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Doubly parametric quantum transducers (DPTs), such as electro-optomechanical devices, show promise
as quantum interconnects between the optical and microwave domains, thereby enabling long-distance
quantum networks between superconducting qubit systems. However, any transducer will inevitably intro-
duce loss and noise that will degrade the performance of a quantum network. We explore how DPTs can
be used to construct a network capable of distributing remote two-mode microwave entanglement over
an optical link by comparing 14 different network topologies. The 14 topologies we analyze consist of
combinations of different transducer operations, entangled resources, and entanglement-swapping mea-
surements. For each topology, we derive a necessary and sufficient analytic threshold on DPT parameters
that must be exceeded in order to distribute microwave-microwave entanglement. We find that the thresh-
olds are dependent on the given network topology, along with the available entanglement resources and
measurement capabilities. In the high-optical-loss limit, which is relevant to realistic networks, we find that
down-conversion of each half of an optical two-mode squeezed vacuum state is the most robust topology.
Finally, using currently achievable experimental capabilities, we find the encouraging result that several
of these topologies could produce microwave-microwave entanglement. However, most of these topolo-
gies cannot work given current transducer performance, which demonstrates the importance of thoroughly

analyzing all possible networks.
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I. INTRODUCTION

An outstanding challenge of superconducting quantum
systems operating in the microwave regime is to interface
them with optical photons, which is crucial for enabling the
quantum networking of superconducting quantum proces-
sors [1]. Thus microwave-optical (MO) quantum transduc-
ers that preserve quantum coherence between the optical
and microwave domains are required. Existing transducers
are quickly improving as sources of decoherence, such as
noise and loss, fall below optical-microwave separability
and positive-partial-transpose- (PPT) preserving thresh-
olds that define quantum operation [2]. The next step is
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to then understand how best to interconnect two transduc-
ers in order to form an optically linked quantum network
between two microwave systems.

Given that transduction devices will likely be the lim-
iting elements in near-term demonstrations of quantum
networks, we should identify network topologies that place
the least stringent demands on the transducers, by allowing
the networks to make use of, e.g., ancillary resource states
and measurements. We explore this question by evaluat-
ing a variety of possible network topologies that generate
two-mode microwave entanglement using two transduc-
ers and experimentally realizable Gaussian entanglement
resources and measurements. We focus on doubly para-
metric transducers (DPTs), such as electro-optomechanical
devices, which have recently been used to optically read
out the state of a superconducting qubit [3,4].

Previous work has proposed and analyzed single net-
works that use two transducers to accomplish either
state transfer [5,6] or entanglement [7-9] between two
qubits operating at microwave frequencies over an opti-
cal link. References [10—12] have also each analyzed a
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single network for entangling two continuous-variable
(CV) microwave modes. In this work, we analyze a set
of fourteen different network topologies and compare their
abilities to entangle CV microwave modes using two
DPTs. The final microwave-microwave (MM) states pro-
duced by the networks we analyze are all 1 x 1 bipartite
Gaussian states with so-called balanced correlations [13].
This is the class of states that are equivalent, up to local
unitaries on each mode, to the two-mode squeezing of ther-
mal states. By focusing on the generation of entanglement,
rather than the transfer of arbitrary quantum states with
high fidelity, we are able to provide necessary and suffi-
cient entanglement thresholds for the transducer parame-
ters and loss beyond which the network becomes separable
across the two microwave modes and hence would be no
better than a classical network. Additionally, by focus-
ing on CV entanglement, we do not need to specify the
protocol for interconnecting qubit systems with the inher-
ently CV transduction channel, although we note that such
protocols have been proposed [8,14].

To optimize and compare quantum networks, a met-
ric must be chosen to quantify the ability of the network
to accomplish some set of tasks. As we are concerned
with the ability of a network to produce entangled MM
states, we naturally choose an entanglement measure as
our metric [15]. Unfortunately, even for the relatively
simple class of two-mode Gaussian states, different entan-
glement measures may induce different orderings on the
set of entangled states [16]. Thus, differing choices of
entanglement measures will potentially lead to differing
optimal network-parameter values and topologies. For the
balanced-correlation states that we analyze, logarithmic
negativity and entanglement of formation induce the same
ordering on the set of entangled states [16]. For conve-
nience, we quantify entanglement using logarithmic neg-
ativity, which is a necessary and sufficient condition for
separability of 1 x N bipartite Gaussian states. However,
in general, entanglement measures need only give neces-
sary conditions for separability [17]. Logarithmic negativ-
ity is an upper bound on distillable entanglement, which
is one of the most relevant metrics for tasks involving
quantum networks where entanglement is often the lim-
iting resource, as opposed to local operations and classical
communication [18]. Finally, while distillable entangle-
ment and entanglement of formation are typically difficult
to compute, logarithmic negativity can be easily computed
analytically (for details, see Appendix E).

The network-entanglement thresholds we find consti-
tute necessary and sufficient conditions for the final MM
states to be entangled. The network-entanglement thresh-
olds are a function of the parameters that characterize
the two DPTs along with the other network components.
We find the entanglement threshold for each network in
order to discern which networks impose the least strin-
gent requirements on the DPT parameters that must be

experimentally realized. We furthermore evaluate the loga-
rithmic negativity of the generated MM states for currently
achievable DPT parameter values, finding that four topolo-
gies show potential for generating remote MM entangle-
ment using recently demonstrated transducers. We find that
there exist striking differences in how each network tol-
erates imperfections [e.g., most (10 out of 14) topologies
cannot be successfully implemented with current trans-
ducers], which demonstrates the importance of comparing
many experimentally feasible network topologies.

II. DOUBLY PARAMETRIC TRANSDUCER
MODEL OVERVIEW

In this section, we briefly review the DPT model and
approximations that allow the transducer to be described
as a two-mode Gaussian bosonic channel. For a more
detailed description, see Ref. [2, Sec. Il and Appendix A].
DPTs consist of a mediating bosonic resonator mode cou-
pled to optical and microwave bosonic resonator modes.
The optical and microwave resonators are each coupled to
bosonic itinerant input and output modes. Additionally, all
three resonator modes are coupled to environmental baths,
which we assume to have negligible thermal occupancy
at the microwave and optical frequencies but ny, thermal
phonons at the frequency of the mediating mode. The
strong coherent-state pumps parametrically enhance the
relatively weak bare-coupling rates to the mediating mode
and provide the energy difference needed to bridge the gap
between optical and microwave domains while preserving
quantum coherence. After making the resolved sideband
approximation and only considering the frequency modes
that are on resonance with their respective optical and
microwave resonators, the linear input-output relations
between itinerant modes can be captured by five dimen-
sionless quantities. The cooperativities Cy, 5 give the rate
at which information is coupled between the respective
optical or microwave mode and the mediating mode rel-
ative to the rate at which it decays to the environment.
The subscript a refers to an optical parameter, while the
subscript b refers to a microwave parameter. The transmis-
sivity parameters 7y, account for coupling inefficiency
due to internal cavity losses and thus describe how under-
coupled or overcoupled the optical and microwave itiner-
ant modes are to their respective cavity modes (T, 5 = 1
corresponds to the ideal limit of no internal losses and
thus completely overcoupled). In general, this coupling
loss behaves differently than other losses (e.g., transmis-
sion losses or mode-matching losses) that are introduced
in Sec. III D.

By tracing out the environment, we reduce the input-
output relations to a two-mode Gaussian bosonic channel
characterized by two 4 x 4 matrices, T and N (the explicit
forms of which are given in Appendix A). This channel
acts on the covariance matrix of an input MO state as
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FIG. 1. (a) A circuit representing the optical-microwave input-
output relations of a DPT, where the optical, microwave, and
mediating modes are shown in red, blue, and green, respectively.
The solid lines correspond to accessible itinerant modes, while
the dashed lines correspond to environmental modes. This cir-
cuit reduces to the basic components shown in (b)~«d), which
we use to construct our network topologies. (b) The single-mode
down-conversion channel obtained by initializing the microwave
input in a vacuum state and tracing out the optical output. (c)
The single-mode up-conversion channel obtained by initializing
the optical input in a vacuum state and tracing out the microwave
output. (d) The effective circuit for a DPT under a squeezing-type
interaction with vacuum inputs, which generates a two-mode
squeezed lossy state. An ellipse denotes a two-mode squeezing
operation. The effective channels shown in (b)~(d) are com-
pletely characterized by the effective transmissivities 7|, ,, and
T(,5)» the added noise 7}, ;,, and the squeezing #’ (explicit forms
are given in Ref. [2]).

V — TVT' 4 N[19]. The matrices T and N are functions
of the five dimensionless parameters introduced above:
Ciup)> Tiapy, and nyg. This channel is illustrated with an
effective circuit diagram in Fig. 1(a), where the MO input
and output modes are represented by the operators ay,, bin
and ay, ZA)out, respectively.

The detuning of the coherent MO pumps relative to
their respective resonators determines the nature of the
interaction that the DPT implements. Red detuning by
the frequency of the mediating mode maximizes anti-
Stokes scattering with the mediating mode, while blue

detuning by the frequency of the mediating mode max-
imizes Stokes scattering with the mediating mode. Thus
when both pumps are red detuned, the device implements
a beam-splitter-type interaction between microwave and
optical modes. Whereas when one pump is red detuned and
the other pump is blue detuned, the device implements a
two-mode squeezing-type interaction between microwave
and optical modes. In our previous work, we have char-
acterized the fundamental separability thresholds of the
channel of the transducer under both types of interac-
tions [2]. The linearized equations of motion are always
stable for the beam-splitter-type interaction; however, the
squeezing-type interaction is subject to stability conditions
that can be found using the Routh-Hurwitz criteria [20,21].
For the exact form of these stability criteria, see Egs. (B1)
and (B2).

ITI. CONSTRUCTING NETWORKS

A. The basic network components

We now construct the set of network topologies that we
analyze. The objective of the networks we construct is to
entangle two remote microwave modes that can only be
connected via an optical channel. Thus we immediately
see that the networks will require two transducers that are
each colocated with the remote microwave modes to be
entangled. Additionally, the network will need a source of
MO entanglement, which can be produced “intrinsically”
within the transducers themselves when operating under
the squeezing-type interaction or via “extrinsic” sources
generated separately in either the microwave or optical
domain.

To simplify the set of networks we consider, we first
restrict how the transducers can operate within the net-
work. We consider only accessing either the input or output
of the transducer in the microwave domain and likewise
for the optical domain. Any unused inputs are initialized in
vacuum, while any unused outputs are discarded (traced).
Thus a transducer can be used as a one-mode up-converter
[Fig. 1(b)] or down-converter [Fig. 1(c)] when both pumps
are red detuned or as a source of entanglement [Fig. 1(d)]
when one pump is red and the other blue detuned. The
two possibilities give rise to an effective Hamiltonian of
ateét + bet + h.c. for a blue-detuned optical pump or 4¢7 +
bet + h.c. for a blue-detuned microwave pump, where ¢
denotes the mediating bosonic mode.

We restrict the set of resource states, channels, and mea-
surements to be Gaussian, to make the subsequent analysis
analytically tractable and since these are the most readily
available experimentally. Within the Gaussian restriction,
the resource states we consider are two-mode squeezed
(TMS) states. Additionally, we allow for joint measure-
ments on two modes and conditional unitaries in order for
the networks to accomplish entanglement-swapping pro-
tocols. The specific joint measurement we allow for is
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FIG. 2. Diagrams of the microwave-microwave entanglement distribution networks that we analyze: (a)—-(c) represent down-
conversion networks while (d)f) represent swapping networks. In (a) and (d), entanglement is generated extrinsically in the optical
domain. In (b) and (e), entanglement is generated extrinsically in the microwave domain. In (c) and (f), entanglement is generated
intrinsically in the transducer, where the optical or microwave label refers to whether the optical or microwave pump is blue detuned.
As in Fig. 1, the optical and microwave modes are shown in red and blue, respectively. The length of lines in these diagrams do not

correspond to physical transmission lengths.

projection onto two-mode states with infinite squeezing,
which is optically accomplished by combining each mode
on a balanced beam splitter and then making opposite
quadrature measurements. This measurement is sometimes
referred to as a CV-Bell or an EPR measurement. Allowing
additional Gaussian components is unlikely to signicantly
improve a network and in practice will often be worse
due to introducing additional sources of decoherence that
cannot be corrected for, since entanglement distillation
is impossible using only Gaussian operations [22-24].
Therefore, we consider the simplest possible networks that
accomplish the desired task.

B. The network topologies

To build our set of network topologies, we first enumer-
ate the set of ways to create MO entanglement using the
allowed components and when the resulting MO state is
entangled [2]:

(1) Extrinsic optical (EO). Generate a TMS optical state
and down-convert one mode to microwave using the trans-
ducer as in Fig. 1(b). The resulting MO state is entangled
if and only if ny, < 7,C,.

(2) Extrinsic microwave (EM). Generate a TMS
microwave state and up-convert one mode to optical using
the transducer as in Fig. 1(c). The resulting MO state is
entangled if and only if ny, < 7, Cp.

(3) Intrinsic optical (10). Use the transducer to pro-
duce a two-mode squeezed lossy state as in Fig. 1(d), with
the optical pump blue detuned. The resulting MO state is
always entangled.

(4) Intrinsic microwave (IM). Use the transducer to pro-
duce a two-mode squeezed lossy state as in Fig. 1(d), with
the microwave pump blue detuned. The resulting MO state
is always entangled.

Next, we consider two classes of topologies—down-
conversion and swapping—that convert the MO entangle-
ment into the final MM entanglement. The set of down-
conversion topologies is shown in Figs. 2(a)-2(c), where
the optical mode of a MO state is down-converted using
the transducer operating as in Fig. 1(b). In the set of swap-
ping topologies, a joint EPR measurement is performed on
the two optical modes of two MO states. The measure-
ment outcomes are then used to implement a conditional
displacement, which then potentially entangles the remain-
ing MM state. Given our four MO resource states, there
are then four down-conversion topologies and ten swap-
ping topologies allowed. The swapping topologies can be
further subdivided into four symmetric swapping topolo-
gies (where the two MO resource states are generated in
the same way) and six asymmetric swapping topologies
(where the two MO resource states are generated in dif-
ferent ways). Thus we construct 14 network topologies.
The set of four symmetric swapping topologies is shown in
Figs. 2(d)-2(f). The asymmetric swapping topologies are
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not explicitly shown in Fig. 2 but for clarity we give one
example, which is illustrated in Fig. 6 where we use the
extrinsic optical and intrinsic microwave methods to gen-
erate two MO states and then measure the optical modes of
these two states to perform entanglement swapping.

C. Nonoptimality of asymmetric entanglement
swapping
We conclude that the six asymmetric swapping topolo-
gies are never optimal by showing the following theorem.
For the proof of this theorem and the definition of
balanced-correlated Gaussian states, see Appendix G.
Theorem.—Let V| #V, be the covariance matrices
of two distinct two-mode balanced-correlated Gaussian
states. After performing a joint EPR measurement on the
first mode of each of the two states, let the logarithmic neg-
ativity of the resulting state be £;; where 7,j € {1,2} index
which states are used in the swapping protocol. Then, we
have that

Ep < max{E, Exn}. (N

This theorem allows us to exclude asymmetric swapping
topologies from further consideration, since a symmet-
ric swapping topology will always perform better, both
in terms of having a lower network-entanglement thresh-
old and in the amount of entanglement produced. The
remainder of this paper is dedicated to comparing the
four distribution topologies and four symmetric swapping
topologies, which are explicitly drawn in Fig. 2.

D. Optimizing networks

The logarithmic negativity should be optimized over
the experimentally accessible free parameters. We do not
require the two transducers to be operated with the same
set of values for the dimensionless parameters (Cyq 5}, Tja.h)
and ny,). Rather, we should consider that both transduc-
ers have the same maximum achievable values (or min-
imal in the case ny) and that it is easy to independently
reduce (increase) the parameters from their maximal (min-
imal) values in an experiment. We set 7,z equal to their
maximum possible values and ny, equal to the minimum
possible value for each transducer, which we conjecture
will always maximize the MM-state logarithmic negativ-
ity. This allows us to eliminate three parameters from the
set of parameters that characterize the network (since now
T(q,5y and ny, are equal for both transducers). In contrast, we
find that it is not always optimal to set all cooperativities to
their maximum values. For example, increasing the optical
cooperativity to be larger than the microwave coopera-
tivity causes the effective down-conversion transmissivity
(given by Eq. (A6)) to decrease and can result in less
MM entanglement. Thus, we must carry out an optimiza-
tion procedure over all four cooperativities. Namely, we

maximize logarithmic negativity for each topology subject
to the constraints that 0 < C,; < D, and 0 < C; < Dy,
where i = 1, 2 indicates the transducer, while Dy, 4, are the
maximum achievable optical and microwave cooperativi-
ties (see Appendix E). Recall that the squeezing-type inter-
action is subject to stability constraints, which must also be
taken into account when performing this optimization over
the four cooperativities (see Appendix B).

Thus far, we have not considered optical transmission
loss, which could come from, e.g., absorption in optical
fibers. Such external optical losses should also be included
in the optimization procedure, as there is often experimen-
tal freedom in how the optical loss is distributed between
as many as four optical modes, as can be seen in Fig.
2. For the extrinsic microwave down-conversion and the
two intrinsic down-conversion topologies, there is only
one optical mode and so the optimization is trivial. In
the case of extrinsic optical down-conversion and swap-
ping, splitting all transmission losses equally between the
two down-converted modes is optimal, which we show in
Appendix H 1. For these five topologies then, the exter-
nal optical transmission loss 1 — t, is optimally distributed
by simply taking 7, — ,/7.7,. However, for the remain-
ing nine swapping topologies there remains a complex
optimization problem over four cooperativities and the
external optical transmission loss distribution. Unfortu-
nately, the introduction of transmission loss means that the
result in Appendix G can no longer be used to eliminate
the asymmetric swapping topologies from consideration.
Thus, a simultaneous optimization over cooperatives and
transmission loss must be carried out over the entire set of
14 topologies in order to find the optimal network topol-
ogy. We further discuss several results of this optimization
over external optical transmission loss in more detail in
Appendix H. For example, in Appendix H 2, we show that
in the limited case of swapping two identical MO states
(which is relevant to the extrinsic microwave and intrinsic
optical or microwave swapping topologies), it is optimal
to distribute this loss completely onto one of the optical
modes after transduction.

IV.NETWORK-ENTANGLEMENT THRESHOLDS

To identify promising network topologies, we examine
the thresholds on the transducer and network parameters
that must be exceeded for the final MM state to be entan-
gled. The network-entanglement thresholds are found by
first computing the covariance matrices of the four MO
states (see Appendix C), which are then used to calcu-
late the covariance matrix of the resulting MM states (see
Appendix D). From the MM covariance matrix, we can
calculate the logarithmic negativity, which we set equal
to zero and solve for ny. This procedure then yields the
threshold. The MM state is entangled if and only if ngy,
is less than this threshold; thus the network-entanglement
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Plots of the network-entanglement thresholds in Table I, which correspond to the network topologies shown in Fig. 2. The

microwave-microwave state created by each network topology is entangled below its corresponding curve and separable in the region
above. The solid curves represent down-conversion thresholds, while the dotted curves represent swapping thresholds. These plots
illustrate differences between networks when the limiting factors are noise from the thermal bath of the mediating mode and finite
cooperativities. Here, we set 7, = 1, 7, = 0.75, and » = 0.58 (i.e., 5 dB of extrinsic squeezing). For the topologies that depend on
Cy (both extrinsic microwave topologies), we set Cj, to the value that maximizes the threshold on ng,. In (a), the extrinsic microwave

swapping MM state is always separable for D, = 1072,

thresholds are upper bounds on ny. Table I gives these
upper bounds on ny, for each of the eight topologies shown
in Fig. 2. A notable feature of these thresholds is that only
the extrinsic microwave swapping and down-conversion
topologies explicitly depend on any microwave parame-
ters (Dp and t5). However, the microwave cooperativity
implicitly affects the intrinsic optical thresholds through
the stability constraints.

The network-entanglement thresholds are plotted in
Figs. 3 and 4. For each topology, the corresponding curve
delineates the boundary between a separable (above) or
entangled (below) MM state. In Fig. 3, we see the effect
of cooperativity imbalances in limiting the thresholds as
a result of the optimization procedure, with the notable
exception of the extrinsic optical topologies, the thresh-
olds of which are only dependent on 7,, D,, and r and
hence insensitive to cooperativity imbalance. In the high-
optical-loss regime of Fig. 4, the threshold scales linearly
with loss only for the extrinsic optical topologies, while
the rest scale quadratically, indicating that for large optical
losses, the extrinsic optical topologies are the only feasible
candidates for attempting to create MM entanglement (for
further discussion of relevant features of these thresholds,
see Appendix F).

Some features of these thresholds can be understood in
terms of general results that have been found previously.

Recently, Ref. [25] has proved that all joint Gaussian mea-
surements are separable when the average loss on the two

TABLE 1. The network-entanglement thresholds that are
necessary and sufficient conditions for entanglement of the
microwave-microwave state created by each network topology
shown in Fig. 2. These expressions are an upper bound on
the thermal-bath occupancy of the mediating mode. When ng,
is less than one of these thresholds, the corresponding MM
state is entangled. C, indicates that this cooperativity should be
maximized while still satisfying the stability constraints for a
blue-detuned optical pump. For the extrinsic microwave down-
conversion and swapping topologies, the expressions for the
upper bounds on ny, that are optimized over cooperativities are
not simple, so we do not give the explicit expressions here.

Down-conversion Swapping
O D, (1 — %) .. D. sinh? (7)
2 cosh(2r)
4171,CaCpDa c, - I Cat G
(14 C, + Cp)* + 412C,D, 87,C,
Y, a'a(c_a + 47‘;2Da) - (_ja -
10 5 2, -DC,
1+ D,)? +4t2D? — D, — 1
Y ERALRRZY +2t" a4 Qt.— 1D, — 1
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FIG. 4. A plot of the network-entanglement thresholds in
Table I, which correspond to the network topologies shown
in Fig. 2. The microwave-microwave state created by each
network topology is entangled below its corresponding curve
and separable in the region above. The solid curves represent
down-conversion thresholds, while the dotted curves represent
swapping thresholds. This plot illustrates the differences in toler-
ance to optical loss between the networks when cooperativities
are high. Here, we set D, = 10D, > 1, 1, = 1, and » = 0.92
(i.e., 8 dB of extrinsic squeezing). In the limit of Dy, > D,,
the extrinsic microwave down-conversion and intrinsic opti-
cal down-conversion thresholds become identical to the intrin-
sic microwave down-conversion threshold and likewise for the
swapping thresholds. For the topologies that depend on Cj, (both
extrinsic microwave topologies), we set C, to the value that
maximizes the threshold on ng,.

optical modes exceeds 1/2. This requires the swapping
topologies to be separable when 7, < %, with the exception
of the extrinsic optical swapping topology, where t, does
not affect the measured modes. The extrinsic optical down-
conversion and swapping topologies are effectively the
same, since a lossless EPR measurement on two pure TMS
states results in a pure TMS state with reduced squeez-
ing [26]. Note that all thresholds in Table I are less than
or equal to 7,D,, indicating that ny < 7,D, is a global
necessary condition for producing MM entanglement. For
the down-conversion topologies along with the extrinsic
optical swapping topology, this is simply a consequence
of the entanglement-breaking threshold of the one-mode
down-conversion channel [2].

V. PROSPECTS FOR NEAR-TERM QUANTUM
NETWORKS

We find that current DPTs show potential for
generating remote two-node MM entanglement over an

x1073

= Extrinsic optical

Intrinsic microwave

N
1

Logarithmic negativity

1.0

Te

FIG. 5. The logarithmic negativity of the final microwave-
microwave state generated by each network topology using
recently reported electro-optomechanical-transducer parameter
values plotted as a function of optical loss external to the trans-
ducer (such as transmission and measurement losses) [3,27].
Topologies that are not shown here do not produce microwave-
microwave entanglement for these parameter values. The solid
lines indicate down-conversion topologies, while the dotted lines
indicate swapping topologies. For the extrinsic optical topolo-
gies, we include lines for 3 dB and 10 dB of extrinsic squeezing.
The transducer parameter values are taken directly from Ref. [2].

optical link. A recent experiment has reported the opera-
tion of an electro-optomechanical device with parameter
values D, = 26000, D, = 124, ng = 1000, 7, = 0.791,
7, = 0.866, §, =€, = 0.88, and 8§, = ¢, = 0.34 (where
34 = €, are the transmissivities representing optical mode-
matching and &, = €, are the transmissivities representing
microwave transmission loss [2,3,27].) We incorporate
these parameters and the optical transmission loss (1 — 7,)
by redefining 7,z to be 1,8,4/Tc = Tu€us/Tc and 1,8, =
Tp€p. This equally distributes the optical transmission loss
between the two optical modes just before or after trans-
duction, although as discussed in Sec. III D, this is only
optimal for the down-conversion and extrinsic optical
swapping topologies. Figure 5 uses these values to plot
the logarithmic negativity of the MM state produced by
each network topology as a function of the external optical
transmissivity 7, and includes lines for 3 dB and 10 dB of
extrinsic squeezing.

Of the 14 topologies we consider in the previous
section, only four are capable of producing MM entan-
glement for the reported transducer parameter values. The
topologies capable of MM entanglement are the extrin-
sic optical topologies that have superior performance
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under large optical transmission loss and the intrinsic
microwave topologies that perform better under limited
optical transmission loss. The down-conversion version of
these topologies always outperforms the swapping version
for these parameter values, since the amount of optical
coupling loss (t, = 0.791) inherent to the transducer limits
the effectiveness of the CV swapping measurement, even
in the limit of no optical transmission loss. In Fig. 5, we
see that the logarithmic negativity of the MM states can
differ significantly between the topologies, depending on
the amount of external optical loss that may be incurred.
This illustrates the importance of carefully optimizing and
then selecting the network topology based on achievable
transducer- and network-parameter values. There can be
a number of viable network topologies and the differ-
ences in entanglement between them can be significant.
Meanwhile, many network topologies may not even be
viable.

We can estimate an upper bound on the distillable
MM entangled-bit rates that could potentially be gener-
ated using these transducers by multiplying the logarith-
mic negativity by the bandwidth of the device (which
is approximately 2 kHz). Assuming a typical fiber loss
rate of 0.18 dB/km at 1550 nm, we see from Fig. 5
that for 7, = 0.9, corresponding to approximately 2 km
of fiber, the intrinsic microwave down-conversion topol-
ogy would have a maximum entangled-bit (e-bit) rate of
approximately 6 e-bits per second.

VI. CONCLUSIONS

We find the entanglement thresholds on DPT parameters
in order to distribute MM entanglement for a set of eight
network topologies, while eliminating a set of six asym-
metric swapping topologies since they are always inferior.
We find that among the set of networks we analyze, there
is not a unique topology that is universally optimal with
respect to separability or the logarithmic negativity entan-
glement measure. The best network is dependent on the
achievable DPT parameter values, where an optimiza-
tion must be carried out over the cooperativity values of
each transducer and over the distribution of the optical
transmission loss between the optical modes.

We found that with respect to network-entanglement
thresholds, the intrinsic swapping topologies have the least
restrictive thresholds in the low-optical-loss limit (i.e.,
short distances and small optical coupling losses). Con-
versely, in the high-optical-loss limit (i.e., long distances
and/or large optical coupling losses), the extrinsic opti-
cal down-conversion topology has the least restrictive
threshold. This can be intuitively understood by observ-
ing that the extrinsic optical down-conversion topology
can equally distribute optical loss onto two modes instead
of all loss occurring on a single mode, as is the case
for the other down-conversion topologies. Meanwhile, the

swapping topologies are subject to the average optical loss
threshold of 1/2 for separability, which is proven Ref. [25].

For recently achieved DPT parameter values, we calcu-
late the logarithmic negativity of the MM state that each
network topology is capable of creating. We find that, sim-
ilar to the separability thresholds, the network-parameter
values dictate which network topology will produce the
most entanglement and that the differences in the amount
of entanglement produced by different network topologies
can be significant. Thus, knowing which network topol-
ogy to use when operating in different parameter regimes
will be essential for building the most effective near-term
quantum network capable of entangling superconducting
qubits.

While our analysis considers many possible network
topologies, we limit the possible operating modes of the
transducer to just single-mode up-conversion and down-
conversion in addition to two-mode microwave-optical
squeezing. Our previous work in Ref. [2] shows that con-
sidering the transducer as a two-mode Gaussian quantum
channel allows for quantum operation to be achieved under
less restrictive transducer parameter values. Possible future
work would consider network topologies that utilize both
the microwave and optical inputs and outputs of the two
transducers in a single network topology, where we would
expect improvements beyond the global necessary condi-
tion ny, < t,D, that all the networks considered here must
satisfy. For example, the extrinsic optical down-conversion
and extrinsic microwave swapping topologies could be
simultaneously implemented with two transducers. Fur-
thermore, allowing non-Gaussian states, channels, and
measurements would very likely allow network topolo-
gies that are far less restrictive by utilizing, for example,
distillation, concentration, or purification protocols or
bosonic error-correction codes. As the ultimate goal is to
entangle qubits, the networks will naturally have access
to the non-Gaussian resources of the quantum processors
that they connect. The interface between the CV modes of
the transducer to the qubits of the quantum processors may
potentially look like a distillation protocol, a bosonic code,
or some hybrid between the two. Thus, understanding the
optimal way to accomplish this interface will both affect
and be affected by the network topology that connects the
quantum processors.
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APPENDIX A: GAUSSIAN DPT CHANNEL

As the starting point for this work, we adopt the same
DPT model as used in Ref. [2]. As discussed in Sec. III,

. B 2
7% — 0,Cq — 0 C m(
2 0612
Noyop =

0

a=1,[(1 = ) (1 = 0,Cp)* + Ca(1 + 2n4 + Co(1 — 1))],
B=1[(1 = 1)1 —0,C0)* + Co(1 + 2ny + Coll — 70))],
Y = VT CoCp [2n1 — 0,05(1 + 0374 + 0,7 + Co(1 — 1) + Cp(1 — 7,))],

where o, and o}, are the sign of the optical and microwave
pumps, respectively (—1 for red-detuned, +1 for blue-
detuned), and I, is the n x » identity matrix. The above is
true provided that at least one of the pumps is red detuned.

When both pumps are red detuned and we use the trans-
ducers as one-mode Gaussian conversion channels, we
trace out the unused portion of the above channels. The up-
and down-conversion one-mode channels are described by

T{u,d} = /‘C{u’d}lz and N{u,d} = n{uad}lz, where

47,7,C,Cp
Tud) = — -7~ =~ 5>
BT T+ G+ G2
1 2704 Clap) 20 — Tpa) Cipa
My = ( = 4 2t ta) 210 = Tp.a) Cpa)) ) (A6)
’ 2 (1+Co+Cp)?

These expressions are closely related to Ref. [2, Eqgs. (9)
and (10)] (where here we have fixed the minor typograph-
ical errors that appear in the original equation).

(1 — 0 Cp)In

u—%@—%gﬂ}«%%

for any transducer, we only use either the input or out-
put (but not both) in the optical domain and likewise
for the microwave domain. When using a transducer in
this way, the coupling losses t;, input losses §;, and out-
put losses ¢; all affect the quantum channel of the DPT
in the same way. Therefore, to reduce the number of
parameters needed to characterize a DPT, we redefine
T;€; — T; or 7;8; — T; depending on how that port is used.
For convenience, we make this substitution and then pro-
vide the explicit full form of T and N, which are as
follows:

A/ ‘L'a‘L’bCaCb (an O(_)b)

? i) o —ocon | Y
o0, 0
; 4 ( 0 1) ’ (A2)
1) BL
(A3)
(Ad)
(AS)

APPENDIX B: STABILITY CRITERIA FOR
BLUE-DETUNED PUMPS

There are two stability criteria for the linearized DPT
model that we require to be satisfied whenever a DPT is
operated as a two-mode squeezer [20]. One condition is

Cy<C_+1, (B1)

where the subscript + refers to the mode with the blue-
detuned pump and — refers to the mode with the red-
detuned pump.

The second stability criterion cannot be expressed in
terms of the dimensionless transducer parameters. How-
ever, it can be expressed in terms of the enhanced cou-
plings (G+) and line widths (x4 and y,,), which are explic-
itly defined in Ref. [2]. This stability criterion is given
by Eq. 9a in Ref. [20, Appendix], which is reproduced
here (with a minor typographical error that appears in the
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original equation fixed):

K++ym < K—Vznc—+(K—+K+)(K++Vm)

(B2)
K—~+Vm K+ymC+
-
4G 4G
< + Kk ti_. (B3)
K_~+Ym K4 ~+Ym

APPENDIX C: COVARIANCE MATRICES FOR
THE MICROWAVE-OPTICAL ENTANGLED
STATES

In this appendix, we outline the procedure for calcu-
lating the covariance matrices of the four MO states that
are introduced in Sec. III. We start by giving the explicit
form of the input state into the transducer and the transfor-
mation that the transducer performs on this state for each
case. Each of these MO states is produced by first initializ-
ing two modes in ether a two-mode squeezed vacuum state
with covariance matrix

1 (cosh(Zr)Iz

. sinh(2r)Z,
Vs = 35 \ sinh(2r) 2, ) €1

cosh(2r)I,

or a vacuum state with covariance matrix
(€2)

where Z, = diag(1,—1) is the Pauli Z matrix. The
Gaussian-channel formalism allows us to easily evolve of
these initial states through the network. All MO states are
balanced-correlated two-mode states, which are character-
ized by a covariance matrix of the form

_(aly ol
Vi - <C,' Z2 bi Iz) >

so the MO states are described by the three parameters a,
b, and c. For our MO covariance matrices, we adopt the
convention of the first mode being optical and the sec-
ond mode being microwave. We also note that the extrinsic
optical and microwave covariance matrices transform into
one another by exchanging a <> b and modes 1 and 2
and likewise for the intrinsic cases. The remainder of this
appendix is dedicated to giving the explicit expressions for
a, b, and ¢ for each of the four MO states.

(C3)

1. Extrinsic optical

Description. Start with an optical TMS state and down-
convert the second mode (with a transducer where both

pumps are red detuned):
Vio = (L& Ty) Vius 1 & Ty) " + 0L, & Ny

Covariance matrix:

cosh(2r)
a=———-7",
2
b 1 n 2t,Cp 2ng, + 1,Cy(cosh(2r) — 1))
2 (14 C, + Cp)? ’
7,7, C,Cp sinh(2r)
c=— . (C4)
1+ G+ Gy

2. Extrinsic microwave

Description. Start with a microwave TMS state and up-
convert the first mode (with a transducer where both pumps
are red detuned):

Vir = (T, ® L) Vous (T, @ 1) T + N, & 0L,.

Covariance matrix:

1 N 27,C, 2nyg, + 1,Cp(cosh(2r) — 1))

2 (14 Cy + Cp)? ’
b cosh(2r)’
2
A/ ‘L’aT},CaCb Sil’lh(zr)
c=— . (C5)
1+C,+ Gy

3. Intrinsic optical

Description. Initialize both the optical and microwave
inputs of the transducer in a vacuum state and use the trans-
ducer as an entanglement source with the optical pump
blue detuned and the microwave pump red detuned:

Vio = T+—VvacTI_ + N+—- (C6)

Covariance matrix:

1 n 47,Cy (Cp +ngp + 1)

2 (1—=Co+ Cp)®

1 471,C (Cy + nm)

2 (1=Cat G’

2(Ca+ Cp 4 2ni + 1) V7,1C,Cp
(1 — C,+ Cp)? '

a =

’

(C7)

4. Intrinsic microwave

Description. Initialize both the optical and microwave
inputs of the transducer in a vacuum state and use the trans-
ducer as an entanglement source with the optical pump red
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detuned and the microwave pump blue detuned.

Vim = T_ Vo TL . +N_;. (C8)
Covariance matrix:
1 4TaCa (Cb + nth)
a=-4+—",
2 (1 + Ca - Cb)
b _ l + 4TI)C[) (Ca + Nth 'i; 1)’
2 (1+C,—Cp
_ 2 (Ca + Cb + 2nth + 1) Y% TaThCaCh (C9)

(14 C,—Cp)?

APPENDIX D: CONVERTING
OPTICAL-MICROWAVE ENTANGLEMENT INTO
MICROWAVE-MICROWAVE ENTANGLEMENT

This appendix provides the procedure for calculating the
MM covariance matrix from the MO covariance matri-
ces for both the down-conversion and swapping classes
of networks. For the entanglement-distribution case, the
optical mode of the MO state is down-converted and the
covariance matrix of the resulting MM state is found using

Vum = (T @ 1) Vo (Te ® 1) T + Ny @ 0. (D1)
For the entanglement-swapping case, we start with two
MO states both having a covariance matrix of the form of
Eq. (C3). After measuring the optical mode of each state

via a joint EPR measurement, the covariance matrix of the
resulting MM state is given by [26]

Cl‘2 CiCj
(bi - ai+a/> I, _ai+’;,~ V)
V= » 2 ,  (D2)
A U L

where the subscript on V indicates which states go into the
swapping measurement. For the symmetric swapping case
(where both MO states are identical), the MM covariance
matrix reduces to

2
s ¢ (L 17,
Vii=bils = 2a; (Zz Iz) ’

APPENDIX E: THRESHOLDS AND
LOGARITHMIC NEGATIVITY

(D3)

The entanglement of a 1 x 1 balanced-correlated Gaus-
sian state with covariance matrix of the form of Eq.
(C3) can be quantified using the minimum symplectic
eigenvalue of the partially transposed covariance matrix

(MSEPTCM), which is easily calculated using [28]

b—J(a—b2 +4c
p=at (6’2 )"+ (E1)

A state with a covariance matrix of the form given in Eq.
(C3) is entangled if and only if ¥ < % The logarithmic
negativity is easily calculated from the MSEPTCM using
E = max {0, — log,(2)} . (E2)
Our network-entanglement thresholds are found by solving
the inequality v < % for ny,. We then maximize these upper

bounds on ng, and the logarithmic negativities subject to
the following constraints on cooperativities:

0 =< Ca,i =< Da» (E3)
0=<GCp; <Dy, (E4)
101: C,<Cy+1, (ES)
4G? 4G?
10 2: “_ < b tky+kp  (E6)
kp + Ym Kq + Vm
IMI: Cy<C,+1, (E7)
4G2 4G?
IM 2: b~ “— + kg +kp,  (E8)
Kq + Ym Kp + VYm

where i indexes the transducer (since there are two in
a network) and Dy, is the maximum achievable opti-
cal or microwave cooperativity, respectively. This repli-
cates the ability experimentally to tune a cooperativity to
the optimal value by controlling pump power. The first
two equations apply to all transducers, whereas the last
four equations are stability constraints that only apply to
transducers operating as intrinsic optical or microwave
entanglement sources.

APPENDIX F: EXTENDED DISCUSSION OF
THRESHOLDS

Returning to the symbolic expressions for the network-
entanglement thresholds given in Table I, we note that
only the extrinsic optical thresholds depend on the squeez-
ing parameter r. For the extrinsic optical down-conversion
topology, this is because both modes of the TMS state
experience decoherence (due to transduction). As men-
tioned in the main text, the extrinsic optical swapping
topology behaves similarly to the extrinsic optical down-
conversion topology, which is why its threshold also
depends on r. In contrast, the extrinsic microwave topolo-
gies do not depend on r, because one mode of each
squeezed resource does not experience any decoherence.
The intrinsic topologies do not utilize an extrinsic squeez-
ing resource and thus their thresholds do not depend on the
squeezing parameter 7.
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There is not a set of parameter values for which
the extrinsic microwave topologies are optimal in terms
of the network-entanglement thresholds. However, the
extrinsic microwave topologies may still be optimal with
respect to logarithmic negativity. Additionally, the extrin-
sic microwave topologies are the only topologies for which
setting all cooperativities to their maximum stable val-
ues is not optimal in terms of the network-entanglement
threshold.

A straightforward way to use two transducers to transfer
a quantum state is to simply up-convert the state, send it
over the optical channel, and then down-convert the state.
This is sometimes referred to as the “pitch-and-catch”
protocol. We note that the Choi state corresponding to
this quantum channel is the microwave-microwave state
produced by the extrinsic microwave down-conversion
topology in the limit » — oo. Therefore, the threshold
given in Table I for the extrinsic microwave down-
conversion topology also represents the entanglement-
breaking threshold for this pitch-and-catch channel. When
this inequality is not satisfied, then the pitch-and-catch
channel is equivalent to a classical measure-and-prepare
channel.

APPENDIX G: ASYMMETRIC GAUSSIAN
ENTANGLEMENT SWAPPING OF
BALANCED-CORRELATED GAUSSIAN STATES
IS NEVER OPTIMAL

Let V; and V, be two distinct (V| # V;) two-mode
balanced-correlated Gaussian states with covariance matri-
ces given by Eq. (C3). Suppose that we perform an EPR
measurement on the first mode of each state (i.e., the
positive operator-valued measure (POVM) elements are
infinitely squeezed displaced two-mode squeezed states).

Theorem.—Let the MSEPTCM of the resulting state be
v; where i,j € {1,2} index which states were used in the
swapping protocol. Then

min{vyy, U} < Vjp. (G1)
Alternatively, stated in terms of logarithmic negativity [Eq.
(E2)], this is

Eyy < max{Eyy, Exn}. (G2)

Proof—The MSEPTCM for the asymmetric swapping
case can be found by using Egs. (D2) and (E1) and,

explicitly, is
ci+o3+ \JAcla + X2
bl + b2 - ai +a s s
1+ a

(G3)

N 1
v12=§

where, for convenience, we introduce the quantity X =
((By = b2)(a1 + a2) — ¢} + ¢3). The MSEPTCM for the

two symmetric swapping cases can be found by using Eqgs.
(D3) and (E1) and, explicitly, is

c?

ind l
Vi = by — —.
ai

(G4)

We show that min {V;;, V22} < V1, and, without loss of gen-
erality, we can take V| < Vy,. What we want to prove is
then vy < Vjp, which is equivalent to

> A+ + /43S + X2
bi— L <o | byt by — 1
aj 2 a) + a
(GS)
With some algebra, this reduces to
222 x| >.,/ad3 + x2 G6
a—lcI - > /4cics + X7, (G6)

The left-hand side of this equation is non-negative, which
we show momentarily. Therefore, we can proceed to
square both sides of Eq. (G6), so that we have

2
[z“—zc% —X] > 4c2 + X2, (G7)
ai
a%c% —aya X > a%c%, (G8)
ay(byay — c3) = ay(bya; — ), (G9)

which is equivalent to the statement v;; < vp,, which is
true.

Now the only thing left to show is that left-hand side of
Eq. (G6) is non-negative. To prove that the left-hand side
is non-negative, we need to show

2 2 2
_|_
(b —b)+2L -T2 5 (G10)
a a+a
q_ca+a

2 > by — bs. (G11)

a ay + ap

Now, since a¢; > 1/2 and c? > 0, the following inequality
is true:

2 2
claz CHrdp

ai ap

> 0. (G12)
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With some algebraic steps, this can be brought into the
form

2 2
cia cha
G+ 2 +d+ 22> +4, (G13)
ap ar
2 2
cilay +a car+a
1( 1 2) + 2( 1 2) ZC%—}-C%, (G14)
ap a)
2 2 2 2
c c c)+c
L4212 (G15)
aj a  at+a
d_d+d_ 34 3 g

aj ai +a2 - a) aj)

Now we use our choice of V;; < Vy,, which can be stated
as
2
aq_a

— —=>b; — by
ag ap

(G17)

This, together with the inequality given in Eq. (G16),
proves that the inequality in Eq. (G11) is true. Therefore
the left-hand side of the inequality in Eq. (G6) is always
non-negative. Thus we show that entanglement swapping
between distinct two-mode balance-correlated Gaussian
states always produces less entanglement than swapping
identical copies of one of these two-mode states. |

APPENDIX H: DISTRIBUTING A FIXED AMOUNT
OF EXTERNAL OPTICAL LOSS

Sections III D and V introduce external optical transmis-
sion loss via the transmissivity parameter t,, which must
be included as a parameter in the optimization procedure
for each network topology. Specifically, for the topolo-
gies that have more than one distinct optical mode, which
include all the swapping topologies [Figs. 2(d)}-2(f)] along
with the extrinsic optical down-conversion topology [Fig.
2(a)], we assume that there is the ability to split this loss
up arbitrarily between the optical modes. As the extrinsic
microwave down-conversion [Fig. 2(b)] and intrinsic opti-
cal or microwave down-conversion [Fig. 2(c)] topologies
only have one optical mode, there is no freedom to dis-
tribute this between modes, as it all must be incurred along
the transmission of the single involved optical mode. The
extrinsic optical swapping topology is the only topology
that involves four optical modes and so one may con-
sider distributing 7, arbitrarily between all four modes.
However, Ref. [26] shows that this scenario of entangle-
ment swapping of two TMS states with some fixed loss
that can be distributed among the modes cannot result in
a lower effective loss than when simply distributing one
TMS state with the same fixed loss. Thus extrinsic optical
down-conversion will always perform at least as well as
extrinsic optical swapping, even with this additional free-
dom in distributing 7, among all the optical modes. In the

following subsections, we prove several results concerning
the optimal way to distribute 7, in certain scenarios.

1. Equal distribution of loss is optimal for extrinsic
optical down-conversion

Here, we consider the extrinsic optical down-conversion
scenario [Fig. 2(a)], where we now have some fixed exter-
nal loss that can be freely distributed between the optical
modes before down-conversion. We prove that distributing
this loss equally onto the two optical modes maximizes
the logarithmic negativity of the MM state after down-
conversion of both optical modes. We apply loss with
transmissivity parameters t; and 1, to each of the two
modes of a TMS state with a covariance matrix given by
Eq. (C1). We then apply the down-conversion channel,
which is given by Eq. (A6), to each mode. The final MM
state then has a covariance matrix of the form given by Eq.
(C3), with

1

a=r1y <rl sinh? (r) + 5) + ng,
.10 1

b = 1| 1o sinh”(r) + 3 + ny,

1
¢ = —Ty4/T1 T2 sinh(2r).

H1
: (HD)
Computing the MSEPTCM using Eq. (E1) gives

~ Td .

v(t, 7)) =n+ > (1 — Ysinh r), (H2)

where for compactness we introduce the quantity

Y= \/(1'1 + 15)2 sinh?(r) + 41,72 — (71 + ©) sinh 7,
(H3)

which we note is always positive.
To find when the logarithmic negativity is maximized
with respect to 7; and 1, we then compute

dv(t1,7/T1) T (t? — 7.) Y'sinh*(r)
dr 20 (Y+ (11 + m)sinh 7))’

(H4)

So we see that with respect to 7; € [7,, 1], ¥ is maximized
for ty=1,,7p =1 or 7 = 1,1, = 7,, while it is mini-
mized for 7; = 1, = /7.. Thus equally distributing some
fixed loss characterized by total transmissivity 7, onto each
mode maximizes the logarithmic negativity in the extrinsic
optical down-conversion scenario.

2. Completely unequal distribution of loss is optimal
for symmetric swapping

Here, we consider the situation where, given two copies
of a MO balanced-correlation state [covariance matrix
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given in Eq. (C3)], the optical modes experience some
fixed amount of transmission loss before the swapping
measurement. If there is the freedom to distribute this fixed
amount of loss between the optical modes prior to the joint
measurement, we prove that putting all the loss into one
of the modes maximizes the logarithmic negativity of the
MM state resulting from entanglement swapping.

After incurring some optical loss with transmissivity
parameter t;, the balanced-correlation covariance matrix of
the MO state is given by

a+(1—1)/21, tic L,
V= ( JreZs \/;Iz ) . (H5)

Now consider performing entanglement swapping on the
optical modes of two of these states, V| and V,, where each
incurs some potentially different loss with transmissivity
parameters 7| and 1, respectively, but fixing the total loss
incurred before swapping by setting 7,7, = 7.. Using Eq.
(G3), the MSEPTCM after swapping is given by

(t1 + ) (bla—1/2) — > + b
(i+w)a—-1/2)+1

v(11,T0) = (H6)

To find when the logarithmic negativity is maximized with
respect to 7; and 1, we compute

dv(ty, te/T1)  (ze —17)

dr, ((l’e - rlz) (a—1/2)+ rl)

. (H7)

So we see that with respect to t; € [z, 1], V is minimized
for ry =1, =1 or t;y = 1,1, = 7,, while it is maxi-
mized for t; = 7, = /7. Thus a completely asymmetric

FIG. 6. A diagram of the microwave-microwave entanglement
distribution topology, consisting of the asymmetric swapping of
an intrinsic microwave and extrinsic optical microwave-optical
entangled state. The transmissivities 71, 75, and 3 illustrate the
optical modes where some total external optical transmission
loss, 7, = 717,73, could be freely distributed. In the main text,
we rule out asymmetric swapping topologies such as this one
by using the result shown in Appendix G. However, Fig. 7
shows that when allowing some external optical loss, this topol-
ogy becomes optimal for some network-parameter values and 7,
where in that plot 7, = t3.

distribution of some fixed loss characterized by total trans-
missivity 7, onto one or the other mode in symmetric
swapping maximizes the logarithmic negativity.

3. Asymmetric swapping potentially optimal with
external optical loss

The nonoptimality of asymmetric swapping proven in
Appendix G does not account for external optical loss. We
find that introducing t, means that this result no longer
holds. In fact, we give an explicit counterexample for the
realistic device parameter values used in Sec. V, where
the asymmetric topology consisting of swapping the intrin-
sic microwave (IM) and extrinsic optical (EO) MO states
results in larger logarithmic negativity than the symmet-
ric swapping of either IM or EO states. This asymmetric
swapping topology is illustrated Fig. 6. Figure 7 shows an
enlargement of an area of Fig. 5 in the main text where this
counterexample can be seen. In this asymmetric swapping

x107*
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ss:s EO Sym
IM Sym

387 IM Asym
[ ==os IM+EO Asym "“'
2 3.7
4(% “ “‘
20 “ “'
() N3 .*
a o* “‘
.2 3.6 IRt
S "“"‘
ﬁ ‘:“
- “
— L d
S 3.5 St
Q «*’e
= et

344 o7

3.3

1 1 1 ) 1
0.82 0.84 0.86 0.88 0.90 0.92
External optical transmissivity

FIG. 7. The logarithmic negativity of the final microwave-
microwave state generated by the network topology using
recently reported electro-optomechanical-transducer parameter
values, plotted as a function of optical loss external to the trans-
ducer. This figure shows an enlargement of a region of Fig. 5 in
the main text. The extrinsic optical swapping (“EO Sym”) and
intrinsic microwave swapping (“IM Sym”) are the same curves
from Fig. 5. The “IM Asym” curve shows the completely asym-
metric distribution of the external optical loss for the intrinsic
microwave (IM) swapping (shown to be optimal for this topology
in Appendix H2. The “IM+EO Asym” curve shows the asym-
metric swapping of an IM and EO MO state (illustrated in Fig.
6), where all external loss is put onto the down-converted opti-
cal mode. We assume 10 dB of extrinsic squeezing in for the EO
topologies.
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case, there are three optical modes over which 7, may be
distributed and in this particular case we find that it is
optimal to put all of the external optical loss onto the down-
converted optical mode of the EO MO state. We suspect
that there may be asymmetric swapping scenarios in which
it is optimal to not distribute all of 7, onto one of the opti-
cal modes but put some amount 7; onto one mode and 1,
onto the other, where 7; and t, are not necessarily equal.
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