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Aboson samplerimplements arestricted model of quantum computing. It is defined
by the ability to sample from the distribution resulting from the interference
of identical bosons propagating according to programmable, non-interacting

dynamics’. An efficient exact classical simulation of boson sampling is not believed
to exist, which has motivated ground-breaking boson sampling experimentsin
photonics with increasingly many photons* 2. However, it is difficult to generate
andreliably evolve specific numbers of photons with low loss, and thus probabilistic

techniques for postselection’ or marked changes to standard boson sampling

10-12

are generally used. Here, we address the above challenges by implementing boson

sampling using ultracold atoms

B3 inatwo-dimensional, tunnel-coupled optical

lattice. This demonstration is enabled by a previously unrealized combination of tools
involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as
programmable control of those atoms using optical tweezers. When extended to
interacting systems, our work demonstrates the core abilities required to directly
assemble ground and excited states in simulations of various Hubbard models™*.

Thereisarich history of studying quantum optics with atoms instead
of photons”, including demonstrations of two-atominterference**2°,
Scaling up these demonstrations requires reliable preparation of cho-
sen patterns of many identical atoms, evolution under non-interacting
dynamics that can exchange the positions of the atoms and high-fidelity
detection of the atom positions after their evolution. The latter two
requirements can be met with quantum gas microscopy, in whichit is
possibleto prepare and detect thousands of atoms inan opticallatticein
which those atoms can tunnel and interfere?*, Althoughin principle the
first requirement can be met by additionally using sophisticated optical
control techniquestoisolate asubset of atoms fromalarger many-body
state?®®? inpractice, the typical state fidelities and cycle times of up
to tens of seconds make it challenging to perform alarge-scale boson
sampling demonstration. To explore alternative routes to improve
the speed and quality of state preparation, we turn to tools that have
been developed to rapidlyimage®, optically cool®*2and deterministi-
cally rearrange individual atoms trapped in optical tweezers****. Using
the tweezers to implant atoms in a tunnel-coupled optical lattice®?¢
allows for both fast state preparation (in hundreds of milliseconds)
and therequired dynamics for boson sampling. Moreover, the tweezers
can be used to modify the lattice potential®® to implement different
non-interacting dynamics with low loss.

Combiningthe aforementioned tools for state preparation, evolution
and detection in a single apparatus enables large-scale demonstra-
tions of boson sampling with Fock states that were not feasible before
thiswork. In particular, we study specificinstances of boson sampling
involving up to 180 atoms spread over about 1,015 sites in the lattice.
Importantly, direct verification of boson sampling is infeasible for
these system sizes. To build confidence that these boson sampling
experiments sample fromavery large state space and are not feasible
to simulate classically, we develop and implement broadly applicable

tests to examine and quantify the performance of our system for boson
sampling. These testsinclude (1) stringent tests of indistinguishability
with up to eight atoms; (2) characterizations of the atom evolution
fromdatawith one and two atoms; (3) evidence of expected bunching
features as aresult of interference for a range of atom numbers and
effective particle statistics. This diversity of tests is enabled by the
programmability of the input states available in our system, the high
repetition rate of about 1 Hz and the family of different unitaries that
canbe realized using Hamiltonian evolution on the lattice.

Webeginwithadescription of our experimental setup and its features
as they relate to the tests and demonstrations performed (Fig. 1). To
prepare patterns of identical ®Sr atoms in an optical lattice, we load
athermal cloud of atoms into a tweezer array (typically with dimen-
sions of 16 x 24) withrandom filling of 50-75% (refs. 37,38), and implant
these atoms in the lattice®**’. We image the implanted atoms with a
typical fidelity of 99.8(1)% per lattice site, and, based on these images,
rearrange the atomsinto the desired target patterns (Fig.1a). Therear-
rangement can be performed with a per-atom success probability as
high as 99.5%, but 98% is typical for the data presented in this work
(Methods). A second image is used to check if the atoms have been
rearranged correctly, allowing us to postselect for perfect atom rear-
rangement (up to imaging errors). After the atoms are appropriately
positionedinthelattice, they are cooled to their three-dimensional (3D)
motional ground state by resolved sideband cooling using the narrow
line'S, < P, transition* (Methods). Note that similar performance for
state preparationand imagingis achieved across a 48 x 48-site region
in the lattice (Supplementary Information section VI).

Once prepared, each atom undergoes quantum walk dynamics
described by an m x msingle-particle unitary U= e " where mis the
number of sitesin the lattice, His the lattice Hamiltonian (Methods) and
tistheevolution time. During the quantum walk dynamics, 5.0(2)% of
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Fig.1|Assembling Fock states of bosonic atomsin a tunnel-coupled
opticallattice. a, States containing up to180 bosonic atoms are prepared

and measured on-demand inanoptical lattice (grey grid) using site-and
atom-resolved imaging (pictured images are single-shot experimental data),
parallelized rearrangement with optical tweezers (green cones) and
high-fidelity laser cooling. The evolution of these atomsin the latticeis
described by factorially many (in particle number) different interfering
multiparticle trajectories (light and dark blue lines show two possible
interferingtrajectories for asubset of atoms). b, Theinterference between
atoms can be studied by measuring correlationsin the occupation of specific
sitesinthelattice (red). Partitioning the lattice into arbitrary subsets of sites k
(grey) canallow one to more efficiently (in terms of the number of experimental
trials) study the effects of interference. Owing to the separability of quantum
walk dynamicsonanideal squarelattice, itis particularly useful to partition the
lattice into columnsindexed by their x coordinates (blue). ¢, Specifically, by
binning two-dimensional quantum walk data over the y-axis, we can study
one-dimensional quantum walks along x, in which the initial coordinate in the
y-axisactsasanadditional ‘hidden’ DOF that can modify the distinguishability
ofthe atomsinthe remaining ‘visible’ x axis. For example, we can prepare two
atoms with the same (unlabelled) or different (labelled) y-coordinates (sites
initialized with anatom are marked in red). The atom number density on each
site after the evolution of these atoms is shown here atan evolution time of
t=tyom:=0.96 ms.d, After binning to one dimension, each two-particle output
isuniquely labelled by the x coordinates of the two atoms (x;, x,), withx, < x;,.
The measured probabilities Pof observing agiven two-particle output are in
agreement with theory, inwhich the unlabelled atoms (top left) agree with the
expectation for perfectly indistinguishable bosons (bottom left) and labelled
atoms (top right) with distinguishable particles (bottomright). In these and
subsequent probability distributionsin this work, the input state before the
atomevolutionis highlightedinred.

the atomsare lost, which we refer to as single-particle loss (Methods).
Importantly, single-particle loss is not strongly dependent on evolu-
tion time (Supplementary Information section VI) and is primarily
because of state preparation errors in which the atoms occupying
excited in-plane bands leave the analysis region and are unlikely to
return. After the quantum walk, a final image is used to measure the
positions of the atoms. This measurement is not number resolving,
and instead detects atom number parity on each site because of the
effect of light-assisted collisions (we refer to this process as parity
projection)®?24°, However, for most experiments in this work, we can
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operate in aregime in which the probability that more than one atom
occupiesagivensite is low, minimizing the effect of parity projection’.
Moreover, except for experiments that involve large atom numbers,
we postselect our measurements on observing no lost or extra atoms
after the quantum walk dynamics to account for any lingering effects
ofloss, image infidelity and parity projection (Methods).

Our use of ground-state ®Sr atoms ensures that on-site elastic and
inelastic interactions are weak**? (Supplementary Information sec-
tion VII), and that the many-atom dynamics are, to a good approxi-
mation, non-interacting. For n non-interacting bosonic atoms, the
many-atom evolutionisrelated to the permanent of an n x n submatrix
of U(Methods). Computing the permanent of an arbitrary matrixisin
the complexity class #P-hard"*, and so even sampling from the prob-
ability distribution resulting from the above evolution is believed to
be intractable for more than around 50 atoms using classical tech-
niques**. By contrast, for distinguishable atoms the evolution s related
to the permanent of an n x n submatrix of |U>, where | - | denotes the
element-wise norm (Methods). Approximating the permanent of a
non-negative real matrix canbe performedin polynomialtime, and the
corresponding sampling task can efficiently be accomplished classi-
cally®. Different degrees of atom distinguishability resultin behaviours
that lie in between these two scenarios**®.

Although our atoms are fundamentally bosonic composite particles,
they may not behave bosonically on the lattice. This is because the
single-atom sstate space includes degrees of freedom (DOFs) other than
just the location of the atom in the lattice. For example, the atom can
be in different electronic states or in different motional states in the
direction that is normal to the lattice. The single-atom state space is
thusatensor product of the Hilbert spaces Hy, (‘visible’ DOFs) spanned
by |i) (sites) and Hy, (‘hidden” DOFs) spanned by |h) (Iabels). In our sys-
tem, the overall unitary dynamicsis non-interacting for the atoms, and
the single-atom Hamiltonianactsindependently onthe hiddenand the
visible DOFs, which means thatitis of the form H, ® 1,; + 1, ® H, (where
the subscripts indicate the subspace that each operator actsonand H
isaHamiltonian acting onthe indicated subspace). Owing to thisinde-
pendence, the hidden DOFs can affect the visible behaviour of the atoms
only by changing their effective particle statistics. For example, if we
prepare some number of atoms in specific visible sites but each atom
has adifferent hidden label, then the visible behaviour of the atoms is
that of perfectly distinguishable particles. Other types of visible parti-
cle statistic are also possible, including fermionic statistics if the mul-
tiparticle wavefunction is antisymmetric in the hidden DOFs (ref. 3).
Our tests focus on determining bounds on the deviation from bosonic
behaviourbecause of the hidden DOFs. We also characterize the specific
particle statistics exhibited in the visible behaviour inexperiments with
only two and three particles. Note that errors in the visible DOFs are
unlikely because of our procedure for state preparation and postselec-
tion (Methods), which rules out certain exotic error models*.

The indistinguishability of two atoms is defined to be the Hilbert-
Schmidtinner product of the density matrices of the two single-atom
wavefunctions on the hidden DOFs. It can be inferred from a Hong-
Ou-Mandel (HOM) experiment by comparing the coincidence prob-
ability of the atoms P% to the corresponding coincidence probability
for perfectly distinguishable atoms P, (Methods). We measure HOM
interference of atoms™™®" by studying quantum walks in one dimen-
sion using the binning procedure described in the Methods (Fig.2).In
these quantum walks, an evolution time of ¢y, := 0.96 ms approximates
abalanced beamsplitter between adjacentsites (Fig.2b,c and Methods).
To measure the behaviour of distinguishable atoms, we can control the
hidden (after binning) initial y-coordinates of the atoms by rearrange-
ment (werefer tothis as positionlabelling; see Fig. 1c,d). Alternatively,
we can perform a pair of experiments in which only one atomis prepared
atatime, and then combine the data in subsequent analysis (we refer
to this astime labelling; see Methods). Both approaches agree to within
statistical errors.
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Fig.2|Multiparticle quantumwalks in one dimension. a, Quantum walks in
onedimension, pictured here for two particles at an evolution time of = 4.23 ms
for differentinput states and particle statistics. Theatoms are either prepared
inneighbouringsitesin the lattice (nearest-neighbour, NN) or separated by one
site (next-nearest-neighbour, NNN). The theoretical predictions are for perfectly
distinguishable particles (Dist.) and indistinguishable bosons (Indist.). The
associated measurements eitherintroduce (Labelled) or donotintroduce
(Unlabelled) atime label to distinguish between the differentatoms. In
subsequent figures, we use Dist. or Indist. to refer to both dataand theory for
consistency, with the understanding that the experimental measurements may
not correspond to perfectly indistinguishable bosons. b, We consider three
ways of coarse-graining multiatom distributions: P, refers to the probability

of coincidentdetection of one atom on each of two inputsites (black output),
Pyunch refersto a coincident detection of allatoms on the same site (summing
overred outputs) and P, refersto allatoms appearing on the same half of the
array (summing over blue outputs). Example trajectories that fulfil these
conditions are shown on the left. ¢, We plot the ratio P}/P3, where the
superscripts D and B, respectively, refer to experiments with and without
introducing an additional label for distinguishability. At an evolution time
of t=t,on (grey dottedline, callout inb), this is analogous to measurements of

Using the above techniques, we measure the contrast of the HOM
dip to be 97.1:19%, which serves as a lower bound on the atom indis-
tinguishability. We estimate the indistinguishability to be 99.525%
given additional modelling of our lattice potential (Methods and Sup-
plementary Information section VI). We suspect that the dominant
source of distinguishability isimperfect cooling in the direction nor-
mal to the lattice (see Methods and Supplementary Information sec-
tion VIII). We also performed a separate measurement of the
indistinguishability that does not rely on either postselection or bin-
ning and found that the two measurements were consistent (Sup-
plementary Information section I). Our HOM measurements are
averaged over three different regions in the lattice, with similar per-
formance attained across aregion that containsall input sitesused in
this work (Supplementary Information sections Vland IX).

One way to test the visible particle statistics of more than two
atoms is to measure full bunching*®, which is the probability P,,,n
that all atoms occupy the same visible output site. If the visible and
hidden dynamics are perfectly separable, full bunching is uniquely
maximized by bosonic particle statistics. Note that to account for the
effect of parity projection, we normalize the bunching probability of
distinguishable particles by the probability of full survival for bosonic
particles (Supplementary Information section Ill). The results of our
full bunching measurements are shown in Fig. 2d,e, and the results
are in good agreement with theoretical predictions. Although the
lattice Hamiltonian in our experiments is not perfectly separable,
this agreement provides strong evidence for the indistinguishability
of the atoms.

HOM interference using abalanced beam splitter. Note that although the HOM
dip canhave unity visibility for identical bosonsin anideal lattice with only
nearest-neighbour tunnelling (grey theory curve), higher order tunnelling
termsinourlattice* resultinimperfectvisibility even for identical bosons
(black theory curve). d, Measurements of Py, and P, fOr two atoms asa
function of evolution time, and for both NN and NNNinputs, arein good
agreement with theory. e, Measurements of Py, and P, for NN input
patterns (withup ton=5and 8 atoms, respectively) arealsoingood agreement
with theory. For comparison, we show a prediction for when each trial of the
experiment containsone randomly selected atom that is distinguishable from
therest (1Dist.). Theinset shows the measured atom density in two dimensions
with eight prepared atoms, illustrating how at the chosen evolution time of
t=(n-1)tyou for themeasurementsine, allninputsites are approximately
uniformly coupled to each other. The theory predictions appearing throughout
this figure are for error-free preparations of atoms with the indicated particle
statistics. Thetheory curvesineare performed using Monte Carlo methods,
and thus the shaded regions denote +1o confidence intervals thatinclude both
samplingerrors and systematic errors relating to fluctuations in the applied
unitary evolution (Supplementary Information section ).

The full bunching probability decreases very rapidly with atom
number and is infeasible for us to measure for more than five atoms. To
test theindistinguishability of larger numbers of atoms, it is beneficial
tolook for signals that are sensitive to interference but converge more
quickly. Two quantities of interest are clouding and modified general-
ized bunching, defined in the Methods. Both of these quantities can
be thought of as a way to quantify a general tendency for the atoms
toend up on the samesite, or (in the case of clouding) close together.
Unlike full bunching, interpreting measurements of clouding and
modified generalized bunching requires precise knowledge of the
atom evolution, namely, of the single-particle unitary U.

For all theory predictions appearing in this work, we perform spec-
troscopic measurements that use the atoms as local probes of the lat-
tice depth to generate a model of the lattice Hamiltonian and thus
of U (Supplementary Information section VI). However, more direct
measurements of U are important for future studies that attempt to
program U using local, possibly time-varying potentials imposed by
the optical tweezers™*. As a proof of principle, we show that Ucanbe
inferred directly by measuring theinterference resulting from different
preparations of Fock states* (Fig. 3). Specifically, we perform a maxi-
mum likelihood fit of the parameters of interest in the unitary using
datainvolving preparations of one and two atoms in the lattice, which
results inbetter precision than previous approaches* (Methods). Using
this fitting procedure, we perform characterizations of the termsin U
correspondingto fourinputsites and five outputsites at an evolution
time of t =1.46 ms (Fig. 3). We found that the maximum likelihood fit is
within statistical variation of the spectroscopic characterization of U
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Fig.3|Characterizing the single-particle unitary. a, We directly characterize
the evolution of atoms from the input sites circled inred to the output sites
marked by the green crosses. This evolutionisdetermined by a5 x 4 submatrix
Mofthesingle-particle unitary U. b, Aseries of different one- and two-particle
quantumwalksare used toinfer M. Density plots associated with measurements
ofthese different quantum walks are shown in the top panel, with input sites
thatare populatedinagiven preparationcircledindarkred (unpopulated input
sitesinlightred). Mis estimated using the maximum likelihood estimation
(MLE) procedure described in the text. Schematically, different preparations
provideinformation about different elementsinM, asindicated by the grey
lines®. The colour scaleis shared across all parts of this figure.
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(Extended DataFig. 2e).In principle, these fits allow one to characterize
allparametersin Uat constant precision with anumber of experimental
trials thatscales polynomially inm. However, the number of parameters
in Uthat we can accurately infer using quantum walk datais currently
limited by the cycle time of our experiment and drifts in the experiment
that modify Uon long timescales.

Given the above calibrations of U, we can compare measurements
of clouding withup ton =8 atoms atan evolutiontime of t = (n — 1)t,om
with theory (Fig. 2d,e). The behaviour of the atoms is in line with the
predictionforideal bosons andis separated from both measurements
withtime-labelled (and thus distinguishable) atoms and from theoreti-
cal predictions for partially distinguishable atoms.

To go beyond eight atoms, we do not perform binning, and instead
study the modified generalized bunching probability P}, (Methods)
as afunction of atom number for square vn x ¥n input patterns with
next-nearest-neighbour spacing and at a fixed evolution time of
t=6.45 ms. Measurements of P}, show a clear separation between the
distinguishable and bosonic visible behaviours (Fig. 4a). We expect
that the main source of distinguishability in our experiment is thermal
motional excitations normal to the lattice (Methods and Supplemen-
tary Information section VIII). This motional DOF is well-approximated
by a harmonic oscillator with motional quantum numbers n,,. Atoms
that possess different values of n,, are distinguishable. Our measure-
ments of P} are consistent with athermal occupation of {n,,) = 0, cor-
responding to the fully indistinguishable case, and inconsistent with
significantly higher thermal occupation ({n,,) = 0.167).

Because of parity projection, P, is closely related to the probability
an atom is detected after the quantum walk dynamics and is akin to
standard measurements performed inthe photonics community using
click detectors'*. It is, therefore, important to calibrate any errors
that lead to a modification of the observed atom number, including
single-particleloss and certain kinds of detection errors, and include
them in our simulations (Methods and Supplementary Information
section V). This is in contrast to the measurements in Fig. 2 and the
Extended Data, which, due to postselection, are insensitive to the
above errors. Despite being sensitive to calibration errors, the agree-
mentbetween our measurements of P, and low-temperature simula-
tions suggests that theindistinguishability measured using few-particle
calibrationsis not noticeably degraded when scaling our experiments
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Fig.4|Interference oflargebosonicFockstates. a, Measurements of the
modified generalized bunching probability P asafunction of atom number
forsquarevn x vn input patterns at next-nearest-neighbour spacingandata
fixed evolution time of t = 6.45 ms with (triangles) and without (circles)
introducing time labels that make the atoms fully distinguishable. These
measurements can be compared witha modelfor partial distinguishability
(coloured lines), whichis described by aharmonic oscillator with an expected
thermal occupation of (n,,) (Methods). The fully distinguishable case (dashed
line) correspondstoinfinite temperature. Note that simulations for low
temperatures and large atom numbers are absent because of computational
overhead.Insetsinaand b show the atom density after their evolutionand
shareacolour bar. b, Measurements of P/, withinput patterns containing 180
atoms as a function of distinguishability (circles). The distinguishability is
controlled by partitioning the inputstate into n,,,.,; Sub-ensembles, such that
only atoms withinasub-ensemble share atime label and thus caninterfere.
For particles thatare sufficiently distinguishable to simulate, we can compare
these measurements with theory (solid line). ¢, The distributioninthe
observed fractionof surviving atoms on each shot of the experimentis also
sensitive to the effects of interference due to parity projection. For the case of
ninelabels (second from bottom panel), simulations capture the measured
distribution of atomsurvival probabilities. Measurements with different
numbers of labels (and thus atom distinguishability) are resolved both from
eachother and from asimulation of the fully distinguishable case with180
labels (bottom panel). The vertical lines denote the mean of each distribution
(dottedlines are measurements and solid lines are theory). Insetsin c denote
therelevantassignment of [abels for each datasetinboth b and ¢, witheach
colour corresponding to aunique time label for asubset of input sites. Shaded
regions aboutalltheory curves denote +1o confidenceintervals, including
systematicerrorsrelating to fluctuationsin the applied unitary.

up tomore particles. This motivates experiments with large ensembles
of atoms whose behaviour we are unable to simulate, which we now
discuss.

Thelargestinput patterns we study in this work contain 180 atoms
(Fig.4b,c). Although these patterns can be prepared with no defects,
in subsequent measurements, we no longer enforce perfect rear-
rangement to avoid incurring substantial overhead in the number of
required experimental trials. However, because we image the atoms
after rearrangement and before their evolution, we can identify the
locations of any defects. This resultsin a version of scattershot boson



sampling®, but with muchless variationininput states thanis typical’.
Based on the few-particle characterizations of atom indistinguish-
ability performed across relevant regions in the lattice (Supplemen-
tary Information section VI), we expect the on-demand success rate
for preparing a single ground-state atom, evolving it with no loss,
and detecting its position in an arbitrary site to be about 92%. The
dominant source of deviation from perfect boson sampling is from
5.0(2)% atomloss due to imperfect coolinginthein-plane directions,
with further contributions fromimaging, rearrangement and distin-
guishability (Methods and Supplementary Information section VIII).
Given these calibrations, we expect that, on an average run of the
experiment, around 166 of the 180 input sites are populated withiden-
tical bosons that evolve under approximately Haar-random unitary
dynamics (Methods) to about 1,015 output sites in the lattice with no
loss or detection errors.

Theabove observations suggest that the experiment is performing
adifficult sampling task, butitis not feasible to directly verify that the
collected samples are drawn from the correct distribution. Tocompare
with simulations, we control the distinguishability of the atoms by
introducing additional time labels. For adistinguishability that is high
enough to allow for classical simulation, we find good agreement
between theory and measurements of both P}, (Fig. 4b) and the dis-
tribution of atom survival probabilities (Fig. 4c). We observe the
expected qualitative behaviour in which reduced distinguishability
leadstoanincreasein P} and reduced atom survival. The above meas-
urementsserveasindirect evidence that the experiment with no addi-
tional time labels is behaving in line with expectations for bosonic
particle statistics.

Itis instructive to compare our approach with pioneering experi-
ments that study boson sampling using photons (Extended Data
Table1). In our experiment, we benefit from low loss (Supplementary
Information section VI) that is not strongly dependent on evolution
time (equivalently, the depth of the applied linear optical network)*',
high-state preparation and detection fidelity, and many lattice sites
(equivalently, many output modes). However, similar to previous
large-scale demonstrations of boson sampling'®”?, we apply only a
restricted family of unitaries. These unitaries possess additional struc-
tures that could, in principle, be taken advantage of in efficient clas-
sical simulations. Haar-averaging of the unitary would remove the
possibility of such simulations and provide access to additional tests of
bosonsampling that rely on random matrix theory*?. Based on previous
demonstrations, universal control over the single-particle unitary®
can, inprinciple, be implemented using the same optical tweezers we
use for atom rearrangement without introducing additional loss®.
However, animportant open problem is to improve the efficiency of
protocols for directly calibrating the applied unitary for large systems,
especially because errorsinthe applied unitary can have marked con-
sequencesontheresultinginterference (Methods and Supplementary
Information section ).

In this work, we have demonstrated an approach to performing
large-scale boson sampling that is enabled by a unique combination
of tools for the rapid assembly, evolution and detection of individual
atoms in a tunnel-coupled optical lattice, as well as techniques for
benchmarking the quality of state preparation and evolution in such
asystem. In the future, we expect that flexible programmability of
thesingle-particle unitary using optical tweezers will enable stronger
certifications of the high-order interference at the core of boson sam-
pling**, as well as studies of dynamical phase transitions in sample
complexity*. More broadly, these tools could be combined with other
types of atoms, and with the controllable interactions that are readily
availableinatomic systems, torapidly assemble and study interacting
Hubbard models'®* for simulations of condensed matter physics®, to
perform tests of complexity in the presence of interactions?*® and to
realize new approaches to computing®, including in hardware-efficient
fermionic architectures®.
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Methods

State preparation
State preparationin our experimentinvolves atom rearrangementand
high-fidelity optical cooling. The rearrangement must balance several
conflicting requirements associated with working in a tightly spaced
optical lattice that is compatible with strong tunnel coupling. In par-
ticular, our tweezers have abeam waist of 480(20) nm in comparison
to the lattice spacing of about 813/v2 nm. This means that tweezers
directed ata specific lattice site still have substantial overlap with adja-
centsites, and so atoms trapped in those adjacent sites can experience
higher lossrates, especially when the tweezers are moving. Moreover,
overlapping tweezers will beat against each other because of our use of
crossed acousto-optic deflectors to project the tweezer array®. Twee-
zers on adjacent lattice sites are separated in frequency by 1.95 MHz,
far higher than the relevant trap frequencies of 50-200 kHz, and so
one-dimensional (1ID) tweezer arrays with equal spacing to the lattice
do not cause much heating. However, because the lattice is slightly
rectangular, placing atweezer on every lattice site in two dimensions
canresultinlower beat frequencies that cause increased heating. Our
algorithm for atom rearrangement seeks to balance these concerns
against the desire to minimize the total distance travelled by the atoms
and the total duration of the rearrangement procedure.

The basic premise is to perform most operations in parallel with
1D arrays of tweezers***° and to perform as many operations as pos-
sible on a sublattice that does not lead to undesirable beat frequen-
cies between overlapping tweezers. We choose to work with either
nearest- or next-nearest-neighbour spacing along one axis and third-
nearest-neighbour spacing along the other axis. Atoms are stochas-
tically loaded into tweezers on this sublattice with 50-75% filling
(depending on whether or not enhanced loading is used®) and
implanted into the lattice®. Rearrangement proceeds in four stages
(Extended Data Fig.1a):

1. Pre-sorting:Ifacolumnisloaded with more atoms than are required
inthetarget pattern, any excess atoms are pushed to the neighbour-
ing columnin a single step using a 1D tweezer array. Similarly, if the
column has too few atoms, the missing atoms are pulled from the
adjacent column. In the rare case that this step fails, the experiment
is terminated and we simply load a new ensemble of atoms.

2. 1Drearrangement: Each columnis thenrearrangedin one dimension,
with excess atoms pushed to the edges of the array.

3. Filtering: Asubset of atoms s transferred back into a two-dimensional
(2D) tweezer array that addresses only the correct sublattice, and
the lattice potential is extinguished. Laser light that addresses the
IS, < 3P, transition is applied to resonantly blow away the excess
atoms while optically cooling the tweezer-trapped atoms. The
remaining atoms are subsequently transferred back into the lattice.

4. Compression: Optionally, the columns of rearranged atoms can be
translated closer together one column at a time.

The number of stepsin theresulting algorithmscales as O(vn), where
nisthe number of atomsinthe target pattern. For target patterns with
similar density to the loaded sublattice, the mean distance travelled
by eachatomis O(1), and the runtime of the algorithm typically scales
as O(v¥n).For dense target patterns, the worst-case scaling of the mean
distance travelled is O(vn) leading to a runtime of O(n).

Throughout rearrangement, the lattices are held ataconstantdepth
of U,,/h =21 x 2.4 MHz for the axial lattice, and U,,/h =21t x 1.7 MHz
for the 2D lattice. Resolved sideband cooling is continuously applied
to the lattice-trapped atoms. To move a given set of atoms, tweezers
are ramped on and off over 60 ps to a depth of U,/ ~ 21t x 30 MHz
and moved at a constant speed of 26 um ms™. Rearrangement occurs
under magic conditions in the lattice for the 'S, < P, transition®, and
so the tweezer-trapped atoms are shifted out of resonance from the
coolinglight while they are being translated. Because the appropriate

movesinouralgorithm canbe computed efficiently, and because of the
architecture of our tweezer control system®, analysing the atomimages
and programming the control systemtakes less than 5 ms for target pat-
terns containing up to 270 atoms. However, inour current experimental
system, thereis atechnical delay of 110 ms between taking the image of
the stochastically loaded atoms and initiating rearrangement because
ofthe timeit takes to extract theimage datafrom the camera. This could
beaddressedin the future by performingimage processing onthe same
field-programmable gate array hardware used for atomrearrangement®.

Forthe 180 atom patterns inthis work, rearrangement is performed
inabout30 ms. The per-atom success rate for this rearrangement can
be as high as 99.5% and is primarily limited by imaging fidelity and
loss. However, owing to drifts in the experiment, the typical per-atom
success rate is 98% for the experiments in this work.

Once the success of this rearrangement is verified using a second
image, theatoms are optically cooled to near their 3D motional ground
state. This cooling is composed of 120 pulses that alternate between
cooling pulses with a duration of 200 ps on two nearly-orthogonal
radial axes in the plane of the 2D lattice separated by 400 ps cooling
pulses on the axial out-of-plane axis. Each cooling pulse is separated
byadelay of200 psleading toanoverall cooling sequence thatis 60 ms
induration. This sequence is optimized for high-fidelity cooling of the
axial direction at the cost of slightly worse radial cooling. We choose
to make this trade-off because we are able to postselect for perfect
cooling in the radial directions. Specifically, for our experimental
parameters, atoms that occupy higher bands in the 2D lattice are lost
during tunnelling. On the basis of a master equation calculation
(Extended DataFig.1b), we expect this cooling to resultina 3D motional
ground-state occupation of 96.97%, whichis consistent with the expec-
tation based onan approximate analytical calculation®. The expected
axial motional ground-state occupation 0of 99.58% leads to an expected
indistinguishability of 99.27%, in agreement with our experimental
estimate 0f99.57%2%. The expected combined ground-state occupation
of 97.37% in the radial directions leads to 2.63% loss, which explains a
large fraction of our average observed loss of 5.0(2)%. The remaining
loss is probably because of the imperfect adiabaticity of rampsin the
lattice depth as well as the imperfect overlap between the Wannier
functions of the atoms in the lattice before and after the lattice is
quenched to the conditions used for tunnelling. Note that because
both cooling and imaginginvolve the spontaneous emission of photons
from atoms occupying different lattice sites, our state preparation is
expected to be perfectly dephasing. This rules out error models for
boson sampling that rely on coherences between different input
modes, like the mean field sampler?.

Image analysis and feedback
Similar to previous works, ourimage analysis involves multiplying raw
images by adiscrete set of masks corresponding to the knownlocations
of sites in the lattice and thresholding the results to identify the pres-
ence or absence of an atom in a given site®. However, to improve the
fidelity of this procedure, we optimized the applied masks by training
asingle-layer neural network onsimulated data corresponding to 30%
random filling of the lattice. The resulting masks are similar to the ones
we previously used based on the measured point spread function of
our imaging system but with a slight negative bias on adjacent lattice
sites that reduces errors due to leakage light from one lattice site to
another. Although a deep neural network can result in better perfor-
mance®, these performance gains are marginal in our setup because
of the already high imaging resolution in comparison with the lattice
spacing. This being the case, we opt to use a single-layer neural network
to ease the characterization of errors and image fidelity.
Theresulting analysis yields acombined imaging loss and infidelity
of P,,=0.002(1) for a calibration dataset, however, P,, can fluctuate
day to day by around 0.002. P, can be interpreted as the probability
of a false negative—that is, a site that contains an atom is incorrectly
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identified as being empty. The probability of a false positive (where
anemptysiteisincorrectly identified as containing an atom) is much
lower, with a value of Py, = 107, For experiments with very low density
(for example, when one atom occupies an analysis region containing
about1,015sites), the effect of false positives can become comparable
to or larger than the effect of false negatives when trying to correctly
identify the presence and position of the atom after the quantum walk
dynamics.

Allimagingerrors are quadratically suppressed when postselecting
for perfect rearrangement and no lost or extra observed atoms, and
so measurements involving this postselection are negligibly affected
by imaging errors. For experiments in which we do not postselect on
the number of atoms remaining after the quantum walk dynamics
(namely, the experiments shown in Fig. 4), imaging errors can play a
part. Specifically, for the atom and mode numbers relevant to Fig. 4,
the combined effects of false positives and negatives lead to overall
error rates of approximately 1% in our ability to correctly identify the
presence and location of a given atom. In experiments without post-
selection on the final atom number, we calibrate the effect of these
imaging errors and include them in our simulations (Supplementary
Information section V).

Animportant considerationin our experimentis the possibility that
the position of the lattice drifts relative to the tweezer array and to the
masks used inimage analysis, which can occur onatimescale of about
30 min. To correct this, we use the images taken before and after rear-
rangement (but not after the atoms are allowed to propagate through
thelattice) toidentify the positions of the lattice-trapped atoms relative
to the imaging system, and thus also relative to the optical tweezers.
This information can be used to correct any drifts by adjusting the
tweezer and mask positions on subsequent runs of the experiment.
Because therepetition rate of the experimentis about1Hz, these cor-
rections can be made much faster than drifts can occur. The tweezer
positions can drift relative to the imaging system on a timescale of
several hours, but this is readily corrected by taking images of atoms
trapped in the tweezers® and adjusting their positions to match the
lattice.

For datasets inwhich we simulate n partially or fully distinguishable
particles by combining multiple runs with fewer than n particles, we
compensate for parity projection during imaging by summing the
resulting processed images and taking the result mod(2).

Computing atom indistinguishability

The goal of our HOM experimentsis to measure the indistinguishability
ofapair of atoms. To do so, we measure the probability that two nomi-
nally indistinguishable particles arrive in disjoint subsets of sites and
compare this with the corresponding probability for distinguishable
particles. We now show that the ratio of these two quantities gives a
lower bound on the indistinguishability of the atoms.

Our modelis that we have linear optical evolution on atoms with
anextra DOF that evolves independently of the visible DOF. Then, the
probability that two partially distinguishable atoms start in the sites
k, lwithk#land endinsitesi,jis

PPRIGHIKD) = |Us o2 |U; 1% + U (21U ol

(1
+2JRe(, U; U7 U7 )
ifi#j
PPk k) = (1+ 7)|Us 21U, ) 2)
otherwise

where the indistinguishability 7 is the Hilbert-Schmidtinner product
of the two single-particle density matrices on the hidden DOFs and U
isthe single-particle unitary. Correspondingly, distinguishable atoms
have the distribution

PISIKD = |G 21U, 2 #1612 i i) ®

PYSYii|kl) = |U; /*|U; > otherwise (4)
Inthe experiment, we expect that the probability of coincidence of
atomsonany two particular sitesis small, and therefore estimation of
this probability is difficult. Thus, it is useful to be able to bundle many
sites together.
So, let S;and S, be disjoint sets of sites. The total probability that we
prepare partially distinguishable atoms and see oneatomeachinSs,, S, is

Pp?‘rstial - z Ppartial(l-jlkl)
&, (5)
J€S2

and the corresponding probability for distinguishable atoms is
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g (©)
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Note that theratio -7(§,, S,) = -1. We thus have the inequality
Q21-7 ®)

When equality holds so 7(S,, S,) =1, we say that S; and S, satisfy the
balanced condition, inanalogy with the case of abalanced beam splitter.

HOM with loss and parity projection. In our experiment, we areinte
restedinthecasethat S, = C,and S, = C, where C,is the column of lattice
sites thatincludessite k, and similarly for C,. It remains to constructan
estimator of Q“OM We will construct it from separate estimates of POIISt
and Ppamal

Toestimate Pdls (called PP inthe main text), we can directly use the
single-particle data. Denotmg the event that the particle is not lost
as -], we can write the coincidence probability for distinguishable
particles as

PES. = PGk, ~DP(CL, ~A) + PG, ~DP(Clk, ~1) 9)

As the right-hand side is a multilinear polynomial of single-particle
probabilities, the plug-in estimator is unbiased.

Now we construct anestimator of Pp"“'al (called P& inthe main text).
The probability that the prepared nomlnallymdlstlngmshable particles
end up on the same columns as the ones they start onis

P = P(vykDPR"E (10)
wherethe preparedsites are named kand [/, and the event v, is that nei-
ther of the two particlesis lost because of a single-particle loss event.
Owing to the effect of parity projection, we cannot measure P(v,|k{)
without further assumptions. In particular, we assume that the loss
actsindependently and identically on each site. Then defining Sto be
the event that we observe one particle in the output, the probability
of foccurring is

P(BIkD) =2(1-P)Py (11)



where P, is the probability that a single particle is lost because of a
single-particle loss event. So we can solve for the loss probability,

. 1-.1- 22P(ﬁ|k1) 1)
and compute the probability that neither particle is lost because of a
single-particle loss event:

P(v,lkD) = (1-P)? 13)
Thenwe can construct a plug-in estimate of QHOM fromthose of Ppartlal
and Pg':‘c ,and apply the deltamethod® to obtain a first-order unbiased
estimate on”OM To construct a confidence interval, we construct
1,000 bootstrap estimates of Q"'OM and apply the bias-corrected
percentile method®.

From a calibration of the unitary (Supplementary Information sec-
tion VI), we can calculate 7(C,, C)). Then we can extract the indistin-
guishability from

I=1e, C)( -Qiy (14)

We expect that our uncertainty in our calibrationin ris negligible com-
pared with the statistical fluctuation in our estimate of Q"°¥ (Supple-
mentary Information section II), so we ignored this ekffect when
calculating a confidence interval for 7. The confidence interval was
constructed through the bias-corrected percentile method, using
1,000 bootstraps. When constructing our point estimate and our con-
fidenceinterval, the estimate may go above 1because 7 <1. Toaccount
for this, after constructing the bootstrap confidence interval, we clip
the upper end to be equal to 1if it is larger than 1. Similarly, we apply
the same procedure to the point estimate.

Binning

Thereis flexibility in how to partition between visible and hidden DOFs
(Fig. 1b), which we take advantage of in tests of indistinguishability
involving up to eight atoms. Inanideal square lattice, H takes the form
H,®1,+1,® H,, where x and y denote the spatial coordinates of the
lattice sites, and in this case, we can consider one of the spatial coor-
dinates as hidden. For example, if we ignore the y-coordinate of the
atoms, theresulting visible behaviour is that of a1D multiparticle quan-
tumwalk along x (Fig. 1c,d). We refer to this as binning, because this is
accomplished by summing the observed numbers of atoms along the
y-axisin the final image. Binning is convenient because it allows us to
operateinaregimeinwhichitisrare thatthereis morethanoneatom
on agiven lattice site, minimizing the effect of parity projection and
providing effectively number-resolved measurements of the visible
sites. Note that the above form of His weakly violated in our lattice
because of higher order tunnelling terms (for example, diagonal tun-
nelling) and small non-factorizable variations in the nearest-neighbour
tunnelling terms. These violations are accounted for in our simulations,
and do not markedly affect our results.

Clouding

The clouding probability is defined as the probability that allatoms end
up on the same half of the array for a 1D quantum walk®® (Fig. 2b,d,e).
Similar to bunching, we normalize the clouding probability of dis-
tinguishable particles by the probability of full survival for bosonic
particles to account for the effect of parity projection (Supplemen-
tary Information section III). Note that, unlike full bunching, the
enhancement of clouding for identical bosons in comparison to dis-
tinguishable particles is strongly dependent on both the system evo-
lution and the specific input state. For example, preparing atoms at
next-nearest-neighbour spacinginthe lattice can make the difference

in clouding for bosonic and distinguishable atoms almost zero, as
confirmed by measurements of two and three atoms (Fig. 2a,d and
Extended Data Fig. 3).

Generalized bunching

The generalized bunching probability P, that all n atoms appear in
an arbitrary subset k of sites can serve as a useful quantity for bench-
marking the performance of a boson sampler® 8, For most unitaries,
including those applied in this work, numerical calculations indicate
that P,is maximized by bosonic particle statistics in comparison with
other particle statistics. Thisis not true in certain fine-tuned cases®°,
whichwouldbeinteresting to explore in future experiments withmore
control over the applied unitary.

The above generalization of bunching helps to unify our earlier
measurements, in which binning columns of sites and measuring coin-
cidences, full bunching or clouding simply correspond to specific
choices of k (Fig. 1b). For appropriate selections of the size of k, the
difference in generalized bunching probabilities of bosonic behav-
iour in comparison with other behaviours is expected to converge
in a number of measurements that is polynomial in n (refs. 67,71).
Specifically, we choose |k| = [m — m/n] (where | - ] denotes round-
ing to the nearest integer), with m = 500 for Fig. 4a and m=1,015
for Fig. 4b.

We cannot directly measure P,, and instead we measure the probabil-
ity P; thatall observed atoms on a given run of the experiment appear
in the set of sites . P}, differs from P, because even-numbered occu-
pancy of a site not contained in k contributes to a successful event in
which all remaining atoms after parity projection appear within «.
Although we do not claim that P} is maximized by perfectly bosonic
visible behaviour for any input state, k. and U, we find in numerics that
P still serves as auseful observable: it convergesinareasonable num-
ber of measurements and distinguishes between a family of experi-
mentally relevant models for the hidden DOFs (discussed in the main
text). To avoid concerns of biasing in our choice of k, we average P/,
overall choices of agivensize k := |k| to compute the quantity P}, which
we refer to as the modified generalized bunching probability in the
main text. Note that the main contribution to P, is bunching and the
resulting loss as a result of parity projection. As a result, we do not
postselect on the number of surviving atoms after the quantum walk
dynamics in our measurements of P.

Although there are many selections of k that must be averaged over,
"P, can be estimated efficiently from the observations using the fol-
lowing combinatorial argument: Let [m] = {1, ..., m} be shorthand for
the setof outputsites. Let S ¢,[m] denote asubset of sites of size k. Let
Gbe the random variable denoting the site occupation of the output,
withgbeingasingle sample of that random variable. Then, the average
probability that all n particles arrive in a set of size k is

-1
— m
P, = Pr(GcS) 15)
Wz
( j Z Pr(g) Y 1I(gc9) (16)
Sclm]
(m* m-1#(g)
—(kj gPr(g)[k_#(g)J 17)

whereLis theindicator function thatis1whenitsargumentis true,and
0 otherwise, and #(g) is the number of nonzero entries of g, and the
sum over granges over all possible mode occupations of the output.
Asthe expressionin equation (17) is alinear combination of probabil-
ities of outcomes, we can weight the corresponding frequencies by the
coefficients appearing in the sum to estimate the quantity P,.
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Quantum walk dynamics
The single-particle Hamiltonian governing the evolution of atoms in
thelatticeis

H==3 J(DGI+ 1) = 2 viixil, (18)
i) i

where |i) denotes the occupation of the lattice site i, and (i, /) denotes
all pairs of sitesin the lattice. V;denotes a position-dependent potential
that captures the harmonic confinementimposed by the lattice beams
and, in principle, can be adjusted using the optical tweezers®. J;isthe
strength of the tunnel coupling between sites iand,. Nearest-neighbour
tunnelling dominates withanenergy of J;/i ~J/h = 2m x 119 Hz; however,
small contributions from diagonal and next-nearest-neighbour tunnel-
lingarealsoincluded in our simulations® (Supplementary Information
section VI). Evolution under Hresults ina quantum walk described by
an m x m single-particle unitary U= e " where mis the number of
sites in the lattice.

As mentioned in the text, some loss occurs during the evolution as
aresultofimperfect state preparation, but we do not observe this [oss
to depend on ¢ (although we expect additional loss effects to play a
part on timescales that are very long in comparison to the dynamics;
Supplementary Information section VI). This contrasts with previous
demonstrations of boson sampling in which the survival probability
decays exponentially with evolution time (or equivalently the depth
ofthelinear optical circuit), which can be exploited in classical simula-
tion methods™"*7,

For many of our measurements with 1D nearest-neighbour input pat-
terns, we use anevolutiontime of ¢ = (n - 1)¢,oy such thatallinput sites
are approximately uniformly coupled to each other after the quantum
walk dynamics'. Atan evolution time of 6.45 ms, as applies to the data
shown in Fig. 4, U does not appreciably couple all 180 input sites to
all 1,015 output sites. This is primarily because of the finite size of the
lattice beams and resulting harmonic confinement (Extended Data
Fig. 2a,b and Supplementary Information section VI). This harmonic
confinement is negligible in a15 x 15 site region near the centre of the
lattice, inwhich the distribution of the norm-square of the elementsin
Uiswell-captured by the Porter-Thomas distribution for 385 outputs,
indicating behaviour that shares features with aHaar-random unitary
(Extended DataFig.2c,d). Over the full 1,015-site region considered in
this work, Ucouples each site to an average of 83 of the 180 input sites
with an amplitude of at least 107, Some sites are coupled by at least
107 to as many as 156 input sites.

From single- to many-particle dynamics

Adopting the first-quantized treatment typically used in discussions
of boson sampling’, consider n indistinguishable, bosonic and non-
interacting atoms occupying input sitesj = (j, ..., j,,), withj, < ... <j,,
wherej, e {l, ..., m}, and m is the total number of available sites in the
lattice. Each atom undergoes a quantum walk described by an m x m
single-particle unitary U= e /" where t is the evolution time. To cal-
culate the probability P2(k|j, U) of observing aspecific output pattern
k = (k,, ..., k,) after thisevolution, we must sum over all permutations of
atomlabels ontheinput goingto atom labels on the output. This treat-
ment is equivalent to properly symmetrizing the state and evolution
associated with these atoms, and yields'

1
PB(k|j, U) = F|r>erm(u,(,j)|2 (19)

where Uy; is the n x n submatrix of U that contains only the rows
corresponding to sites k (including any duplicates) and columns
corresponding toj(which contains no duplicatesin our experiments
because the lattice is initialized with at most one atom per site). The

normalization constant k! is more conveniently expressed in the
site occupation basis, k’ = (kj, ..., k},)), where k; counts the number of
atoms occupyingagivensitei € {l, ..., m}. Then we definek! = [, k1.
The equivalent calculation for distinguishable atoms yields
P°(k|j, U) = Perm(|Uj j|*)/k!. Note that because the single-particle dis-
tributions are given by |Uk,j|2, we can simulate the distinguishable
situation by combining separate single-particle measurements (as
applies in the case of time-labelled distinguishable data throughout
this work).

Simulations

For up to three particles, the simulations in this work involve exactly
solving for the full output distribution by evaluating the permanent
inequation (19) (or the corresponding expression for distinguishable
particles) for all possible outputs using Glynn’s formula. For larger
particlenumbers, we follow the approachinref. 44 to sparsely sample
fromthe full output distribution.

The simulations involving thermal occupation of the motional
DOF normal to the lattice in Fig. 4a assume that the evolution of this
hidden DOF is independent of the visible evolution of the atoms
and dephased by our state preparation. As a result, the evolution
of atoms with a mixed motional state can be simulated by assign-
ing a specific motional state drawn from the appropriate thermal
distribution to each atomina given simulated sample. For each sub-
set of atoms that share a motional state, we draw a sample using the
approach inref. 44 and combine these samples into a single sample
of partially distinguishable atoms. The effect of loss and detection
errors are simulated incoherently and applied after these samples
are generated, as is parity projection (Supplementary Information
section V). The above simulations indicate that the thermal model
for distinguishability leads to expected measurements of modified
generalized bunching that monotonically interpolate from the distin-
guishable to the indistinguishable bosonic case as the temperature
isreduced.

Characterizing the single-particle unitary

As discussed in the main text, we characterize the dynamics of the
atoms in two ways. The first is the spectroscopic characterization
(Supplementary Information section VI) and the second is a maximum
likelihood procedure to fit the single-particle unitary that determines
the dynamics, from one- and two-particle data. Here we describe the
maximum likelihood procedure and our method of determining its
performance.

First, we describe the model used to compute the likelihoods. Our
model describes atoms that are subjected to single-particle loss,
undergo tunnelling dynamics and then are measured by parity pro-
jection. Asweare only inferring some of the parameters of the unitary,
it suffices to use arestricted model that uses only the entries of the
single-particle unitary Uthat describes scattering from theinput sites
I (highlighted in red in Fig. 3) to the output sites S (green crosses in
Fig.3). The model for the single-particle distribution is

Pypsl)=A-PY|Uy®  ifseS (20)

PU’PA(tIi)z(l—PA)[l— Y |Us,~|2] (1)
SES

Py p (D1D) =Py (22)

Here 7is the event that the atom arrived outside of S, @is the event
that the particle was lost, i € / is the initial site, P, is a parameter
describing the single-particle loss, and U,;is the parameter describing
the amplitude for one particle tostartiniand endins. The model for
the two-particle distribution is



Py py, (5, 8'li.j) = (1= P)2PRE"SU(s, 57|, j)

(23)
for {s, s’} € Py(S)
Py.py 5(81i,J) = P A= P (Ul + 1 Uyl®) (24)
forses
Pyp, Qi )=1- Y  P(s,slij)= Y Psli,j) 25)

{5,5'}€P,(S) s€S§

Here the set P,(S) is of sets of pairs of elements of S, the event {is the
eventthatit was not the case thatallsurviving particlesarrivedinSand
i,j e laretheinitial sites. Finally, the probability thatlossless, partially
distinguishable atoms start in sites i,/ and arrive at distinct sites
s,s’€Sis

PRKs, s, ) = Uy 21U 12 +1Us 21U 1 (26)

+2JRe(U, Uy ;U3 U% ) (27)

where 7 is the indistinguishability of the two atoms.

The parameters P, and U are the parameters that we wish to infer,
whereas the parameter 7 is obtained from separate calibration data, as
discussed in the section ‘Computing atom indistinguishability’. To
simplify the inference procedure, we first infer P, using only the single-
particle data, then with P, fixed, we run the quasi-Newton L-BFGS opti-
mizer as implemented in PYTORCH to maximize the log-likelihood of
the datawithrespectto U.Itremainsto specify a parameterization of U.

Let M be the submatrix of U that is the intersection of the columns
specified by /and the rows specified by S. Then as Mis only |S| x |/|, we
wish to find a parameterization of it that does not require too many
more parameters, while at the same time respecting the constraint
that it is a submatrix of a unitary. To accomplish this, we specify M as
the |S| x |/] top-left submatrix of a (|S| + |/]) x (|S| + |/|) unitary matrix V.
We parameterize the matrix V by specifying its anti-Hermitian matrix
logarithmiH,so V=e'. We parameterize Hby writing it asa (real) linear
combination of the generalized Gell-Mann matrices. To define the
d x d Gell-Mann matrices, firstletk, [, q,j € {1, ..., d}. Then the k, [th
Gell-Mann matrix By is defined by

1

(Bkl)qj = \/i (5qk6jl + 6ql6jk) ifk < l (28)
1 . . .
(Bi)gj = ﬁ(lé’qk@, —i6i0) ifk>1 (29)
andfork=1[<d,wehave
1 ,
(Bkk)qj_md]j for q,jSk (30)
.~k
B k1), k1) = Jkk+D (31
(Bi)g; =0 else (32)
and finally, we have
1
Bd,d = ﬁﬂd (33)

The Gell-Mann matrices {B;} are a basis of Hermitian matrices that
are orthonormal with respect to the Hilbert-Schmidt inner product.

Thus, we can specify H in terms of its coefficients ¢; on the basis of
(IS1+ /1) x (S| + /1) Gell-Mann matrices, so H=} ;c;B;. This gives us a
(IS1+1/))* dimensional parameter space without a boundary.

To specify the initial point of the algorithm, we start with a model
M, of Mas computed from the spectroscopic calibration (Supplemen-
tary Information section VI), compute an isometric completion
W, of it, expressed in block form by W {= (M, ./1 - MoM{), then com-
puteaunitary completion V'], of W, by appending an orthonormal basis
of the nullspace of W W} as columns. Then, if the eigenvalues
of V, are e'?« where each ¢ (-m, ] for kefl, ..., [/ +|S]}, and Q
diagonalizes V,, we construct an initial Hermitian matrix H, from
H,=Qdiag(¢,, ..., Pn..) Q". As the Gell-Mann matrices are orthonormal,
we can then extract the initial coefficients (c,); from (cy); = Tr(H,B;).

Having specified the initial point of the L-BFGS optimizer, we can
runitto maximize the log-likelihood of the data. The data have seven
measurement settings, consisting of four single-particle settings
and three two-particle settings, as shown in Fig. 3, and the numbers
of experiments performed in each setting are given in Supplemen-
tary Information section IX. Unfortunately during the optimization,
sometimes the parameters run off to very large values, leading to
numerical instability. In these cases, we simply restart the algorithm
with slightly adjusted parameters, by adding shifts s; to the initial
parameters (¢,); drawn from independent Gaussians of mean zero
and standard deviation 0.1.

We would like to get a sense of the performance of this inference
procedure, and in particular whether our calibrated model deviated
from the maximum likelihood estimate more than would be expected
from statistical fluctuation. The calibrated model Py, p,  isspec-
ified by the evolution parameters M,, the loss parameter (P;), and
theindistinguishability parameter 7, The evolution parameters M,
are computed from the spectroscopic characterization. The loss
parameter (P)), and indistinguishability parameter ,are computed
from the HOM data that are used in the main text. The loss (P,),
is the frequency that no particles survived in the one-particle
preparations of the HOM data, the indistinguishability 7, was com-
puted using the method described in the section ‘Computing atom
indistinguishability’.

To quantify the deviation of the maximum likelihood fit (M*, (P))*)
to the calibrated model, we use the total variation distance of
the implied distributions. Specifically, we compute the total vari-
ation distances between Py, », - (-la) and Py - 7 (-la) for each
one- and two-particle input a and take the maximum of the results.
We call this the maximum total variation distance (max TVD)
d(Py,,po, 70 Py, =, 5)- The max TVD has the following operational
interpretation: suppose that we are allowed to choose among the 7
measurement settings to performasingle experiment, and our task is
to decide whether the parameters that describe the system are
(Mo, (P)o, To) of (M*, (P)*, o). Then 5 + 2d(Py. oo, 700 Prte o, 70 19
the optimal probability with which we could guess correctly.

We would like to capture the statistical variationin the max TVD. To
do so, we perform bootstrap resamples of the HOM data to obtain a
bootstrap estimate j}? of the indistinguishability, which is then used
to perform MLE onbootstrap resampled data, to obtainthe bootstrap
fit parameters (M}’, (P,l):’). We then compute the histogram of values
dP e, e, 7% Pra, e, 70)"

Wewouldlike tocomparethevalue ofdy, == d(Py, ., 5., Pr.p, 70
to theresulting histogram. In Extended Data Fig. 2e, we show a boot-
strap histogram that shows the max TVD from the point estimate to
thebootstrap MLEs. We can see thatd,.is slightly larger than the mean
ofthe bootstrap distribution. Thisis the expected behaviour because
statistical fluctuations in the calibrated model also contribute to d,.,
butamorethorough characterization of the statistical fluctuationsin
the calibrated model would be required to confirmthis. Alsoshownin
Extended DataFig.2earethemaxTVDsfromPy, ., - andPy- - 7
to the frequencies of the data.
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Validating few-particle quantum walks

To validate the quality of the quantum walks performed in this work,
we determine the total variation distances (TVDs) between the
experimental probability distributions and those expected from
the calibrated model. In the limit of many samples, we can estimate
this by determining the empirical TVD between the experimentally
observed frequencies and those expected according to the model.
If, as in our experiment, the number of trials is relatively small, the
empirical TVD is expected to be biased high. We, therefore, compare
the empirical TVD to that expected if we were to sample from an experi-
mental probability distribution that is equal to the model. The latter
distribution is estimated by Monte Carlo sampling from the model
distribution.

InExtended DataFig. 4, we show the binned experimental frequencies
andthe probability distributions of the model for two- and three-atom
quantum walks at evolution times of t,,o,, and 2¢,,oy, respectively. The
corresponding empirical TVDs are 0.046 and 0.109. The expected
empirical TVDs if the experimental distributions are the same as the
models are 0.047 and 0.099, respectively. The standard deviations of
the distributions of these empirical TVDs observed by Monte Carlo
sampling are 0.009 and 0.006 respectively. This comparison shows
thatalthough the empirical TVDs are conservatively estimated upper
boundsonthetrue TVDs, they are consistent with having TVDs of zero.
Useful estimates require many more experimental trials, whichis chal-
lenging with our experimental cycle time of about 1 s.

Instead of estimating the TVD directly, we can estimate the contribu-
tions of known discrepancies between the model and the experimen-
tal implementation. Apart from the distinguishability and loss errors
discussed in the main text, there are two kinds of errors arising from
evolution under different unitaries than that of the calibrated model:
calibration error, which leads to a systematic discrepancy between
the model and the experimental unitaries, and shot-to-shot errors
due to fluctuations in the experimental unitary. Although calibration
errors contribute to the TVD of the sampled distribution to the desired
boson sampling distribution, they can, in principle, be accounted for
by performingbetter calibration. Shot-to-shot errors cannot be over-
comeinthis way and instead effectively resultin sampling from astate
that is mixed, which can make the associated sampling task easier to
accomplish classically™.

Asdiscussedinthe next section, and in Supplementary Information
section VI, we expect the calibration errors in our system to be larger
thanthoseinstate-of-the-art photonics experiments. The precisionin
our calibration is fundamentally limited by the number of experimen-
tal trials that we can take before drifts in the Hamiltonian parameters
change the unitary applied (although we do not currently saturate
this limit). The limitation in the precision of our calibration can be
addressed by improving the stability of the experiment or by improving
the methods of inference of the unitary. We have taken afirst step in
thedirection ofimproving the methods of inference by introducing the
maximum likelihood method described in the section ‘Characterizing
the single-particle unitary’.

AsdiscussedinSupplementary Information section I, we expect that
shot-to-shot errorsin our experiment are dominated by fluctuations
inthelattice depth. We do not expect these errors to significantly limit
our experiment: if we ignore the other sources of errors, we estimate
that shot-to-shoterrorslead to alower bound onthefidelity of Fz 0.3
after the quantum walk dynamics for the 180 atom measurements
performed in this work (Supplementary Information section II).

We estimate the combined contribution of shot-to-shot and cali-
bration errors to the TVD to be below about 0.01 for the two- and
three-atom measurements considered in this section. These estimates
take into account our model for shot-to-shot errors (Supplementary
Information sectionIl), the uncertainty in the spectroscopic calibration
procedure (Supplementary Information section VI) and the expected

contributionto calibrationerrors because of finite interaction strength
(Supplementary Information section VII).

Our experimental distributions also differ from boson sampling
with number-resolving readout because of parity projection. We
include parity projection in our models and do not consider this to
beatrue discrepancy between the experimental probability distribu-
tion and the models. However, we determined that the TVD between
parity-projected frequencies and number-resolved onesis about 0.05
for both measurements in this section.

Comparing atomic and photonic implementations of boson
sampling

We compare some relevant figures of merit of the state-of-the-artimple-
mentations of (different variants of) boson sampling in Extended Data
Tablel.In photonics experiments, it can be challenging to generate and
interfere large Fock states of photons because of transmission losses
and the probabilistic techniques that are often?%” (but not always®’®)
used for single-photon generation. To overcome this difficulty, recent
experiments have performed modified versions of boson sampling
that take advantage of more easily accessible non-classical states of
light™°725° at the cost of requiring additional assumptions to support
the claim that classical simulation of the resulting sampling problem is
computationally hard”””®. Moreover, recent theoretical results suggest
that the presence of sufficient amounts of loss allows us toaccomplish
theimplemented sampling tasks classically”.

Thelowloss and high-state preparation and detection fidelities pre-
sented in thiswork enable studies of boson sampling that require fewer
assumptions for the hardness of classical simulation'. Furthermore, we
donotexpecttheshot-to-shoterrorsin our experiment to exceed those
in photonics experiments because of optical path length fluctuations
(eitherintheinterferometer or, in the case of Gaussianboson sampling,
between the photon source and the interferometer)'®". However, it is
more challenging to characterize the applied unitary Uto high precision
in our experiment than in photonics experiments, probably leading
to larger calibration errors. In photonics, characterizations of U can
be performed efficiently and with very low noise by taking advantage
of bright coherent states containing a macroscopic number of pho-
tons'®". We cannot prepare equivalent states of atoms and instead rely
on characterizations based on few-particle quantumwalks, which have
substantial experimental overhead, or ontheindirect characterizations
described in Supplementary Information section VI.

Units and confidence intervals

Unless otherwise noted, all error bars and uncertaintiesin this Article
and its Supplementary Information are provided as 1o confidence
intervals.
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Extended DataFig.1|State preparation. a, Rearrangement of atoms (blue
circles)inanopticallattice (grey circles denote sites in the lattice) using optical
tweezers (green) must balance several conflicting requirements, leading to the
multistep algorithm described in the Methods. b, To optically cool lattice-trapped
atoms with high fidelity, we use a pulsed cooling sequence involving 0.4 ms
axial cooling pulses, and 0.2 ms radial cooling pulses (timing diagram pictured

30
Time (ms)

40 50 60

inlower panel). We compute the expected average thermal occupation7asa
functionof timein each of three nearly-orthogonal axes of agivensiteinthe
lattice viaamaster equation calculation, yielding reasonable agreement with
measured valuesin the experiment. Note that we optimize for high-fidelity
cooling of the axial direction at the cost of slightly worse cooling in the radial
directions.
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Extended DataFig.2|Properties of the single particle unitary.a,b, The
single particle unitary Uis depicted here for an evolution time of ¢ = 6.45ms, as
isrelevant to the measurementsin Fig. 4. The finite waist of the optical lattice
beams and resulting harmonic confinement means that Udoes not appreciably
coupleallsites toeachother, and thus is not Haar random. ¢, d, Uexhibits
features of aHaar random matrix when considering only a15 x 15-site region
near the center of the lattice. In thisregion, the distribution of the norm-square
oftheamplitudesin Uare well-captured by the Porter-Thomas distribution for
385 outputs (blacklinein ¢). The distribution of the phasesin Uis well-captured
by the uniformdistribution (blackline ind). e, We perform maximum likelihood
inference of asubmatrix of the single-particle unitary based on one-and
two-particle data (see Fig. 3), and compare the point estimate to maximum
likelihood estimates of bootstrap resamples of the data, and to the spectroscopic
calibration (see Supplementary Information section VI). To quantify this
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comparison, we compute the one- and two-particle distributions generated by
theinferred parameters, and compute the total variation distances (TVDs) of
these distributions, then take the maximum of the TVDs over the prepared
input patterns. We call this quantity the max TVD between two sets of
distributions. The depicted histogramis the max TVD between the point
estimate and the maximum likelihood estimates of the bootstrap resampled
data.Shownalsoarethe max TVD between the frequencies of the data (Freq.)
andthe point estimate (Pt.), and that between the point estimate and the
spectroscopic model (Model). The bootstrap histogram gives asense of the
size of the statistical fluctuation of the max TVD between the point estimate
and the truth. The max TVD between the spectroscopic model and the point
estimateislarge compared to the bulk of the histogram, whichis the expected
behavior becausestatistical fluctuations in the model add to the statistical
fluctuationsin the point estimate.



Article

a Dist. NN Indist. NN b Dist. NN Indist. NN Indist. NNN
0 0
x 3 x 5 >
© 10 10
© 15 15
[a)]
f 10 15
)(3 0 X3
0 0 0
5
x X
g =5 = 5 ~ 10
S 10 10 15
'_
0 0 0
5 5 5
10 10 10
5 10 5 5 10 5 . 101 515 . 1010
0 x3 0 x3 0 *x3 0 X3
0.00 0.03 0.00 0.01
p p
c d
=== Indist. NN 0.5 - {
0.10 == Indist. NNN
Dist. NN 04
0.08 4 Dist. NNN "
S 0.06 2039
H 3
Q Q
0.04 0.2 1
0.02 0.1 4
0.00 0.0 T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t (ms)

Extended DataFig.3|Three particle quantum walks inone dimension. The
outputdistributions resulting from three particle quantumwalks at evolution
timesofa,1.97msandb, 4.23 msarein good agreement with theory. Similar to
thetwo particle case, each three particle output can be uniquely labelled by the
coordinates of the three particles (x;, x,, X5), with x;<x,<x;. The probability p of
measuring anoutputstate (x;, x,, x;) isindicated by both the size and color of
thecircleatthe corresponding coordinates. The prepared input statesare
marked by the red disks, and include patterns with nearest-neighbor (NN) and

t (ms)

next-nearest-neighbor (NNN) spacing. For NNinput patterns, indistinguishable
bosons (Indist.) exhibit enhanced probability to lie near the leading edge of the
distribution along the main diagonal (x, =x, = x;) in comparison to distinguishable
particles (Dist.). Thistendency disappears for NNNinput patterns. ¢, d, Like in
the two particle case, we can coarse-grain the three particle distributions by
measuring bunchingand clouding, and find good agreement with theoryasa
function of evolution time. All theory predictionsin this figure correspond to
error-free preparations of atoms with the appropriate particle statistics.
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Extended DataFig. 4| Validation of two and three particle quantum walks
inonedimension. The full output distribution after binning for a, two and
b, three particlesinitialized at nearest-neighbor spacing, at an evolution time
of tyomand 2¢,oy respectively. The grey bars are theory for error-free state
preparation, evolution, and detection with parity projection, and the black

points are data. The upper row corresponds to distinguishable (Dist.) atoms,
and the bottom row to unlabelled, nominally indistinguishable (Indist.), atoms.
Theoutputsare grouped by the number of collisions (1,2, or 3atomsonthe
samesite) thatoccur after binning, indicated by the inset cartoons.
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Extended Data Table 1| Comparison of large-scale boson sampling demonstrations

n P J r m Loss Detection Input Evolution
[9] 20 0.975 0.93-0.954(1) - 60 26%  60-82 % Click Fixed Fixed
[10] 50" 0.938 - 1.34-1.84 100 ~45% 73-92%'  Click Fixed Fixed
11  216* - - ~1.1 216 ~67%  95%  Counting Tunable Tunable
[12] 50" 0.962 - 1.2-1.6 144 57 %° - PPNRD Phase Fixed
This work 180 0.995"3, - ~ 1015 5.0(2)% 99.8(1) %! Parity Pattern Hamiltonian

For works involving Fock state boson sampling, n denotes both the particle number and the number of input modes. Works involving Gaussian boson sampling are marked with a *, in which
case n corresponds only to the number of input modes. P=1- 9(2)(0) is typically referred to as the “purity” in photonics experiments, and is measured via second order correlations in
Hanbury-Brown-Twiss-like experiments. 'To the extent that these measurements characterize the single-particle nature of the input field®, in our experiments P ~ 1and is lower-bounded

by our imaging fidelity of 0.998(1). However, our state purity is primarily limited by thermal motional excitations normal to the lattice, and can be estimated using the measured particle
indistinguishability of 7= 0.9957%, which is an estimate of the purity assuming that the single-particle density matrices in the out-of-plane motional DOF are equal. To characterize state
preparation, we list 7 for Fock state boson sampling results and the squeezing parameter r for Gaussian boson sampling results. m denotes the number of output modes in the linear optical
network. “Loss” denotes the fraction of particles lost during evolution, including incoupling from the source to the linear-optical network, loss in the network, and outcoupling to the detectors.
Detection is characterized by the detection efficiency, and the type of measurement performed on each output mode. “Click” refers to detecting the presence or absence of particles, “parity”
to detecting particle number parity, “PPNRD” to pseudo-photon-number-resolving detection, and “counting” to full particle number-resolved readout. The work marked with * includes fiber
coupling loss in the estimate of detection efficiency, and the work marked with ¢ includes detection efficiency in the quoted value for loss. 'The listed value for our work is a detection fidelity
rather than an efficiency, and includes contributions from both particle loss and infidelity. Converting the other listed values to detection fidelities would involve including the effects of leakage
light and dark counts, resulting in slightly lower values. “Input” refers to the class of states that can be prepared as inputs to the linear optical network, with “phase” referring to tunability of the
phases of the prepared squeezed states, and “pattern” to nearly arbitrary Fock states with occupations of O or 1on each input mode (see Methods). “Evolution” refers to the family of linear
optical networks that can be applied in a given system, with “Hamiltonian” referring to unitary evolution for variable time under a fixed Hamiltonian. For both “input” and “evolution”, “fixed”
refers to a single instance, and “tunable” to flexible, but not universal, programmability. The numbers appearing in this table are representative values for approximate comparison only, please
refer to the original publications for details.



