Effects of error, chimera, bias, and GC content on the accuracy of amplicon sequencing
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ABSTRACT

Targeted amplicon sequencing is widely used in microbial ecology studies. However, sequencing
artifacts and amplification biases are of great concern. To identify sources of these artifacts, a
systematic analysis was performed using mock communities comprised of 16S rRNA genes from
33 bacterial strains. Our results indicated that while sequencing errors were generally isolated to
low-abundance operational taxonomic units, chimeric sequences were a major source of artifacts.
Singleton and doubleton sequences were primarily chimeras. Formation of chimeric sequences
was significantly correlated with the GC content of the targeted sequences. Low-GC-content
mock community members exhibited lower rates of chimeric sequence formation. GC content
also had a large impact on sequence recovery. The quantitative capacity was notably limited,

with substantial recovery variations and weak correlation between anticipated and observed



strain abundances. The mock community strains with higher GC content had higher recovery
rates than strains with lower GC content. Amplification bias was also observed due to the
differences in primer affinity. A two-step PCR strategy reduced the number of chimeric
sequences by half. In addition, comparative analyses based on the mock communities showed
that several widely used sequence processing pipelines/methods, including DADA2, Deblur,
UCLUST, UNOISE, and UPARSE, had different advantages and disadvantages in artifact
removal and rare species detection. These results are important for improving sequencing quality

and reliability and developing new algorithms to process targeted amplicon sequences.

IMPORTANCE

Amplicon sequencing of targeted genes is the predominant approach to estimate the membership
and structure of microbial communities. However, accurate reconstruction of community
composition is difficult due to sequencing errors, and other methodological biases and effective
approaches to overcome these challenges are essential. Using a mock community of 33
phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing
results and tested different approaches to improve overall sequencing accuracy while
characterizing the pros and cons of popular amplicon sequence data processing approaches. The
sequencing results from this study can serve as a benchmarking data set for future algorithmic
improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC
bias from this study will help enhance the quality of amplicon sequencing studies and support the

development of new data analysis approaches.
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Amplicon sequencing of targeted genes is a ubiquitous tool in microbial ecology research owing
to advances in high-throughput sequencing technologies (1-8), particularly the Illumina MiSeq
system (1, 4, 7, 9—12). These high-throughput technologies have enabled the rapid acquisition of
microbial community structure and composition information, allowing scientists to readily
analyze microbial communities and address interesting hypotheses in microbial biodiversity and
biogeography (13). Frequently targeted genes include both phylogenetic markers, like 16S rRNA
genes (14— 20), internal transcribed spacer, 28S rRNA genes (21-26), and 18S rRNA genes (16,
27-30), and functional genes, such as nifH (16, 31-35), nirK and nirS (36, 37), nosZ (36, 38),
and dsrA and dsrB (39, 40).

High-throughput amplicon sequencing revealed the “rare biosphere,” the enormous number
of low-abundance taxa present in microbial communities (41-45). This population is important
as seed banks or gene pools, which help maintain functional redundancy and robustness within
an ecosystem (46, 47). Identifying and mapping the distribution of rare species represent a
crucial prerequisite to understanding the biodiversity patterns and trends of these species (48).
However, even with high-throughput sequencing technologies, detection of rare species
represents a major technical challenge. Both type I (incorrectly reject true rare species) and type
IT (misclassification of artifacts as species) errors can be generated during library preparation,
sequencing, and data processing (48). Even after quality trimming to remove noise and error-
prone sequences (49), low-abundance operational taxonomic units (OTUs), such as singletons,
doubletons, and tripletons, usually account for a large proportion of the remaining OTUs (48).
Studies using 454 pyrosequencing suggest that most of these low-abundance OTUs contain
multiple errors or are themselves artifacts such as chimeras (50). However, they may also
represent true rare species (51-53). Therefore, there arises a problem in that data filtering may
simultaneously remove true rare species while failing to completely remove artifacts.

Amplification bias, artifacts, and errors introduced during library generation, sequencing, and
data processing affect the estimation of various diversity indices used to assess microbial
communities. Variation introduced by random sampling and low sampling efforts could lead to
an overestimation of microbial community B-diversity (10, 54—60). Chao (61) estimates rely
heavily on the number of species observed only once to extrapolate the total number of species in
a community; thus, it is highly sensitive to the presence of erroneous sequences and artifacts

(48). Due to these challenges, great caution must be taken in interpreting high-throughput
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amplicon sequencing data (8). As such, appropriate sample preparation methods and analysis
pipelines should be selected based on the objectives of a study, especially when dealing with
low-abundance sequence reads (48).

[llumina sequencing errors have been characterized for both 16S rRNA gene amplicons and
metagenomes (62, 63). Most of the observed errors were substitution type miscalls (11) resulting
primarily from cross-talk between the emission spectra of the different fluorophores (A/C or
G/T) (63) or from phasing or pre-phasing when sequences are synthesized (64). Another source
of error noted was from specific sequence regions, such as inverted repeats or GGG sequences
(65). All of these types of errors would likely be reflected in the corresponding quality scores.
Incorporating phasing primers with varying spacer lengths (0—7 bases) in PCR library
preparation can significantly enhance the base diversity of sequencing libraries and improve the
quality of sequence data in MiSeq runs (7). However, other types of errors and artifacts,
specifically those originating from sample preparation steps, would not correlate with the quality
score (63).

In this study, we used mock communities containing near full-length 16S rRNA gene
sequences from 33 bacterial strains, representing 27 different phyla, to identify sources of error,
artifacts, and biases in MiSeq amplicon sequencing. We compared error rates from different
methods of PCR library preparation. Our results indicated that chimeric sequences were the
major source of sequencing artifacts, with some artifacts resulting from contamination, while
sequence errors were generally restricted to low-abundance OTUs. In addition, GC content of a
target gene sequence significantly impacted chimeric sequence formation, strain detection, and
sequence quality. Using a two-step PCR method greatly reduced the number of chimeric

sequences. These results are important in sequence processing and data interpretation.

RESULTS

Data statistics

Three bacterial mock communities (Bm1, Bm2, and Bm3) were amplified using three methods:
non-phasing, one-step phasing, and two-step phasing (7). In contrast to the non-phasing and one-
step phasing methods, which included a single 30-cycle PCR, the two-step phasing method
included an initial 10-cycle PCR with template-specific primers, followed by a 20-cycle PCR

with phasing primers. Each mock community was replicated 24 times, with a unique barcode for



each replicate, resulting in a total of 216 libraries (3 mock communities x 3 amplification
methods % 24 replicates). After sequencing, each mock community library had between 5,688
and 36,012 raw reads (Table S1). Sequences of all libraries were rarefied at 5,688 for amplicon
sequence variant (ASV)/OTU classification; other analyses used all reads.

Chimeric sequences

UCHIME?2 was used to identify and remove chimeric sequences (Table S2A through C).
Chimeric sequences (identified using the mock community 16S rRNA gene sequences as
reference) accounted for about 11% of the raw joined sequences in Bm1 with non-phasing and
one-step phasing, but only about 6.5% with two-step phasing (Fig. 1A). About 70% of these
chimeric sequences were detected and removed by UCHIME?2 using the Greengenes database as
reference, regardless of amplification method used. About 30% of the chimeric sequences were
not detected (Fig. 1A; Table S2A). Similar trends were observed in the forward and reverse reads
(Table S2A). There were fewer chimeric sequences (~3%) in Bm2, which had a high abundance
of low GC strains, compared to Bm1 (Fig. 1B; Table S2B). To rule out the possibility that the
low chimera rate of Bm2 was due to lower similarities among the low-GC-content strains, we
constructed a phylogenetic tree to visualize the similarities between the 33 mock community
strains. Surprisingly, we found that low-GC-content strains tended to have more similar V4
regions when compared to the high-GC and medium-GC strains (Fig. S1). This was further
supported by the higher GC contents of the chimeric reads than those of the non-chimeric reads
in the Bm1 trimmed community (P < 0.001; Fig. S2). Bm3, with a high abundance of high-GC
strains, had a similar percentage to Bm1 (Fig. 1C; Table S2C).

Quality trimming did not reduce the number of chimeric sequences for the joined sequences (Fig.
1D) but did slightly for the reverse and forward reads for the non-phasing and one-step phasing
methods (Fig. 1E and F).

Error rates

Sequence errors rates for all methods are shown in Table S3A through C; Fig. 2. The largest error
rate for Bm1 was that of the non-phasing method raw reverse reads (1.63%; Fig. 2C). This rate
was reduced after removing the detected chimera (1.24%; Fig. 2C) and after merging the forward
and reverse reads (0.44%, without chimera; Fig. 2A). The two-step phasing method lowered the
overall percent of sequencing errors (0.39%, without chimera; Fig. 2A). Quality trimming

significantly reduced error rates as well. For example, the error rate for the two-step phasing



joined sequences was 0.33% (chimera removed) after trimming (Q25-W5), which was further
reduced to 0.27% with more stringent trimming (Q30-W2) (Fig. 2A). Similar error rates were
observed with Bm3 (Table S3B), while Bm2 had much lower error rates (Table S3B), indicating
the GC content of the sequences affected error rates.

Operational taxonomic units or amplicon sequence variants

OTUs were estimated for joined sequences using UPARSE (Tables S4 and S5). For Bm1, most
of the strains were recovered with only a few exceptions. One strain was missing from the two-
step phasing library, and two strains were missing from non-phasing and one-step phasing
libraries. UCHIME2 with a balanced mode identified only one chimera with two-step phasing
and two with non-phasing and one-step phasing methods (66). Two-step phasing detected more
contaminants (8 £ 3) and erroneous OTUs (14 + 3), which could be true rare species, than non-
phasing and one-step phasing methods due to the higher quality sequences generated from the
two-step phasing. Although Bm2 and Bm3 were like Bm1 in number of OTU contaminants and
erroneous sequences, there were no chimeras identified in Bm2, and fewer strains were detected
in Bm2 and Bm3.

ASVs or (z)OTUs were also estimated for Bm3 with the two-step phasing method using
DADA2, Deblur, UNOISE, and UCLUST. The number of ASVs detected by DADA2 (31 +5)
and Deblur (34 + 4) was close to the number of real mock community strains with very few
artifacts, while the number of OTUs detected by UCLUST (110 + 25) largely exceeded the
number of mock community strains (Table S6A). However, DADA2 and Deblur missed more
mock community strains (9 + 2 and 8 £ 2, respectively), including one high-abundance strain
(Thermomicrobium roseum, abundance 8.41%) (Table S6A). UCLUST (82 + 25) and UNOISE
(46 £ 8) had the most artifact (z)OTUs, most of which were chimeras (Table S6A). Erroneous
(z)OTUs or ASVs accounted for 4%—20% of artifacts with all methods (Table S6A). UPARSE
detected the most contaminants (9 + 3), while DADA2 and Deblur detected only 1 + 1 (Table
S6A). The artifact composition for all methods was similar when using both sensitive and
balanced modes, except that the proportion of chimeras increased and erroneous sequences
decreased with sensitive mode, especially for UPARSE (Table S6B). A total of 69 contaminant
ASVs or (z)OTUs were detected across all five methods. Twenty-five of the contaminants were
archaea, all but one of which matched the 16S rDNA sequences of strains in an archaea mock

community (65). Forty-four of the contaminants were bacteria, most of which matched 16S



rDNA sequences of environmental samples in the NCBI database with a minimum identity of
94% (Table S7).

Spurious sequences

purious sequences were defined as sequences in singletons, doubletons, and other unique OTUs.
After trimming at Q20-WS5, chimeric sequence removal, and OTU generation by UCLUST, the
largest number of spurious sequences in Bm1 was detected with non-phasing (516), and the least
occurred with two-step phasing (465) (Table S8A). Interestingly, Bm2 had the most spurious
sequences when the two-step phasing method (284) was used, and the least when the non-
phasing method (183) was used (Table S8§B). Bm3 had similar numbers of spurious sequences
(278-298) regardless of which amplification methods were used (Table S8C).

Almost all spurious sequences were singletons (97%-99%), which consisted of chimeric
sequences (25%—75%), E. coli (0.7%—1.1%), or other contaminant strains (9%— 32%) and
erroneous sequences (16%—-50%) (Table S8A through C). For the two-step phasing amplification
method, its spurious sequences contained fewer chimeras, but relatively more contaminants and
erroneous sequences, while its total number of spurious sequences was generally lower (Table
S8A through C). Three singletons detected in Bm3 (one with one-step phasing, two with two-
step phasing) were true sequences (Table S8C).

Quantitation and bias

Quantitative accuracy and sequencing biases were evaluated by comparing the observed and
expected relative sequence abundances. The observed abundances were approximately fivefold
lower to twofold higher than expected in Bm1 (Table S9A). Similar differences were observed
for Bm2 (Table S9B) and Bm3 (Table S9C), except that one strain was not detected in Bm3
when the non-phasing method was used (Table S9C). The GC content and inputted abundance of
strain sequences (expected) affected their observed rates (Fig. 3; Table 1). When using non-
phasing method, it was found, for high-GC strains in equal (3.03%, Bm1) abundance community,
the mean observed rate was higher than the expected (P < 0.001). Furthermore, it was
significantly higher than those of both low- and medium-GC strains (Fig. 3A; Table 1). For low-
GC strains with low input abundances (0.01%, Bm3; Fig. 3C) and medium-GC strains with
medium (0.67%, Bm2 and Bm3; Fig. 3B and C) and equal (3.03%, Bm1; Fig. 3A) input

abundances, the observed mean rates were lower than the expected (P < 0.01; Fig. 3B and C;



Table 1). However, for high-GC strains with low input abundances (0.01%, Bm2; Fig. 3B), the
mean observed abundance was lower than the expected (P < 0.05; Fig. 3B and C; Table 1).

For low-GC strains with equal (3.03%, Bm1) and high (8.41, Bm2) input abundances, the
differences between observed abundances and the expected were not significant (Table 1). These
trends were also observed significantly in some cases but not in others when using one- or two-
step phasing methods (Table 1).

Pearson correlation coefficients for Bm1 strains were 0.43 = 0.05, 0.72 £0.12, and 0.76 = 0.03
with non-phasing, one- and two-step phasing methods, respectively (Table 2), indicating a
relative stronger positive correlation between the observed and expected results with the phasing
methods. Similar results were obtained for Bm2 and Bm3 (Table 2).

Abundance biases were observed for specific strains (Fig. 4). For example, several strains,
including those with low(Protochlamydia amoebophilia, Chlorobi), moderate (Actinobacteria,
and Caldisericum), and high (Thermomicrobium roseum and Thermodesulfobacterium
commune) GC content, had consistently low recovery, regardless of how abundant they were or
which amplification method was used (Fig. 4). We found that the low recovery of these strains
was due to mismatching to the forward PCR primer (data not shown). A few other strains had
consistently high recoveries when in moderate to high abundance but not in low abundance
(Acidobacteria, Mycoplasma orale [low GC]) (Fig. 4). In addition, primer groups displayed some
biases based on amplification method used (Fig. 5). Ordination plots of the sequencing results
showed a clear separation of replicated libraries among the primer groups when one-step phasing

was used (Fig. 5A) but no separation with two-step phasing (Fig. 5B).

DISCUSSION

Sequence errors generated by MiSeq amplicon sequencing are generally due to low sequence
quality, chimeric sequences, and errors generated during PCR amplification. Some errors may
be related to specific sequence regions, such as inverted repeats or repeated bases (GGG) (65).
Errors with low-quality scores are usually removed during quality trimming at Q20-WS5.
Although increasing the stringency of quality score-based trimming can remove additional
errors, it 1s at the expense of sequencing depth (7). Combining forward and reverse reads could
also decrease error rates which is consistent with Kozich’s report, in which a AQ strategy was

used to remove unreliable consensuses (11). However, ANTP misincorporation errors generated



during PCR amplification, which can be a major source of error in quality trimmed sequences,
cannot be identified based on base quality score. Kozich used a pre-clustering strategy that a rare
sequence with low abundance was removed and its abundance was added to a sequence more
abundant and had difference less than 1 nt per 100 nt with the less abundant sequence, which
further reduced errors. This strategy could remove some errors generated during PCR. We
observed that some sequence positions were more prone to error than others. This could be
related to specific sequence structures, as reported by other researchers (65). However, the error
rates in these sequence positions were much lower than the detection criterion (30%) (65) and
accounted for only a very small portion of the remaining error rate (data not shown) in this study.
In addition, we found that sequence reads generated from high-GC-content mock communities
(Bm1 and 3) had higher error rates compared to those from the low-GC-content mock
community (Bm2), which was further supported by the error rates of the three strain clusters with
different GC content of Bm1 (Fig. S3). Sze et al. found that the error rate increased with PCR
cycles (12). In this study, we found that two-step PCR lowered the error rate that could be due to
the second PCR refreshed enzyme and other reagents.

We found that UCHIME with the Greengenes sequence database as reference could not remove
all chimeric sequences, usually missing about 30% of the chimeric sequences. We also found that
the most prevalent spurious sequences detected were chimeras. The use of two-step PCR reduced
the number of chimeric sequences by half because two separate PCRs were used, each having
not more than 20 (67) PCR cycles and fresh reagents, which was consistent with Sze et al.’s
report, in which it was found that the chimera rate increased with PCR cycles (12). We observed
that several other factors influenced chimeric sequence formation, including GC content and the
distribution of strains in the community being sequenced. Low-GC DNA sequences generated
fewer chimeric sequences as observed with the high-abundance, low-GC strains in Bm2. This
observation may be due to the lower binding free energy of DNA duplexes (68), which makes
incomplete PCR products with a low GC content less likely to bind to the template DNA in
subsequent PCR cycles, thereby reducing the chance of chimera formation. In addition,
community DNA with one or more dominant strains, rather than many similar abundant strains,
resulted in a lower chimeric sequence rate. This is because a chimeric sequence formed within a
single strain population is a self-chimeric sequence and is thus no different from a normal PCR

product. So, if dominant strains are present, there would be a higher number of sequences from



only a few strains, making self-chimera more likely. Real community DNA has a much higher
diversity than the mock communities used in this study, so it would be expected to have a higher
chimeric sequence rate than observed here. A more thorough understanding of the factors
contributing to chimera formation may help in the development of algorithms better able to
detect chimeric sequences.

A common practice to clean up OTU tables is to remove potentially spurious sequences before
downstream analyses, an approach partially supported by the results of this study. Most of the
spurious sequences (25%—75%) were identified as chimeric sequences. About 10% of the
spurious sequences were contaminants from reagents used for PCR amplification, 16S rRNA
gene cloning (69, 70), and the laboratory environment, which was confirmed by the template free
control 16S rRNA gene sequencing analysis (Table SI0A through C). Thus, preventing
contamination during preparation and amplification steps is extremely important. A fraction
(16%—34%) of the spurious sequences were erroneous due to mismatching during PCR
amplification and sequencing. Two-step phasing method resulted in more effective sequences
(7), fewer chimeras, and fewer spurious sequences, primarily due to a lower chimera rate and
higher sequence quality. Of its spurious sequences, there were still fewer chimeras; there was a
relatively higher proportion of contaminants and erroneous sequences. It is worth noting that
contaminants and sequences with errors introduced during PCR amplification could be
considered genuine rare sequences, indicating that two-step phasing allowed for the retrieval of a
greater number of rare sequences. One or two presumed spurious sequences were identified as
true sequences in some of the mock communities. Using standard practices, these sequences
would be removed, thus missing what could be true rare species. Even with the limited
community size of our mock community and the relatively high abundance (0.01%) of our “low-
abundance” strains, the low-abundance strains appeared to be under-sequenced. In real
communities, with much higher diversities and more members at very low abundance, the
likelihood that presumed spurious sequences would include true sequences would be much
higher. As such, there should be a balance between restrictive quality trimming and preserving
less abundant (z)OTUs or ASVs.

The remaining sequencing artifacts were erroneous sequences that had high sequence quality
scores and originated from one of the PCR amplification steps. OTU sequence error rates were

significantly negatively correlated with OTU sequence abundance (Fig. S4). Thus, the remaining



errors were mostly restricted to low-abundance OTU sequences. Using DADA?2 and Deblur to
process amplicon sequences resulted in fewer spurious ASVs due to more optimal removal of
erroneous sequences.

Another important consideration for microbial detection is the quantitative capability of the
amplicon sequencing approach. In this study, we found that the quantitative capability of targe
gene amplicon sequencing is limited. Although the observed and expected abundances of each
strain showed reasonable correlation, the differences were relatively large, averaging two- to
sixfold. Higher abundance strains generally had observed abundances that were close to the
expected abundance, whereas low-abundance strains consistently had observed abundances
lower than expected when non-phasing method was used. These findings suggest that rare
species’ presence in real communities is likely to be underestimated. It is worth noting that the
lowest concentration evaluated in this study was 0.01%, which was much higher than the typical
concentration observed in nature. As a result, the quantitative capability of amplicon sequencing
is likely poorer when applied to real community samples. These findings are consistent with
what we observed previously with 454 amplicon sequencing (60). In this study, the GC content
of the sequences also affected recovery rates that low-GC sequences with low input abundance
and medium-GC sequences with equal and medium input abundances exhibited relatively low
recoveries and high-GC sequences with equal input abundances exhibited relatively high
recoveries using non-phasing methods. Using one- and two-step phasing methods, these biases
were mitigated. Sequencing bias was also observed for PCR primer pairs, which was partially
due to mismatches in forward primer sequences of mock community strain 16S rRNA sequences
and was consistent with a previous report (71), and for spacer length differences. Spacer bias was
only observed with one-step phasing, indicating the need for a two-step PCR.

The findings of this study, which were based on sequencing of the V4 region of 16S rRNA genes,
may provide valuable insights for other targeted gene amplicon sequencing, including those
targeting functional genes. However, it is important to note that the secondary structure and
frequency of interspecific complementarity required for chimera formation may differ
significantly for other classes of genes compared to 16S rRNA. Furthermore, different classes of
genes may have GC contents outside of the range investigated in this study. Therefore, further
investigation of different functional genes is necessary to fully understand the implications of

these findings for other types of sequencing assays.



PCR methods incorporating phasing primers improved sequencing quality by increasing the
cluster density, passing filter and Q30 percentages, and lowering the raw sequence error rate,
especially toward the end of a run. This, in turn, increased the number of qualified sequences
reads after quality trimming, consistent with previous reports (7). A method that combines
shotgun whole genome sequencing with amplicon sequencing or, alternatively, adding more
(15%) Phix can also overcome the phasing problem in MiSeq sequencing when phasing primers
are not available. In addition, the two-step, phasing PCR reduced the number of chimeric
sequences by as much as 50%, although, based on the results using UPARSE, two-step phasing
resulted in more contaminants and erroneous OTUs, which may be due to there being more of
these sequences having higher quality and fewer chimeras remaining. The two-step PCR
amplification also eliminated sequencing biases observed from spacer differences in the phasing,
one-step PCR. These findings provide further evidence of improved sequencing quality when
using the phasing, two-step PCR method.

Although we could not draw a conclusion for which sequence processing method performed
best, we did see specific strengths for each method. UPARSE detected a higher number of OTUs,
recovering most of the mock community strains and missing only 3 low and 1 medium
abundance strains, indicating a high recovery of the mock community diversity. In addition,
UPARSE detected the most contaminants, particularly strains in an archaea mock community
that was created together with the bacterial mock communities used in this study. If these archaea
strains and other contaminants were considered true or putatively positive strains, UPARSE
detected the most low-abundance stains, indicating that it may be better at detecting true rare
species in real environmental samples. UPARSE also had fewer chimeric OTUs, indicating that it
is good at removing chimera. UCLUST had the most artifacts, over twice of the mock
community strains; moreover, chimera accounted for the largest fraction of artifacts compared to
the other methods. UNOISE performed similarly to UCLUST. There were about one and half
times the number of artifacts as mock community strains with UNOISE, and chimeras made up
56% of its artifacts. For UNOISE and UCLUST, chimera would be of significant concern with
real community samples because chimeric sequences would be more difficult to detect. So, these
methods could overestimate the diversity of real microbial communities. Both DADA?2 and
Deblur had very few artifacts but missed many of the low abundance mock community strains,

and both detected very few contaminants, specifically strains in the contaminant archaea mock



community, which could be with too restrictive sequence processing settings. Since real
microbial communities have much higher diversity with a large percentage of rare species, the
abundance of which would be much lower than what was used in the mock communities, they
would likely not be recovered. Thus, these two methods could significantly underestimate the
diversity of communities in environmental samples. Although the number of ASVs detected by
DADAZ2 and Deblur was close to the number of mock community strains, there were still
artifacts, including chimeras and erroneous ASVs. Thus, artifacts are a common and unavoidable
issue for all five methods. Great caution should be taken when selecting appropriate methods for
sequence analysis, which is questions and objectives dependent. For example, if rare species are
a focus, then, DADA?2 and Deblur would not be good choices. Sequencing errors, artifacts,
biases, and inherent technical variations associated with sequencing and processing steps are
unavoidable. As such, sequence data are best used for relative comparisons across different
conditions or treatments (8, 60, 72) so that the effects of technical variation on the final

experimental outcomes can be canceled out (8).

Conclusions

This study rigorously investigated the origins and influential determinants of artifacts and
methodological biases in target gene amplicon sequencing with mock communities, featuring
diverse bacterial strains’ 16S rRNA genes, leading to interesting findings. First, the research
unveiled that chimeric sequence significantly contributed to sequencing artifacts, constituting up
to over 10% of raw sequences, of which a third persisted post-UCHIME treatment using the
GreenGene database as reference. Notably, spurious sequences, particularly singletons and
doubletons, were predominated by chimeras. Moreover, a substantial association emerged
between chimeric sequence occurrence and the GC content of targeted sequences. Sequences
with lower GC content demonstrated diminished chimera formation rates. Second, while most
errors were linked to sequence quality, a subset of errors arose during PCR amplification,
persisting after quality trimming and concentrating within rare OTUs/ASVs. GC content of
target sequences exhibited a direct relationship with error rates. Third, target sequence GC
content and input abundance profoundly influenced mock community strain recovery, with
elevated GC content and higher input abundance enhancing recovery rates, further entailing

interactive effects. Fourth, the quantitative capacity of target gene amplicon sequencing



displayed notable limitations, characterized by substantial recovery variations and weak
correlation between anticipated (input) and observed strain abundances. Fifth, biases stemming
from primer affinity were identified. Application of a two-step phasing strategy during library
preparation and sequencing yielded multifaceted benefits, reducing chimeric sequences,
elevating sequence quality, augmenting effective sequence yields, enabling rare sequence
recovery, and mitigating the impacts of target sequence GC content and abundances on mock
community strain retrieval. This strategy effectively counteracted biases introduced by target
gene primers and barcoded primers. Comparative assessment of diverse amplicon sequence
processing pipelines, including DADA?2, Deblur, UNOISE, UCLUST, and UPARSE, highlighted
distinct merits and demerits. While DADA2 and Deblur exhibited fewer artifacts, they incurred
greater strain losses. In contrast, UCLUST and UNOISE yielded increased artifacts but
recovered more mock community strains. UPARSE demonstrated superior efficacy in
minimizing artifacts and mock community strain loss. Consequently, for mitigating chimeric
sequences, errors, and methodological biases, adoption of the two-step phasing approach during
PCR library preparation and sequencing was recommended. The selection of an appropriate
sequence processing pipeline was contingent upon scientific objectives, favoring UPARSE with
DADAZ? as a suitable alternative when rare species detection was of secondary concern. The
study’s insights into the influence of target sequence GC content, abundances, and associated
factors on chimeric sequence formation and error rates hold promise for advancing enhanced

approaches in sequence generation and processing methodologies.

MATERIALS AND METHODS

Mock community DNA

The mock communities used in this study were reported previously (71). Briefly, 16S rRNA gene
sequences from 33 bacterial strains, belonging to 27 different phyla, were used to construct the
mock communities (Table S11; File S1) (71). Clones of near full-length 16S rRNA gene
fragments were generated using PGEM-T Easy Vector Il system (Promega, Inc., Madison, WI).
The plasmid concentrations were quantified in triplicate using Quant-iT dsDNA assay kit
(Invitrogen, Carlsbad, CA) on a Nanodrop 3300 (Thermo Scientific, Wilmington, DE). The
sequences were divided into three clusters mostly (with a few exceptions) based on GC content

within the V3-V5 region of the 16S rRNA genes and, considering the strain diversity at the



phylum level, the GC content of V4 region: low (51.16% + 2.1%), moderate (55.1% + 1.8%),
and high (59.3% + 3.3%), with 11 in each cluster to assess whether overall community GC
content of the target sequences causes biases. The sequences of the three clusters were then
distributed into three mock communities in equal (3.03%) abundance in bacterial mock
community 1 (Bm1) and in a combination of low (0.01%), moderate (0.67%), and high (8.41%)
abundance in two different allotments (Bm2 and Bm3) (Table S11). All mock communities had a
16S rRNA gene concentration of 10° copies/puL.

PCR library preparation

Primer pair 515F (5'-GTGCCAGCMGCCGCGGTAA-3") and 806R (5'-
GGACTACHVGGGTWTCTAAT-3') (2) were used to amplify the V4 hypervariable region of
the bacterial 16S rRNA genes. Three strategies were used for PCR library preparation: one-step
PCR with non-phasing primers (non-phasing), one-step PCR with phasing primers (one-step
phasing), and two-step PCR with phasing primers (two-step phasing). For the non-phasing
method, both forward and reverse primers contained the Illumina adapter, pad, and linker
sequences (Table S12A and B). The reverse primers also contained a barcode sequence (12-mer)
between the [llumina adapter and pad sequences (Table S12B) (1). For both one-step and two-
step phasing methods, phasing primers (Table S12C through E) were used for library generation,
and for two-step phasing, the target-only primers were used in the first PCR (7). Both forward
and reverse phasing primers contained the Illumina adapter, the sequencing primer, a spacer, and
the target gene primer; a 12-mer barcode sequence was on the reverse primer between the
[llumina adapter and the sequencing primer.

For the non-phasing method, 24 libraries with unique barcodes (Table S12A and B) were
generated for each of the mock communities as technical replicates. The content of each
amplification reaction and the thermal cycling conditions were described previously (7). Each
library had triplicate reactions. Following amplification, 2 uL. of PCR product from each reaction
was used for agarose gel (1%) electrophoresis to confirm amplification. Each library was
generated by pooling the triplicate PCRs and then quantified with PicoGreen.

For the one- and two-step phasing methods, we generated 24 libraries with unique barcodes for
each mock community using phasing primers. To achieve this, we selected one primer from each
of the eight forward primers and three primers with unique barcodes from each of the eight

reverse primer groups to ensure that the primer pairs had different spacer lengths for the forward



and reverse primers, while maintaining a total spacer length of 7. This enabled us to analyze the
bias caused by different spacer combinations of forward and reverse primers (Table S12C
through E) (7). PCR amplification with the one-step phasing method followed the same
procedure as that of the non-phasing method (7). For the two-step PCR, target-only primers and
10 cycles of amplification were used for the first PCR, and then phasing primers and 20 cycles of
amplification were used for the second PCR (7).

Sequencing

A 200-ng aliquot of PCR product from each library was pooled, purified using a QIAquick

Gel Extraction Kit (QIAGEN Sciences, Germantown, MD, USA), and then quantified with
PicoGreen for one MiSeq run (7). The sample library was prepared for sequencing following the
MiSeq Reagent Kit Preparation Guide (Illumina, San Diego, CA, USA) as described previously
(7). The mock community libraries for each of the three PCR methods (each had 3 x 24 =72
libraries) were pooled and sequenced separately. The detailed experiment design is shown in
Table 3.

Sequence data processing and statistics

Raw sequence quality check and data preparation were performed as previously described (7). To
identify the origins of the reads, BLAST (73) was used to search against the reference sequences,
where the closest match was recorded for each read. Btrim was used for quality trimming of both
forward and reverse reads based on the sequence quality score (74). To evaluate the effect of
trimming strategies, sequences were trimmed if the average quality score in a window of 5 or 2
bases (W5 or W2) was not continuously equal or lagger than 20, 25, or 30 (Q20, Q25, or Q30).
Sequences that were less than 200 bases or contained undetermined bases, N’s, were removed.
FLASH v1.2.5 (75) was used to merge paired end reads with sufficient overlap (minimum 20
bases) into full-length sequences. Reads that could not be joined were removed.

Chimeric sequences were identified based on predictions from the UCHIME2 algorithm (66) in
USEARCH using 16S rRNA sequences from either the Greengenes core database (76) or the
mock community strains as references. All chimeric sequences predicted using the mock
community sequences were true chimeras. Those predicted by the Greengenes database were
predicted (or detected) chimeras that would be removed during sequence quality filtering. The

undetected chimeric sequences were those present after subtracting the predicted from the true



chimeras. All mock community strains have at least 80% similarity to one 16S rRNA reference
sequence in Greengenes core database, seven of them have identical matches.

To estimate the error rate, the sequence reads (forward, reverse, or merged) were searched
against the reference sequences and aligned using the “usearch _global” command provided by
USEARCH (66). Alignment to the best hit reference sequence was used to determine the number
of mismatches, insertions, and deletions at each base position. The error rate was estimated using
the total number of errors divided by the total valid base number for each base position and for
each sequence. Sequence error rates were estimated for the raw reads and merged reads, after
quality trimming, and before and after chimeric sequence removal.

The OTUs from all mock communities were clustered using UPARSE (77). Additionally, ASVs
or (z)OTUs from Bm3 were clustered using DADA?2 (78), Deblur, UCLUST, and UNOISE. This
was done to compare the different methods in terms of the total number of ASVs/(z)OTUs
detected, artifact removal, artifact composition, and rare species recovery. DADA2 and Deblur
were performed in QIIME2 (https://qiime2.org); UCLUST, UNOISE3, and UPARSE were
performed in USEARCH (79). Representative sequences generated from each method were
classified using sequences of the 33 mock community bacteria. A maximum error of 7 of 253 bp
was allowed for generation of OTUs with UCLUST and UPARSE at a similarity threshold of
97%. No errors were allowed with the other methods. To control variation due to an unequal
number of sequences detected across libraries, sequence resampling was performed prior to any
processing for each library based on the library with the fewest number of sequences.
Resampling was accomplished by randomly drawing sequences from the original pool until the
selected rarefying level was reached. Spurious sequences or sequences in unique OTUs, which
was defined as OTUs present in only one technical replicate across all mock community
libraries, containing one (singletons), two (doubletons) or more than two (other unique OTUs)
sequences were identified to investigate their compositions. To identify the source of false-
positive sequences (artifacts), we classified the sequences into chimera, contaminated, and
erroneous sequences. Chimera detection was done as described above using the 16S rRNA V4
region sequences of the 33 mock community bacteria strains as the reference database. Both
sensitive mode (at the expense of a high false-positive rate) and balanced mode, which seeks to
minimize the overall error rate, were used for chimera detection. To distinguish contaminant and

erroneous sequences, we used a BLAST search for all false-positive sequences against the NCBI
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database and a database comprised of the 33 mock community bacteria strains. Non-chimera
false-positive sequences that matched to the NCBI database with a greater than 70% identity
while not matching to the mock community database were defined as contaminant strains.
Erroneous sequences were defined as non-chimera false-positive sequences that matched to the

mock community database with a greater than 70% identity.
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FIG 1 Chimera rate. (A, B, and C) Chimera rates for joined raw sequences of Bm1, Bm2, and
Bm3. Total chimeras were identified by UCHIME with the mock community 16S rRNA gene
sequences as the references. Detected chimeras were those detected by UCHIME (usearch
v5.2.3) with Greengenes core database for 16S rRNA gene sequences as the references. The un-
detected chimeras were those not detected by UCHIME with Greengenes core database, which
remained after chimera removing process. Chimera rate in the three categories is the percentage
of chimeric sequences out of all sequences. The average chimera rate for non-phasing libraries
(dark red), one-step phasing libraries (dark yellow), and two-step phasing (blue) are shown. Error
bars indicate standard deviation of replicate samples. Lowercase letters (i.e., a, b, and c) above
the error bars show the results of analysis of variance (ANOVA) and least significant difference
(LSD) tests to examine the significant differences, where groups labeled with different lowercase
letter are significantly different (P < 0.05), while those labeled with the same lowercase letter are
not significantly different (P > 0.05). Rates of total chimeras and un-detected chimeras were
calculated for joined (D), forward (E), and reverse (F) sequences before and after quality
trimming at stringencies from Q20-W5 through Q30-W2 of Bm1. The average total chimera rate

(long dash line) for non-phasing libraries (dark red circle), one-step phasing (dark yellow



triangle), and two-step phasing (blue square) libraries and un-detected chimera rate (dotted line)
for non-phasing libraries (dark red open circle), one-step phasing (dark yellow open triangle),

and two-step phasing (blue open square) libraries are shown.

1.8
—@— Non-phasing, before UCHIME
? 16 1 [ S Non-phasing, after UCHIME (A) (B)
B\ 14 ——-9F——- One-step phasing, before UCHIME
S ] —=gF—-  One-step phasing, after UCHIME
3 19 — -l— - Two-step phasing, before UCHIME
—-—{J—+ Two-step phasing, after UCHIME
&5 1.0
0.8
e b —
C06| % -u g o N
o0 & ~—R—8-a -B--g -y
= 04 TRt v e S R S o0 SRt = SR o NEHHS o HENRNSY LIV
W s e SRR E

~sl \N"’ \N’L \(\\"’ \X*\'I' \Nfa \N’L SRS\t SRR SR SN 2 R LSRN RN SR AN\ SR A
@a Q@ @‘b
OVLQ -~ O"LQ -~ Oqf.) ot Of]f.) -~ 0'50 -~ Ofbg -~ OFLQ -~ OI’LQ - OFL‘J - df.) -~ Ofb() - O%Q -~ O{LQ Fd OI’IS) - ol’?f.) - df.) - 0%0 -~ O%Q -~

FIG 2 Sequence error rates for Bml. (A) Forward sequences, (B) reverse sequences, and (C)
joined sequences. Sequence error rates (only considering substitutions) were calculated by
comparing the sequences to their mock community strain reference sequences for the raw, and
quality trimmed (at stringencies from Q20-W5 through Q30-W2) sequences, for joint, forward,
and reverse sequences. Sequence error rates were estimated before and after chimera removal by
UCHIME using Greengenes core database for 16S rRNA gene sequences as reference sequences.
The average sequence error rates before chimera removal (long dash line) for non-phasing
libraries (dark red circle), one-step phasing (dark yellow triangle), and two-step phasing (blue
square) libraries and after chimera removal (dotted line) for non-phasing libraries (dark red open
circle), one-step phasing (dark yellow open triangle), and two-step phasing (blue open square)

libraries are shown.
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FIG 3 Effects of sequence GC content and input sequence abundances on mock community
strain sequence recovery. The figure shows how mock community strain sequence GC content
affected sequence recoveries in Bm1 with equal inputted abundances and high, medium, and low
sequence GC content (A) and how inputted strain sequence abundances affected mock
community strain sequence recoveries in Bm2 (B) and Bm3 (C), both with high, medium, and
low inputted sequence abundances. Small plots within panels B and C show the observed
recoveries of the strains with medium and low inputted abundances at a fine scale. The
corresponding GC contents of Bm2 and Bm3 were indicated in the figures. The green lines and
numbers in the major and small plots indicate the expected rates of even (3.03%), high (8.41%),
medium (0.67%), and low (0.01%) input. Shown here are values of non-phasing method. Boxes
and whiskers indicate quartiles, and red line indicate mean values. P values are for the
comparisons between observed abundances and the expected. Lowercase letters (i.e., a, b, ¢) in
panel A show the results of ANOVA and LSD tests to examine the significant differences among

the observed abundances of high-, medium-, and low-GC-content strains.
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FIG 4 Relative abundance of strain sequences used to generate bacterial mock communities. (A)
Bml, (B) Bm2, (C) Bm3. Dashed line: theoretical relative abundance. The experimental mean
relative abundances for non-phasing libraries (black circles), one-step phasing (red circles), and
two-step phasing (green triangle) libraries are shown, and error bars indicate standard deviations

for replicate samples.
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Fig 5 Detrended correspondence analysis (DCA) of the mock community 16S rRNA gene

sequence data with one-step (A) and two-step (B) phasing methods showing community

structural bias among different phasing primer groups with different length of spacers. Mock

community libraries with phasing primer groups 1 (blue circle, forward spacers/reverse spacers

[the same for other groups], 0/7), 2 (red open circle, 1/6), 3 (gray triangle, 2/5), 4 (open purple

triangle, 3/4), 5 (dark yellow square, 4/3), 6 (open green square, 5/2), 7 (light blue diamond, 6/1),

and 8 (open black diamond, 7/0) with triplicate were shown.




Table
Table 1 Comparisons of observed to expected strain rate among GC content, library

preparation methods, and strain distribution in mock communities

Mock community Bml Bm2 Bm3
Group 1 2 3 1 2 3 1 2 3
GC content Low  Medium High Low  Medium High Low Medium High
Expected rate (%) 3.03 3.03 3.03 8.41 0.67 0.01 0.01 0.67 8.41
Observed rate (%)  Non-phasing Value 2901  2.658 3389 8572 047 0.005  0.005 0.377 8.598
sdtv 1.87 1.324 1.687 5.453 0.216 0.005 0.005 0.17 4.223
Pvalue® 0.140  0.000 0.000 0.482  0.000 0.015  0.004 0.000 0.319
Significancé¢ b c a
One-step phasing ~ Value 2.665  3.035 3229 8515 0505 0.011  0.006  0.407 8.577
sdtv 1.217  1.453 0.764  3.966  0.242 0.003 0.005 0.174 1.997
Pvalue® 0.028  0.978 0.270  0.828  0.000 0.693  0.063  0.000 0.719
Significancé¢ b b a
Two-step phasing ~ Value 3.163  2.754 3.073 8561 0.464 0.009 0.012 0.493 8.517
sdtv 1.545  1.738 1.177  4.194  0.249 0.003  0.006 0.282 3.66
Pvalue® 0.052  0.000 0.498  0.231  0.000 0.656  0.351  0.000 0.316
Significancé  a b a

“Pvalue from two-tail -test against the expected value.
"Lowercase letters (i.e., a, b, ab, and ¢) show the results of ANOVA and LSD tests to examine thsignificant differences.



TABLE 2 Pearson correlation coefficient between the observed and the theoretical abundances

of mock community sequences

Methods Mock community
Bml Bm2 Bm3
Non-phasing 0.4324+0.0451 b  0.7220+0.0218 ¢ 0.8554 £0.0126 b

One-step phasing 0.7175+0.1192 a 0.8282 +£0.0325b 0.8935 +£0.0492 a
Two-step phasing 0.7607 £ 0.0302 a 0.8461 £ 0.0163 a 0.8373 £0.0190 ¢

“Lowercase letters (i.e., a, b, and ¢) following the value of the correlation coefficient in the table
show the results of ANOVA and LSD tests to examine the significant differences among the

methods.



TABLE 3 Details of experiment design

Methods Non-phasing One-step phasing Two-step phasing
PCR steps One One Two

First step PCR primer Barcode primer Barcode primer Target gene primer
Second step PCR primer n/a“ n/a Barcode primer
Spacers in barcode primer None 0-7 0-7

First step PCR cycles 35 35 10

Second step PCR cycles n/a n/a 20

Barcode primer groups 1 8 8

Replicates of each primer group 24 3 3

Total replicates 24 24 24

Number of mock communities 3 3 3

Number of libraries 72 72 72

MiSeq run 1 1 1

n/a, not applicable.



