Advanced Engineering Informatics 62 (2024) 102626

. . . . .
Contents lists available at ScienceDirect 2

ADVANCED: ENGINEERING,

INFORMATICS

Advanced Engineering Informatics

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/aei

Full length article ' :.)

Check for

Fall risk assessment of active back-support exoskeleton-use for construction [
work using foot plantar pressure distribution

Akinwale Okunola?, Abiola Akanmu®, Houtan Jebelli

@ Myers-Lawson School of Construction, Virginia Tech, Blacksburg, VA, United States
Y Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States

ARTICLE INFO ABSTRACT

Keywords: In anticipation of the adoption of active back-support exoskeletons in the construction industry, the potential fall

Exoskeleton risks associated with these devices remain unclear. This study explores the unintended consequences stemming

;)r;ss“lrlf Insole from exoskeleton usage, including the weight, bulkiness, and environmental factors that may contribute to fall
all ris

risks. Specifically focusing on carpentry framing work, this study assesses the risk of falling while using an active
back-support exoskeleton, employing foot plantar pressure distribution data captured with pressure insoles. A
simulated framing task, comprising subtasks such as measuring, assembly, nailing, lifting, moving, and instal-
lation, was conducted both with and without the use of the active back-support exoskeleton. Foot plantar
pressure distribution data for all foot regions were processed, and five pressure metrics were extracted for sta-
tistical analysis. Employing a combination of paired t-tests, ANOVA, and post-hoc tests, the findings reveal that
the use of exoskeleton significantly increased the pressure metrics in at least one of the subtasks and foot regions,
with an increase ranging from 7% to 51%. This suggests an elevated fall risk associated with using the device.
Notably, the toe and heel regions are most sensitive to gait changes, while tasks involving movement, measuring,
and assembly exhibit the highest fall risk. This study significantly contributes to the understanding of the pre-
viously unrecognized fall risk implications associated with active back support exoskeletons in the construction
industry. The results explain the relationship between the foot region and construction tasks during exoskeleton-
use. The results would inform construction stakeholders, facilitating informed decision-making regarding the
adoption of active back support exoskeleton for construction tasks. Furthermore, the study provides valuable
insights for the design of exoskeletons tailored to meet the unique demands of the construction work.

Foot regions
Foot plantar pressure
Carpentry framing

1. Introduction by examining muscle activations, revealing reductions of 12 % to 15 %

in muscle activity. Antwi-Afari et al. (2021) studied a passive back-

In the effort to combat the occurrence of work-related musculo-
skeletal disorders (WMSDs) in the construction industry, exoskeletons
have emerged as a potential solution. Exoskeletons aid in alleviating
WMSDs by providing the necessary support to reduce the strain on the
musculoskeletal systems [1,38]. Their potential has been demonstrated
across various industries, particularly in the context of active and pas-
sive back-support exoskeletons, which have been shown to lessen
WMSDs by reducing muscle activation (Antwi-Afari et al. 2021; [21,53]
and range of motion [36]. For example, Walter et al. [53] examined the
biomechanical advantage of an active back-support exoskeleton (aBSE)
in weightlifting tasks. The study showed a decrease in muscle activation
by 8 % to 22 % when using the exoskeleton. Huysamen et al. [21]
evaluated the effectiveness of an aBSE in manual material handling tasks

* Corresponding author.
E-mail address: abiola@vt.edu (A. Akanmu).

https://doi.org/10.1016/j.aei.2024.102626

support exoskeleton in repetitive lifting tasks within construction and
found an 11 % minimum reduction in muscle activity in the back.
Ogunseiju et al. [36] evaluated a postural-assist passive exoskeleton for
manual material handling in construction and revealed a minimum
reduction of 5 % in the range of motion during lifting task. However,
there are unintended drawbacks associated with exoskeleton usage,
such as discomfort in body parts [9], movement restrictions [39],
thermal comfort [29], and catch and snag risks [25]. These issues can
increase the mental workload of users, which could subsequently lead to
reduced situational awareness, and thus indirectly increase the risk of
fall [30]. Moreover, the weight of exoskeletons can shift the user’s
center of gravity [15,22,41], resulting in imbalance and an increased
risk of fall. Active back-support exoskeletons are particularly
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challenging due to their heavier weight compared to passive ones
[18,51], which may exacerbate fall hazards in construction environ-
ments. According to the United States Bureau of Labor and Statistics
(BLS 2020), fall-to-lower-level incidents occur at a rate of four times
higher in the construction industry than in other industries. Falls in the
construction industry have led to the disability of workers, and in severe
cases, death [57].

Sensing technologies have been employed to assess fall risks and gait
balancing across various industrial sectors. For example, Mehmood et al.
[31] employed electromyography to capture and analyze lower leg
muscles to evaluate fall risk in an elderly group. Haescher et al. (2018)
utilized photoplethysmography data using a smart wearable wristwatch
to assess and predict the risk of falling among older people. Annese and
De Venuto [2] evaluated the risk of fall in a clinical environment by
combining electroencephalogram sensor with other wearable sensors.
Liu et al. [28] analyzed risk of falling among healthy and fall prone
groups using inertia measurement unit. Nonetheless, research indicates
that evaluating fall risk directly from foot plantar pressure measures
exhibits a high sensitivity to changes in gait and balance [4,48]. Studies
have assessed fall risks by assessing the foot plantar pressure distribution
from force plates [33] and pressure insoles [4,55]. For example, Mickle
et al. [33] assessed fall risk directly from all foot regions (i.e., heel,
metatarsal, arch, and toe) using peak pressure and pressure-time inte-
gral metrics extracted from foot plantar pressure. Antwi-Afari and Li [4]
utilized foot plantar pressure distribution measures, such as peak pres-
sure, pressure-time integral, and average pressure, obtained from
pressure insoles to evaluate the fall risk in construction. Yan et al. [55]
used similar metrics from pressure insoles to evaluate fall risk among
older people.

Despite the growing interest in the adoption of aBSE across various
industry sectors, few studies have investigated fall risks when using the
device for construction tasks. Considering the bulkiness and weight of
aBSE, unintended consequences of using exoskeletons, and unstructured
nature of construction sides, it is important to empirically evaluate the
risk of falling while using aBSE for construction-related tasks. Therefore,
this study aims to evaluate fall risks while using aBSE during carpentry
framing work as a case study. This paper begins with an introduction of
the study, followed by a background section to review relevant litera-
ture. The next section discusses the methods adopted for this study,
followed by the results section. The last sessions include the discussion
and conclusion sections. This study contributes by revealing the fall risks
associated with using aBSE for construction work, offering insights into
the impact of construction tasks and foot regions on fall risk during the
use of aBSE.

2. Background
2.1. Potential fall hazards associated with exoskeleton usage

Exoskeletons have long been used in healthcare for rehabilitation
and aiding mobility in individuals with physical challenges. More
recently, they have been introduced in occupational settings to augment
human musculoskeletal systems and reduce muscle strain. Exoskeletons
provide support by supplying the torque to assist the body and can be
categorized according to the body part they support, such as back,
shoulder, or leg support [42]. They are also classified based on their
source, either active (electrically powered) or passive (mechanically
powered) [42].

Studies have shown that exoskeletons offer biomechanical benefits in
reducing WMSDs by decreasing muscle strain (Antwi-Afari et al. 2021;
[53], range of motion [43], and perceived discomfort [17]. For instance,
Walter et al. [53] investigated the effect of aBSE during weight-lifting
exercise and demonstrated a reduction of 5 % to 22 % in muscle activ-
ity. Poliero et al. [43] assessed the effect of using aBSE for performing
tasks that include carrying and lifting of load and revealed a reduction of
10 % in the range of motion of the hip. Antwi-Afari et al. (2021)
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investigated a passive back-support exoskeleton during repetitive lifting
tasks in construction and observed a minimum reduction of 11 % in back
muscle activity. Gonsalves et al. [17] examined the suitability of a
passive back-support exoskeleton for rebar construction work and
showed a reduction in perceived discomfort in the back region. Despite
the reported benefits, unintended consequences of exoskeletons, which
could indirectly or directly lead to fall hazards have been identified
[40,50]. According to Zhu et al. [58], one of the major consequences of
using exoskeletons is increase in cognitive load of users, which could
indirectly increase their perception of fall risks as a result of reduced
situational awareness. High cognitive load refers to the states at which
the brain is trying hard to process the available information to meet the
demand of a task, and excess of this demand could lead to mental fatigue
[30]. In addition, the use of exoskeleton can restrict movement [37],
cause thermal discomfort [29], and impact anthropometric fit [52],
which could increase fall hazards. For example, Gonsalves et al. [17]
assessed the use of exoskeletons in construction rebar tasks and identi-
fied increased pressure in the chest region due to exoskeleton use.
Ogunseiju et al. [37] evaluated the suitability of exoskeletons in con-
struction flooring work and revealed restriction in movement and
interference with work during the use of the exoskeleton. Liu et al. [29]
assessed the effect of thermal comfort on the use of exoskeletons in
resting and lifting tasks across two different atmospheric temperatures,
such as 26 and 10 degrees Celsius, representing hot and cold, respec-
tively. The study revealed that the use of exoskeletons at high temper-
atures increases the metabolic rate, sweating, and thermal sensation,
which leads to thermal discomfort for the users. Upasani et al. [52]
assessed the potential of exoskeletons in agriculture tasks that involve
lifting heavy loads, operating hand tools, and climbing. The study
revealed that 30 % of the participants are concerned about fall risk due
to the anthropometric fit of the exoskeleton.

Furthermore, researchers have unveiled some unintended conse-
quences of using exoskeletons that could directly lead to fall hazards,
such as the weight of the exoskeletons [15], uneven load distribution on
the musculoskeletal system [41], and catch and snags [25]. For example,
Fox et al. [15] conducted a comparative analysis of the potential of
exoskeletons to improve manufacturing performances. Through reviews
of existing studies, the study revealed the unintended consequences of
added weight and misfit of exoskeletons which could lead to balancing
problems, and as a result, an increase in fall risk. Picchiotti et al. [41]
assessed the impact of exoskeleton on biomechanical loading of lumber
spine in manual material handling tasks that involve lifting. The study
revealed there is an unequal distribution of load across the body, which
could also lead to imbalance of the body. Kim et al. [25] evaluated the
potential of exoskeletons from the construction industry stakeholders’
perspectives. Given the bulkiness of exoskeletons, one of the major
concerns of the stakeholders is the catch and snag risks, which could lead
to an increase in the risk of falling while working at height.

2.2. Assessment of fall risks

Sensing technologies have been employed to evaluate fall hazards
across various sectors [8,12,14]. Examples of such sensing technologies
include motion capture systems [10], electromyography (EMG) [27,31],
photoplethysmography (PPG) (Haescher et al. 2018), electroencepha-
logram (EEG) [2], inertial measurement unit (IMU) [56], force plate
[26], and pressure insoles [47]. However, researchers have shown that
assessing fall risk directly from foot regions through metrics of foot
plantar pressure displays high sensitivity to gait balancing changes [4].
Notable metrics, such as higher peak pressure, pressure-time integrals,
pressure gradient, full width at half maximum, and average pressure,
could disrupt balance and stability and lead to an increase in fall risk
[33,55]. Force plates [23,32,33,35] and wearable pressure insole sen-
sors [4,13]; Hapsari et al. 2014; [24,55] have been used to capture foot
plantar pressure distributions for fall risk assessment. For instance,
Mickle et al. [33] evaluated fall hazards among a group of older people,
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classified into fallers and non-fallers, in a walking task. The foot plantar
pressure distribution was captured for all foot regions using a force
plate. The study shows that peak pressure and pressure-time integrals
for the fallers are significantly higher than the non-fallers. Also, the heel,
metatarsal, and toe regions of the foot show significantly higher peak
pressure. Menz et al. [32] assessed the planter pressure distribution of
callused and non-callused foot regions of elderly people while walking at
selected speeds. The study computed the peak pressure across the foot
regions and showed that people with calluses have a higher peak pres-
sure, which shows they have balance impairments. Khalaf et al. [23]
evaluated the plantar pressure alterations for balancing and stability in
obese adults and a control group, which were classified according to the
body mass index. The obese group shows higher peak pressure at the
heel when compared to the control group, which indicates lesser
postural stability that increases the risk of falling. Similarly, Neri et al.
[35] investigated how the relationship between obesity and altered
plantar pressure could lead to fall risk. The study compared obese,
overweight, and normal weight groups while assessing the peak pressure
of all the foot regions. The study shows that the obese group exerted the
highest peak pressure in the midfoot and forefoot.

Given the ease of use and mobility advantage of wearable pressure
insole sensors over a force plate, Yan et al. [55] evaluate fall hazards in
older individuals classified into low-risk and high-risk falls, using pres-
sure insoles for a walking task. The foot plantar pressure distribution
was captured for all the foot regions. The study assessed the peak
pressure, pressure-time integral, full width at half maximum, average
pressure, and pressure gradient. The study showed that the pressure
gradient has the best performance, with the heel and midfoot showing
higher pressure. Foot plantar pressure distribution was captured using
pressure insoles for all foot regions. Peak pressure, pressure-time inte-
gral, mean pressure, anterior/posterior center of pressure, and medial/
lateral center of pressure were computed. The results showed significant
differences across the loss of balance event compared to the control
experiment. Kim et al. [24] compared the foot plantar pressure distri-
butions of the dominant and non-dominant sides of participants with a
history of falling. The peak plantar pressure was extracted and compared
for the two sides. The peak pressure showed no statistical significance
comparing the two sides. Hapsari et al. (2014) assessed the stability of
high-heel wearers by evaluating the plantar pressure distributions of the
foot regions while wearing different heights such as 0 cm, 4 cm, 7 cm,
and 10 cm. The study showed that as the heel height increased, the peak
pressure shifted from the rearfoot and midfoot regions to the forefoot
and toe regions, which affected the stability of the users. Choi et al. [13]
evaluated the difference in the fall risk for three slip events, normal step,
recovered, and slipped using foot plantar pressure data captured for all
the foot regions. The study assessed the peak pressure and pressure-time
integral, which were compared for all three events. The study revealed
that the heel is the most sensitive part of the foot for detecting fall risk. In
construction, Antwi-Afari and Li [4] examined fall risk among con-
struction workers, focusing on loss of balance events such as slips, trips,
unexpected step-downs, and twisted ankles. The authors also used
pressure insoles to measure foot plantar pressure distribution across all
foot regions. And computed metrics including peak pressure, pressur-
e-time integral, mean pressure, anterior/posterior center of pressure,
and medial/lateral center of pressure. The results showed significant
differences across the loss of balance events when compared to the
control experiment.

3. Research gap

Existing research has identified risks associated with the use of
aBSEs; however, a significant research gap exists as limited studies have
explored the potential implications of these exoskeletons on fall risks
during construction-related tasks. Construction activities involve dy-
namic motions and diverse postures, resulting in variable pressure levels
across distinct foot regions. Studies have emphasized the critical role of
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pressure distribution on foot regions as a key indicator of fall risk
[4,32,33]. Despite the importance of understanding the impact of con-
struction tasks on foot regions, a dearth of research exists in this domain.
To address this research gap, it becomes imperative to explore the im-
plications of aBSEs on fall risks during construction-related tasks. The
intricate nature of construction tasks necessitates an investigation into
how the use of these exoskeletons influences the risk of falls among
users. Recognizing the multifaceted nature of construction tasks, it is
crucial to unravel the contribution of different subtasks to the overall
risk of falls when using aBSEs. This delineation is essential for devel-
oping targeted interventions and safety measures tailored to the specific
challenges posed by various construction-related activities.

Moreover, pressure insoles present an opportunity to quantify a
range of fall risk metrics or measures. These include peak plantar pres-
sure, pressure-time integral, mean pressure, maximum pressure
gradient, and full width at half maximum, allowing for an understanding
of the impact on different foot regions. Thus, the study aims to fill the
existing research gap and contribute valuable insights that can inform
the design, implementation, and improvement of aBSEs for use in the
construction industry. This study addresses the limited understanding of
the influence of aBSEs on fall risks during construction-related tasks,
exploring the relationship between exoskeleton use, construction sub-
tasks, and foot region pressures. The overarching goal is to enhance
safety protocols and design considerations in the construction industry
by providing evidence-based insights into mitigating fall risks associated
with the adoption of aBSEs.

4. Method

This section describes the approach employed to address the afore-
mentioned gaps. These includes the participants involved in the study,
the experimental design and procedure, the instruments utilized in the
study, the data collected, and the data processing and analysis proced-
ure. An overview of the methodology is illustrated in Fig. 1.

4.1. Participants

Sixteen healthy males (age: 30 + 4 years, height: 173 + 5.5 cm, body
weight: 72 + 7.5 kg, and body mass index: 23.98 + 1.9 kg/m2) without
any history of musculoskeletal disorders in the past six months were
recruited for this study. Although some participants had previous
exposure to construction tasks, their encounters were limited to labo-
ratory settings, and they did not have regular construction framing task.
Every participant gave their informed consent before commencing the
experiment. The number of participants was selected based on a priori
sample size computation, which provides a minimum power of 80 %
with an effect size (f) and alpha () of 0.25 and 0.05, respectively. This
yields a sample size of 8 participants, which is the minimum required for
this study. All computations were performed using G*Power 3.1.9.7.
This study was conducted in accordance with the approval of the Vir-
ginia Tech Institutional Regulatory Board (IRB: 19-796).

4.2. Experimental design and procedure

A carpentry framing task was repeatedly simulated under two
experimental conditions, i.e., with-aBSE and without-aBSE. The framing
task was carried out under six subtasks, such as measuring, assembly,
nailing, lifting, moving, and installation, where foot planter pressure
distributions were captured with wearable pressure insoles for four-foot
regions (i.e., toe, metatarsal, arch, and heel) for the two legs. The in-
dependent factors are the experimental conditions, subtasks, and foot
regions, while the dependent variables represent five metrics obtained
from the foot plantar pressure. The five metrics are peak pressure,
pressure-time integral, full width at half maximum, average pressure,
and maximum pressure gradient. The duration of each experimental
condition did not exceed five minutes to reduce the effect of fatigue and
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Experlplental Data collection
design
Carpentry Pressure Insoles

e 16 Sensors
e Plantar pressure
e Foot regions

o

framing task
e Without aBSE
e With aBSE
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Data processing Data analysis

Low pass filter Outlier removal

Data sorting Normality test
Pressure metrics Sphericity test
e Peak pressure ANOVA

e Average pressure

e Pressure-time
integral

o Maximum
pressure gradient

e FWHM

Paired t-test
Post-hoc test

Fig. 1. Methodology overview.

the participants were allowed to rest for 30 min after completing the first
experimental condition before proceeding to the second condition
(Antwi-Afari et al. 2021). Prior to the commencement of the simulated
framing task, each participant was educated about the nature of the task,
and a step-by-step process of the experiment was demonstrated to the
participants. Also, the participants were introduced to the operation
modes of the aBSE and instructed on how the device would be used for
the experiment. The experiment commenced with the measuring sub-
task, where the participants measure out the required timber log out of
the log of planks provided for the experiment. As shown in Fig. 2, the
required timber logs for the frame construction consists of four numbers
of 1.8 mx 0.1 m x 0.025 m and two numbers of 1.2 m x 0.1 m x 0.025 m.
This was followed by the assembly subtask, where the participants ar-
ranged the measured timber log to form the frame as indicated in Fig. 2.
The next subtasks include fastening the assembled frame together with a
nail gun. The fastened frame weighed approximately 20 kg, which is
within the maximum safe lifting weight as provided by the revised Na-
tional Institute for Occupational Safety and Health lifting equation
[46,54]. The next subtask involves lifting the frame, which is subse-
quently moved manually to the upper floor via a staircase, where the
final installation takes place. The experiment was recorded with a
timestamp camera for ease of data sorting, according to the subtask, for
analysis.

4.3. Instruments and data collection
4.3.1. Active back-support exoskeleton

Cray X active back-support exoskeleton, manufactured by German
bionic company, was used for this study. The exoskeleton consists of

(a)

three major assistive strategies: lifting, bending, and walking, which can
be regulated from 0 to 100 %. The device weighs approximately 7.5 kg.
The exoskeleton is designed to be worn as a backpack with the help of
straps shown in Fig. 3. The straps consist of chest, waist, shoulder, and
thigh straps. The device is powered by a 40-Volt battery that could last 6
to 8 h according to the manufacturer.

Battery:

Chest strap

Leg strap

Leg support «——

Fig. 3. Active back-support exoskeleton. ce: .
Sour[16]

##3» Wooden frame

Active back-support
exoskeleton (CrayX)

(b)

Fig. 2. Simulated carpentry task using pressure insole: (a) without aBSE and (b) with aBSE.
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4.3.2. Pressure insoles

Opengo wearable pressure insoles manufactured by Moticon were
adopted in this study to capture foot plantar pressure distribution across
the foot regions for the two legs. Each insole consists of 16 sensors
distributed across the foot regions. Sensors 1-4, 5-8, 9-13, and 14-16
capture the heel, the arch, the metatarsal, and the toe regions, respec-
tively (Fig. 4) [11]. The pressure insole was adopted due to its capability
to directly evaluate fall risk through gait changes as a result of exerted
pressure distributed across the foot regions [33]. In this study, the
metrics extracted from the foot plantar pressure distribution data across
the foot regions to assess fall risk include peak plantar pressure, pres-
sure-time integral, mean pressure, maximum pressure gradient, and full
width at half maximum [4,55]. The peak plantar pressure represents the
maximum pressure exerted by the participants on the ground at a
particular point in time in each of the foot regions (Equation (1). The
peak pressure (PP) was computed for each of the six subtasks. The
pressure-time integral (PTI) represents the total pressure exerted by the
participants on the ground over the period of time covered while per-
forming each of the subtasks (Equation (2). The pressure-time integral
was computed for each of the foot regions. The mean pressure (MP) is
the average pressure exerted by participants on the ground over the
duration of each subtask (Equation (3). The average pressure was
computed for all the foot regions. The maximum pressure gradient
(MaxPG) represents the highest rate of change of the plantar pressure
across the foot regions of the participants over the period of each of the
subtasks (Equation (4). The full width at half maximum (FWHM) rep-
resents the width of the pressure curve on the foot at half of its maximum
height. The distance between the spots on the curve that corresponds to
half of the peak pressure value is used to compute FWHM (Equation (5).
These metrics were computed using Eq. (1)-(5) below [4], Yan et al.
[55].

PP = Maximum (Pi, ---------PN) @
Ie—n _,
MP = 5 _oPi 2
PII=>"" PiXdt 3
MaxPG = max — (C))
a<c<edt
FWHM =t, — t 5)

Where Pi represents the pressure value at i-th sensor.
N represents the number of sensors.
dt represents the time interval.

Metatarsal

Arch €—

Fig. 4. Pressure insole sensors. .
Source: [34]
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t; and t, are the start and end times of the contact phase.

4.3.3. Data processing and analysis

Data processing begins with the cleaning of the foot plantar pressure
captured data from the pressure insoles during the experiment. Ac-
cording to Tandle et al. [49], physiological wearable sensors are sus-
ceptible to artifacts, which could significantly distort the quality of the
results. While some of the artifacts could be intrinsic, i.e., generated via
body movements, there are also extrinsic artifacts, generated by the
electromagnetic devices within the vicinity [7]. Using the timestamp
video recorded during the experiment and the timestamp on the foot
plantar pressure distribution data, the data was sorted according to the
subtasks (i.e., measuring, assembly, nailing, lifting, moving, and
installation) to prepare it for filtering. The sorted data was passed
through 12th-order Butterworth low-pass filtering with an 8 Hz cutoff
frequency to remove the artifacts [44] as shown in Figs. 5a to 5f, which
represents examples of a participant’s data. The next step was to
compute the fall risk metrics (i.e., peak pressure, pressure-time integral,
full width at half maximum, average pressure, and maximum pressure
gradient) using Equations 1 to 6 in accordance with each of the subtasks.

Regarding the statistical analysis, firstly, Tukey’s range test was used
to remove the outliers using the interquartile range to define the lower
limit (Q1 — 1.5 * IQR) and upper limit (Q3 + 1.5 * IQR) [45]. Given the
repeated nature of the experiment, the sphericity and normality as-
sumptions of the data were examined using Mauchly and Shapiro-Wilk
tests to determine the suitability of the statistical tools to be deployed
to examine the significant differences. Having met the required as-
sumptions, a 3-way repeated measures ANOVA was conducted to
examine the statistical differences among the variables. Paired t-test was
further conducted to examine the differences in each of the foot regions
across all of the subtasks. Also, 1-way repeated measure ANOVA was
adopted to understand the significant subtask and the foot region while
using aBSE. The independent variables are the experimental conditions
(without-aBSE and with-aBSE), the foot regions (toe, heel, metatarsal,
and arch), and the subtasks, while the dependent variables are peak
pressure, pressure-time integral, full width at half maximum, average
pressure, and maximum pressure gradient. All results were presented
using bar graphs and tables showing the statistical significance. Eta
Squared (n2) and Cohen’s d were reported to estimate the effect sizes for
the ANOVA and paired t-test, respectively. MATLAB 2023Ra has been
adopted for the processing of data, while Microsoft Excel and JMP Pro
17.0.0. have been employed in conducting statistical analysis.

5. Results

This section illustrates the results of the fall risk assessments for the
experimental conditions in this study. The normality test results for both
the Exo and Nexo conditions are shown in Tables 1 and 2, respectively.
Table 3 indicates Greenhouse Geisser corrections (p < 0.05) for the
sphericity of the datasets. Figs. 6 — 10 present the results of the analysis
according to the following metrics: peak pressure, mean pressure,
pressure-time integral, maximum pressure gradient, full width at half
maximum, and minimum pressure gradient. ‘Nexo’ and ‘Exo’ are the
results of these metrics for the without-aBSE and with-aBSE conditions
respectively.

5.1. Peak pressure

Fig. 6 illustrates the results of the fall risk evaluation through the lens
of the peak pressure. The 3-way repeated measure shows that the
experimental conditions (without-aBSE and with-aBSE) are significant
(F = 23.69, P = <0.00, > = 0.012), with a higher peak pressure
observed while using the aBSE. A paired t-test further revealed the dif-
ferences in the foot regions (heel, arch, metatarsal, and toe) by
comparing the peak pressure of the two experimental conditions for
each of the subtasks. In measuring subtask, all the peak pressures for the
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Left foot
Right foot
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Foot regions Raw data

Filtered data Subtask

Heel (sensor 1) §

Arch (sensor 6) | I,

Metatarsal
(sensor 13)

Pressure

Toe (sensor 14) | v I

2 % % ) 100 102
Time (s)

Measuring

%2 o % % 100 102 104
Time (s)

Fig. 5a. Example of data processing for participant 1 across all foot regions for measuring subtask.

e (LW

Metatarsal
(sensor 13)

Toe (sensor 14) | i

Left foot
Right foot
Foot regions Raw data Filtered data Subtask
Heel (sensor 1) “ ) . / “
N
Arch (sensor 6) A , M Wil |34
2 Y
moeom W w 6w - v e e %G owowow Assembly

Fig. 5b. Example of data processing for participant 1 across all foot regions for assembly subtask.

foot regions are significantly (p < 0.05) higher while using the aBSE,
such that the heel (¢ (15) = 3.22, P = 0.00, d = 0.81), arch (t (15) = 3.94,
P =0.00, d = 0.99), metatarsal (t (15) = 2.99, P = 0.00, d = 0.75), and
toe (¢t (15) = 2.74, P = 0.00, d = 0.69) increased by 12.4 %, 15.6 %, 22.6
%, and 12.1 %, respectively. In the assembly subtask, only the arch re-
gion has a significant (¢t (15) = 1.80, P = 0.04, d = 0.45) higher peak
pressure of 7.4 % in the with-aBSE condition. While performing the
nailing subtask, the peak pressure was significantly (p < 0.05) higher in
the regions of arch (t (15) = 3.65, P = 0.00, d = 0.91), metatarsal (¢t (15)
=2.56, P =0.01, d = 0.64), and toe (t (15) = 1.89, P = 0.04, d = 0.47),
with percentage increases of 11.4 %, 17.3 %, and 9.7 %, respectively.
Only the heel region shows a significant (p < 0.05) increase in with-aBSE
condition while performing lifting (¢t (15) = 3.09, P = 0.00, d = 0.77) and
moving (t (15) = 4.54, P = 0.00, d = 1.14) subtasks with percentages of
11.4 % and 14.2 %, respectively. In the installing subtask, the arch (t
(15) = 2.34, P =0.02, d = 0.59), metatarsal (¢t (15) = 3.76, P = 0.00,d =
0.94), and toe (t (15) = 2.06, P = 0.00, d = 0.69) have a significantly
higher peak pressure of 18.8 %, 38.7 %, and 20.8 %, respectively, while
using the aBSE. Significantly (p < 0.05), in the with-aBSE condition, the
heel and toe are the foot regions with the highest peak pressure for

moving (F = 40.05, P = <0.00, 112 = 0.68) and measuring (F = 28.42, P =
<0.00, 77 = 0.58), subtasks, while the heel was solely the highest for the
remaining subtasks such as assembly (F = 54.86, P = <0.00, 112 =0.60),
nailing (F = 19.70, P = <0.00, 4° = 0.52), lifting (F = 35.26, P = <0.00,
72 = 0.61), and installation (F = 15.95, P = <0.00, #° = 0.30).
Comparing the peak pressure of all the subtasks while using the aBSE,
the participants significantly (F = 3.84, P = 0.00, 77 = 0.053) experi-
enced higher peak pressure during the moving subtask.

For the interaction effects, the experimental conditions and the foot
regions show no statistical significance (F = 0.54, P = 0.65, #° = 0.000).
While the experimental conditions and subtasks show statistical signif-
icance (F = 2.35, P = <0.04, ,,2 = 0.005) for the interaction effect, the
post-hoc test revealed a moving subtask, and the with-aBSE experi-
mental condition shows the highest peak pressure. Similarly, the inter-
action effect for the foot regions and subtasks shows statistical
significance (F = 1.84, P = 0.03, 7 = 0.014), with the post-hoc test
revealing the heel region and assembly subtask having the highest peak
pressure. The last interaction effect, which consists of the experimental
conditions, foot regions, and subtasks, shows no statistical significance
(F = 0.74, P = 0.75, > = 0.056).
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Fig. 5¢c. Example of data processing for participant 1 across all foot regions for nailing subtask.
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Fig. 5d. Example of data processing for participant 1 across all foot regions for lifting subtask.

5.2. Mean pressure

Fig. 6 denotes the outcomes of the evaluations of fall risk from the
perspective of average pressure. Examining the experimental condi-
tions’ main effect, there is no statistical difference (F = 0.55, P = 0.46,
#? = 0.006). However, a paired t-test further examines the differences in
the mean pressure for each of the foot regions in each of the subtasks. For
instance, there is no statistical difference (p > 0.05) in all the four-foot
regions, i.e., heel (¢ (15) = 0.41, P = 0.34), arch (¢t (15) = 1.41, P = 0.08),

metatarsal (t (15) = 1.36, P = 0.09), and toe (t (15) = 1.349, P = 0.10)
while performing the measuring subtask. While performing the assem-
bly task, only the toe region has a statistical difference (¢ (15) = 1.93, P
=0.04, d = 0.48) while using the aBSE with an increase of 14.2 %. In the
nailing subtask, the arch (¢t (15) = 4.11, P = 0.00, d = 1.03) and meta-
tarsal (¢t (15) = 2.06, P = 0.03, d = 0.52) regions have a significant (p <
0.05) higher mean pressure of 19.4 % and 17.1 %, respectively, while
using the aBSE. For the lifting subtask, only the metatarsal has a sig-
nificant (¢t (15) = 2.70, P = 0.00, d = 0.68) increment of 27.6 % in the
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Fig. 5e. Example of data processing for participant 1 across all foot regions for moving subtask.
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Fig. 5f. Example of data processing for participant 1 across all foot regions for installation subtask.

with-aBSE condition. A significant increase (t (15) = 4.14, P = 0.00,d = 0.000). In contrast, the interaction effects of the foot regions and sub-
1.04) of 16 % was experienced in the arch region while using the aBSE in tasks indicate statistical significance (F = 2.88, P = <0.00, 7> = 0.028),
the moving subtask. While performing the installation subtask, the use with the post-hoc test indicating the toe region and assembly subtask

of aBSE significantly (p < 0.05) increases the metatarsal (t (15) = 4.03, having the highest average pressure. Lastly, there is no significance (F =
P=0.00,d=1.01) and toe (¢t (15) = 2.53, P = 0.01, d = 0.63) regions by 0.68, P =0.80, r]z = 0.006) in the interaction effects of the experimental
49 % and 20.4 %, respectively. Comparing the foot regions of each conditions, foot regions, and subtasks.

subtask while using the aBSE, the toe significantly (p > 0.05) has the
highest mean pressure while performing assembly (F = 21.59, P =
<0.00, 52 = 0.43), nailing (F = 8.21, P = <0.00, 1 = 0.25), lifting (F =
8.17, P = <0.00, 4° = 0.28), and installation (F = 3.03, P = <0.00, 7° =
0.14) subtasks. The toe and heel have the highest (p > 0.05) mean
pressure for measuring (F = 15.55, P = <0.00, 4° = 0.37) subtask, while
moving (F = 2.63, P = 0.07, 112 = 0.11) subtask show no significance (p
< 0.05). While using the aBSE, comparison of the mean pressure of all
the subtasks shows no statistical significance (F = 0.63, P = 0.67, ° =
0.06).

Regarding the interaction effects, the experimental conditions and
foot regions show no statistical significance (F = 0.27, P = 0.84, ;> =
0.000). Similarly, the interaction effect of the experimental conditions
and subtasks shows no statistical significance (F = 0.18, P = 0.97, ;i =

5.3. Pressure-Time integral

Fig. 7 illustrates the results of the pressure-time integral for the
evaluation of fall risk in this study. The experimental condition’s main
effect shows no statistical difference (F = 0.98P = 0.33, ;12 = 0.003).
However, the paired t-test results show significance in some instances
when comparing the pressure-time integral for each foot region for all
the subtasks. For instance, in the measuring, assembly, and nailing
subtasks, none of the foot regions is significant in both experimental
conditions for the three subtasks. In lifting subtask, only the metatarsal
foot region has a significant (t (15) = 3.04, P = 0.00, d = 0.76) increase
of 51 % while using the aBSE. In moving subtask, all four foot regions are
significantly higher when using the aBSE by 50.2 %, 50.2 %, 37.7 %, and
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Table 1
Shapiro-Wilk test results for Exo condition (p-value > 0.05 indicates normality).
Metrics Foot regions Measuring Assembly Nailing Lifting Moving Installation
P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat)
Peak pressure Heel 0.30(0.87) 0.23(0.92) 0.60(0.95) 0.62(0.95) 0.95(0.98) 0.82(0.96)
Arch 0.53(0.95 0.07(0.88) 0.88(0.96) 0.99(0.98) 0.62(0.95) 0.46(0.94)
Metatarsal 0.72(0.96) 0.31(0.95) 0.18(0.91) 0.37(0.93) 0.46(0.94) 0.11(0.89)
Toe 0.06(0.86) 0.19(0.91) 0.72(0.96) 0.12(0.89) 0.75(0.96) 0.34(0.92)
Pressure-time integral Heel 0.69(0.96) 0.79(0.96) 0.22(0.92) 0.99(0.99) 0.44(0.94) 0.65(0.96
Arch 0.99(0.99) 0.44(0.94) 0.13(0.91) 0.60(0.95) 0.25(0.93) 0.79(0.96)
Metatarsal 0.07(0.88) 0.22(0.93) 0.35(0.93) 0.88(0.97) 0.27(0.93) 0.25(0.92)
Toe 0.82(0.97) 0.33(0.94) 0.65(0.96) 0.62(0.96) 0.26(0.92) 0.21(0.92
Max PG Heel 0.96(0.98) 0.29(0.93) 0.82(0.97) 0.75(0.96) 0.12(0.91) 0.83(0.97)
Arch 0.62(0.95) 0.48(0.87) 0.97(0.98) 0.12(0.89) 0.18(0.88) 0.63(0.95)
Metatarsal 0.93(0.97) 0.56(0.95) 0.22(0.92) 0.40(0.88) 0.33(0.94) 0.18(0.92)
Toe 0.8(0.97) 0.64(0.92) 0.12(0.91) 0.30(0.88) 0.95(0.97) 0.45(0.94)
Average pressure Heel 0.69(0.96) 0.93(0.97) 0.24(0.93) 0.15(0.91) 0.12(0.91) 0.84(0.97)
Arch 0.95(0.98) 0.99(0.98) 0.42(0.94) 0.09(0.89) 0.06(0.87) 0.07(0.89)
Metatarsal 0.33(0.93) 0.42(0.94) 0.22(0.92) 0.26(0.93) 0.47(0.94) 0.56(0.95)
Toe 0.44(0.94) 0.79(0.97) 0.12(0.90) 0.28(0.93) 0.43(0.94) 0.1(0.90)
FHWM Heel 0.89(0.97) 0.05(0.88) 0.41(0 194) 0.19(0.92) 0.08(0.89) 0.97(0.98)
Arch 0.68(0.96) 0.13(0.90) 0.13(0.91) 0.23(0.92) 0.16(0.92) 0.87(0.97)
Metatarsal 0.95(0.98) 0.29(0.93) 0.13(0.91) 0.24(0.93) 0.06(0.89) 0.59(0.95)
Toe 0.82(0.97) 0.13(0.89) 0.46(0.94) 0.18(0.92) 0.13(0.91) 0.72(0.96)
Table 2
Shapiro-Wilk test results for Nexo condition (p-value > 0.05 indicates normality).
Metrics Foot regions Measuring Assembly Nailing Lifting Moving Installation
P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat) P-value(W-stat)
Peak pressure Heel 0.29(0.93) 0.41(0.94) 0.25(0.92) 0.64(0.96) 0.66(0.96) 0.48(0.94)
Arch 0.19(0.29) 0.21(0.92 0.29(0.93) 0.68(0.96) 0.98(0.98) 0.09(0.89)
Metatarsal 0.99(0.99) 0.73(0.96) 0.77(0.96) 0.41(0.94) 0.41(0.94) 0.29(0.92)
Toe 0.37(0.94) 0.33(0.94 0.24(0.93) 0.13(0.90) 0.35(0.93) 0.67(0.95)
Pressure-time integral Heel 0.99(0.98) 0.73(0.96) 0.91(0.97) 0.76(0.97) 0.21(0.93) 0.26(0.93)
Arch 0.46(0.95) 0.77(0.96) 0.30(0.93) 0.76(0.95) 0.70(0.96) 0.22(0.93)
Metatarsal 0.11(0.91) 0.40(0.94) 0.97(0.98) 0.48(0.95) 0.16(0.91) 0.14(0.89)
Toe 0.10(0.91) 0.60(0.96 0.13(0.91) 0.54(0.95) 0.62(0.96) 0.17(0.92)
MaxPG Heel 0.88(0.97) 0.80(0.97) 0.12(0.91) 0.97(0.79) 0.84(0.97) 0.79(0.97)
Arch 0.41(0.94) 0.55(0.95) 0.83(0.97) 0.97(0.82) 0.07(0.89) 0.13(0.88)
Metatarsal 0.44(0.94) 0.10(0.90) 0.09(0.89) 0.09(0.90) 0.07(0.90) 0.29(0.93)
Toe 0.98(0.98) 0.86(0.97) 0.16(0.92) 0.61(0.95) 0.45(0.94) 0.06(0.89)
Average pressure Heel 0.92(0.97) 0.83(0.97) 0.32(0.94) 0.53(0.95) 0.64(0.96) 0.14(0.91)
Arch 0.89(0.97) 0.63(0.96) 0.99(0.99) 0.20(0.92) 0.76(0.96) 0.31(0.94)
Metatarsal 0.80(0.97) 0.87(0.97) 0.60(0.96) 0.45(0.95) 0.42(0.95) 0.94(0.98)
Toe 0.16(0.92) 0.27(0.93) 0.38(0.94) 0.19(0.92) 0.61(0.96) 0.52(0.95)
FHWM Heel 0.67(0.96) 0.31(0.89) 0.25(0.92) 0.14(0.91) 0.11(0.91) 0.24(0.92)
Arch 0.72(0.96) 0.31(0.89) 0.40(0.93) 0.10(0.90) 0.08(0.89) 0.21(0.91)
Metatarsal 0.66(0.97) 0.06(0.88) 0.16(0.89) 0.05(0.88) 0.15(0.92) 0.09(0.89)
Toe 0.89(0.97) 0.05(0.88) 0.05(0.88) 0.11(0.90) 0.88(0.97) 0.06(0.88)
0.59) regions are significantly higher by 45.4 % and 46 %, respectively.
Table 3 . o . o The pressure-time integral was compared for all the subtasks; assembly
Greenhouse Geisser sphericity corrections (p-value < 0.05 indicates and measuring subtasks had the highest significant (F — 64.62, P —
significance). <0.00, #° = 0.44) value. While using the aBSE, the toe foot region
Metrics Greenhouse- ~ Df ~ Mean Square  F Significance significantly (p < 0.05) has the highest pressure-time integral across all
Geisser the subtasks i.e., measuring (F = 10.71, P = <0.00, ;12 = 0.26), assembly
Peak 0.59 413 121357 140.38  <0.001 (F = 19.30, P = <0.00, #* = 0.25), nailing (F = 5.43, P = <0.00, 12 =
prz::zsr‘e‘fe 0.42 993 319700.51 1771 <0001 0.18), lifting (F = 28.42, P = <0.00, 7* = 0.16), moving (F = 10.37, P =
time ' ' ' ‘ ‘ <0.00, 7 = 0.04), and installation (F = 3.69, P = 0.02, r* = 0.09).
integral Regarding the interaction effect, experimental conditions and foot
MaxPG 0.49 3.44  417.85 84.12  <0.001 regions display no significant (F = 0.05, P = 0.98, 42 = 0.000) interac-
Mean 0.42 294 11329 61.88  <0.001 tion effects. Similarly, the experimental conditions and subtasks show no
ressure o 4 . 2
F}fWM 019 133 4,593,125.677 9231 <0.001 statistical difference (F = 1.27, P = 0.27, 5* = 0.003) as well. However,

27.1 % for the heel (t (15) = 2.41, P = 0.02, d = 0.61), arch (¢t (15) =
2.74, P =0.00, d = 0.69), metatarsal (¢t (15) = 3.23, P = 0.00, d = 0.81),
and toe (t (15) = 2.51, P = 0.01, d = 0.63) regions, respectively. While
performing the installation subtask with aBSE, only the metatarsal (¢
(15) = 2.97, P = 0.00, d = 0.74 and toe (t (15) = 2.34, P = 0.02,d =

there is a significant (F = 9.63, P = <0.00, 112 = 0.071) interaction effect
between the foot regions and subtasks, with the post-hoc test revealing
the ‘toe region and assembly subtask’ and ‘toe region and measuring
subtask’ having the highest pressure-time integral value. Lastly, there is
no statistical difference (F = 0.26, P = 0.99, nz = 0.002) in the inter-
action effect of the experimental conditions, foot regions, and subtasks.
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Fig. 6. Peak pressure at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).
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Fig. 8. Pressure-time integral at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).

5.4. Maximum pressure gradient (Max PG)

Fig. 8 depicts the results of the maximum pressure gradient metric
for evaluating fall risk. For the main effect of the experimental condi-
tions, there is no statistical significance (F = 0.02, P = 0.88, 7> = 0.000).

10

The use of a paired t-test to examine the difference in the maximum
pressure gradient for each foot region for all the subtasks, however,
revealed some statistical differences. For instance, in the measuring
subtask, the use of the aBSE significantly (¢t (15) = -2.07, P = 0.03,d =
-0.52) increases the arch foot region by 9.9 %. In contrast, the without-
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Fig. 9. Maximum pressure gradient at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).
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Fig. 10. Full width at half maximum at foot regions during carpentry framing tasks. (“*” and “**” = significant at p-value < 0.05).

aBSE condition shows a higher significant (¢t (15) =-2.62, P =0.01,d =
-0.66) difference of 4.2 % in the heel while performing assembly sub-
task. In nailing subtask, the use of aBSE shows a significant (p < 0.05)
increase of 8.7 % and 13.6 % in the regions of the arch (¢t (15) = 2.92, P
= 0.00, d = 0.73) and metatarsal (t (15) = 2.28, P = 0.02, d = 0.57),
respectively. While using the aBSE in lifting subtask, the metatarsal re-
gion of the foot shows a significant (¢t (15) = -2.07, P = 0.03, d = -0.52)
increase of 16.5 %. Moving subtask show no statistical significance, but
the installation subtask revealed higher peak pressure at the metatarsal
(t(15) = 2.77, P = 0.00, d = 0.69) and toe (¢t (15) = 3.15, P = 0.00,d =
0.79). While using the aBSE, comparing the maximum pressure gradient
of all the subtasks shows that assembly and measuring subtasks have the
highest (F = 7.58, P = <0.00, r]z = 0.07) value. For all the subtasks,
similar to the pressure-time integral, the toe foot region has the highest
significant (p < 0.05) maximum pressure gradient i.e., measuring (F =
20.67, P = <0.00, 7> = 0.47), assembly (F = 10.78, P = <0.00, * =
0.46), nailing (F = 10.72, P = <0.00, 2 = 0.25), lifting (F = 19.19, P =
<0.00, #? = 0.26), moving (F = 32.99, P = <0.00, 7 = 0.36), and
installation (F = 13.92, P = 0.02, * = 0.24).

Regarding the interaction effects, the experimental conditions and
foot regions show no statistical significance (F = 0.18, P = 0.90, 5 =
0.000). Similarly, the experimental conditions and subtask interaction
effect show no statistical significance (F = 1.32, P = 0.25, ;12 = 0.003).
However, the foot regions and subtasks interaction effect show statisti-
cal significance (F = 2.13, P = 0.00, 112 = 0.016), with the post-hoc test
revealing the ‘toe region and assembly subtask’ and ‘toe region and
moving subtask’ having the highest maximum pressure gradient value.
The last interaction effect of experimental conditions, foot regions, and
subtasks shows no statistical significance.
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5.5. Full width at half maximum (FWHM)

The results of the full width at half maximum assessment of the fall
risk of using aBSE for framing task are revealed in Fig. 8. The experi-
mental conditions’ main effect shows no statistical significance (F =
0.28, P = 0.60, 5° = 0.000). The paired t-test comparing the FWHM of
each foot region of all the subtasks, however, shows some significance.
For example, measuring subtask for the without-aBSE condition shows
that all the foot regions are significantly (p < 0.05) higher by 27.2 %,
30.1 %, 29.6 %, and 28.5 % for the regions of heel (t (15) =-1.79, P =
0.04, d = -0.45), arch (¢t (15) =-2.11, P = 0.03, d = -0.53), metatarsal (t
(15) =-1.96, P = 0.04, d = -0.49), and toe (t (15) =-1.92, P =0.04,d =
-0.48), respectively. In contrast, in the moving subtask of the with-aBSE
condition, all the foot regions i.e., heel (¢t (15) = 2.87, P = 0.00, d =
0.72), arch (t (15) = 2.78, P = 0.00, d = 0.70), metatarsal (¢t (15) = 3.35,
P = 0.00, d = 0.84), and toe (t (15) = 2.29, P = 0.02, d = 0.57) are
statistically (p < 0.05) higher by 28.4 %, 36.5 %, 32.6 %, and 31.6 %,
respectively. There is no statistical significance in the remaining sub-
tasks (assembly, nailing, lifting, and installation). Comparing all the
subtasks while using aBSE shows that measuring and assembly subtasks
show the highest (F = 166.17, P = <0.00, nz = 0.68) FWHM. For all the
subtasks, the metatarsal foot region has the highest significant (p <
0.05) maximum pressure gradient i.e., i.e., measuring (F = 111.61, P =
<0.00, #? = 0.22), assembly (F = 204.46, P = <0.00, 7 = 0.27), nailing
(F = 114.59, P = <0.00, * = 0.25), lifting (F = 75.70, P = <0.00, * =
0.22), moving (F = 101.44, P = <0.00, 712 = 0.22), and installation (F =
44.02, P = <0.00, #° = 0.13).

Regarding the interaction effects, the experimental conditions and
foot regions show no statistical difference (F = 0.15, P = 0.93, ,,2 =
0.000). However, the interaction effect of experimental conditions and
subtasks shows statistical difference (F = 9.37, P = <0.00, 172 = 0.015)
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with the with-aBSE condition and measuring subtask having the highest
value of FWHM. Similarly, the interaction effect of the foot regions and
subtasks indicates a statistical significance (F = 3.95, P = <0.00, 7> =
0.019), with the metatarsal foot region and measuring subtask showing
the highest value of FWHM. Lastly, the interaction effect of the experi-
mental conditions, foot regions, and subtasks shows no statistical sig-
nificance (F = 0.13, P = 1.00, 712 = 0.000).

6. DISCUSSION

Given the potential of aBSE to increase the risk of its users directly or
indirectly, this study empirically evaluates the implication of using aBSE
for construction framing task using foot plantar pressure distribution
data captured with wearable pressure insoles. In this section, the out-
comes of the fall risk metrics are discussed and are peak pressure,
average pressure, pressure-time integral, maximum pressure gradient
and full width at half maximum.

6.1. Peak pressure

The results from the fall risk assessments demonstrate significant
variations in peak pressure across different foot regions and subtasks
when comparing the conditions with and without the use of an aBSE.
The use of aBSE significantly increases the peak pressure of users in at
least one foot region across all subtasks, indicating a higher risk of fall.
Given that peak pressure represents the highest-pressure value at each
foot region, the comparison between the two conditions (with-aBSE and
without-aBSE) demonstrates an unsafe situation when using the aBSE.
This is particularly significant in the heel and arch regions, which
exhibit higher pressures across multiple subtasks, as shown in Fig. 5a-f.
While the arch region’s significance is somewhat surprising, the com-
bination of heel and metatarsal pressure aligns with expectations given
the postures assumed during subtasks (e.g., squatting, bending, and
standing). The weight of the body is typically on either the metatarsal
during squatting or the heel during standing and bending. This finding
aligns with results from Mickle et al. [33], which also found significant
peak pressure in the heel and metatarsal when comparing fallers and
non-fallers. The moving subtask, which involves participants carrying a
frame and moving across a staircase, exhibited the highest peak pres-
sure. This is a reasonable result given the physical demands and dynamic
nature of the task. Overall, the use of an exoskeleton substantially in-
creases the risk of falls during construction framing work, particularly
during dynamic and physically demanding tasks.

6.2. Average pressure

Although there were no significant differences in mean pressure
across the four foot regions (i.e., heel, arch, metatarsal, and toe) during
the measuring subtask, notable patterns emerged during other subtasks
when using the aBSE. This finding is somewhat surprising given the
squatting posture assumed during the measuring subtask, despite the
additional weight of the device. It suggests that using the aBSE in a static
position does not substantially increase fall risk.

The average pressure represents the mean pressure exerted by par-
ticipants across all foot regions. It reveals that one or more foot regions
consistently indicated fall risk across all subtasks except the measuring
subtask. As shown in Fig. 6, the toe, metatarsal, and arch regions showed
significant differences, suggesting no impact on the heel region whether
using aBSE or not. Similarly, Antwi-Afari and Li [4] also identified these
areas as significant in their study on different loss of balance events. For
example, the notable increase in mean pressure in the toe region during
the assembly subtask (14.2 % increase, p = 0.04) suggests that aBSE use
may affect stability in this region, potentially impacting workers’ bal-
ance during tasks requiring precision. Additionally, the increased mean
pressure in the arch and metatarsal regions during the nailing subtask
(19.4 % and 17.1 % increases, respectively, p < 0.05) could pose a
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heightened risk of injury in these areas. This may lead to discomfort or
fatigue over time, potentially compromising workers’ safety and effi-
ciency. During the lifting subtask, the significant increase in metatarsal
pressure (27.6 % increase, p = 0.00) underscores the impact of aBSE on
this foot region, potentially leading to instability or difficulties in lifting
heavy objects. Similarly, the rise in arch pressure during the moving
subtask (16 % increase, p = 0.00) highlights the importance of foot re-
gion support in tasks involving dynamic movements. Interaction effects
between foot regions and subtasks, especially with the toe region
showing the highest average pressure during assembly, nailing, lifting,
and installation subtasks, suggest that these areas may need targeted
ergonomic interventions and protective measures.

6.3. Pressure-Time integral

The pressure-time integral results illustrated in Fig. 7 demonstrate
how the use of an aBSE influences fall risk across various subtasks and
foot regions. The pressure-time integral represents the total pressure
exerted by the participants over the period and the results show that
moving subtask stands out as the only subtask with significant difference
across all the foot regions. This indicates that the use of the aBSE brought
significant changes in the participants’ gait stability while moving the
frame across the staircase, potentially increasing the risk of falls during
more dynamic and intense framing tasks. These results align with peak
pressure results and indicate that aBSE use may elevate fall risk in
construction tasks involving significant movement. One significant
finding is the increased pressure-time integral across the foot regions
and subtasks when using the aBSE. For example, the toe region exhibited
the highest pressure-time integral across all subtasks when using the
aBSE, likely due to the nature of tasks such as squatting, bending, and
other dynamic movements. This finding highlights the potential need for
targeted interventions to support these critical areas during specific
tasks. The interaction effect analysis also provided interesting insights.
While there were no significant interactions between experimental
conditions and foot regions or between experimental conditions and
subtasks, there was a significant interaction between foot regions and
subtasks. The highest pressure-time integral values were observed in the
toe region during the assembly and measuring subtasks. This suggests
that specific foot regions and tasks could benefit from particular atten-
tion to reduce fall risk.

Comparisons to previous studies, such as Choi et al. [13], revealed
contrasts in the analysis of different loss of balance events and foot re-
gion pressures, further emphasizing the impact of specific tasks and
equipment on fall risk. In particular, the repetitive body movements in
measuring and assembly subtasks, combined with a higher pressur-
e-time integral, indicate a greater risk of falling compared to other
subtasks.

6.4. Maximum pressure gradient

The maximum pressure gradient represents the highest rate of
change in the pressure across each of the foot regions and the results that
there is at least a significant difference in the foot regions across the
subtasks, except for moving. This indicates that the use of the aBSE
substantially increases the risk of fall. While it was anticipated that the
use of aBSE would affect the stability of the users while moving on a
staircase with a 20 kg frame, surprisingly, the opposite is the case. The
metatarsal foot region emerged as the most sensitive region to fall risk,
as it is significant in three of the six subtasks. This result is in contrast
with Yan et al. [55], where the arch and the heel were identified as the
most sensitive regions for fall risk in elderly people during walking ex-
ercises. Such discrepancies highlight the importance of considering
different populations and tasks when examining fall risk. Similar to the
pressure-time integral, measuring and assembly subtasks represent the
subtasks with the highest fall risk. This highlights the importance of
identifying tasks that are particularly vulnerable to fall risks.
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Understanding the tasks that are vulnerable to the risk of fall could help
the safety managers to understand the crew the device would safely
work for on the construction site.

6.5. Full width at half maximum (FWHM)

Although the main effects of the experimental conditions were not
statistically significant, the paired t-test of the full width at half
maximum (FWHM) for each foot region in different subtasks provided a
deeper understanding of how aBSE usage could affect construction
workers. The analysis of FWHM results reveals significant changes in all
four foot regions during both measuring and moving subtasks. However,
intriguingly, these two sets of results contradict each other: the moving
subtask suggests that the use of aBSE increases fall risk, while the
measuring subtask indicates the opposite. Although these conflicting
results are not mirrored in other metrics, the outcomes of the moving
subtask, which involves manually transporting frames to upper floors
via staircases, align with other metrics and support the notion that the
use of aBSE escalates fall risk during dynamic and demanding tasks. The
statistical significance of the moving subtask results echoes findings by
Yan et al. [55], who observed significant differences in FWHM across all
foot regions when comparing the gait patterns of two elderly individuals
during walking tasks. This suggests potential parallels in the effects of
movement and balance across different populations and contexts. For
the without-aBSE condition, measuring subtask showed significantly
higher FWHM in all foot regions (heel, arch, metatarsal, and toe),
indicating a potential risk for loss of balance events and subsequent falls.
This finding highlights the importance of focusing on the measuring
subtask in construction work, as workers may be more susceptible to
injuries in this subtask due to uneven pressure distribution on their feet.
These findings highlight the importance of investigating and monitoring
the impact of aBSEs on construction tasks, particularly measuring and
assembly, which had the highest FWHM values and pressure-related
metrics. Consequently, there is a pressing need for more comprehen-
sive research to elucidate the relationships among various foot plantar
metrics.

6.6. Overall metrics

Overall, across all the metrics, the use of aBSE significantly increases
the risk of falling in at least one of the subtasks. This may be attributed to
the features of the aBSE and the nature of the construction work. While
using the aBSE, the toe and the heel foot regions are the most sensitive
regions according to all the metrics, except FHWM where metatarsal was
revealed as the highest. With moving, measuring, and assembly being
the most sensitive subtasks, this was not surprising because of the pos-
tures assumed including squatting and bending, which could isolate the
pressure of the body in these foot regions. In response to the objective of
this study, which is to evaluate fall risk while using aBSE in performing
construction framing tasks, the results demonstrate that the use of aBSE
could elevate fall risk, especially when the construction task is dynamic
and demanding, as revealed by the results of all the computed metrics.
Similar to Antwi-Afari et al. [3] and Yan et al. [55] where foot plantar
pressure metrics have been employed to assess fall risk, this study
demonstrates the efficacy of these metrics in assessing fall risk of using
aBSE on construction sites.

7. Contributions

This study investigates the associated fall risk of using aBSE while
performing construction framing tasks through the foot plantar pressure
metrics of wearable pressure insoles. The study makes both theoretical
and practical contributions in the following ways:

13

Advanced Engineering Informatics 62 (2024) 102626

8. Theoretical contributions

This study makes several important theoretical contributions to
construction safety research, particularly in the context of aBSEs and
their impact on fall risk during construction work. By empirically
evaluating foot plantar pressure distribution data, this study offers an
understanding of how aBSE usage affects different foot regions and
subtasks within construction framing work. These are described as fol-
lows: Firstly, the findings regarding peak pressure variations across
different foot regions and subtasks with and without aBSEs provide in-
sights into the complex relationship between foot pressure distribution
and fall risk. The significant variations observed, particularly in the heel
and metatarsal regions, suggest that aBSEs could lead to unsafe condi-
tions and elevate fall risk during construction tasks. Secondly, the study
contributes to the understanding of mean pressure differences across
foot regions during different construction tasks. The data highlights how
aBSE use may affect stability and risk of injury, particularly in dynamic
and demanding tasks, such as nailing, lifting, and moving. Moreover, the
analysis of pressure-time integral and maximum pressure gradient of-
fers new perspectives on how aBSEs influence fall risk across different
subtasks and foot regions. These metrics reveal the nuanced impact of
aBSE use on gait stability and foot pressure distribution, particularly in
dynamic tasks such as moving. Finally, the study of the full width at half
maximum (FWHM) provides theoretical insights into how aBSE usage
can either increase or decrease fall risk depending on the specific sub-
task. This duality highlights the complex relationship between aBSEs
and fall risk in construction work.

9. Practical contributions

The practical contributions of this study are centered around
improving construction safety practices and interventions for workers
using aBSEs. The results offer insights that can guide the development of
ergonomic interventions and protective measures for workers perform-
ing construction tasks such as framing. The findings suggest that the toe
and heel foot regions require special attention due to their sensitivity to
increased pressure and fall risk when using aBSEs. Safety managers and
ergonomists could use this information to implement interventions such
as enhanced footwear support or training programs that focus on safe
movements in these regions. Additionally, the identification of specific
subtasks (e.g., measuring, moving, and assembly) that are particularly
susceptible to fall risk provides guidance for safety protocols and aBSE
usage. Workers and supervisors can benefit from this knowledge by
adjusting work practices and using aBSEs more effectively during these
tasks. Furthermore, the data on pressure-time integral and maximum
pressure gradient highlights the need for ongoing monitoring and
assessment of workers’ safety while using aBSEs. Safety managers can
use these metrics to identify potential hazards and implement preven-
tative measures to reduce fall risk during dynamic and physically
demanding tasks. Lastly, the study emphasizes the importance of
continued research and data collection on aBSE use in construction,
which can lead to better safety standards and improved working con-
ditions for construction workers. By integrating foot plantar pressure
metrics into safety assessments, construction sites can benefit from more
effective approaches to fall risk management.

10. Conclusion, limitations, and future work

Given the biomechanical benefits attributed to the use of exo-
skeletons across various industry sectors, the construction industry is
preparing for the adoption of aBSE to reduce the threat of WMSDs.
Noticeably, there have been unintended consequences that could
directly or indirectly raise fall hazard issues while using exoskeletons on
construction sites. This study evaluates the fall risk implications of using
aBSE for carpentry framing task. The results show that the use of aBSE
significantly increased the foot pressure metrics in at least one of the
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subtasks and foot regions, with an increase ranging from 7 % to 51 %.
This suggests an elevated fall risk associated with using the device.
Across all the metrics, the toe and heel regions showed the highest in-
creases, indicating they are most sensitive to changes in gait. The
moving, measuring, and assembly subtasks were found to carry the
highest risk of falling, as evidenced by their high pressure values.
While this study shows that there is a risk of falling, there are some
inconsistencies in results of the metrics used. Further study should
examine the relationship between these metrics in the context of
construction-related tasks to identify the most important metrics. Con-
ducting studies in real-world construction settings and with a larger
sample would provide more generalizable results, as this study was
conducted in a controlled laboratory environment simulating carpentry
tasks. Moreover, including a more diverse sample of experienced con-
struction workers in future studies could lead to more comprehensive
insights. Future studies could explore participants’ subjective evalua-
tions of fall risk while using aBSEs. This study provides insights into the
potential risks of falling while using aBSEs in construction and informs
stakeholders about the need for careful decision-making regarding their
adoption. The results contribute to the understanding of the relationship
between foot regions, fall risk metrics, and construction tasks, and
inform how aBSEs could be designed to better suit construction work.
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