit from more 
effective approaches to fall risk management. 

10. Conclusion, limitations, and future work 

Given the biomechanical benefits attributed to the use of exo
skeletons across various industry sectors, the construction industry is 
preparing for the adoption of aBSE to reduce the threat of WMSDs. 
Noticeably, there have been unintended consequences that could 
directly or indirectly raise fall hazard issues while using exoskeletons on 
construction sites. This study evaluates the fall risk implications of using 
aBSE for carpentry framing task. The results show that the use of aBSE 
significantly increased the foot pressure metrics in at least one of the 
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subtasks and foot regions, with an increase ranging from 7 % to 51 %. 
This suggests an elevated fall risk associated with using the device. 
Across all the metrics, the toe and heel regions showed the highest in
creases, indicating they are most sensitive to changes in gait. The 
moving, measuring, and assembly subtasks were found to carry the 
highest risk of falling, as evidenced by their high pressure values. 

While this study shows that there is a risk of falling, there are some 
inconsistencies in results of the metrics used. Further study should 
examine the relationship between these metrics in the context of 
construction-related tasks to identify the most important metrics. Con
ducting studies in real-world construction settings and with a larger 
sample would provide more generalizable results, as this study was 
conducted in a controlled laboratory environment simulating carpentry 
tasks. Moreover, including a more diverse sample of experienced con
struction workers in future studies could lead to more comprehensive 
insights. Future studies could explore participants’ subjective evalua
tions of fall risk while using aBSEs. This study provides insights into the 
potential risks of falling while using aBSEs in construction and informs 
stakeholders about the need for careful decision-making regarding their 
adoption. The results contribute to the understanding of the relationship 
between foot regions, fall risk metrics, and construction tasks, and 
inform how aBSEs could be designed to better suit construction work. 
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